Lambda-Kalkül

Dr. Eva Richter

27.April 2012

Historisches

- um 1200 Einführung des Zahlensystems in Europa u.a. durch Fibonacci; ist charakterisiert durch ein kleine Menge von Ziffern, deren Wert von der Position in der Zahl abhängt
- Zahlsystem kam über Arabien aus Indien
- ca. 1580 wurden von Francois Viète erstmals Variablen als Platzhalter und Zeichen für Operationen zur Notation von Ausdrücken und Gleichungen verwendet
- ca. 1930 entwickelte Alonzo Church eine Schreibweise für beliebige Funktionen
- führte den Formalismus als funktionale Basis der Mathematik ein
- in den 1960-er Jahren wurde der λ -Kalkül als vielseitiges Werkzeug der Informatik von Leuten wie McCarthy, Strachey, Landin und Scott "wiederentdeckt"

Notationen in Programmiersprachen

- 1936-1950 wurden verschiedene Arten der Zahldarstellung ausprobiert
- Vietas Schreibweise für Ausdrücke war die große Innovation in FORTRAN (Backus 1953), die Assembler ablöste
- ullet 1960 veröffentlichte McCarthy die Listenverarbeitungssprache Lisp, die an den λ -Kalkül erinnert
- heutige Programmiersprachen (z.B. Java, C++) trennen üblicherweise primitive Datentypen und Funktionen (Methoden)
- Linie von Lisp führte zu ML und Haskell, die keine objektorientierten Aspekte haben
- OCaml als ML-Dialekt ist eine der wenigen Sprachen, die beide Ansätze kombiniert

$Ausdrücke\ im\ \lambda$ -Kalkül

- λ -Kalkül ist effiziente Schreibweise für Funktionen
- Ausdrücke werden in strikter Präfix-Form geschrieben, d.h es gibt weder Infix- noch Postfixoperatoren wie + oder²
- Funktionen und Argumente werden nebeneinander geschrieben, ohne Klammern
- bei mehr als einem Argument, wird alles aneinandergereiht, z.B. +3x statt x + 3, *xx statt x^2 und +(sinx)4

$Ausdr\"{u}cke\ im\ \lambda$ - $Kalk\"{u}l$

- bei Ausdrücken, die eine Variable x enthalten, ist die Beziehung zwischen konkreten Werten und Wert des Ausdrucks eine Funktion; mathematisch f(x) = 3x oder x → 3x
- λ -Ausdrücke brauchen keine Namen für Funktionen aus f(x) = 3x wird $\lambda x. * 3x$
- $oldsymbol{\lambda}$ macht klar, dass die folgende Variable nicht Teil eines Ausdrucks, sondern formaler Parameter einer Funktionsdeklaration ist, Punkt nach dem Parameter ist der Beginn der Funktionsbeschreibung

```
PASCAL function f (x:int):int begin f=3*x end; \lambda x . *3x Lisp lambda (x) (*3<math>x)
```

Iteration von Funktionen

- jede Funktion in λ -Schreibweise kann als Ausdruck verwendet werden,
- $(\lambda x. * 3x)$ 4 ist Anwendung der Funktion auf x = 4
- Klammern begrenzen die Definition: $\lambda x. * 3x4$ entspricht 3*x*4 (falls * dreistellig wäre, sonst sinnlos)
- Abkürzungen für Bequemlichkeit: Ist $F := \lambda x. * 3x$, kann man F 4 schreiben anstelle von $(\lambda x. * 3x)$ 4
- Funktionskörper enthält eine Funktion
 Beispiel: N := λ y.(λx. * y x), dann ist N 3 wieder λx. * 3 x,
 d.h. N 3 verhält sich wie F
- um zu betonen, dass 3 zuerst verwendet wird, schreibt man (N3) 4 für gleichzeitige Auswertung N34

Offizielle Definition

Definition

Ein λ -Term wird konstruiert durch die folgende Grammatik:

$$M ::= c|x|MM|\lambda x.M$$

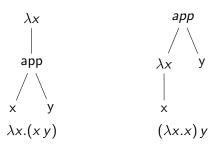
wobei c Konstanten sind wie z.B. 1, 2, ... +, * und x eine (von unendlich vielen) Variablen.

