Confidence Intervals and Hypothesis Testing

Niels Landwehr
Agenda

- Confidence Intervals
- Statistical Tests
Agenda

- Confidence Intervals
- Statistical Tests
Recap: Risk Estimation

- Recap: risk estimation.
- We have learned a model $f_\theta : \mathcal{X} \rightarrow \mathcal{Y}$.

- Interested in risk of model: the expected loss on novel test instances (x, y) drawn from the data distribution $p(x, y)$.

$$R(\theta) = E[\ell(y, f_\theta(x))] = \int \int \ell(y, f_\theta(x)) p(x, y) dx dy$$

- Because $p(x, y)$ is unknown, risk needs to be estimated from sample $S = (x_1, y_1), \ldots, (x_n, y_n)$ where $(x_i, y_i) \sim p(x, y)$ are independent samples.

- Risk estimate ("empirical risk") $\hat{R}_S(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_\theta(x_i))$

- If context is clear, we denote risk by R and empirical risk by \hat{R}_S.
Recap: Risk Estimation Zero-one loss

- For this lecture, we will assume
 - Learning task is binary classification, $\mathcal{Y} = \{0,1\}$.
 - Loss is zero-one loss,

\[
\ell(y, f_\theta(x)) = \begin{cases}
0 : y = f_\theta(x) \\
1 : \text{otherwise}
\end{cases}
\]

- This means that $\ell(y_i, f_\theta(x_i))$ for $(x_i, y_i) \sim p(x, y)$ follows a Bernoulli distribution: there is either a mistake or not (coin toss).

- We also assume that model is evaluated on independent test set, such that the error estimate is unbiased.
Idea Confidence Intervals

- Risk estimate is always uncertain – depends on sample S.
- Idea confidence interval:
 - Specify interval around risk estimate \hat{R}_s
 - Such that the true risk R lies within the interval „most of the time“.
 - Quantifies uncertainty of risk estimate.

Route to confidence interval: analyse the distribution of the random variable \hat{R}_s.

$[\hat{R}_s]$

width ϵ of confidence interval
Central Limit Theorem

- **Central Limit Theorem.** Let \(z_1, \ldots, z_n \) be independent draws from a distribution \(p(z) \) with \(\mathbb{E}[z] = \mu \) and \(\text{Var}[z] = \sigma^2 \). Then it holds that

\[
\sqrt{n} \left(\frac{1}{n} \sum_{j=1}^{n} z_j - \mu \right) \xrightarrow{\text{d}} \mathcal{N}(0, \sigma^2)
\]

average of \(z_1, \ldots, z_n \).

- **Central limit theorem gives approximate distribution of mean:**

\[
\sqrt{n} \left(\frac{1}{n} \sum_{j=1}^{n} z_j - \mu \right) \sim \mathcal{N}(0, \sigma^2)
\]

(approximately, for large \(n \))

\[
\Rightarrow \frac{1}{n} \sum_{j=1}^{n} z_j \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})
\]

(approximately, for large \(n \))
Example Central Limit Theorem

- Example central limit theorem: average of Bernoulli variables.
- Let \(z_1, \ldots, z_n \) be independent draws from a Bernoulli distribution, that is
 \[
 z_i \sim \text{Bern}(z_i \mid \mu) \quad \text{(coin toss with success probability} \ \mu)\]
- Average \(\frac{1}{n} \sum_{j=1}^{n} z_j \) follows (rescaled) Binomial distribution.
- Binomial distribution approaches Normal distribution.
Central Limit Theorem: Error Estimator

- Application of central limit theorem to error estimator.
- Error estimator
 \[\hat{R}_s = \frac{1}{n} \sum_{j=1}^{n} \ell(y_j, f_\theta(x_j)) \]
 is an average over the Bernoulli-distributed variables \(\ell(y_j, f_\theta(x_j)) \).

- Because the error estimate is unbiased, \(\mathbb{E}[\ell(y_j, f_\theta(x_j))] = R \).
- Variance of Bernoulli random variable is \(\text{Var}[\ell(y_j, f_\theta(x_j))] = R(1 - R) \).

