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Abstract

We address the problem of evaluating the risk
of a given model accurately at minimal la-
beling costs. This problem occurs in situa-
tions in which risk estimates cannot be ob-
tained from held-out training data, because
the training data are unavailable or do not re-
flect the desired test distribution. We study
active risk estimation processes in which in-
stances are actively selected by a sampling
process from a pool of unlabeled test in-
stances and their labels are queried. We de-
rive the sampling distribution that minimizes
the estimation error of the active risk esti-
mator when used to select instances from the
pool. An analysis of the distribution that
governs the estimator leads to confidence in-
tervals. We empirically study conditions un-
der which the active risk estimate is more
accurate than a standard risk estimate that
draws equally many instances from the test
distribution.

1. Introduction

In order to make an informed decision about the de-
ployment of a predictive model, it is crucial to know
the model’s approximate risk. In practice, however, it
is not always possible to estimate the risk on held-out
training data. Consider the following three scenarios.

Firstly, when a readily trained model is shipped and
deployed, the training data may be held confidential
by the supplier of the model. For instance, a medical
diagnosis system would not typically come with the
medical records that have been used to train it. The

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

supplier may be able to communicate an honest risk
estimate. However, this estimate may still be biased
because the confidential training data need not neces-
sarily reflect the input distribution which the deployed
model will be exposed to.

Secondly, the input distribution may change over time.
In this case, one may wish to monitor the risk of the
model in order to determine at which point an update
becomes necessary. As an example, commercial email
spam filters have to be updated with an additional
labeled sample in intervals that depend on the extent
to which spammers impose shift on the distribution by
employing new strategies to generate messages.

Thirdly, consider that a model may result from an ac-
tive learning mechanism. In order to minimize the la-
beling effort, active learners query the class labels that
they predict least confidently. Hence, the selected data
are a biased sample of the input distribution.

In these three scenarios, no accurate risk estimates are
readily available. Estimates that are communicated
from the model provider or result from hold-out evalu-
ation on outdated or biased samples can be arbitrarily
inaccurate. In order to estimate the risk accurately,
new test instances have to be drawn and labeled.

In many application scenarios, unlabeled test instances
are readily available whereas the process of labeling
instances is costly. We study an active risk estima-
tion process that, in analogy to active learning, selects
instances from a pool of unlabeled test instances and
queries their labels. Instances are selected according to
an instrumental distribution q. The empirical risk on
the actively selected sample is weighted appropriately
to compensate for the discrepancy between instrumen-
tal and test distributions which leads to a consistent—
that is, asymptotically unbiased—estimate. We ana-
lyze sources of estimation error of the empirical risk,
and derive the sampling distribution q∗ that minimizes
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the estimation error.

This paper is organized as follows. Section 2 outlines
the problem setting. Section 3 infers the instrumental
distribution that minimizes the variance of a consistent
risk estimator. Section 3.1 specializes our principal re-
sult for zero-one and squared loss. Section 3.2 details
confidence intervals for active risk estimators. In Sec-
tion 4, we explore the relative benefits of active and
regular risk estimates under varying problem charac-
teristics empirically. We study the case of a shift be-
tween training and test distribution as well as the case
in which an actively learned model has to be evaluated.
Section 5 discusses related work, Section 6 concludes.

2. Problem Setting

Let X denote the feature space and Y the label
space; an unknown test distribution p(x, y) is de-
fined over X × Y. Let p(y|x; θ) be a given θ-
parameterized model of p(y|x) and let fθ : X → Y
with fθ(x) = arg maxy p(y|x; θ) be the corresponding
hypothesis.

We study the problem of estimating the risk

R =
∫∫

`(fθ(x), y)p(x, y)dydx (1)

of fθ with respect to p(x, y). The loss function
` : Y × Y → R measures the disagreement between
prediction and the true label. For classification, the
zero-one error `0/1 is a widely-used choice; in this set-
ting, the integral over Y reduces to a finite sum. For
regression, quadratic loss `2 is a standard choice.

Since p(x, y) is unknown, the expected loss (Equa-
tion 1) is typically approximated by an empirical risk

R̂n =
1
n

n∑
i=1

`(fθ(xi), yi), (2)

where n test instances (xi, yi) are drawn from p(x, y) =
p(x)p(y|x). Drawing labels y for selected instances x
according to p(y|x) is a costly process that may involve
a query to a human labeler.