Ein Ausdruck ohne Konstanten heißt reiner λ -Term.

Grammatik ist nicht eindeutig

$$M ::= c|x|MM|\lambda x.M$$

Der Term $\lambda x.xy$ kann auf zwei Arten gelesen werden:



Applikation ist linksassoziativ, d.h.

$$E_1E_2E_3...E_n$$
 wird ausgewertet als $(...(E_1E_2)E_3)...E_n)$

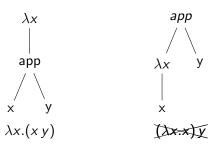
Abstraktion ist rechtsassoziativ, d.h.

$$\lambda x.\lambda y.\lambda z.x$$
 y z wird ausgewertet als $\frac{\lambda x.(\lambda y.(\lambda z.x y z))}{\lambda z.\lambda y.\lambda z.x}$

Grammatik ist nicht eindeutig

$$M ::= c|x|MM|\lambda x.M$$

Der Term $\lambda x.xy$ kann auf zwei Arten gelesen werden:



Applikation ist linksassoziativ, d.h.

$$E_1E_2E_3...E_n$$
 wird ausgewertet als $(...(E_1E_2)E_3)...E_n)$

Abstraktion ist rechtsassoziativ, d.h.

$$\lambda x. \lambda y. \lambda z. x \ y \ z \ wird ausgewertet als $\frac{\lambda x. (\lambda y. (\lambda z. x \ y \ z))}{2}$$$

Reduktion

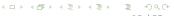
- einzige Rechenregel ist Reduktion(β-Reduktion)
- beschreibt, wie formale Parameter durch tatsächliche ersetzt werden
- wird nur gebraucht, wenn ein Term auf einen anderen angewendet wird

$$(\lambda x. * 3x) 4 \rightarrow_{\beta} *34$$
$$(\lambda y. y 5)(\lambda x. * 3x) \rightarrow_{\beta} (\lambda x. * 3x) 5 \rightarrow_{\beta} *35$$

• mit manchen Ausdrücken kann man das unendlich oft machen:

$$\Omega = (\lambda x. x x)(\lambda x. x x)$$

- ein Term ist in Normalform, falls keine weiteren Reduktionen möglich sind
- nicht jeder Term hat eine Normalform(z.B. Ω)



Konfluenz

- in manchen Fällen gibt es mehrere Möglichkeiten für eine Reduktion
- damit der Kalkül sinnvoll ist, sollte die Reihenfolge der Reduktionen keine Rolle spielen

Satz (Church-Rosser)

Falls ein Term M in einer endlichen Anzahl von Schritten zu einem Term N oder zu einem Term P reduziert werden kann, dann existiert ein Term Q zu dem sowohl N als auch P reduziert werden können.

Warnung: Nicht jede Auswertungsstrategie führt zur Normalform! Siehe Aufgabe 3.1.1.

\ddot{A} quivalenz von λ -Termen

Folgerung

Jeder Term hat höchstens eine Normalform.

Beweis: Seien N und P zwei Normalformen zum Term M. Nach Church-Rosser existiert ein Q mit $P \to_{\beta}^* Q$ und $N \to_{\beta}^* Q$. Da P und N in NF folgt $P \equiv N \equiv Q$.

- Terme s und t, die sich nur durch Namen der Variablen unterscheiden werden als äquivalent betrachtet: $s \equiv t$
- Terme s und t, die durch Umbenennung(α -Konversion) der Variablen und β -Reduktion auseinander hervorgehen, heißen λ -gleich: $s \approx t$.

