
Automatisierte Logik und Programmierung

Einheit 17

Anwendungen formaler Systeme

1. Mathematik:
Automating Proofs in Category Theory

2. Programmierung:
Automated Fast-Track Reconfiguration
of Group Communication Systems

Automating Proofs in Category Theory

Christoph Kreitz

Institut für Informatik, Universität Potsdam
&

Department of Computer Science, Cornell University

1. Kozen’s proof calculus

2. Implementation in Nuprl

3. Proof automation

4. Insights, future questions

Joint work with Dexter Kozen (Cornell University) and Eva Richter (Universität Potsdam)

Presented at “Logics and Program Semantics”, Cornell University, April 2012

PROOF AUTOMATION IN CATEGORY THEORY 1 WHY AUTOMATION?

Why category theory?

•Example: Currying in Programming Languages
– The typesC×D→E andC→D→E are consideredisomorphic
– Rationale: transformf : C×D→E into λx.λy.f(x, y) : C→D→E

This is clearly a bijection

But isomorphisms are more than just bijections
– An isomorphismι between typesA andB has topreserve structure
· ι is abijection between objectsin A and those inB
· ι transforms operationsonA into operations onB
such thatg(ι(x)) = ι(f(x) wheneverι(f) = g

– Isomorphisms can also be defined for sets, groups, automata, ...

•Category Theory analyzes common structures
What properties of mathematical domains depend only on structure?
· Focus on mathematical objects and “morphisms” on these objects
· Develop a generic framework for expressing abstract properties

– Results have a wide impact on mathematics and computer science

PROOF AUTOMATION IN CATEGORY THEORY 2 WHY AUTOMATION?

Proving Properties in Category Theory

•Category theory is an elegant formalism
– Framework for expressing properties common to set theory,

logic, algebra, topology, semantics, software specification, etc.

– High level ofabstractionmakes constructions elegant and precise

– Diagramsprovide key insights and proof ideas

•Most proofs are considered straightforward
– Arguments are based on standard patterns of reasoning

– Many steps of a detailed proof rely on pure symbol manipulation

•Detailed proofs contain too many steps
– Even basic proofs can be very tedious

– Humans cannot verify the details of a proof

– How can we be sure they are correct?

Can category theoretical proofs be automated?

PROOF AUTOMATION IN CATEGORY THEORY 3 WHY AUTOMATION?

... this is where things got started

DK: “ Do you know an automated proof system for Category Theory?”

CK: “ No ... but it shouldn’t be too difficult to build one”

PROOF AUTOMATION IN CATEGORY THEORY 4 WHY AUTOMATION?

Formal proofs in category theory

• Formalized category theory (Mizar project, 1990-2001)

– Focus offormalization of mathematical knowledge

– Automated proof checking butno support for proof search

•Embedding into logical calculi (Isabelle/HOL, Coq, 1996—)

– Focus ondevelopment of formal proofs

– Interactive proof search withsome tactical support

– Formalization strongly depends on theoryunderlying the proof system

•Our goal:
– It should be possible to formalize reasoning patterns as proof rules

· Use anindependent, simple “first-order” calculus (Kozen, 2004)

· Faithfully implement calculus in theorem proving environment

– It should be possible to completely automate “trivial” proofs

since key insights are often considered “the only obvious choice”

PROOF AUTOMATION IN CATEGORY THEORY 5 KOZEN’ S CALCULUS

Fundamentals of Category Theory ... informally

•A categoryC consists of
– A classobj(C) of objects, briefly denoted byC
– A classhom(C) of morphisms(“arrows”), where each morphismf

has adomainA : C and acodomainB : C, denoted byf : C(A,B)

– A binarycomposition of morphisms, denoted byg◦f ,
whereg◦f : C(A,D) if f : C(A,B) andf : C(D,B)
◦must be associative, i.e.h◦(g◦f) = (h◦g)◦f for all f, g, h

– An identity1A : C(A,A) for eachA : C

such thatf◦1A = f = 1B◦f for all f : C(A,B)

•A Functor F : Fun[C,D] consists of
– A mapping on objectsF 1 : C→D

– A mapping on morphismsF 2 : C(A,B)→D(F 1A, F 1B)

such thatF 2(1A) = 1F 1A andF 2(g ◦ f) = F 2g ◦ F 2f for all A, f, g

•Natural Transformation ϕ : Fun[C,D](F, G)
– Mapping between functosF,G : Fun[C,D] such that
ϕB◦F 2g = G2g◦ϕA for all A,B : C, g : C(A,B)

