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Abstract
Evaluating the quality of ranking functions is a core
task in web search and other information retrieval
domains. Because query distributions and item
relevance change over time, ranking models often
cannot be evaluated accurately on held-out training
data. Instead, considerable effort is spent on manu-
ally labeling the relevance of query results for test
queries in order to track ranking performance. We
address the problem of estimating ranking perfor-
mance as accurately as possible on a fixed labeling
budget. Estimates are based on a set of most infor-
mative test queries selected by an active sampling
distribution. Query labeling costs depend on the
number of result items and item-specific attributes
such as document length. We derive cost-optimal
sampling distributions for commonly used ranking
performance measures. Experiments on web search
engine data illustrate significant reductions in label-
ing costs.

1 Introduction
This paper addresses the problem of estimating the
performance of a given ranking function in terms of
graded relevance measures such as Discounted Cumulative
Gain [Järvelin and Kekäläinen, 2002] and Expected Recipro-
cal Rank [Chapelle et al., 2009]. In informational retrieval
domains, ranking models often cannot be evaluated on held-
out training data. For example, older training data might not
represent the distribution of queries the model is currently ex-
posed to, or ranking models might be procured from a third
party that does not provide any training data.

In practice, ranking performance is estimated by applying
a given ranking model to a representative set of test queries
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and manually assessing the relevance of all retrieved items for
each query. We study the problem of estimating the perfor-
mance of ranking models as accurately as possible on a fixed
budget for labeling item relevance, or, equivalently, minimiz-
ing labeling costs for a given level of estimation accuracy.
Specifically, we focus on the problem of estimating perfor-
mance differences between two ranking models; this is re-
quired, for instance, to evaluate the result of an index update.

We assume that drawing unlabeled data x ∼ p(x) from the
distribution of queries that the model is exposed to is inex-
pensive, whereas obtaining relevance labels is costly. The
standard approach to estimating ranking performance is to
draw a sample of test queries from p(x), obtain relevance la-
bels, and compute the empirical performance. However, re-
cent results on active risk estimation [Sawade et al., 2010]
and active comparison [Sawade et al., 2012b] indicate that
estimation accuracy can be improved by drawing test exam-
ples from an appropriately engineered instrumental distribu-
tion q(x) rather than p(x), and correcting for the discrepancy
between p and q by importance weighting.

In this paper, we study active estimates of ranking perfor-
mance. Section 2 details the problem setting. Section 3 de-
rives cost-optimal sampling distributions. Section 4 presents
empirical results, Section 5 concludes with a discussion of
related work.

2 Problem Setting
Let X denote a space of queries and Z denote a finite space
of items. We study ranking functions

r : x 7→
(
r1(x), . . . , r|r(x)|(x)

)T
that, given a query x ∈ X , return a list of |r(x)| items ri(x) ∈
Z ordered by relevance. The number of items in a ranking
r(x) can vary depending on the query and application domain
from thousands (web search) to ten or fewer (mobile applica-
tions that have to present results on a small screen). Ranking
performance of r is defined in terms of graded relevance la-
bels yz ∈ Y that represent the relevance of an item z ∈ Z



for the query x, where Y ⊂ R is a finite space of relevance
labels with minimum zero (irrelevant) and maximum ymax

(perfectly relevant). We summarize the graded relevance of
all z ∈ Z in a label vector y ∈ YZ with components yz for
z ∈ Z .

The performance of a ranking r(x) given a label vector
y is scored by a ranking measure L(r(x),y). Intuitively,
L(r(x),y) will be high if many relevant items are ranked
highly in r(x). In the longer version of this paper [Sawade et
al., 2012a], we study active performance estimation in detail
for two commonly used ranking measures: Discounted Cu-
mulative Gain (DCG), introduced by Järvelin and Kekäläinen
[2002], and Expected Reciprocal Rank (ERR), introduced by
Chapelle et. al [2009].

In this paper, we will mainly discuss the ERR ranking per-
formance measure. ERR is based on a probabilistic user
model: the user scans a list of documents in the order de-
fined by r(x) and chooses the first document that appears
sufficiently relevant; the likelihood of choosing a document
z is a function of its graded relevance score yz . If s denotes
the position of the chosen document in r(x), then ERR is the
expectation of the reciprocal rank 1/s under the probabilistic
user model. More formally, ERR is given by

L(r(x),y) =

|r(x)|∑
i=1

1

i
`err

(
yri(x)

) i−1∏
l=1

(1− `err
(
yrl(x)

)
)

`err (y) =
2y − 1

2ymax
.