Beispiele

$$I=\lambda x.x$$
 Identität $K=\lambda x.\lambda y.x$ $Kc=\lambda y.c$ Konstante $B=\lambda x.\lambda y.\lambda z.x(y(z))$ $Bfg=\lambda z.f(g(z))$ Komposition $S=\lambda x.\lambda y.\lambda z.(xz)(yz)$ Substitution

$$SKK = [\lambda x. \lambda y. \lambda z.(xz)(yz)]KK$$

$$= [\lambda y. \lambda z.(Kz)(yz)]K$$

$$= \lambda z.[(Kz)(Kz)] \quad K = \lambda x. \lambda y. x, Kz = \lambda y. z$$

$$= \lambda z.[(\lambda y. z)(\lambda y. z)]$$

$$= \lambda z. z$$

Freie Variablen

- alle Namen sind lokale Definitionen
- Variable x in $\lambda x.x$ heißt gebunden, da sie im Körper der Funktionsdefinition, die mit λx beginnt, steht
- eine Variable, der kein zugehöriges λ vorangeht, heißt frei, z.B. y in $\lambda x.xy$
- in (\(\lambda x.x\)(\(\lambda y.yx\)) ist das \(x\) im linken Ausdruck gebunden, im zweiten Teil ist \(y\) gebunden und \(x\) ist frei, es ist vollkommen unabhängig von dem \(x\) im linken Teil

Definition

Eine Variable x ist frei in folgenden Fällen:

- 1 x ist frei im Ausdruck x
- **2** \times ist frei in $\lambda y.E$ falls \times frei im Ausdruck E vorkommt und $y \neq x$
- 3 \times ist frei in E_1E_2 , falls \times frei in E_1 oder E_2

Gebundene Variablen und Substitution

Definition

Eine Variable x ist in folgenden Fällen gebunden

- **1** \mathbf{v} ist gebunden in $\lambda x.E$ und \mathbf{v} ist frei in \mathbf{E}
- $2 \times ist$ gebunden in E_1E_2 , falls $\times gebunden$ in E_1 oder gebunden in E_2 .

Eine Variable kann also in einem Ausdruck sowohl frei als auch gebunden sein!

- Für Identitätsfunktion I ergibt $II \equiv (\lambda x.x)(\lambda x.x)$. Man kann auch $II \equiv (\lambda x.x)(\lambda z.z)$ schreiben und reduziert durch $[\lambda z.z/x]x$ zu $\lambda z.z \equiv I$
- Vorsicht beim Substituieren, freie und gebundene Vorkommen dürfen nicht verwechselt werden

Beispiel Substitution in $(\lambda x.(\lambda y.xy))y$

das linke y ist gebunden, das rechte ist frei

falsch: Xy.yX

richtig benenne gebundenes y in t um:

$$\lambda x.(\lambda t.tx)y \rightarrow_{\beta} \lambda t.yt$$

- wird $\lambda x. E_1$ auf E_2 angewendet, werden alle freien Vorkommen von x in E_1 durch E_2 ersetzt
- käme dabei eine freie Variable aus E₂ in einen Ausdruck, wo diese Variable gebunden ist, wird die gebundene Variable vorher umbenannt
- in

$$(\lambda x.(\lambda y.(x(\lambda x.xy))))y$$

ersetzt man y im Innern durch t zu

$$(\lambda x.(\lambda t.(x(\lambda x.xt))))y \rightarrow_{\beta} (\lambda t.(y(\lambda x.xt)))$$

Natürliche Zahlen-Church Numerals

- können durch 0 und Nachfolgerfunktion dargestellt werden: zero, suc(zero), suc(suc(zero))...
- Null wird definiert als $\overline{\mathbf{0}} \equiv \lambda s.(\lambda z.z)$
- weitere Zahlen: $\overline{1} \equiv \lambda s. \lambda z. s(z), \overline{2} \equiv \lambda s. \lambda z. s(s(z)), \overline{3} \equiv \lambda s. \lambda z. s(s(s(z)))$ usw.
- Nachfolgerfunktion $S \equiv \lambda w. \lambda y. \lambda x. y(wyx)$ angewendet auf zero:

$$\lambda w \quad \lambda y.\lambda x.(y(\ \ w \ \ yx)) \quad (\lambda s.(\lambda z.z)) \rightarrow \\ \lambda y.\lambda x.(y(\ \ \lambda s \ .(\lambda z.z)) \quad y \quad x) \rightarrow \\ \lambda y.\lambda x.(y(\ \ \lambda z.z \) \quad x \quad) \rightarrow \lambda y.\lambda x.(y(x)) \equiv \overline{\mathbf{1}}$$