Test instances xi need not necessarily be drawn ac-
cording to the distribution p. When instances xi are
drawn according to an instrumental distribution q, a
risk estimator can be defined as

R̂n,q =
1∑n

i=1
p(xi)
q(xi)

n∑
i=1

p(xi)
q(xi)

`(fθ(xi), yi), (3)

where (xi, yi) are drawn from q(x)p(y|x). Weighting
factors p(xi)

q(xi)
compensate for the discrepancy between

test and instrumental distributions, and the normal-
izer is the sum of weights. Because of the weighting
factors, Equation 3 defines a consistent estimator (see
e.g., Liu, 2001, pg. 35). Consistency means asymp-
totical unbiasedness; that is, the expected value of the
estimate R̂n,q converges to the true risk R for n→∞.
However, a precondition for R̂n,q to be consistent is
that p(x) > 0 implies q(x) > 0. Note that Equation 2
is a special case of Equation 3, using the instrumental
distribution q = p.

In practice, Equation 3 cannot be evaluated because p
is not known. Also, we might not be able to directly
generate new test instances according to an arbitrary
distribution q. Therefore, some of our results focus
on the case in which a large pool D of m unlabeled
test instances is available that has been drawn accord-
ing to the test distribution p. Drawing instances from
this pool then serves as an approximation of drawing
from the test distribution; in this case, p(x) = 1

m for
all x ∈ D is the uniform distribution over the pool.
Drawing test instances according to an instrumental
distribution q is then implemented by sampling from
the pool according to q. In this setting, Equation 3
simplifies to

R̂n,q =
1∑n

i=1
1

q(xi)

n∑
i=1

1
q(xi)

`(fθ(xi), yi). (4)

The estimate R̂n,q given by Equations 3 and 4, respec-
tively, depends on the selected instances (xi, yi), which
are drawn according to the distribution q(x)p(y|x).
Thus, R̂n,q is a random variable whose distribution
depends on the distribution q(x)p(y|x). Our goal is
to find an instrumental distribution q such that the
expected deviation from the true risk is minimal for
fixed labeling costs n:

q∗ = arg min
q

E
[(
R̂n,q −R

)2
]
.

3. Active Risk Estimation

The bias-variance decomposition of Geman et al.
(1992) constitutes the starting point of our investiga-
tion of the sources of estimation error:

E
[
(R̂n,q −R)2

]
=

(
E
[
R̂n,q

]
−R

)2

+ E
[(
R̂n,q − E

[
R̂n,q

])2
]

= Bias2[R̂n,q] + Var[R̂n,q]. (5)

Equation 5 expresses the estimation error as a sum of
a squared bias and a variance term. Because R̂n,q is
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consistent, E[(R̂n,q −R)2] vanishes for n → ∞. Fur-
thermore, Liu (2001, pg. 35) shows that Bias2[R̂n,q] is
of order 1

n2 ; that is, there are c1 > 0, c2 > 0, and n0

such that for all n ≥ n0

c1
n2
≤ Bias2[R̂n,q] ≤

c2
n2
. (6)

Lemma 1 states that the active risk estimator R̂n,q is
asymptotically normally distributed, and characterizes
its variance.

Lemma 1 (Asymptotic Variance of Estimator).
Let R̂n,q be as defined in Equation 3. Then,

√
n
(
R̂n,q −R

)
n→∞−→ N

(
0, σ2

q

)
(7)

with

σ2
q =

∫
p(x)
q(x)

(∫
[`(fθ(x), y)−R]2p(y|x)dy

)
p(x)dx (8)

where n→∞−→ denotes convergence in distribution.

The proof can be found in the appendix. Taking the
variance of both sides of Equation 7, we obtain

nVar
[
R̂n,q

]
n→∞−→ σ2

q . (9)

Because nVar[R̂n,q] converges to a constant, Var[R̂n,q]
is of order 1

n . As the bias term vanishes with 1
n2 and

the variance term with 1
n , the expected estimation er-

ror E[(R̂n,q − R)2] will be dominated by the variance
term Var[R̂n,q]. Dividing Equation 9 by n, we see that

Var
[
R̂n,q

]
≈ 1

n
σ2
q (10)

for large n. In the following, we will use this approx-
imation, and consequently derive a sampling distribu-
tion q∗ that minimizes σ2

q .

