Evaluation of Models

Niels Landwehr
Learning and Prediction

- Classification, Regression: Learning problem
 - Input: training data \(L = \{(x_1, y_1), \ldots, (x_m, y_m)\} \)
 - Output: model \(f : X \rightarrow Y \)

- Model will be used to obtain predictions for novel test instances
 \[f(x) = ? \in \mathcal{Y} \quad x \in \mathcal{X} \quad \text{test instance} \]

- Have seen several different types of models
 - Linear models, decision trees…
Evaluation of Models

- Question: After having implemented learning algorithm, having trained model etc.: how accurate are our predictions?
 - What exactly do we mean by accurate?
 - How do we calculate / measure / estimate accuracy?

- We care about accuracy of predictions when applying the model to unseen, novel test data (not about accuracy on observable training data).

- Evaluation of models: Estimate accuracy of predictions of learned models.
Evaluation of models: Assumptions

- In order to study the evaluation of models formally, we have to make assumptions about the properties of training and test data.

- Central assumption: all data are drawn from fixed (unknown) distribution $p(x, y)$

\[
p(x, y) = p(x)p(y|x)
\]

- Example spam-filtering
 - $p(x)$ Probability to see email x
 - $p(y|x)$ Probability to see label $y \in \{\text{Spam/Ok}\}$ for email x.

Distribution over instances

Distribution over labels given instance
Evaluation of models: Assumptions

- „i.i.d.“-assumption: Examples are „independent and identically distributed“.
 - Training instances are drawn independently from distribution \(p(x,y) \):
 \[
 (x_i, y_i) \sim p(x, y) \quad \text{training examples}
 \]
 - Test instances are also drawn independently from this distribution
 \[
 (x, y) \sim p(x, y) \quad \text{test instance (seen when applying the model)}
 \]
 - Is this always realistic?

- In the following, we will always assume i.i.d. data.
Loss functions

- We have made assumption about the instances \((x,y)\) that we will see.
- New test instance \((x,y)\) arrives, model predicts \(f(x)\).
- Loss function defines how good/bad the prediction is:

\[
\ell(y, f(x)) \quad \text{Loss of prediction } f(x) \text{ for instance } (x,y)
\]

- Non-negative: \(\forall y, y': \ell(y, y') \geq 0\)
- Problem specific, given a priori.

- Loss functions for classification
 - Zero-one loss: \(\ell(y, y') = 0, \text{ if } y = y'; 1, \text{ otherwise}\)
 - Class-dependent cost matrix

- Loss functions for regression
 - Squared loss: \(\ell(y, y') = (y - y')^2\)
Evaluating models: Risk of model

- Central definition when evaluating models: risk.
- Risk of a model: expected loss for novel test instance

\[(x, y) \sim p(x, y) \quad \text{test instance } x \text{ with label } y \text{ (random variable)}\]

\[\ell(y, f(x)) \quad \text{loss for test instance (random variable)}\]

\[R(f) = E[\ell(y, f(x))] = \int \ell(y, f(x)) p(x, y) dx dy\]

- For zero-one-loss risk is also called error rate.
- For squared loss risk is also called mean squared error.

- Main goal when evaluating models: determine risk of model.
- Risk cannot be determined exactly, because \(p(x, y)\) is unknown → estimation problem.
Evaluation of models: risk estimate

- Estimating risk from data.
- If data sampled from \(p(x,y) \) is available,

\[
T = \{(x_1, y_1), \ldots, (x_m, y_m)\} \quad \quad \text{\((x_i, y_i) \sim p(x, y) \)}
\]

we can estimate the risk:

\[
\hat{R}(f) = \frac{1}{m} \sum_{j=1}^{m} \ell(y_j, f(x_j)) \quad \text{"empirical risk"}
\]

- **Important**: Which data \(T \) to use?
 - Training data \((T=L)\)?
 - Split available data into \(L \) und \(T \).
 - Cross-validation.
Estimator as a random variable

- Estimator

\[\hat{R}(f) = \frac{1}{m} \sum_{j=1}^{m} \ell(y_j, f(x_j)) \]

- Estimator is random variable:
 - Instances in \(T \) have been drawn randomly

\[(x_j, y_j) \sim p(x, y) \quad \text{Which } (x_j, y_j) \text{ where drawn?} \]

 - Value of estimator depends on randomly sampled instances, thus it is the result of a random process.

