Intelligent Data Analysis
Decision Trees

Paul Prasse, Niels Landwehr, Tobias Scheffer
Decision Trees

- One of many applications: credit risk

Diagram:
- Positive credit report?
 - yes
 - no
- Employed longer than 3 months
 - no
 - yes
- Unemployed?
 - no
 - yes
- Collateral > 2x disposable income
 - no
 - yes
- Collateral > 5x disposable income
 - no
 - yes
- Student?
 - no
 - yes
- Accepted
- Rejected
Decision Trees – Why?

- Simple to interpret.
- Provides a classification plus a justification for it.
 - “Rejected, because subject has been employed less than 3 months and has collateral < 2 x disposable income“.
- Can be learned from samples.
 - Simple learning algorithm.
 - Efficient, scalable.
- Classification and regression trees.
- Classification, regression & model trees often are components of complex (e.g., risk) models.
Classification

- **Input**: Instance (Object) $x \in X$.
 - Instances are represented as a vector of attributes.
 - An instance is an assignment to the attributes.
 - Instances will also be called feature vectors.\[x = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} \]
 - e.g. features like color, test results, ...

- **Output**: Class $y \in Y$; finite set Y.
 - e.g., \{accepted, rejected\}; \{spam, not spam\}.
 - The class is also referred to as the target attribute.
Classifier learning

- **Input:** Training data.
 - $L = \{ (x_1, y_1), \ldots, (x_n, y_n) \}$
 - $x_i = \begin{pmatrix} x_{i1} \\ \vdots \\ x_{in} \end{pmatrix}$

- **Output:** Classifier.
 - $f : X \rightarrow Y$
 - e.g. a decision tree: path along the edges to a leaf provides the classification
Regression

- **Input**: Instance (Object) \(\mathbf{x} \in X \).
 - Instances are represented as vectors (bold letters) of attributes (italic letters).
 - An instance is an assignment of attribute values.
- **Output**: Function value \(y \in Y \); continuous valued.
- **Learning Problem**: continuous-valued training data.
 - \(L = \langle (\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n) \rangle \)
 - e.g. \(\langle (\mathbf{x}_1, 3.5), \ldots, (\mathbf{x}_n, -2.8) \rangle \)
Decision Trees

- **Test nodes**: Test if the value of an attribute satisfies a condition; follow the branch corresponding to the outcome of this test.
- **Terminal nodes**: Provides a value to output.
Decision Trees

- Decision trees can be represented as logical operations / sentences, like:
 - \land, \lor, XOR
 - $(A \land B) \lor (C \land \neg D \land E)$

```
Positive credit report?
  yes
  no
   Employed longer than 3 months
     no
     yes
      Unemployed?
        no
        yes
         Collateral > 2x disposable income
           no
           yes
            Accepted
             Accepted
              Rejected
               Rejected
```

```
Rejected
```
Application of Decision Trees

- **Test nodes**: conduct a test, choose the appropriate branching, & proceed recursively.

- **Terminal nodes**: return the value as a class.
Application of Decision Trees

- Decision trees make sense if...
 - Instances can be described as attribute-value pairs.
 - Target attribute has a discrete range of values.
 - It is also possible to extend model trees to a range of continuous values.
 - Interpretability of predictions is desirable.

- Application areas:
 - Medical Diagnosis
 - Credit (Risk) Assessment
 - Object Recognition in Computer Vision
Learning of Decision Trees

Find the decision tree that at least provides the correct class for the training data.

Trivial Way: create a tree that merely reproduces the training data.
Learning of Decision Trees

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Wind</th>
<th>Tennis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>light</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>light</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>overcast</td>
<td>cool</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>overcast</td>
<td>cool</td>
<td>light</td>
<td>yes</td>
</tr>
</tbody>
</table>
Learning of Decision Trees

- A more elegant way: From the trees that are consistent with the training data, choose the smallest (as few nodes as possible).

- Small trees are good because:
 - they are easier to interpret;
 - they generalize better in many cases.
 - There are more samples per leaf node. Hence, the class decision in each leaf is supported by more samples.
Complete Search for the Smallest Tree

- How many decision trees are there?
 - Assume m binary attributes and two classes.