PROOF AUTOMATION IN CATEGORY THEORY 6 KOZEN’ S CALCULUS

Kozen’s calculus for elementary category theory

• First-order axiomatization of basic constructs
– ObjectsA : C, morphismsf : C(A,B), compositiong◦f , identities1A
– FunctorsF : Fun[C,D], natural transformationsϕ : Fun[C,D](F ,G)

– ProductsC×D, dual categoryCop, large categoriesCat

•Rules involvesequentsΓ ⊢ α

– Γ type environmentof objects/morphisms,α type judgementor equation

– Analysisrules for decomposition of objects

– Synthesisrules for construction of objects

– Extensionalityrules for functors and natural transformations

– Equationalrules e.g., for identities (essential for most proofs)

Γ ⊢ A : C

Γ ⊢ 1A : C(A,A)

Γ ⊢ A,B : C Γ ⊢ f : C(A,B)

Γ ⊢ f ◦ 1A = f

PROOF AUTOMATION IN CATEGORY THEORY 7 KOZEN’ S CALCULUS

Synthesis and analysis rules

•Synthesis of a functorF : Fun[C,D]
– Analyze mappingF 1 on objects andF 2 on morphisms

Γ, A : C ⊢ F 1A : D

Γ, A, B : C, g : C(A,B) ⊢ F 2g : D(F 1A, F 1B)

Γ, A, B,C : C, g : C(A,B), h : C(B,C) ⊢ F 2(h ◦ g) = F 2h ◦ F 2g

Γ, D : C ⊢ F 2(1D) = 1F 1D

Γ ⊢ F : Fun[C,D]

• Functor analysis (inverses to synthesis rule)

Γ ⊢ F : Fun[C,D], Γ ⊢ A : C

Γ ⊢ F 1A : D

Γ ⊢ F : Fun[C,D], Γ ⊢ A,B : C, Γ ⊢ f : C(A,B)

Γ ⊢ F 2f : D(F 1A, F 1B)
...

•Extensionality Γ ⊢ F,G : Fun[C,D]
Γ, A : C ⊢ F 1A = G1A

Γ, A, B : C, g : C(A,B) ⊢ F 2g = G2g
Γ ⊢ F = G

PROOF AUTOMATION IN CATEGORY THEORY 8 KOZEN’ S CALCULUS

Additional rules

• Laws of compositionand identities
– Synthesis, associativity, equational rules for identities

•Rules for natural transformations
– Synthesis, analysis, extensionality

•Definition of products, dual category, large categories

•Standard equality reasoning
– reflexivity, symmetry, transitivity, congruence

Calculus is complete for basic category theory
– Detailed formal proofs can be generated by hand
– Proof construction error prone and time consuming

13 pages for proof ofFun[C×D,E] ≃ Fun[C, Fun[D,E]]

... and details of equality & first-order reasoning still hadto be omitted

– Calculus needs computer support and automated proof search

PROOF AUTOMATION IN CATEGORY THEORY 9 2(B). IMPLEMENTATION

Implementation platform: the Nuprl system

• Infrastructure for interactive proof development
– Refinement style proof development withtop-down sequent rules

– Proof automation with user-definableproof tactics

•Support for mathematical knowledge managment
– Proof calculus is explicitly represented in system’s library

– Users can add definitions, theorems/proofs, and proof tactics

– Expert users canadd different proof calculito the system

•Standard calculus is constructive type theory
– Higher-order logic with expressive, open-ended data typesystem

PROOF AUTOMATION IN CATEGORY THEORY 10 2(B). IMPLEMENTATION

Implementing vocabulary and rules

•Represent concepts asabstract definition objects
– Abstract terms for categories, functors, etc. are added tothe library
– Display forms provide a “natural presentation” on the screen

E.g.Comp{}(.C;.g;.f) is represented asg◦f

•Represent inference rules as top-downrule objects
e.g. Γ ⊢ ϕ : Fun[C,D](F,G) Γ ⊢ A : C

Γ ⊢ ϕ A : D(F 1A,G1A)

is represented by

Top-down rule needs categoryC
as control parameter

Judgments and equations are typed

Nuprl’s rule compilerconverts rule objects into rules that match first the
line against the actual goal sequent and generate subgoals accordingly