Both DCG and ERR discount relevance with ranking posi-
tion, ranking quality is thus most strongly influenced by doc-
uments that are ranked highly. If r(x) includes many items,
DCG and ERR are in practice often approximated by only
labeling items up to a certain position in the ranking or a
certain relevance threshold and ignoring the contribution of
lower-ranked items.

The overall ranking performance of the function r with re-
spect to the distribution p(x,y) is given by

R[r] =

∫ ∑
y∈YZ

L (r(x),y) p(x,y)dx. (1)

If the context is clear, we refer to R[r] simply by R. Since
p(x,y) is unknown, ranking performance is typically approx-
imated by an empirical average

R̂n[r] =
1

n

n∑
j=1

L (r(xj),yj) , (2)

where a set of test queries x1, ..., xn and relevance label vec-
tors y1, ...,yn are drawn iid from p(x,y).

Test queries xi need not necessarily be drawn according to
the input distribution p. When instances are drawn according
to an instrumental distribution q, an estimator can be defined
as

R̂n,q[r] =
1

W

n∑
j=1

p(xj)

q(xj)
L(r(xj),yj), (3)

where (xj ,yj) are drawn from q(x)p(y|x) and W =∑n
j=1

p(xj)
q(xj)

. Weighting factors p(xj)
q(xj)

correct for the discrep-
ancy between p and q, and ensure that the estimator is con-
sistent (that is, R̂n,q converges to R with n→∞). For cer-
tain choices of the sampling distribution q, R̂n,q may be a
more label-efficient estimator of the true performance R than
R̂n [Sawade et al., 2010].

A crucial feature of ranking domains is that labeling costs
for queries x ∈ X vary with the number of items |r(x)|
returned and item-specific features such as the length of a
document whose relevance has to be determined. We de-
note labeling costs for a query x by λ(x). For the rest of
the paper, we assume that we are given two ranking func-
tions r1 and r2, and the goal is to find an accurate estimate
∆̂n,q = R̂n,q[r1] − R̂n,q[r2] of their true performance dif-
ference ∆ = R[r1] − R[r2]. We have additionally studied
the related problem of actively estimating the absolute per-
formance R[r] of a single ranking function r [Sawade et al.,
2012a].

More formally, in this paper we want to find the sampling
distribution q∗ minimizing the expected deviation of ∆̂n,q

from ∆ under the constraint that the expected overall labeling
costs stay below a budget Λ ∈ R:

q∗ = arg min
q

(
min
n

E
[(

∆̂n,q −∆
)2])

,

s.t. E
[ n∑
j=1

λ(xj)

]
≤ Λ. (4)

Note that Optimization 4 represents a trade-off between la-
beling costs and informativeness of a test query: optimiza-
tion over n implies that many inexpensive or few expensive
queries could be chosen. When applying the method, we will
sample and label test queries from the distribution solving
Optimization 4; the number of instances sampled in practice
is determined by the labeling budget.

3 Optimal Sampling Distribution
We call a sampling distribution asymptotically optimal if it
holds that any other sampling distribution produces a higher
estimation error E[(∆̂n,q − ∆)2] if Λ is made sufficiently
large. Theorem 1 states the asymptotically optimal sam-
pling distribution, thereby asymptotically solving Optimiza-
tion Problem 4.
Theorem 1 (Optimal Sampling Distribution) Let
δ(x,y) = L(r1(x),y) − L(r2(x), y). The asymptoti-
cally optimal sampling distribution is

q∗(x) ∝ p(x)√
λ(x)

√ ∑
y∈YZ

(δ(x,y)−∆)
2
p(y|x). (5)

Unfortunately, the sampling distribution prescribed by The-
orem 1 cannot directly be evaluated. It depends on the un-
known test distribution p(x), the unknown conditional distri-
bution p(y|x), and the true performance difference ∆ (that
can be computed from p(x) and p(y|x), see Equation 1).



Algorithm 1 Active Estimation of Ranking Performance
input Ranking functions r1,r2, graded relevance model

p(yz|x, z; θ); pool D, labeling budget Λ.
1: Compute empirical sampling distribution q∗.
2: Initialize n← 0.
3: Draw x1 ∼ q∗(x) from D with replacement.
4: while

∑n+1
j=1 λ(xj) ≤ Λ do

5: Obtain yn+1 ∼ p(y|xn+1) from human labeler.
6: Update number of instances n← n+ 1.
7: Draw xn+1 ∼ q∗(x) from D w/ replacement.
8: end while
9: Compute ∆̂n,q = R̂n,q[r1]− R̂n,q[r2] (cf. Equation 3)

output ∆̂n,q .