• $(\lambda w.\lambda y.\lambda x.y(wyx))(\lambda s.\lambda z.s(z)) \rightarrow (\lambda y.\lambda x.y((\lambda s.\lambda z.s(z))yx)) \rightarrow (\lambda y.\lambda x.y(\lambda z.y(z))x) \rightarrow (\lambda y.\lambda x.y(y(x)))$

Addition

- ullet grüner Teil in $\overline{1}\equiv \lambda s.\lambda z.\ s(z)$ ist Anwendung von s auf z
- \bullet 2 + 3 bedeutet 2-malige Anwendung der Nachfolgerfunktion S

$$\overline{2}S\overline{3} = \{\lambda s.\lambda z.s(s(z))\}\{\lambda wyx.y(wyx)\}\{\lambda a.\lambda b.a^{3}(b)\} \rightarrow \\
\rightarrow \{\lambda z.[\lambda w.\lambda y.\lambda x.y(wyx)]([\lambda w\lambda y.\lambda x.y(wyx)](z))\}\{\lambda a.\lambda b.a^{3}(b)\} \\
\rightarrow [\lambda w\lambda y.\lambda x.y(wyx)]([\lambda w.\lambda y\lambda.x.y(wyx)](\lambda a.\lambda b.a^{3}(b))) \equiv SS\overline{3}$$

• $SS\overline{3} \rightarrow S\overline{4} \rightarrow \overline{5}$

Multiplikation

- zwei Zahlen m und n multipliziert man durch $\lambda m.\lambda n.\lambda z.m(nz)$
- Produkt von 2 mit 2 ist dann $(\lambda m.\lambda n.\lambda z.m(nz))\overline{2}\overline{2}$
- reduziert zu $\lambda z.\overline{2}(\overline{2}z)$, weitere Reduktion ergibt $\overline{4}$.

Logische Konstanten und Funktionen

- logische Konstanten $T \equiv \lambda x \lambda y.x$ und $F \equiv \lambda x \lambda y.y$
- logische Funktionen: $\land \equiv \lambda x \lambda y.xy$ **F**, $\lor \equiv \lambda x \lambda y.x(\lambda u \lambda v.u)y$ und $\neg \equiv \lambda x.x$ **FT**

Die Negationsfunktion angewendet auf T ist

$$(\lambda x.x\mathsf{FT})(\lambda a\lambda b.a) \equiv (\lambda x.x(\lambda c\lambda d.d)(\lambda e\lambda f.e))(\lambda a\lambda b.a)$$

was reduziert werden kann zu:

$$\mathsf{TFT} \equiv (\lambda a \lambda b.a)(\lambda c \lambda d.d)(\lambda e \lambda f.e) \to_{\beta} (\lambda c \lambda d.d) \equiv \mathsf{F}$$

Konditionale

- hilfreich bei Programmierung ist eine Test-auf-Null-Funktion f mit $f(0) = \mathbf{T}$ und $f(n) = \mathbf{F}$ für $n \neq 0$
- ein λ -Term für eine solche Funktion ist:

$$Z \equiv \lambda n.n \mathbf{F} \neg \mathbf{F}$$

• für jedes f ist nullfache Anwendung von f auf a gerade a

$$\overline{f 0}$$
 fa $\equiv (\lambda s. \lambda z. z)$ fa $\equiv a$

• außerdem $\mathbf{F}a \equiv \lambda y.y = I$ für beliebiges a

$$Z\overline{\mathbf{0}} \equiv (\lambda n. n \mathbf{F} \neg \mathbf{F}) \overline{\mathbf{0}} = \overline{\mathbf{0}} \mathbf{F} \neg \mathbf{F} = \neg \mathbf{F} = \mathbf{T}$$

$$Z\overline{\mathbf{n}} \equiv (\lambda x. x \mathbf{F} \neg \mathbf{F}) \overline{\mathbf{n}} \equiv \overline{\mathbf{n}} \mathbf{F} \neg \mathbf{F} = I \mathbf{F} = \mathbf{F}$$