- Estimator has an expected value \(E[\hat{R}(f)] \).
- Estimator is unbiased if and only if:
 - Expectation of empirical risk = true risk.
Bias of estimator

- Estimator $\hat{R}(f)$ is unbiased if and only if:
 \[E[\hat{R}(f)] = R(f) \]

- Otherwise, $\hat{R}(f)$ has a bias:
 \[Bias = E[\hat{R}(f)] - R(f). \]

- Estimator is optimistic, if \(E[\hat{R}(f)] < R(f). \)

- Estimator is pessimistic, if \(E[\hat{R}(f)] > R(f). \)
Variance of estimator

- Estimator $\hat{R}(f)$ has a variance

$$Var[\hat{R}(f)] = E[\hat{R}(f)^2] - E[\hat{R}(f)]^2$$

- The larger the sample T used for computing the estimate is, the lower the resulting variance.

- Variance vs. bias:
 - High variance: large random component in empirical risk estimate.
 - Large bias: systematic error in empirical risk estimate.

- value $\hat{R}(f)$

 bias dominates

 variance dominates
Risk estimate on training data

- Which set T should we use?
- 1. Try: training data L

- Model f, trained on $L = \{(x_1, y_1), \ldots, (x_m, y_m)\}$
- Empirical risk measured on training data

$$\hat{R}_L(f) = \frac{1}{m} \sum_{j=1}^{m} \ell(y_j, f(x_j))$$

Risk estimated on L

- Is this risk estimate an
 - unbiased
 - optimistic
 - pessimistic

estimator of the true risk $R(f)$?
Risk estimate on training data

- Empirical risk on training data is an optimistic estimator of the true risk.

- Empirical risk of all possible models for a fixed L?
 - Due to random effects it holds for some models f, that $\hat{R}_L(f) < R(f)$ and for other models f, that $\hat{R}_L(f) > R(f)$.

 - Learning algorithm chooses a model f_L with small empirical risk $\hat{R}_L(f_L)$.
 - Likely that $\hat{R}_L(f_L) < R(f_L)$ (optimistic risk estimate).
Risk estimate on training data

- Empirical risk of the model chosen by the learning algorithm on the training data ("training error") is optimistic estimator of true risk:

\[E[\hat{R}_L(f_L)] < R(f_L). \]

- The problem is caused by the dependency of the chosen model on the data used for evaluation.
- Approach to fix the problem: use test data that are independent of the training data.
Holdout-Testing

- Idea: estimate risk on independent test data
- Given: data $D = \{(x_1, y_1), \ldots, (x_d, y_d)\}$
- Split data into
 - Training data $L = \{(x_1, y_1), \ldots, (x_m, y_m)\}$ and
 - Test data $T = \{(x_{m+1}, y_{m+1}), \ldots, (x_d, y_d)\}$
Holdout-Testing

- Run learning algorithm on data L, this yields model f_L.
- Compute empirical risk $\hat{R}_T(f_L)$ on test data T.
- Run learning algorithm on data D, this yields model f_D.
- Output: Model f_D, use $\hat{R}_T(f_L)$ as estimator for true risk of the model f_D.

![Diagram showing Holdout-Testing](image)
Holdout-Testing: Analysis

- Is the estimator $\hat{R}_T(f_L)$ for the risk of the model f_D
 - unbiased,
 - optimistic,
 - pessimistic?
Holdout-Testing: Analysis

- Estimator $\hat{R}_T(f_L)$ is pessimistic for $R(f_D)$:
 - $\hat{R}_T(f_L)$ is unbiased for f_L
 - f_L was learned on fewer training examples than f_D, and therefore has a higher risk (in expectation).

- But the estimator $\hat{R}_T(f_L)$ is useful in practice, while the estimator $\hat{R}_L(f_L)$ is usually wildly optimistic (often close to 0).

- Why do we train and return model f_D?
- Final model f_D rather than f_L, because f_D has a lower risk, and is therefore better.
Holdout-Testing: Analysis

- What are the advantages/disadvantages when choosing the test set T?
 - large
 - small

- T should be large to ensure that risk estimate $\hat{R}_T(f_L)$ has low variance.
- T should be small to ensure that $\hat{R}_T(f_L)$ has low bias, that is, is not too pessimistic.
- We need a lot of data in order to obtain good estimates
 - In practice, holdout-testing is only used when data is plentiful.
 - Cross-validation (next slide) usually gives better results.
Cross-Validation

- Given: data \(D = \{(x_1, y_1), \ldots, (x_d, y_d)\} \)
- Split \(D \) into \(n \) equally sized blocks \(D_1, \ldots, D_n \) with
 \[D = \bigcup_{i=1}^{n} D_i \] and \(D_i \cap D_j = 0 \)
- Repeat for \(i = 1 \ldots n \)
 - Learn model \(f_i \) with \(L_i = D \setminus D_i \).
 - Compute empirical risk \(\hat{R}_{D_i}(f_i) \) on \(D_i \).
Cross-Validation