To apply the method, we first move to a setting in which
a pool D of m unlabeled queries is available. Queries from
this pool can be sampled and then labeled at a cost. Drawing
queries from the pool replaces generating them under the test
distribution; that is, p(x) = 1

m for all x ∈ D. Second, we
assume independence of individual relevance labels given a
query x, that is, p(y|x) =

∏
z∈Z p(yz|x, z), and approximate

the remaining conditional p(yz|x, z) by a model p(yz|x, z; θ)
of graded relevance. For the large class of pointwise rank-
ing methods – that is, methods that produce a ranking by
predicting graded relevance scores for query-document pairs
and then sorting documents according to their score – such
a model can typically be derived from the graded relevance
predictors to be evaluated. Note that while these approxima-
tions might degrade the quality of the sampling distribution
and thus affect the efficiency of the estimation procedure, the
weighting factors in Equation 3 ensure that the performance
estimate stays consistent.

Plugging these approximations into Equation 5 yields an
empirical sampling distribution that can be computed on the
pool of test instances. Despite the simplifying assumptions
made, computing this empirical distribution is nontrivial be-
cause of the summation over the (exponentially large) space
of relevance label vectors y in Equation 5. In the longer ver-
sion of this paper, we derive polynomial-time solutions using
dynamic programming for the ranking measures DCG and
ERR [Sawade et al., 2012a].

Algorithm 1 summarizes the active estimation algorithm. It
samples queries x1, ..., xn with replacement from the pool D
according to the distribution q∗ and obtains relevance labels
from a human labeler for all items included in r1(xi)∪r2(xi)
until the labeling budget Λ is exhausted. Note that queries can
be drawn more than once; in the special case that the label-
ing process is deterministic, recurring labels can be looked up
rather than be queried from the deterministic labeling oracle
repeatedly. Hence, the actual labeling costs may stay below∑n

j=1 λ(xj). In this case, the loop is continued until the la-
beling budget Λ is exhausted.

4 Empirical Studies
We compare active estimation of ranking performance (Algo-
rithm 1, labeled active) to estimation based on a test sample
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Figure 2: Distribution of query labeling costs λ(x) in the
MSLR-WEB30k data set.

drawn uniformly from the pool (Equation 2, labeled passive).
Algorithm 1 requires a model p(yz|x, z; θ) of graded rele-
vance in order to compute the sampling distribution q∗ as ex-
plained in Section 3. If no such model is available, a uniform
distribution p(yz|x, z; θ) = 1

|Y| can be used instead (labeled
activeuniD). To quantify the effect of modeling costs, we also
study a variant of Algorithm 1 that assumes uniform costs
λ(x) = 1 in Equation 5 (labeled activeuniC).

It contains 31,531 queries, and a set of documents for each
query whose relevance for the query has been determined by
human labelers in the process of developing the Bing search
engine. The resulting 3,771,125 query-document pairs are
represented by 136 features widely used in the information
retrieval community (such as query term statistics, page rank,
and click counts). Relevance labels take values from 0 (irrel-
evant) to 4 (perfectly relevant).

We train different types of ranking functions on part of the
data, and use the remaining data as the pool D from which
queries can be drawn and labeled until the labeling budget Λ
is exhausted. To quantify the human effort realistically, we
model the labeling costs λ(x) for a query x as proportional
to a sum of costs incurred for labeling individual documents
z ∈ r(x); labeling costs for a single document z are assumed
to be logarithmic in the document length. The cost unit is
chosen such that average labeling costs for a query are one.
Figure 2 shows the distribution of labeling costs λ(x). All
results are averaged over five folds and 5,000 repetitions of
the evaluation process.

Based on the outcome of the 2010 Yahoo ranking chal-
lenge [Mohan et al., 2011; Chapelle and Chang, 2011], we
study pointwise ranking approaches. The ranking function is
obtained by returning all documents associated with a query
sorted according to their predicted graded relevance. To train
graded relevance models on query-document pairs, we em-
ploy Random Forest regression [Breiman, 2001], the ordinal
classification extension to Random Forests [Li et al., 2007;
Mohan et al., 2011], a MAP version of Ordered Logit [Mc-
Cullagh, 1980], and a linear Ranking SVM [Herbrich et al.,
2000]. For the Random Forest model, we apply the approach
from [Li et al., 2007; Mohan et al., 2011] to obtain the prob-
ability estimates p(yz|x, z; θ) required for active estimation.