Vorgängerfunktion P

- für den Vorgänger von $\overline{\bf n}$ konstruiert man das Paar $(\overline{\bf n},\overline{\bf n-1})$ und nimmt das zweite Element
- ein Paar (a, b) wird als $\lambda z.zab$ dargestellt
- $(\lambda z.zab)\mathbf{T} = \mathbf{T}ab = a \text{ und } (\lambda z.zab)\mathbf{F} = \mathbf{F}ab = b$
- λ -Ausdruck für Φ mit: $\Phi: (\overline{\textbf{n}}, \overline{\textbf{n-1}}) \mapsto (\overline{\textbf{n+1}}, \overline{\textbf{n-1}})$

$$\Phi \equiv (\lambda p. \lambda z. z(S(p\mathbf{T}))(p\mathbf{T}))$$

- pT ergibt das erste Element des Paares p
- wende Φ *n*-mal auf das Paar $(\lambda z.z\overline{\bf 00})$ an, bilde zweite Projektion

$$P \equiv (\lambda n. n \Phi(\lambda z. z \overline{\mathbf{00}}) F)$$

• beachte: der Vorgänger von 0 ist 0.

Funktionen höherer Ordnung

- kein Unterschied zwischen einfachen Objekten z.B. Zahlen und komplexen Objekten wie Funktionen von Funktionen
- was sich als λ -Term formulieren lässt, kann durch andere λ -Terme manipuliert werden
- $Q := \lambda x. * x x$ ist Term für Quadrieren
- $P_8 := \lambda x. Q(Q(Qx))$ ist Term für 8. Potenz
- Term, für dreimalige Funktionsanwendung $T: \lambda f.(\lambda x. f(f(f x)))$, damit gilt $P_8 \equiv T Q$ und 5^8 ist T Q S
- T T angewendet auf eine Funktion f ergibt f^{27}
- Operatoren wie T heißen Funktionen höherer Ordnung

Iterationen und Rekursion

- wiederholte Funktionsanw, als Kombination von λ -Termen
- wollen Verhalten einer FOR-Schleife darstellen, bei der die Anzahl der Wiederholungen durch Zähler kontrolliert wird
- haben $Z \equiv \lambda n.n \mathbf{F} \neg \mathbf{F}$ mit $Z \overline{\mathbf{0}} xy = x$ und $Z \overline{\mathbf{n}} xy = y$ für $n \neq 0$, sowie Vorgänger P und Nachfolger S
- suchen \mathbf{I} mit $\mathbf{I} \overline{\mathbf{n}} f x = f(f(f \dots (f x) \dots))$ und $\mathbf{I} \overline{\mathbf{0}} f x = x$
- probiere: $\mathbf{I} = \lambda n.\lambda f.\lambda x.Z \, n \, x (\mathbf{I}(P \, n) f(f \, x))$
- I steht sowohl rechts als auch links, keine echte Definition
- man kann I aber als Fixpunkt des rechten Terms auffassen

$$A := \lambda M.(\lambda n. \lambda f. \lambda x. Z \, n \, x(M(P \, n) f(f \, x))))$$

Für welches I ist I = AI? Wie findet man Fixpunkte von A?

Fixpunktkombinator

- suchen Fixpunkt für einen Term
- man kann λ -Terme \mathbf{Y} angeben, die einen Fixpunkt für einen beliebigen Term angeben, d.h.

$$\exists Y. \forall M.$$
 $YM = M(YM)$

• mit diesem \mathbf{Y} lösen wir $\mathbf{I} = A \mathbf{I}$ durch $\mathbf{I} := \mathbf{Y} A$

$$\mathbf{Y} := (\lambda y.(\lambda x.y(xx))(\lambda x.y(xx)))$$

$$\mathbf{Y}R = (\lambda y.(\lambda x.y(xx))(\lambda x.y(xx)))R$$

$$\rightarrow_{\beta} (\lambda x.R(xx))(\lambda x.R(xx))$$

$$\rightarrow_{\beta} R((\lambda x.R(xx))(\lambda x.R(xx)))$$

$$\equiv R(\mathbf{Y}R)$$

R wird ausgewertet durch rekursiven Aufruf von $\mathbf{Y}R$ als erstes Argument.