•Shallow embedding possible but not necessary
– Useful only for a validation of the implemented calculus rules

PROOF AUTOMATION IN CATEGORY THEORY 11 3. PROOF AUTOMATION

Automating proofs: standard techniques

Decomposition + extensionality + term rewriting

•Structure of terms and types yieldsapplicable rules
– A conclusionϕ A ∈D(X,Y) suggests usingNatTransApply

– Block application of analysis rules that create subgoals
previously decomposed by a synthesis rule

•Determine rule parametersof the rules via type checking
– The parameterC in NatTransApply must be the type ofA

•Prove equalities through rewriting
– Convert equalities intodirected rewrite rules

– UseKnuth-Bendix completionto make the rewrite system confluent

•Eliminate redundant subgoals using rule wrappers
– Some rules generate similar subgoals in different proof branches

– Controlled application of cut rule reduces proof size by 90%
e.g. 3,000 proof steps forFun[C×D,E] ≃ Fun[C, Fun[D,E]] instead of 30,000

PROOF AUTOMATION IN CATEGORY THEORY 12 3. PROOF AUTOMATION

Automating reasoning specific to category theory

•How do we prove Fun[C×D,E] ≃ Fun[C, Fun[D,E]]?
– Proof requires specification of two (inverse) functors

ϑ : Fun[C×D,E]→Fun[C, Fun[D, E]]

and η : Fun[C, Fun[D,E]]→Fun[C×D,E]

– We knowϑ1f = λA.λB.f(A,B) : Fun[C, Fun[D, E]] for f :Fun[C×D,E]

but that is only the object component of the resulting functor
– We also need its morphism component and the transformationϑ2

•Specify functors component-wise
– First order specification via equations for all subcomponents ofϑ / η

– E.g. useϑ1f1A1B ≡ f1<A,B> and ϑ1f1A2g ≡ f2<1A,g>

instead ofϑ ≡ λf,A..., which is no category theoretic expression

– Only these equations will be used during the (first order) proof

– Standard techniques can easilyverify correctness of the functors

But how do we find these specifications?

PROOF AUTOMATION IN CATEGORY THEORY 13 3. PROOF AUTOMATION

Two questions that I had to ask

•How can we determine the specification ofϑ and η?
DK: “The only possible solution can be found by looking at the types”

•How can we prove thatϑ and η are natural in C,D, E?
DK: “Once the domain/codomain ofϑ andη can be derived from the

construction of the two categories, the rest should be obvious”

So, for the mathematician the solution is obvious

Can these ideas be automated?

PROOF AUTOMATION IN CATEGORY THEORY 14 3. PROOF AUTOMATION

Witness construction can in fact be automated

PROOF AUTOMATION IN CATEGORY THEORY 15 3. PROOF AUTOMATION

Developing a heuristic for witness construction

Find a functor ϑ : Fun[C×D, E]→Fun[C, Fun[D, E]]

•Create a specification from type information
– Generate typing conditionsby applying decomposition rules

– Construct the “simplest” termthat satisfies these conditions
· Only the known parametersof the functor may be used
· Construction should be based on“obvious” ideas

•Rule applications yield four conditions
1. ϑ1G ∈ Fun[C, Fun[D,E]] for G ∈Fun[C×D,E]

1.1 (ϑ1G)1A ∈ Fun[D,E] for A ∈C

1.1.1 ((ϑ1G)1A)1X ∈ E for X ∈D

1.1.2 ((ϑ1G)1A)2h ∈ E(((ϑ1G)1A)1X, ((ϑ1G)1A)1Y) for h ∈D(X, Y)

1.2. (ϑ1G)2f ∈ Fun[D,E]((ϑ1G)1A, (ϑ1G)1B) for f ∈C(A,B)

1.2.1. ((ϑ1G)2f)X ∈ E(((ϑ1G)1A)1X, ((ϑ1G)1B)1X) for X ∈D

2. ϑ2ϕ ∈ Fun[C, Fun[D,E]](ϑ1F, ϑ1G) for ϕ ∈ Fun[C×D,E](F,G)
...