3.1. Optimal Sampling Distribution

The following theorem derives the sampling distribu-
tion that minimizes σ2

q .

Theorem 1 (Optimal Sampling Distribution). The
instrumental distribution that minimizes σ2

q is

q∗(x) ∝ p(x)

√∫
[`(fθ(x), y)−R]2p(y|x)dy. (11)

The proof can be found in the appendix.

We will now focus on the pool-based setting in
which p(x) = 1

m is the uniform distribution over a

pool D. The active risk estimator samples n points
according to a discrete instrumental distribution q(x)
and Equation 4 defines R̂n,q. Hence, σ2

q becomes a
finite average over the pool and R a pool-based risk
taken over the instances in D.

Note that the optimal sampling distribution q∗ given
by Equation 11 depends on the unknown risk R, and
on the unknown true conditional p(y|x). To com-
pute q∗ in practice, we approximate p(y|x) by the given
model p(y|x; θ), and R by the introspective risk

Rθ =
1
m

∑
x∈D

∫
`(fθ(x), y)p(y|x; θ)dy

accordingly. This approximation constitutes an anal-
ogy to active learning. In active learning, the model-
based output probability p(y|x; θ) serves as the ba-
sis on which the least confident instances are selected.
Note that the introspective risk Rθ may approximate
the true risk poorly, depending on the size of the train-
ing sample and other factors.

We will now derive the optimal sampling distribution
for two standard loss functions.

Derivation 1 (Optimal Sampling for zero-one loss).
If p(y|x) is approximated by the model p(y|x; θ), the
sampling distribution that minimizes σ2

q for the zero-
one loss `0/1 in a pool-based setting resolves to

q∗(x) ∝
√

(1− 2Rθ)(1− p(fθ(x)|x; θ)) +R2
θ (12)

for all x ∈ D.

Proof. Rewriting the result of Theorem 1 for p(x) = 1
m

in a classification setting, we obtain

q∗(x) ∝
√∑
y∈Y

(
`0/1(fθ(x), y)−Rθ

)2
p(y|x; θ)

=
√ ∑
y 6=fθ(x)

(1− 2Rθ)p(y|x; θ) +R2
θ

=
√

(1− 2Rθ)(1− p(fθ(x)|x; θ)) +R2
θ.

Equation 12 constructs q∗(x) such that it gives prefer-
ence to instances whose loss has a high variance ac-
cording to p(y|x; θ). In binary classification, q∗(x)
gives a higher likelihood of selection to instances that
are close to the decision boundary. If Rθ = 1

2 , active
risk estimation degenerates to uniform sampling.

In the following, we derive the optimal sampling dis-
tribution for regression problems and a squared loss
function. Derivation 2 assumes that the model uses a
Gaussian predictive distribution p(y|x; θ):
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Derivation 2 (Optimal Sampling for squared loss).
If p(y|x) is approximated by the model p(y|x; θ) and
the model is Gaussian with p(y|x; θ) = N (fθ(x), σ2

x),
then the sampling distribution that minimizes σ2

q for
the squared loss `2 in a pool-based setting resolves to

q∗(x) ∝
√

(3σ2
x − 2Rθ)σ2

x +R2
θ

for all x ∈ D.

Proof. Rewriting Equation 11 for ` = `2 yields

q∗(x) ∝

√∫
((fθ(x)− y)2 −Rθ)2 p(y|x; θ)dy

=
(
R2
θ +

∫
(fθ(x)− y)4p(y|x; θ)dy

−2Rθ
∫

(fθ(x)− y)2p(y|x; θ)dy
) 1

2

=
√

3σ4
x − 2Rθσ2

x +R2
θ. (13)

Equation 13 exploits that the two integrals over Y are
central moments of the Gaussian predictive distribu-
tion, because mean and mode coincide.

Note that the variance σ2
x of the predictive distribu-

tion at instance x ∈ D would typically be available
from a probabilistic predictor such as a Gaussian pro-
cess (Williams & Rasmussen, 1996).