Figure 1 (top row) shows model selection error – defined
as the fraction of experiments in which an evaluation method
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Figure 1: Top row: Model selection error over Λ when comparing Random Forest regression vs. classification (left), and
Ordered Logit vs. Ranking SVM (center) or Random Forest regression (right). Bottom row: Absolute estimation error over
Λ for a simulated index update (left). Absolute estimation error comparing ranking functions trained on 100,000 vs. 200,000
query-document pairs over Λ (center), and over training set size of second model at Λ = 100 (right). Error bars indicate the
standard error.

does not correctly identify the model with higher true perfor-
mance – when comparing different ranking functions based
on Random Forest, Logit, and SVM models. Active estima-
tion more reliably identifies the model with higher ranking
performance, saving between 30% and 55% of labeling effort
compared to passive estimation at Λ = 200.

As a further comparative evaluation we simulate an index
update. An outdated index with lower coverage is simulated
by randomly removing 10% of all query-document pairs from
each result list r(x) for all queries; we estimate the difference
in performance between models based on the outdated and
current index. Figure 1 (bottom row, left) shows absolute de-
viation of estimated from true performance difference over
labeling budget Λ. We observe that active estimation quan-
tifies the impact of the index update more accurately than
passive estimation, saving approximately 75% of labeling ef-
fort. We finally simulate the incorporation of novel sources
of training data by comparing a Random Forest model trained
on 100,000 query-document pairs (r1) to a Random For-
est model trained on between 120,000 and 200,000 query-
document pairs (r2). Figure 1 (bottom row; center and right)
shows absolute deviation of estimated from true performance
difference as a function of Λ and as a function of the number

of query-document pairs the model r2 is trained on.

5 Related Work
There has been significant interest in learning ranking func-
tions from data in order to improve the relevance of search
results [Burges, 2010; Li et al., 2007; Mohan et al., 2011;
Zheng et al., 2007].

To reduce the amount of training data that needs to be
relevance-labeled, several approaches for active learning of
ranking functions have been proposed [Long et al., 2010;
Radlinski and Joachims, 2007]. The active performance esti-
mation problem discussed in this paper can be seen as a dual
problem of active learning, where the goal is to obtain accu-
rate performance estimates rather than accurate models.

As an alternative to selecting most relevant queries, ap-
proaches that select the most relevant documents to label for
a single query have also been studied. Carterette et al. [2006]
use document sampling to decide which of two ranking func-
tions achieves higher precision at k. Aslam et al. [2006]
use document sampling to obtain unbiased estimates of mean
average precision and mean R-precision. Carterette and
Smucker [2007] study statistical significance testing from re-
duced document sets.



References
[Aslam et al., 2006] J. Aslam, V. Pavlu, and E. Yilmaz. A

statistical method for system evaluation using incomplete
judgments. In Proceedings of the 29th Annual Interna-
tional ACM SIGIR Conference on Research and Develop-
ment on Information Retrieval, 2006.

[Breiman, 2001] L. Breiman. Random forests. Machine
learning, 45(1):5–32, 2001.

[Burges, 2010] C. Burges. RankNet to LambdaRank to
LambdaMART: An overview. Technical Report MSR-TR-
2010-82, Microsoft Research, 2010.

[Carterette and Smucker, 2007] B. Carterette and
M. Smucker. Hypothesis testing with incomplete
relevance judgments. In Proceedings of the 16th ACM
Conference on Information and Knowledge Management,
2007.

[Carterette et al., 2006] B. Carterette, J. Allan, and R. Sitara-
man. Minimal test collections for retrieval evaluation. In
Proceedings of the 29th SIGIR Conference on Research
and Development in Information Retrieval, 2006.

[Chapelle and Chang, 2011] O. Chapelle and Y. Chang. Ya-
hoo! Learning to rank challenge overview. JMLR: Work-
shop and Conference Proceedings, 14:1–24, 2011.

[Chapelle et al., 2009] O. Chapelle, D. Metzler, Y. Zhang,
and P. Grinspan. Expected reciprocal rank for graded rel-
evance. In Proceeding of the Conference on Information
and Knowledge Management, 2009.

[Herbrich et al., 2000] R. Herbrich, T. Graepel, and K. Ober-
mayer. Large margin rank boundaries for ordinal regres-
sion. Advances in Large Margin Classifiers, pages 115–
132, 2000.

[Järvelin and Kekäläinen, 2002] K. Järvelin and
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