PROOF AUTOMATION IN CATEGORY THEORY 16 3. PROOF AUTOMATION

Witness construction: solving conditions I

•Construct specifications for ((ϑ1G)1A)1X ∈E

– Available information:G ∈Fun[C×D, E], A ∈C, X ∈D

• There is only one meaningful solution
– To find an object inE applyG1 to somez ∈C×D

– Objects inC×D are pairs of objectsx ∈C andy ∈D

– Only known object inC is A

Only known object inD is X

– z must be the pair〈A,X〉

– Construct subspecification((ϑ1G)1A)1X = G1〈A,X〉

PROOF AUTOMATION IN CATEGORY THEORY 17 3. PROOF AUTOMATION

Witness construction: solving conditions II

• Solve((ϑ1G)2f)X ∈ E(((ϑ1G)1A)1X, ((ϑ1G)1B)1X)

– Available information:G ∈Fun[C×D, E], f ∈C(A,B), X ∈D

– Also known from the previous step:((ϑ1G)1A)1X = G1〈A,X〉

– Thus to construct:((ϑ1G)2f)X ∈ E(G1〈A,X〉, G1〈B,X〉)

• There is only one meaningful solution
– To find a morphism inE(G1〈A,X〉, G1〈B,X〉

applyG2 to somek ∈C×D(〈A,X〉, 〈B,X〉)

– Morphisms inC×D(〈A,X〉, 〈B,X〉) are pairs
of morphismsg ∈C(A,B) andh ∈D(X,X)

– Only known morphism inC(A,B) is f

Only known morphism inD(X,X) is 1X

– Construct subspecification((ϑ1G)2f)X = G2〈f, 1X〉

Intuitively clear – how to automate?

PROOF AUTOMATION IN CATEGORY THEORY 18 3. PROOF AUTOMATION

A calculus for witness construction

Construct specifications from typing conditions

• Formulate construction requirements as rules
– E.g.: to useF ∈Fun[C,D] when constructing somex ∈∆, construct

somez ∈C and usey = F 1z ∈D for the remaining construction ofx

Γ, F : Fun[C,D] ⊢ x ∈∆ specs EQ1 ∪ EQ2[F
1z/y]

Γ ⊢ z ∈C specs EQ1

Γ, y : D ⊢ x ∈∆ specs EQ2

– Compose and reduce specification equations of all the subgoals

•Actual construction of witnesses happens at the leaf level
– Hypothesis:Γ, z:∆[V1, ..Vn] ⊢ x ∈∆[T1, ..Tn] specs {x=z, V1=T1, .., Vn=Tn}

– Identity: Γ, A:C ⊢ f ∈C(A,A) specs {f=1A}

• Implementation:
– Apply applicable rules in the order of “simplicity”

PROOF AUTOMATION IN CATEGORY THEORY 19 3. PROOF AUTOMATION

How to prove naturality?

• Determine (co-)domain

U, V of ϑ and η

• Specifyϑ and η

– Witness construction √

• Verify type of U , V , ϑ, η;

duality of ϑ, η

– AutoCAT
√

PROOF AUTOMATION IN CATEGORY THEORY 20 3. PROOF AUTOMATION

A calculus for the construction of (co-)domains

•U, V are ‘constructor functions’ on Cat

– U 1, V 1 construct the two isomorphic categories
· e.g.U 1(C,D,E)=Fun[C×D,E] and V 1(C,D, E)=Fun[C, Fun[D,E]]

– U 2, V 2 construct functors on these categories
· e.g..U 2(f, g, h) ∈Fun[Fun[C×D, E], Fun[C′×D′, E′]]

– U, V are composed from simple constructors: e.g.U = F
Fun
◦ (F

Prod
,F 3

proj3
)

•Specify basic constructor functions and projections
– For product-, functor-, and dual categories
– e.g..F

Fun

1(C,D) = Fun[C,D] for C ∈Catop, D ∈Cat

F
Fun

2(h1,h2)1(F) = h2◦F◦h1 and F
Fun

2(h1,h2)2(ϕ) = h2
2◦ϕ◦h1

1

for (h1,h2) ∈Catop×Cat((C,D), (C ′, D′)), F ∈Fun[C,D], ϕ ∈Fun[C,D](F,G)

– Yields‘most simple functor’that satisfies the typing conditions

The specification of a composed constructor is determined
by composing and reducing the corresponding equations

PROOF AUTOMATION IN CATEGORY THEORY 21 4. CONCLUSION

Results and insights

• Implementation of calculus for reasoning about category
– Abstractions and display forms crucial for comprehensibility

– Rule objects and rule compiler essential for faithful implementation

– Tactic mechanism supports automation of reasoning patterns

– Nested abstraction levels in proof objects make proofs comprehensible

•Proofs of (natural) isomorphisms completely automated
– Fun[C×D,E] ≃ Fun[C, Fun[D, E]], C×D ≃ D×C, (Cop)op ≃ C, ...