Algorithm 1 summarizes the active risk estimation al-
gorithm. It samples n instances with replacement from
the pool according to the distribution prescribed by
Derivations 1 (for zero-one loss) and 2 (for squared
loss), respectively. Labels are queried for these in-
stances. An interesting special case occurs when the
labeling process is deterministic. Since instances are
sampled with replacement, elements may be drawn
more than once. In this case, labels can be looked up
rather than be queried from the deterministic labeling
oracle repeatedly: hence, the actual labeling costs may
stay below the sample size. In this case, the loop may
be continued until the labeling budget is exhausted.

3.2. Confidence Intervals

This section derives confidence intervals for active risk
estimators. According to Lemma 1, the estimator R̂n,q
is asymptotically normally distributed. The asymp-
totic variance is given by

σ2
q =

∫∫ (
p(x)
q(x)

)2

[`(fθ(x), y)−R]2 p(y|x)q(x)dydx,

where we have reformulated Equation 8 by changing
the probability measure from p to q. A consistent

Algorithm 1 Active Risk Estimation
input Model parameters θ, pool D, labeling costs n.
output Risk estimate R̂n,q∗ .
1: Compute optimal sampling distribution q∗ accord-

ing to Derivation 1 or 2, respectively.
2: for i = 1, . . . , n do
3: Draw xi ∼ q∗(x) from D with replacement.
4: Query label yi ∼ p(y|xi) from oracle.
5: end for
6: return 1∑n

i=1
1

q(xi)

∑n
i=1

1
q(xi)

`(fθ(xi), yi)

estimate of σ2
q is obtained from the labeled sample

(x1, y1), . . . , (xn, yn) by computing empirical variance

S2
n =

1∑n
i=1

p(xi)
q(xi)

n∑
i=1

(
p(xi)
q(xi)

)2

[`(fθ(xi), yi)− R̂n,q]2.

A two-sided confidence interval [R̂n,q−z, R̂n,q+z] with
coverage 1− α is now given by

z = F−1
n

(
1− α

2

) Sn√
n

where F−1
n is the inverse cumulative distribution func-

tion of the Student’s t distribution. As in the standard
case of drawing test instances xi from the original dis-
tribution p, such confidence intervals are approximate
for finite n, but become exact for n→∞.

4. Empirical Results

We study the empirical behavior of active risk estima-
tion in comparison to risk estimation based on a sam-
ple drawn uniformly from the test distribution (pas-
sive evaluation). Our evaluation specifically addresses
two scenarios: Section 4.1 focuses on evaluating mod-
els with respect to a test distribution that differs from
the training distribution; Section 4.2 focuses on the
evaluation of actively trained models. We conduct ex-
periments in two application domains.

Spam Filtering Domain. In this domain, the dis-
tribution shifts over time and a classifier that has
been trained in the past has to be evaluated with re-
spect to the current distribution. We collected 84, 330
emails from an email service provider between June
2007 and October 2008. We use emails received
by February 2008 as training portion (referred to as
EMAIL1) and the more recent emails as evaluation
portion (EMAIL2). Emails are represented using a
binary bag-of-words, resulting in 188, 068 distinct fea-
tures; approximately 75% of all emails are spam. We
cannot use the standard Spam TREC benchmark data
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Figure 1. Absolute deviation from pool error over number of labeled data for spam filtering and digit recognition domain.

set because in this data set the original time stamps
cannot be reconstructed, and messages cannot reliably
be separated into old and new.

Digit Recognition Domain. This setting reflects an
application scenario in which a classification system is
procured and evaluated in an environment in which
the input distribution may diverge from the training
distribution. We use the MNIST (in a version pre-
pared by Sam Roweis) and USPS image recognition
data sets; we use either data set as training and the
other as test data. We consider the popular problem
of distinguishing between digits “4” and “9” which are
easily confused; this results in 13, 782 instances for the
MNIST database, and 2, 200 instances for the USPS
database. We rescale the MNIST images from 28× 28
to 16 × 16 to match the resolution of USPS and re-
compute the bounding box. The rescaled MNIST im-
ages differ visually from the USPS images, the line
strokes are generally thicker.