- What is the complexity of a complete search for the smallest tree?
Learning of Decision Trees

- Greedy algorithm that finds a small tree (instead of the smallest tree) but is polynomial in the number of attributes.
- Idea for Algorithm?
Greedy Algorithm – Top-Down Construction

- So long as the training data are not perfectly classified:
 - Choose the “best” attribute A that separates the training data.
 - Create a new successor node for every value of attribute A and repartition the training data accordingly into the resulting tree.

- **Problem:** Which attribute is the best?

```
[29 +, 35 -]
```

```
x_1
```

```
yes
```

```
no
```

```
[21+, 5 -]
```

```
[8+, 30 -]
```

```
x_2
```

```
yes
```

```
no
```

```
[18+, 33 -]
```

```
[11+, 2 -]
```
Split Criterium: Entropy

- Entropy = a measure of uncertainty.

- S is a set of training data.
- p_+ is the fraction of positive samples in S.
- p_- is the fraction of negative samples in S.
- Entropy measure the uncertainty in S (by +/-):
 \[H(S) = -p_+ \log_2 p_+ - p_- \log_2 p_- \]
Split Criterium: Entropy

- **$H(S)$** = Expected number of bits required to encode the target class for samples drawn randomly from the set S.
 - Optimal, shortest code

- Entropy of random variable y:
 - $H(y) = - \sum_v p(y = v) \log_2 p(y = v)$

- Empirical entropy of random variable y on data L:
 - $H(L, y) = - \sum_v \hat{p}_L(y = v) \log_2 \hat{p}_L(y = v)$
Split Criterium: Conditional Entropy

- Conditional entropy of random variable y given event $x = v$:
 \[
 H_{|x=v}(y) = H(y|x = v) \\
 = - \sum_{v'} p(y = v'|x = v) \log_2 p(y = v'|x = v)
 \]

- Empirical conditional entropy on data L:
 \[
 H_{|x=v}(L, y) = H(L, y|x = v) \\
 = - \sum_{v'} \hat{p}_L(y = v'|x = v) \log_2 \hat{p}_L(y = v'|x = v)
 \]
Split Criterium: Information Gain

- Entropy of the class variable: Uncertainty about the correct classification.

- Information Gain:
 - Mutual information of an attribute.
 - Reduction of the entropy in the class variable after the test of the value of this attribute.

\[
IG(x) = H(y) - \sum_v p(x = v)H_{|x=v}(y)
\]

- Information Gain on Data \(L\):

\[
IG(L, x) = H(L, y) - \sum_v \hat{p}_L(x = v)H_{|x=v}(L, y)
\]
Example – Information Gain

\[H(L, y) = - \sum_v \hat{p}_L(y = v) \log_2 \hat{p}_L(y = v) \]

\[\approx 0.92 \]

\[IG(L, x) = H(L, y) - \sum_v \hat{p}_L(x = v) H_{|x=v}(L, y) \]

<table>
<thead>
<tr>
<th>Sample</th>
<th>(x_1): Credit > 3 (x) Income?</th>
<th>(x_2): Employed Longer than 3 Months?</th>
<th>(x_3): Student?</th>
<th>(y): Credit Repaid?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Example II – Information Gain

- $IG(L, x) = \text{Expected reduction in the uncertainty through the split using attribute } x$.
- Which split is better?

\[
IG(L, x_1) = 0.99 - \left(\frac{26}{64} \times H(L|_{x_1=ja}, y) + \frac{38}{64} \times H(L|_{x_1=nein}, y) \right) = 0.26
\]

\[
IG(L, x_2) = 0.99 - \left(\frac{51}{64} \times H(L|_{x_2=ja}, y) + \frac{13}{64} \times H(L|_{x_2=nein}, y) \right) = 0.11
\]
Information Gain / Gain Ratio

- Motivation:
 - Predicting whether a student will pass an exam.
 - How high is the information gain of the attribute “Matriculation number“?
 - The information content of this test is huge.
Information Gain / Gain Ratio

- **Motivation:**
 - Predicting whether a student will pass an exam.
 - How high is the information gain of the attribute "Matriculation number"?
 - The information content of this test is huge.