•Elementary category theory well-suited for automation.
– Formal proofs have thousands of basic inferences

– Most proof steps are driven by typing considerations

– Witness construction follows standard patterns of reasoning

• Intellectualy trivial insights have in fact trivial proofs
– Computers can find them without using sophisticated heuristics

PROOF AUTOMATION IN CATEGORY THEORY 22 4. CONCLUSION

Where can we go from here?

•Automate more of elementary category theory
– Usecalculus for witness constructionto findsimple functors

– Usecalculus of constructor functionsto findnatural transformations

– Can we formalize the rusults on Brzozowski’s Algorithm?

• Introduce higher-level reasoning steps
– Can we usecompositional reasoningbased on theorems?
· e.g. ifC ≃ D andE[X] ≃ E′[X] can we proveE[C] ≃ E′[D]?

•Can we extract evidence for naturality from proofs?
– E.g. naturality of an isomorphism between two categories?

– Should be possible for all categories that have a term representation
(i.e. can be described using constructor functors)

– Inductive construction seems obvious – can we prove that formally?

Automated Fast-Track Reconfiguration

of Group Communication Systems

Christoph Kreitz

Department of Computer Science, Cornell University
&

Institut für Informatik, Universiẗat Potsdam

1. Group Communication inEnsemble

2. EmbeddingEnsemble’s code into Nuprl

3. Formal optimization of protocol stacks

4. Lessons learned

Joint work with Jason Hickey, Mark Hayden, Bob Constable, and Robbert VanRenesse

PROOF AUTOMATION IN CATEGORY THEORY 1 4. CONCLUSION

The Ensemble Group Communication Toolkit

•Modular group communication system
– Developed by Cornell’sSystem Group(Ken Birman)

– Used commercially(BBN, JPL, Segasoft, Alier, Nortel Networks)

• Architecture: stack of micro-protocols
– Select from more than 60 micro-protocols for specific tasks

– Modules can bestacked arbitrarily
System can easily be tailored to specific applications

– Modeled as state/event machines

Total

Frag

Membership

Network

Top

application
Ensemble

• Implementation in Objective Caml (INRIA)

– Easy maintenance (small code, good data structures)

– Mathematical semantics, strict data type concepts

– Efficient compilers and type checkers

PROOF AUTOMATION IN CATEGORY THEORY 2 4. CONCLUSION

Formal reasoning about a real-world system

ENSEMBLE

RECONFIGUREDFAST & SECURE

of

ENSEMBLE

SIMULATED

Programming Environment
OCaml

Deductive System
NuPRL / TYPE THEORY

PROOF

OPTIMIZE TRANSFORM

EXPORT
ENSEMBLE

PROOF

RECONFIGURATION

IMPORTENSEMBLE VERIFY

SPECIFICATION

Link the ENSEMBLE and Nuprl systems
– EmbedENSEMBLE’s code intoNuprl’s language
– Verify protocol components and system configurations
– Optimizeperformance of configured systems

PROOF AUTOMATION IN CATEGORY THEORY 3 4. CONCLUSION

Embedding ENSEMBLE’s code into Nuprl
ENSEMBLE

SIMULATED

Programming Environment
OCaml

Deductive System
NuPRL / TYPE THEORY

ENSEMBLE

RECONFIGURED

of

FAST & SECURE

PROOF

OPTIMIZE TRANSFORM

IMPORTENSEMBLE

SPECIFICATION

EXPORT
ENSEMBLE

PROOF

RECONFIGURATION

VERIFY

•Developtype-theoretical semantics ofOCaml
– Functional core, pattern matching, exceptions, references, modules,. . .