For most experiments, we train a regularized logistic
regression classifier that provides us with an estimate
of p(y|x; θ). The regularization parameter is tuned a
priori on the training portion of each data set by cross
validation and then kept fixed. In each experiment,
we train a model on the training data set and obtain
an active risk estimate on the evaluation data set us-
ing Algorithm 1. As a baseline, we obtain a risk es-
timate using test instances drawn uniformly from the
pool (passive evaluation). Both methods operate on
identical labeling budgets n. The evaluation process
is repeated 1, 000 times and results are averaged. In
order to assess the estimation error we determine the
risk of the model on the entire evaluation data set and
use it as an approximation of the true risk.

4.1. Evaluation under Distribution Shift

This section studies whether—and under which
conditions—active risk estimation can lead to more ac-

curate estimates than risk estimation based on a uni-
formly drawn sample.

Figure 1 shows the average absolute deviation be-
tween the risk estimate and the true risk for active
and passive risk estimation as a function of the label-
ing costs n for the EMAIL1-EMAIL2, MNIST-USPS,
and USPS-MNIST problems. Error bars indicate the
standard error; the zero-one risk on the entire pool of
test instances is 0.0245 for EMAIL2, 0.0205 for USPS,
and 0.0280 for MNIST. In all three learning problems,
active risk estimates are significantly more accurate
than passive risk estimates or, equivalently, a desired
level of accuracy is achieved with significantly fewer
labeled test instances. For example, in the spam fil-
tering domain, active evaluation with 70 test instances
achieves approximately the same accuracy as passive
evaluation with 200 instances.

Active evaluation relies on the model’s estimate of
the output probability in order to select uncertain in-
stances from the pool. In order to study the rela-
tion between the quality of p(y|x; θ) and the benefit
of active risk estimation, we let the size of the train-
ing sample vary over all powers of two, within the size
of the available data sets. We evaluate each model
1, 000 times actively and passively, and determine the
average ratio |R̂n−R|

|R̂n,q∗−R|
. A ratio of above one indi-

cates that active evaluation incurs a smaller estima-
tion error than passive learning. In order to probe the
limitation of the active risk estimation model, we ad-
ditionally train and evaluate a näıve Bayes classifier.
Näıve Bayes delivers poorly calibrated probability es-
timates because the inaccuracy caused by its inher-
ent independence assumption grows exponentially in
the number of attributes. Figure 2 (left) shows the
results; the horizontal axis quantifies the quality of
p(y|x; θ) in terms of the exponentiated average log-
likelihood per test example which grows with the size
of the training sample. For model likelihoods of 0.6
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Figure 2. Ratio of estimation error of passive and active risk estimates (left). Width of confidence intervals for active and
passive risk estimates (center). Empirical confidence levels for active and passive risk estimates (right).

and above (corresponding to at least eight training in-
stances), active evaluation outperforms passive eval-
uation, the advantage of active risk estimation grows
with the model likelihood. The three leftmost points
correspond to näıve Bayes: The likelihood of the näıve
Bayesian model is close to zero as it misclassifies sev-
eral test instances with extreme over-confidence. Ac-
tive risk estimation rarely selects such over-confident
misses; hence, for näıve Bayes, passive outperforms ac-
tive risk estimation.

We have derived confidence intervals for active risk es-
timates in Section 3.2. Figure 2 (center) depicts their
width z in comparison to confidence intervals of pas-
sive risk estimates, for the spam filtering domain and
α = 0.05. Intervals obtained from active risk estima-
tion are significantly tighter than those of passive risk
estimation. We also investigate how accurately the
empirical coverage of the intervals matches the desired
confidence level of 1 − α. Figure 2 (right) shows the
fraction of iterations in which the true risk lies within
the confidence interval derived from active and passive
risk estimation, determined over 1, 000 repetitions of
the evaluation process. The empirical coverage of ac-
tively determined confidence intervals matches the de-
sired confidence level more closely. Still, at first glance
it may appear surprising that empirical coverages are
uniformly lower than the prescribed theoretical confi-
dence levels. However, it is well-known that confidence
intervals are only asymptotically correct (Wasserman,
2004, Section 6.3.2). On small test samples, empirical
risks of zero occur regularly. An empirical risk of zero
leads to an empirical variance of zero which in turn
collapses the confidence interval into a single point.