- **Idea:** Penalize information content of a test.

\[
\text{GainRatio}(L, x) = \frac{IG(L, x)}{\text{SplitInfo}(L, x)}
\]

\[
\text{SplitInfo}(L, x) = - \sum_v \frac{|L|_{x=v}}{|L|} \log_2 \frac{|L|_{x=v}}{|L|}
\]
Example: Info Gain Ratio

- Which split is better?

\[
\begin{align*}
IG(L, x_1) &= 1 \\
SplitInfo(L, x_1) &= -4(\frac{1}{4}\log_2 \frac{1}{4}) = 2 \\
GainRatio(L, x_1) &= 0.5
\end{align*}
\]

\[
\begin{align*}
IG(L, x_2) &= 1 - \left(\frac{3}{4} \times 0.92\right) = 0.68 \\
SplitInfo(L, x_2) &= -\left(\frac{3}{4}\log_2 \frac{3}{4} + \frac{1}{4}\log_2 \frac{1}{4}\right) = 0.81 \\
GainRatio(L, x_2) &= 0.84
\end{align*}
\]
Algorithm ID3

- **Preconditions:**
 - Classifier learning,
 - All attributes have a fixed, discrete range of values.

- **Idea:** recursive algorithm.
 - Choose the attribute that maximally reduces the uncertainty with respect to the target class
 - using Information Gain, Gain Ratio, or Gini Index
 - Then recursively call the algorithm by splitting the data according to the values of the chosen attribute.
 - Continue splitting a branch until all the samples remaining for that branch are all of the same class.

- **Original reference:**
Algorithm ID3

- **Input:** $L = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, available attributes $= (x_1, \ldots, x_n)$

- If all samples in L have the same class y,
 - Return a terminal node with class y.

- If available attributes $= \emptyset$,
 - Return a terminal node with the most prevalent class in L.

- Otherwise construct & return a test node:
 - Determine the best available attribute:
 $$x_* = \arg\max_{x_i \in \text{available}} IG(L, x_i)$$
 - For all values v_j of this attribute:
 - Split the training set, $L_j = \{(x_k, y_k) \in L | x_{k*} = v_j\}$
 - Recursion: Branch for value $v_j = ID3(L_j, \text{available} \setminus x_*)$.
Algorithm ID3: Example

<table>
<thead>
<tr>
<th>Sample</th>
<th>(x_1: \text{Credit > 3 x Income?})</th>
<th>(x_2: \text{Employed Longer than 3 Months?})</th>
<th>(x_3: \text{Student?})</th>
<th>(y: \text{Credit Repaid?})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **Input**: \(L = \langle (x_1, y_1), \ldots, (x_n, y_n) \rangle\), available attributes = \((x_1, \ldots, x_n)\)

- If all samples in \(L\) have the same class \(y\),
 - Return a terminal node with class \(y\).

- If available attributes=\(\emptyset\),
 - Return a terminal node with the most prevalent class in \(L\).

- Otherwise construct & return a test node:
 - Determine the best available attribute:
 \[x_\ast = \arg\max_{x_i \in \text{available}} IG(L, x_i) \]
 - For all values \(v_j\) of this attribute:
 - Split the training set, \(L_j = \langle (x_k, y_k) \in L | x_{k\ast} = v_j \rangle\)
 - Recursion: Branch for value \(v_j = ID3(L_j, \text{available} \setminus x_\ast)\).
Continuous Attributes

- ID3 chooses an attribute with the largest information content and then constructs a branch for every value of this attribute.
- **Problem**: that only works for discrete attributes.
- Attributes like size, income, & distance have infinitely many values.