• Implement usingNuprl’s definition mechanism
– RepresentOCaml’s semanticsvia abstraction objects

– RepresentOCaml’s syntaxusing associated display objects

•Developprogramming logic for OCaml
– Implement asrulesderived from the abstract representation

– Raises the level of formal reasoning from Type Theory toOCaml

•Develop tools forimporting and exporting code
– Translators betweenOCaml program text andNuprl terms

PROOF AUTOMATION IN CATEGORY THEORY 4 4. CONCLUSION

OCaml Semantics: The functional core

•BasicOCaml expressions similar to CTT terms
– Numbers, tuples, lists etc. can be mapped directly onto CTTterms

•Complex data structures have to be simulated
Records{f 1=e1;..; f n=en} are functions inf:FIELDS→T[f]

– Abstractionfor representing the semantics of record expressions
RecordExpr(fieldfield;ee;nextnext) ≡ λf. if f=fieldfield then ee else nextnext(f)

– Display formfor representing theflexible syntaxof record expressions
{fieldfield=ee; nextnext} ≡ RecordExpr(fieldfield;ee;nextnext)

{fieldfield=ee} ≡ RecordExpr(fieldfield;ee;λf.())

HD:: {fieldfield=ee; # ≡ RecordExpr(fieldfield;ee;#)

TL:: fieldfield=ee; # ≡ RecordExpr(fieldfield;ee;#)

TL:: fieldfield=ee} ≡ RecordExpr(fieldfield;ee;λf.())

•Sufficient for representing micro protocols
– Simple state-event machines, encoded via updates to certain records

– Transport module and protocol composition require imperative model

PROOF AUTOMATION IN CATEGORY THEORY 5 4. CONCLUSION

Extensions of the semantical model (1)

• Type Theory is purely functional
– Terms are evaluated solely byreduction

– OCaml haspattern matching, reference cells, exceptions, modules, . . .

•Modelling Pattern Matching: let pat=e in t

“Variables ofpat in t are bound to corresponding values ofe”

– Evaluation ofOCaml-expressions uses anenvironment of bindings

– Patterns are functions that modify the environment of expressions
xx ≡ λval,t.λenv. t (env@{xx7→val})

p
1

p
1
,p

2
p
2

≡ λval,t.λenv. let <v
1
,v

2
> = val in (p

1
p
1
v
1
(p

2
p
2
v
2
t)) env

{f
1
=p

1
;..; f

n
=p

n
} ≡ λval,t.λenv. p

1
(val f

1
) (..(p

n
(val f

n
) t)..) env

...
...

– Local bindings are represented as applications of these functions

let pp= ee in tt ≡ λenv. (pp (ee env) tt) env

PROOF AUTOMATION IN CATEGORY THEORY 6 4. CONCLUSION

Extensions of the semantical model (2)

•Modelling Reference cells
– Evaluation ofOCaml-expressions may lookup/modify a global store

– The global store is represented as table with addresses andvalues
ref(ee) ≡ λs,env. let <v,s

1
> = ee s env in

let addr = NEW(s
1
) in <addr, s

1
[addr←v]>

!ee ≡ λs,env. let <addr,s
1
> = ee s env in <s

1
[addr], s

1
>

e
1

e
1
:=e

2
e
2
≡ λs,env. let <v,s

1
> = e

2
e
2
s env in

let <addr,s
2
> = e

1
e
1
s
1
env in <(), s

2
[addr←v]>

•Modelling Exceptions
– Expressions likex/y may raise exceptions, which can be caught

– Exceptions must have the same type as the expression that raises them

– AnOCaml typeT must be represented asEXCEPTION+T

•Modules
– Modules are second class objects that structure the name space

– Modules are represented by operations on aglobal environment

PROOF AUTOMATION IN CATEGORY THEORY 7 4. CONCLUSION

Summary of the formal model

•OCaml expressions are represented as functions
– Evaluation depends onenvironment and store

– Evaluation results in value or exception and an updated store

– Nuprl type is STORE → ENV → (EXCEPTION+T)× STORE

•Equivalent to Wright/Felleisen model
– The standard model for building ML compilers