4.2. Evaluation of Actively Trained Models

Active learning can result in more accurate models
than learning from uniformly sampled training exam-

ples (passive learning), but it has the disadvantage
that risk estimates obtained on held-out training ex-
amples are severely biased (Schütze et al., 2006). In
order to obtain an unbiased estimate of the risk of an
actively learned model, additional test examples have
to be labeled, which again increases the labeling costs.

We will now study whether the combination of ac-
tive learning and active risk estimation can outperform
passive learning and risk estimation by cross validation
on a uniformly drawn labeled sample.

We employ logistic regression as base learning algo-
rithm; the active learner always selects the example
that is closest to the current decision boundary (Lewis
& Gale, 1994) and updates the model. We fix the la-
beling budget to n = 220 and compare the following
three learning and evaluation protocols. Protocol (1)
draws 20 instances uniformly from the pool, trains an
initial model, and then selects 100 additional train-
ing instances actively. The model is evaluated on fur-
ther 100 test instances selected by the active risk es-
timation procedure. Protocol (2) trains a model on
an initial 20 uniformly drawn and an additional 100
actively selected training instances, and evaluates the
model on 100 uniformly-drawn instances. Protocol (3)
draws 220 instances uniformly from the pool and runs
10-fold cross validation.

Table 1 shows the true risk (model error) and average
absolute deviation of the estimated risk (estimation
error) for strategies (1) to (3). EMAIL indicates the
dataset consisting of all 84, 330 emails collected in the
email domain. Active learning consistently gives more
accurate models than passive learning, even though
models are trained on smaller samples. Moreover, we
again observe that active risk estimation consistently
outperforms passive risk estimation. Note that in all
three domains the combination of active learning and
active evaluation gives both the most accurate model
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Table 1. Active vs. passive learning and active vs. passive risk estimation. Values in parenthesis indicate standard errors.

data set

passive learning (3) active learning

model error estimation error model error estimation error
(cross validation) active eval. (1) passive eval. (2)

EMAIL 0.1033 (0.00051) 0.0245 (0.00060) 0.0492 (0.00018) 0.0137 (0.00033) 0.0172 (0.00042)
MNIST 0.0251 (0.00013) 0.0112 (0.00028) 0.0070 (0.00004) 0.0046 (0.00020) 0.0063 (0.00014)
USPS 0.0355 (0.00015) 0.0118 (0.00029) 0.0272 (0.00007) 0.0084 (0.00022) 0.0123 (0.00032)

and the most accurate risk estimate.

5. Related Work

Active risk estimation can be considered to be a dual
problem of active learning; in active learning, the goal
of the selection process is to minimize the variance
of the predictions or the variance of the model pa-
rameters, while in active evaluation the variance of
the risk estimate is reduced. In analogy to our ap-
proach, active learning algorithms use a current model
to decide on instances whose class labels are queried.
Specifically, Bach (2007) derives a sampling distribu-
tion under the assumption that the current model
gives a good approximation to the conditional prob-
ability p(y|x). Several active learning algorithms use
importance weighting to compensate for the bias in-
curred by the instrumental distribution: for regression
(Sugiyama, 2006), exponential family models (Bach,
2007), or SVMs (Beygelzimer et al., 2009).

Drawing instances from an instrumental distribution
instead of the test distribution implies covariate shift.
It is a standard approach to compensate for the covari-
ate shift by reweighting instance-specific losses accord-
ing to the density ratio of the original and auxiliary
distribution (see, e.g., Shimodaira, 2000).

Finally, the presented approach can be seen as an ap-
plication of the general technique of importance sam-
pling (Hammersley & Handscomb, 1964) to the prob-
lem of estimating the risk of prediction models. In
the context of sampling-based state inference in hid-
den Markov models, Cappé et al. (2005) quantify the
variance of a self-normalized importance sampler.