- Central limit theorem says:
 \[\hat{R}_s \sim \mathcal{N}(R, \frac{R(1-R)}{n}) \]
 (approximately, large enough \(n \))

- First result for distribution of \(\hat{R}_s \), but depends on \(R \).
Mean and Variance of Error Estimator

- First result: Approximate distribution of error estimator is
 \[\hat{R}_s \sim \mathcal{N}(R, \frac{R(1-R)}{n}). \]

- Unbiased estimator, therefore the mean is the true risk \(R \).

- The variance of the estimator falls with \(n \): the more instances in the test set \(S \), the less variance.

 - Variance \(\sigma^2_{\hat{R}_s} = \frac{R(1-R)}{n} \).

 - Standard deviation ("standard error") \(\sigma_{\hat{R}_s} = \sqrt{\frac{R(1-R)}{n}} \).

Characterizes how much risk estimate fluctuates with \(S \).
Distribution of Error Estimator

- Distribution of error estimator:

\[\hat{R}_s \sim \mathcal{N}(R, \sigma^2_{\hat{R}_s}). \]

\[\Rightarrow \frac{\hat{R}_s - R}{\sigma_{\hat{R}_s}} \sim \mathcal{N}(0,1) \]

- Problem: true risk \(R \) has to be known in order to determine variance

\[\sigma^2_{\hat{R}_s} = \frac{R(1-R)}{n}. \]

- Idea: replace true variance \(\sigma^2_{\hat{R}_s} \) by variance estimate

\[s^2_{\hat{R}_s} = \frac{\hat{R}_s (1-\hat{R}_s)}{n}. \]
Variance Estimate and t-Distribution

- If true variance is replaced by variance estimate, the normal distribution becomes a Student’s t-distribution:

\[\frac{\hat{R}_S - R}{s_{\hat{R}_S}} \sim t(n) \]

\(n \) degrees of freedom

- However, for large \(n \) the t-distribution becomes a normal distribution again, so we can keep working with the normal.

Convergence: \(\lim_{n \to \infty} t(n) = \mathcal{N}(0,1) \)
Bound For True Risk

- So what does the empirical risk \hat{R}_s tell us about the true risk?
- From empirical risk \hat{R}_s compute empirical variance $s_{\hat{R}_s}^2$.
- One-sided upper bound for true risk: probability that true risk is at most ϵ above estimated risk.

$$p(R \leq \hat{R}_s + \epsilon) = p(R - \hat{R}_s \leq \epsilon)$$

$$= p\left(\frac{R - \hat{R}_s}{s_{\hat{R}_s}} \leq \frac{\epsilon}{s_{\hat{R}_s}}\right)$$

$$\frac{\hat{R}_s - R}{s_{\hat{R}_s}} \sim \mathcal{N}(0,1)$$

$$\Phi(x) = \int_{-\infty}^{x} \mathcal{N}(x \mid 0,1)dx$$

"cumulative distribution function of standard normal distribution"
Bound For True Risk

- Symmetric lower bound: because the distribution of \hat{R}_S is symmetric around R (normal distribution), we can similarly compute probability that true risk is at most ϵ below estimated risk.

 $$p(R \geq \hat{R}_S - \epsilon) \approx \Phi\left(\frac{\epsilon}{s_{\hat{R}_S}}\right)$$

- Two-sided interval: What is the probability that true risk is at most ϵ away from estimated risk?

 $$p(|R - \hat{R}_S| \leq \epsilon) = 1 - p(R - \hat{R}_S > \epsilon) - p(\hat{R}_S - R > \epsilon)$$

 $$\approx 1 - 2\left(1 - \Phi\left(\frac{\epsilon}{s_{\hat{R}_S}}\right)\right)$$
One-sided and Two-sided Intervals