– Model combines several mechanisms for evaluating ML programs

– Nuprl representation simulates these models functionally

⇓
GenuineOCaml code may occur in formal theorems

PROOF AUTOMATION IN CATEGORY THEORY 8 4. CONCLUSION

Importing and Exporting System Code

OCaml

Programming Environment Deductive System

Preprocessor

Camlp4 Conversion
module

Pretty printer
modified

NuPRL-ML

Code
Intermediate

Parser

Ocaml-Code

Text file EXPORT

IMPORT

Print

Represen-

IMPORT

Syntax
Tree

Abstract

Generators
Object

Term- +

tation

Type Information
Display Forms
Abstractions

Ocaml-Code
Simulated

basic Ocaml-constructs

Representations of
+

NuPRL Library

NuPRL / TYPE THEORY / Meta-Language ML

Import : – Parse withCamlp4 parser-preprocessor
– Convertabstract syntax treeinto term- & object generators
– Generators perform second pass andcreateNuprl library objects

Export : – Print-representation is genuineOCaml-code

Makes actualENSEMBLE code available for formal reasoning

PROOF AUTOMATION IN CATEGORY THEORY 9 4. CONCLUSION

Optimization of Protocol Stacks
ENSEMBLE

SIMULATED

Programming Environment
OCaml

Deductive System
NuPRL / TYPE THEORY

ENSEMBLE

RECONFIGUREDFAST & SECURE

of

OPTIMIZE TRANSFORM

PROOF

SPECIFICATION

ENSEMBLE

PROOF

RECONFIGURATION

ENSEMBLE IMPORT VERIFY

EXPORT

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
����
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

F
IF

O
 Q

ue
ue

s

LAYER

LAYER

MessageEvent

NET

SENDER RECEIVER

BOTTOM LAYER

Protocol Stack

LAYER

LAYER

LAYER

LAYER

BOTTOM LAYER

Protocol Stack

LAYER

LAYER

LAYER

LAYER

Header

Performance loss:redundancies, internal communication, largemessage headers

Optimizations:bypass-codefor common execution sequences, headercompression

Need formal methods to do this correctly

PROOF AUTOMATION IN CATEGORY THEORY 10 4. CONCLUSION

Example Protocol Stack Bottom::Mnak::Pt2pt

Trace downgoingSend events and upgoingCast events
Bottom (200 lines)
let name = Trace.source file "BOTTOM"

type header = NoHdr | ... | ...

type state = {mutable all alive : bool ; ... }

let init (ls,vs) = {.........}

let hdlrs s (ls,vs)
{up out=up;upnm out=upnm;
dn out=dn;dnlm out=dnlm;dnnm out=dnnm}

= ...
let up hdlr ev abv hdr =
match getType ev, hdr with
| (ECast|ESend), NoHdr ->

if s.all alive or not (s bottom.failed.(getPeer ev))
then up ev abv
else free name ev

|
...

and uplm hdlr ev hdr = ...
and upnm hdlr ev = ...
and dn hdlr ev abv =
if s.enabled then

match getType ev with
| ECast -> dn ev abv NoHdr
| ESend -> dn ev abv NoHdr
| ECastUnrel -> dn (set name ev[Type ECast]) abv Unrel
| ESendUnrel -> dn (set name ev[Type ESend]) abv Unrel
| EMergeRequest -> dn ev abv MergeRequest
| EMergeGranted -> dn ev abv MergeGranted
| EMergeDenied -> dn ev abv MergeDenied
| -> failwith "bad down event[1]"

else (free name ev)
and dnnm hdlr ev = ...
in {up in=up hdlr;uplm in=uplm hdlr;upnm in=upnm hdlr;

dn in=dn hdlr;dnnm in=dnnm hdlr}

let l args vs = Layer.hdr init hdlrs args vs

Layer.install name (Layer.init l)

Mnak (350 lines)
let init ack rate (ls,vs) = {.........}
let hdlrs s (ls,vs) { }
= ...
let ...
and dn hdlr ev abv =
match getType ev with
| ECast ->

let iov = getIov ev in
let buf = Arraye.get s.buf ls.rank in
let seqno = Iq.hi buf in
assert (Iq.opt insert check buf seqno) ;
Arraye.set s.buf ls.rank

(Iq.opt insert doread buf seqno iov abv) ;
s.acct size <- s.acct size + getIovLen ev ;
dn ev abv (Data seqno)

| -> dn ev abv NoHdr...

Pt2pt (250 lines)
let init (ls,vs) = {.........}
let hdlrs s (ls,vs) { }
= ...
let ...
and dn hdlr ev abv =
match getType ev with
| ESend ->

let dest = getPeer ev in
if dest = ls.rank then (
eprintf "PT2PT:%s\nPT2PT:%s\n"
(Event.to string ev) (View.string of full (ls,vs));

failwith "send to myself" ;
) ;
let sends = Arraye.get s.sends dest in
let seqno = Iq.hi sends in
let iov = getIov ev in
Arraye.set s.sends dest (Iq.add sends iov abv) ;
dn ev abv (Data seqno)

| -> dn ev abv NoHdr...