Fixpunktkombinator am Beispiel

Berechne

$$f(n) = \sum_{i=0}^{n} i = n + \sum_{i=0}^{n-1} i$$

Sei $R = (\lambda r \lambda n. Z n \overline{\mathbf{0}} (nS(r(Pn))))$ wende S n-mal an, falls $n \neq 0)$

$$YR\overline{\mathbf{3}} = R(YR)\overline{\mathbf{3}} \to Z\overline{\mathbf{30}}(\overline{\mathbf{3}}S(YR(P\overline{\mathbf{3}})))$$

 $\to \overline{\mathbf{3}}S(YR\overline{\mathbf{2}}) \text{ (weil } 3 \neq 0)$
 $\to \ldots \to \overline{\mathbf{3}}S\overline{\mathbf{2}}S\overline{\mathbf{1}}S\overline{\mathbf{0}} \equiv \overline{\mathbf{6}}$

Rekursion bricht ab, wenn Argument 0 wird.

λ -Kalkül als Berechnungsmodell

- ullet es gibt eine Vielzahl von λ -Kalkülvarianten
- ein Kalkül heißt Turing-mächtig oder Turing-vollständig, wenn in ihm alle berechenbaren Funktionen auf

 N ausgedrückt werden können
- eta-Regel ist wohldefiniert und kann von einem Programm ausgeführt werden
- λ -Kalkül angereichert mit Z, P, S und mit Konstanten für alle Zahlen ist Turing-mächtig
- ullet reiner λ -Kalkül ohne Konstanten ist Turing-mächtig

Bonusmaterial

Vermeidung schlechter Terme durch Typisierung

- wir haben Verwendung für seltsame Terme wie $\mathbf{Y} := (\lambda y.(\lambda x.y(xx))(\lambda x.y(xx)))$
- niemand hindert uns sin log zu bilden, obwohl sin nur auf Zahlen angewendet werden sollte, Compiler einer vernünftigen Programmiersprache sollte ablehnen
- Typisieren der Terme: welche Arten von Argumenten akzeptiert ein Term, welche Art Ergebnis produziert er
- Beispiel $sin : \mathbb{R} \to \mathbb{R}$
- einfaches Typsystem $\tau=c\mid \tau\to \tau$ besteht aus Basistypen c und Funktionentypen $\tau\to \tau$

Wohlgetypte λ -Terme

Definition

```
Basisfall für jeden Typ \sigma und Variable x ist der Term x : \sigma wohlgetypt und hat Typ \sigma
```

```
Abstraktion für M : \tau und Variable x : \sigma ist \lambda x : \sigma.M wohlgetypt und hat Typ \sigma \to \tau
```

```
Applikation falls M wohlgetypt vom Typ \sigma \to \tau und N wohlgetypt vom Typ \sigma, dann ist M N wohlgetypt vom Typ \tau
```

Beispiele:

- **1** $\lambda x : \sigma . x : \sigma$ hat Typ $\sigma \to \sigma$
- 2 $\lambda x : \sigma.\lambda y : \tau.x : \sigma$ hat den Typ $\sigma \to (\tau \to \sigma)$

Rückgewinnung der Turing-Mächtigkeit

Satz

Jeder wohlgetypte Term hat eine Normalform.

- Y ist also nicht wohlgetypt, gehört nicht zum einfach getypten λ-Kalkül
- ullet einfach getypter λ -Kalkül ist nicht Turing-mächtig
- man kann ihn anreichern mit Fixpunkt-Kombinator-Konstanten
- System PCF (programming computable functions), eingeführt von Scott und Plotkin, ist Turing-mächtig.

System PCF

besteht aus λ -Termen für ein einfaches Typsystem mit Basistyp int und folgenden Konstanten:

- \bigcirc $\overline{\mathbf{n}}$ vom Typ int für jede natürliche Zahl n
- **2** Konditional Z_{σ} vom Typ int \rightarrow $(\sigma \rightarrow (\sigma \rightarrow \sigma))$
- ${f 9}$ P und S vom Typ int \rightarrow int für Vorgänger- und Nachfolgerfunktion
- **4** je ein Y_{σ} vom Typ $(\sigma \to \sigma) \to \sigma$