- So far, we have computed probability that a bound holds for a particular interval size ε.
- Idea: choose ε in such a way that bounds hold with a certain prespecified probability $1-\delta$ (e.g. $\delta=0.05$).
- One-sided $1-\delta$-confidence interval: bound ε such that
 $$p(R \leq \hat{R}_s + \varepsilon) = 1 - \delta$$
- Two-sided $1-\delta$-confidence interval: bound ε such that
 $$p(|R - \hat{R}_s| \leq \varepsilon) = 1 - \delta$$
- For symmetric distributions (here: normal) it always holds that:
 - ε for one-sided $1-\delta$-interval = ε for two-sided $1-2\delta$ interval.
 - ε for one-sided 95%-interval = ε for two-sided 90% interval.
 - Thus, it suffices to derive ε for one-sided interval.
Size of Interval

- Compute one-sided $1-\delta$-confidence interval: Determine ε such that bound holds with probability $1-\delta$.

$$p(R \leq \hat{R}_S + \varepsilon) = 1 - \delta$$

$$\Phi \left(\frac{\varepsilon}{s_{\hat{R}_S}} \right) = 1 - \delta$$

$$\Leftrightarrow \frac{\varepsilon}{s_{\hat{R}_S}} = \Phi^{-1}(1 - \delta)$$

$$\Leftrightarrow \varepsilon = s_{\hat{R}_S} \Phi^{-1}(1 - \delta)$$

Result from Slide 13

- Two-sided confidence interval is $[\hat{R}_S - \varepsilon, \hat{R}_S + \varepsilon]$ (confidence level $1-2\delta$)
Confidence Interval: Example

- **Example:**
 - We have observed an empirical risk of $\hat{R}_s = 0.08$ on $m = 100$ test instances.

- **Compute** $s_{\hat{R}_s} = \sqrt{\frac{0.08 \cdot 0.92}{100}} \approx 0.027$ empirical standard deviation

- Choosing confidence level $\delta = 0.05$ (one-sided level, two-sided will be 2δ)

- **Compute** $\varepsilon = s_{\hat{R}_s} \Phi^{-1}(1-\delta) \approx 0.027 \cdot 1.645 \approx 0.045$.

- The confidence interval $[\hat{R}_s - \varepsilon, \hat{R}_s + \varepsilon]$ contains the true risk in 90% of the cases.
Interpretation of Confidence Intervals

- Care should be used when interpreting confidence intervals: the random variable is the empirical risk \hat{R}_s and the resulting interval, not the true risk R.

- Correct:

"The probability of obtaining a confidence interval ε that contains the true risk from an experiment is 95%"

- Wrong:

"We have obtained a confidence interval ε from an experiment. The probability that the interval contains the true risk is 95%".
Agenda

- Confidence Intervals
- Statistical Tests
Motivation: we have developed a new learning algorithm (Algorithm 1) and compare it to an older algorithm (Algorithm 2) on 10 data sets.

Algorithm 1 seems better (won on 8 data sets, lost on 2).
- But maybe this is just a random result, based on the particular choice of data sets?

Statistical test: rigorous procedure to decide whether it is likely that Algorithm 1 is indeed giving better accuracy.
Statistical Tests: Framework

- Formulate a *null hypothesis* H_0.
 - For example, H_0 could be „Algorithm 1 and Algorithm 2 perform equally well“.
 - If the observations are very unlikely under H_0, we reject it and conclude the alternative hypothesis H_1: one algorithm is better.

- Formulate a *test statistic* T that can be computed from data.
 - For example, the observed number of „wins“.

- We will reject the null hypothesis if the test statistic exceeds a threshold c.
 - For example, reject if one algorithm wins more than 90 times out of 100.
Statistical Tests: Framework

- Asymmetry in test: we can only reject the null hypothesis, never conclude that it is true.

\[H_0 \text{ rejected } \implies \text{conclude } H_1. \]
\[H_0 \text{ not rejected } \implies \text{cannot conclude anything, no new information.} \]

- Possible outcomes of hypothesis testing:

<table>
<thead>
<tr>
<th></th>
<th>(H_0 \text{ rejected})</th>
<th>(H_0 \text{ not rejected})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_0 \text{ true})</td>
<td>Type I error (wrong conclusion, very bad)</td>
<td>no new information but also no error (ok)</td>
</tr>
<tr>
<td>(H_1 \text{ true})</td>
<td>correct conclusion (good)</td>
<td>Type II error (not enough power, kind of bad)</td>
</tr>
</tbody>
</table>

- Type I error is worst case (publish a study claiming that new drug cures cancer when in fact it does not).
Statistical Tests: More Formally

- More formally, let $\omega \in \Omega$ denote a true parameter of interest (for example, ω is the probability that Algorithm 1 wins over Algorithm 2 on a randomly drawn data set).

- Let the null hypothesis be $H_0 : \omega \in \Omega_0$ (for example, $H_0 : \omega = 0.5$).
- The alternative hypothesis is $H_1 : \omega \in \Omega_1 = \Omega \setminus \Omega_0$.

- Let $X \in \mathcal{X}$ be the observations (for example, accuracies of algorithms on the multiple data sets).
- Let $T : \mathcal{X} \rightarrow \mathbb{R}$ be the test statistic.

- We reject the null hypothesis H_0 (and conclude that the alternative hypothesis H_1 is true) if $T(X) > c$.
Statistical Tests: Size

- **Size** of a test: (maximal) probability of rejecting the null hypothesis when the null hypothesis is true (bad!).
 \[\alpha = \sup_{\omega \in \Omega_0} p(T > c \mid \omega). \]

- We don’t want Type I errors, so we have to limit \(\alpha \).
- For example, \(\alpha = 0.05 \): formulate test in such a way that there is at most 5% probability of rejecting null hypothesis wrongly.

- Of course, \(\alpha \) depends on \(c \)
 - If we choose \(c \) very large, we are conservative and \(\alpha \) is low.
 - If we choose \(c \) smaller, we are less conservative.
 - Trading Type I for Type II error.
Sign Test

- Sign test: decide whether the medians of two populations differ.
- Motivation: we evaluate two learning algorithms on 10 datasets.

More formally: Let \((a_1, b_1), \ldots, (a_m, b_m) \in \mathbb{R}^2\) be independently sampled as \((a_i, b_i) \sim p(a, b)\).

Let \(\omega = p(a > b) \in [0,1]\) (”probability that Algorithm 1 wins on randomly drawn data set“).

Let \(H_0: \omega = 0.5\), \(H_1: \omega \in [0,1]\setminus\{0.5\}\).
Sign Test

- Sign test: decide whether the medians of two populations differ.
- Motivation: we evaluate two learning algorithms on 10 datasets.

Let \((x_1, y_1), \ldots, (x_m, y_m) \) (observed accuracies).

Let \(T = \max \left(|\{i | x_i > y_i\}|, |\{i | x_i < y_i\}| \right) \). “#wins of better algorithm”

We will reject the null hypothesis if \(T > c \), that is, if we see more than \(c \) wins of either algorithm.
Sign Test: Distribution under H_0

- How do we choose c?
- Limit probability of Type I error, given by $\alpha = p(T > c \mid \omega = 0.5)$.

- Because $(a_i, b_i) \sim p(a, b)$ are sampled independently, the logical variable $(a_i > b_i)$ behaves like a coin toss.
- Thus, the probability of seeing i wins for Algorithm 1 is given by a Binomial distribution.
- How likely is it to observe more than c wins (for either algorithm) if $\omega = 0.5$?

$$p(T > c \mid \omega = 0.5) = 2 \sum_{i=c+1}^{m} \text{Bin}_{0.5,m}(i)$$

Probability of seeing extreme #wins under a fair coin toss model.
Sign Test: Distribution under H_0

- So \(\alpha = p(T > c \mid \omega = 0.5) \)
 \[
 = 2 \sum_{i=c+1}^{m} \text{Bin}_{0.5,m}(i)
 = 2(1 - \text{BinCDF}_{0.5,m}(c))
 \]