- Ideas?
Continuous Attributes

- **Idea**: Binary decision trees with “≤“-tests.
- **Problem**: Infinitely many thresholds for binary tests.
- **Idea**: Only finitely many values occur in the training data.
- **Example**:
 - A continuous attribute has the following values:
 - 0.2; 0.4; 0.7; 0.9
 - Possible Splits:
 - ≤ 0.2; ≤ 0.4; ≤ 0.7; ≤ 0.9
- **Other Possibilities**:
 - Map the attribute into a discrete range of values.
Algorithm C4.5

- A further enhancement on ID3
- Improvements:
 - Allows for continuously-valued attributes
 - Allows for training data with missing attribute values
 - Allows for attributes with costs
 - Pruning
- Not the last version: see C5.0

- Original Reference:
Algorithm C4.5

- **Input**: $L = \langle (x_1, y_1), \ldots, (x_n, y_n) \rangle$

- If all samples in L have the same class y:
 - Return a terminal node with class y.

- If all samples in L are identical:
 - Return a terminal node with the most prevalent class in L.

- Otherwise construct the best test node, by iterating over all attributes.
 - Discrete attributes: treated as in ID3.
 - Continuous attributes: $[x_\ast \leq v_\ast] = \text{argmax}_{x_i, v \in L} IG(L, [x_i \leq v])$
 - If the best attribute is discrete, recursively split like ID3.
 - If the best attribute is continuous, split the training set as:
 - $L_{left} = \langle (x_k, y_k) \in L | x_k \ast \leq v_\ast \rangle$ & $L_{right} = \langle (x_k, y_k) \in L | x_k \ast > v_\ast \rangle$
 - Recursion: left branch= $C4.5(L_{left})$, right branch= $C4.5(L_{right})$
Information Gain for Continuous Attributes

- Information Gain of a Tests “[x ≤ v]“:

\[IG([x ≤ v]) = H(y) − p([x ≤ v])H_{[x≤v]}(y) − p([x > v])H_{[x>v]}(y) \]

- Empirical Information Gain:

\[IG(L, [x ≤ v]) = H(L, y) − \hat{p}_L([x ≤ v])H_{[x≤v]}(L, y) − \hat{p}_L([x > v])H_{[x>v]}(L, y) \]
C4.5: Example

\[x_1 \leq 0,5 \]

- \(x_2 \leq 0,5 \)
 - no
- \(x_2 \leq 1,5 \)
 - t
 - yes
 - f
 - no

\[x_1 \leq 0,7 \]

- t
 - yes
- f
 - no

\[x_1 \leq 0,6 \]

- t
 - yes
 - f
 - no
Pruning

- **Problem**: Leaf nodes that only are supported by a single (or very few) samples, often do not provide a good classification.

- **Pruning**: Remove test nodes whose leaves have less than a minimum number of samples.

- This policy results in leaf nodes labeled with the most prevalently occurring class.
Pruning with a Threshold

- For all leaf nodes: If fewer than \(r \) training samples are placed into a leaf node,
 - Remove the parent test node of this leaf.
 - Replace it with a new leaf node that predicts the majority class from its training data.

- Regularization parameter \(r \).
- This parameter is adjusted via cross validation.
Reduced Error Pruning

- Splitting of the training data into a training set and a pruning validation set.
- After the construction of the tree with the training set:
 - Attempt to merge two leaf nodes by removing their adjoining test node,
 - Continue as long as the error rate is reduced with respect to the pruning validation set.
Conversion of Trees into Rules

- Path through the tree: yields the conditions for the rule
- Class: specifies the rules conclusion

- Pruning of Rules: Test which conditions can be omitted without increasing the error rate.
Conversion of Trees into Rules

\[R_1 = \text{If (Outlook = sunny) } \land \text{ (Humidity = high), then don't play tennis} \]

\[R_2 = \text{If (Outlook = sunny) } \land \text{ (Humidity = normal), then play tennis} \]

\[R_3 = \text{If (Outlook = overcast), then play tennis} \]

\[R_4 = \text{If (Outlook = rainy) } \land \text{ (Wind = strong), then don't play tennis} \]

\[R_5 = \text{If (Outlook = rainy) } \land \text{ (Wind = light), then play tennis} \]