- Average empirical risk estimates from the different test sets D_i:
 \[\bar{R} = \frac{1}{n} \sum_{i=1}^{n} \hat{R}_{D_i}(f_i) \]

- Learn model f_D on complete data set D.
- Return model f_D and estimator \bar{R}.
Cross-Validation: Analysis

- Is the estimator
 - optimistic / pessimistic / unbiased?
Cross-Validation: Analysis

- Is the estimator
 - optimistic / pessimistic / unbiased?
- Estimator is pessimistic:
 - Models f_i are trained on fraction $(n-1)/n$ of overall data.
 - Model f_D will be trained on all data.
Cross-Validation: Analysis

- Bias/Variance compared to holdout-testing?
- Variance is lower than for holdout-testing
 - Averaging over several holdout experiments, this reduces variance
 - Estimator is based on all data, because all instances appear as test instances in some block.
- Bias similar as for holdout-testing, depends on number of blocks.

Diagram:
- Cross-Validation: Total number of examples, training examples, test examples across experiments.
- Holdout: Total number of examples, training set, test set.
Example: regularized polynomial regression

- Polynomial model \(f_w(x) = \sum_{i=0}^{M} w_i x^i \)

- Learn model by minimizing regularized loss

\[
w_* = \arg \min_w \sum_{i=1}^{M} (f_w(x_i) - y_i)^2 + \lambda \|w\|^2
\]

\[
\ln \lambda = -18
\]

Training data
\[
L = \{(x_1, y_1), \ldots, (x_m, y_m)\}
\]
Tune regularization parameter

- We have to determine a good regularization parameter λ.
- Regularization parameter controls complexity of model.

\[\ln \lambda = -\infty \]
\[\ln \lambda = -18 \]
\[\ln \lambda = 0 \]
Tune regularization parameter

- Perform cross-validation for different parameters λ, save the corresponding risk estimates.
- When training the final model on all of the data, use the parameter λ^* that resulted in smallest risk estimate.

Training error minimal for unregularized model, but test error better for moderate regularization.
Tune regularization parameter

- **Algorithm:** Learn model with optimal regularization parameter λ.

- **Function** $\text{trainModelOptimalLambda}(D)$
 - For $\lambda \in \{2^{-k}, 2^{-k+1}, \ldots, 2^{k-1}, 2^k\}$:
 - Determine $\text{error}(\lambda) = \text{crossValidation}(\lambda, D)$
 - Set $\lambda^* = \arg\min_{\lambda} \text{error}(\lambda)$
 - Learn $f^* = \text{trainModel}(\lambda^*, D)$

- **Output:** model f^*.

 cross-validation risk estimate for model with parameter λ on data D.

 Learning model with parameter λ^* on data D.

 Intelligente Datenanalyse
Estimating error of model with tuned regularization parameter

- How do we estimate the error of the model with tuned regularization parameter λ^*?

- Warning: we can not simply use the error estimate $\text{error}(\lambda^*)$!
 - The parameter λ^* was chosen such that $\text{error}(\lambda^*)$ is as small as possible.
 - The error estimate $\text{error}(\lambda^*)$ is therefore optimistic.
 - Compare with earlier argument: training error is optimistic, because model parameters have been chosen based on training data.

- Instead, what we need is a „nested“ cross-validation (see next slide).
Nested Cross-Validation

- Algorithm: risk estimate with tuned regularization parameter λ

- Function \texttt{trainAndEvaluateOptimalLambda}(D)
 - Split D into n equally sized blocks $D_1, ..., D_n$ with $D = \bigcup_{i=1}^{n} D_i$ and $D_i \cap D_j = 0$.
 - For $i \in \{1, ..., n\}$:
 - Learn $f_i^* = \text{trainModelOptimalLambda}(D \setminus D_i)$
 - Determine empirical risk $\hat{R}_{D_i}(f_i^*)$ on data D_i
 - Average the different empirical risk estimates: $\bar{R} = \frac{1}{n} \sum_{i=1}^{n} \hat{R}_{D_i}(f_i)$.
 - Learn $f^* = \text{trainModelOptimalLambda}(D)$

- Output: model f^* and risk estimate \bar{R}.
Evaluation: Summary

- Studied the problem of risk estimation: expected loss on novel test data.
- Training error optimistic, cannot be used as risk estimate.
- Appropriate approaches are holdout-testing and cross-validation.
- Cross-validation is also used to tune hyperparameters such as regularization parameter λ.
- Error estimate for model with tuned hyperparameters requires „nested“ cross-validation.