- So far, computed \(\alpha \) for a given threshold \(c \).
- We can ensure any prespecified \(\alpha \) by solving for \(c \):
 \[
 c = \text{BinCDF}_{0.5,m}^{-1}(1 - \alpha / 2).
 \]
- E.g. for \(\alpha = 0.05 \) we set \(c = \text{BinCDF}_{0.5,m}^{-1}(0.975) \).
Sign Test: p-value

- After observing the value T of the test statistics, we can also compute α for the maximum threshold $c=T-1$ that would still reject the null hypothesis. This is called the *p-value*.

$$p = 2(1 - \text{BinCDF}_{0.5,m}(T-1))$$

- The p-value is the smallest α for which the test would reject H_0.
- Typically,
 - $p < 0.001$: very sure that H_0 can be rejected.
 - $p < 0.01$: sure that H_0 can be rejected.
 - $p < 0.05$ reasonably sure that H_0 can be rejected.
 - $p < 0.1$ likely that H_0 can be rejected.
Sign Test: Example

- Example sign test:

<table>
<thead>
<tr>
<th>Accuracy Algorithm 1</th>
<th>+</th>
<th>+</th>
<th>-</th>
<th>+</th>
<th>+</th>
<th>-</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.85</td>
<td>0.76</td>
<td>0.60</td>
<td>0.70</td>
<td>0.95</td>
<td>0.88</td>
<td>0.73</td>
<td>0.89</td>
<td>0.98</td>
<td>0.74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accuracy Algorithm 2</th>
<th>+</th>
<th>+</th>
<th>-</th>
<th>+</th>
<th>+</th>
<th>-</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.81</td>
<td>0.73</td>
<td>0.61</td>
<td>0.66</td>
<td>0.91</td>
<td>0.89</td>
<td>0.65</td>
<td>0.82</td>
<td>0.97</td>
<td>0.70</td>
</tr>
</tbody>
</table>

- Compute test statistic: \(T=8 \).
- Compute p-value:

\[
p = 2(1 - \text{BinCDF}_{0.5,10}(7)) = 0.1094
\]

- Test would reject null hypothesis for \(\alpha = 0.2 \), but not for \(\alpha = 0.1 \). This is not considered statistically significant.
Sign Test: Discussion

- **Summary:** sign test can be applied when we have paired data \((a_1, b_1), ..., (a_m, b_m) \in \mathbb{R}^2\) and want to decide if \(p(a > b) \neq 0.5\).

- **Advantages of sign test:**
 - Few assumptions: the \((a_i, b_i)\) only need to be independent.

- **Disadvantages:**
 - Only uses whether \(a_i > b_i\) or \(a_i < b_i\), not the actual values. This discards some information and can make it harder to reject the null hypothesis.
 - Compares medians rather than means: if algorithm is usually slightly better but in some cases much worse, it would be declared the winner.
Two-Tailed Paired t-Test

- Paired t-test: standard test to determine if means between populations differ (example: do risks of two models differ?).

- Let \((a_1, b_1), \ldots, (a_m, b_m) \in \mathbb{R}^2\) be independently sampled from \(p(a, b)\), that is, \((a_i, b_i) \sim p(a, b)\).

- Let \(\delta_i = a_i - b_i\), let \(\Delta = \frac{1}{m} \sum_{i=1}^{m} \delta_i\), and let \(s^2 = \frac{1}{m} \sum_{i=1}^{m} (\delta_i - \Delta)^2\).
 \[\text{Variance estimate } \delta_i\]

- Let \(\omega = \mathbb{E}[a] - \mathbb{E}[b]\) denote the difference in population means.

- Null hypothesis \(H_0: \omega = 0\), that is, \(\mathbb{E}[a] = \mathbb{E}[b]\).

- Test statistic \(T = \frac{\sqrt{m} \Delta}{s}\), reject if \(T > c\).
Paired t-Test: Probability of Type I Error

- Paired t-test intuition: if null hypothesis $\mathbb{E}[a] = \mathbb{E}[b]$ holds, would expect small Δ and therefore T. Seeing a large (absolute) T is thus very unlikely under the null hypothesis.