6. Conclusion

We have studied a setting in which a given model is
to be evaluated at minimal labeling costs using test
instances that can be selected from a large pool of
unlabeled test data. Our analysis of the sources of
estimation error has lead to an instrumental distribu-
tion q∗ that, when used to select instances to be la-
beled from the pool, minimizes the variance term of

the error. The active risk estimator is a consistent es-
timator of the true risk. It intuitively gives preference
to uncertain test instances, using the model p(y|x; θ)
to quantify this uncertainty. Active risk estimation
can be applied immediately with a probabilistic clas-
sifier. Uncalibrated decision function values (such as
an SVM would produce) have to be calibrated using,
for instance, a one-dimensional logistic or isotonic re-
gression on the decision function value.

Empirically, we observe that active risk evaluation
outperforms passive evaluation when the model has
a certain quality—an exponentiated per-instance log-
likelihood of 0.6 or above—which in our experiments
was the case with eight or more training examples.
Active risk estimation performs poorly in combination
with a näıve Bayesian classifier which delivers poorly
calibrated class probabilities. In experiments with
spam and handwriting recognition problems, we ob-
served active risk estimates to be as accurate as passive
estimates based on three times as many test examples.
We observed that a combination of active learning and
active estimation produces more accurate models and
more accurate risk estimates than cross validation on
an equally large uniformly drawn sample. We observe
the confidence intervals of active risk estimates to be
tighter and more reliable even for small test samples.

Appendix

Proof of Lemma 1

Let R̂0
n,q =

∑n
i=1 wi`i and Wn =

∑n
i=1 wi with

wi = p(xi)
q(xi)

and `i = `(fθ(xi), yi). We note that

for examples drawn according to q(x), E[R̂0
n,q] = nR

and E[Wn] = n. The random variables w1, . . . , wn and
w1`1, . . . , wn`n are iid, therefore the central limit the-
orem implies that 1

n R̂
0
n,q and 1

nWn are asymptotically
normally distributed with

√
n

(
1
n
R̂0
n,q −R

)
n→∞−→ N (0,Var[wi`i]) (14)

√
n

(
1
n
Wn − 1

)
n→∞−→ N (0,Var[wi]) (15)
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where n→∞−→ denotes convergence in distribution.

We employ the multivariate delta method (see e.g.,
Wasserman, 2004, pg. 79) to extend the convergence
results for R̂0

n,q and Wn to a convergence result for
the normalized estimator R̂n,q. The delta method al-
lows to derive the asymptotic distribution of a differen-
tiable function f whose input variables are asymptoti-
cally normally distributed. Applying it to the function
f(x, y) = x

y with x = 1
n R̂

0
n,q and y = 1

nWn yields

√
n

(
1
n R̂

0
n,q

1
nWn

−R

)
n→∞−→ N (0,∇f(R, 1)TΣ∇f(R, 1))

where ∇f denotes the gradient of f and Σ is the
(asymptotic) covariance matrix of the input arguments

Σ =
(

Var[wi`i] Cov[wi`i, wi]
Cov[wi`i, wi] Var[wi]

)
.

Furthermore,

∇f(R, 1)TΣ∇f(R, 1)
= Var[wi`i]− 2RCov[wi, wi`i] +R2 Var[wi]
= E[w2

i `
2
i ]− 2RE[w2

i `i] +R2 E[w2
i ]

=
∫∫ (

p(x)
q(x)

)2

[`(fθ(x), y)−R]2 p(y|x)q(x)dydx.

From this, the claim follows by canceling q(x).

Proof of Theorem 1

We minimize the functional σ2
q in terms of q under the

constraint
∫
q(x)dx = 1 using a Lagrange multiplier β.

L [q, β] = σ2
q + β

(∫
q(x)dx− 1

)
=

∫
c(x)
q(x)

+ β (q(x)− 1)︸ ︷︷ ︸
=G(q(x),x)

dx

where c(x) = p(x)2
∫

[`(fθ(x), y)−R]2 p(y|x)dy.

The optimal point for the constrained problem satisfies
the Euler-Lagrange equation

∂G

∂q(x)
= − c(x)

q(x)2
+ β = 0 (16)

A solution for Equations 16 with respect to the nor-
malization constraint is given by

q∗(x) =

√
c(x)∫ √
c(x)dx

. (17)

Note that we dismiss the negative solution, since q(x)
is a probability. Resubstitution of c in Equation 17
implies the theorem.
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