- What is the probability of rejecting the null hypothesis when the null hypothesis is true?

$$\alpha = p(T > c \mid \omega = 0)$$
Paired t-Test: Probability of Type I Error

- Distribution of T if $\omega = 0$:
 - Because δ_i are independent, Central Limit Theorem says:
 $$\frac{\sqrt{m\Delta}}{\sigma} \sim \mathcal{N}(0,1)$$
 zero mean because $\omega = 0$
 - With estimated variance, becomes t-distributed:
 $$\frac{\sqrt{m\Delta}}{s} \sim t(m-1)$$

- Thus, test statistic T follows a t-distribution.
- Probability that T exceeds c:
 $$\alpha = p\left(\frac{\sqrt{m\Delta}}{s} \bigg| \omega = 0 \right) = 2\int_{c}^{\infty} t(x \big| m-1)dx$$

...
Paired t-Test: p-Value

- Formulate using cumulative distribution function:
 \[\alpha = 2 \int_{c}^{\infty} t(x \mid m-1)dx = 2(1 - \text{tCDF}_{m-1}(c)) \]

- Can again compute a threshold \(c \) for a prespecified \(\alpha \): if we set \(c = \text{tCDF}_{m-1}^{-1}(1 - \alpha / 2) \), we ensure that the Type I error is at most \(\alpha \) (for example, \(\alpha = 0.05 \)).

- For observed value \(T \) of test statistic, we can again compute the \textit{p-value}: the smallest \(\alpha \) for which \(H_0 \) would be rejected.
 \[p = 2 \int_{T}^{\infty} t(x \mid m-1)dx = 2(1 - \text{tCDF}_{m-1}(T)) \]
Example Paired t-Test

- Example: Comparing the risks of two predictive models.
- We evaluate models \(f_{old} \) and \(f_{new} \) on test set of size \(m = 20 \).
- Let \(\delta_1, ..., \delta_{20} \) be the difference in loss on the different test examples, that is, \(\delta_i = \ell(y_i, f_{old}(x_i)) - \ell(y_i, f_{new}(x_i)) \).

- Compute \(\Delta = \frac{1}{20} \sum_{i=1}^{20} \delta_i \) and \(s^2 = \frac{1}{20} \sum_{i=1}^{20} (\delta_i - \Delta_T)^2 \).

- Let’s say \(\Delta = 0.25 \) and \(s^2 = 0.3026 \)

- Compute \(T = \left| \frac{\sqrt{m\Delta}}{s} \right| = \frac{\sqrt{20} \cdot 0.25}{\sqrt{0.3026}} \approx 2.03 \).

- Compute \(p = 2(1 - tCDF_{m-1}(2.03)) \approx 0.056 \).
- We can reject \(H_0 \) for \(\alpha = 0.1 \), but not for \(\alpha = 0.05 \).
- Weakly significant.
Discussion t-Test

- **Summary**: paired t-test can be applied when we have paired data \((a_1, b_1), \ldots, (a_m, b_m) \in \mathbb{R}^2\) and want to decide if \(E[a] \neq E[b]\).

- **Advantages t-test**
 - Compares means rather than medians (often more adequate).
 - Usually more powerful than sign test.

- **Disadvantages t-test**
 - It critically relies on assuming that the test statistics is t-distributed. This holds in the limit according to central limit theorem, but might not be satisfied for small \(m\).
 - The test can give wrong results when this assumption is not satisfied.
Statistical Tests: Summary and Outlook

- Statistical testing can determine whether observed empirical differences likely indicate true differences between populations.
 - Formulate a null hypothesis.
 - Define a test statistic based on the observations.
 - Reject null hypothesis if observed value for test statistic is very unlikely under null hypothesis.

- Statistical testing is a large field, and many more tests exist
 - Unpaired test, would have to be used when models are evaluated on different test sets.
 - Wilcoxon signed rank test, χ^2-test, …
 - One-tailed vs. two-tailed tests.