PROOF AUTOMATION IN CATEGORY THEORY 11 4. CONCLUSION

Fast-path Optimization with Nuprl

Bottom

no

Top

Pt2Pt

Mnak

F
ull S

tack

no

APPLICATION

yes

yes

CCP
down

CCPup

NETWORK

TRANSPORT

Bypass
Code

• Identify Common Case
– Events and protocol states of regular communication

– Formalize asCommonCasePredicate

• Analyze path of eventsthrough stack

• Isolate code forfast-path

• Integrate code for compressing
headersof common messages

•Generate bypass-code
– Insert CCP asruntime switch

Methodology: compose formal optimization theorems
Fast, error-free, independent of programming language,speedup factor 3-10

PROOF AUTOMATION IN CATEGORY THEORY 12 4. CONCLUSION

Methodology: Compose Optimization Theorems

equivalent to

Composition

Stack

Layers

Composition Theorems

Up/Linear Up/BounceUp/Split

Dn/Split Dn/BounceDn/Linear

THM Pt2pt_verif
RECONFIGURING Pt2pt
FOR EVENT DnM(ev,msg)
AND STATE s_pt2pt
YIELDS [:DnM(ev,...):]
AND STATE s_pt2pt

THM Pt2pt_verif
RECONFIGURING Pt2pt
FOR EVENT DnM(ev,msg)
AND STATE s_pt2pt
YIELDS [:DnM(ev,...):]
AND STATE s_pt2pt

THM Pt2pt_verif
RECONFIGURING Pt2pt
FOR EVENT DnM(ev,msg)
AND STATE s_pt2pt
YIELDS [:DnM(ev,...):]
AND STATE s_pt2pt

THM Pt2pt_verif
RECONFIGURING Pt2pt
FOR EVENT DnM(ev,msg)
AND STATE s_pt2pt
YIELDS [:DnM(ev,...):]
AND STATE s_pt2pt

THM Stack_verif
RECONFIGURING P1:P2:P3
FOR EVENT DnM(ev,msg)
AND STATE (s1,s2,s3)
YIELDS [:DnM(ev,...):]
AND STATE (s1,s2,s3)

THM Stack_verif
RECONFIGURING P1:P2:P3
FOR EVENT DnM(ev,msg)
AND STATE (s1,s2,s3)
YIELDS [:DnM(ev,...):]
AND STATE (s1,s2,s3)

THM Stack_verif
RECONFIGURING P1:P2:P3
FOR EVENT DnM(ev,msg)
AND STATE (s1,s2,s3)
YIELDS [:DnM(ev,...):]
AND STATE (s1,s2,s3)

THM Stack_verif
RECONFIGURING P1:P2:P3
FOR EVENT DnM(ev,msg)
AND STATE (s1,s2,s3)
YIELDS [:DnM(ev,...):]
AND STATE (s1,s2,s3)

Top Layer

Layer

Layer

Bottom Layer

(static, a priori)

Optimize Common Case

Verify Simple Compositions

Application Stack

(dynamic)

Optimize Common Case

(static, a priori)

Join & Generate Code

Stack Optimization Theorems

Layer Optimization Theorems
Up/Send Up/Cast Dn/Send Dn/Cast

Up/Send Up/Cast Dn/Send Dn/Cast

NuPRL

Code

OCaml Environment

Protocol Layers

Compose Function

Optimized Application Stack

let compose top bot state vf =

 let s1,top = top state vf in

 let s2,bot = bot state vf in

let loop (s1,s2) (emit, midl) =

 ...

let hdrl = function ...

in

 ((s1,2), hdlr)

open Trans

open Layer

let name = "Partial_APPL"

type state = {

 recv_cast : Iovectl.t −> t

 interface t

}

let init s (ls,vs) = ...

let hdlrs s ls,vs){...} =

 let up_hdlr ev abv () =

 let dn_hdlr ev abv =

in {up_in=up_hdlr; dn_in=dnhdlr}

let l args vs = hdr init hdlrs

let _ = Layer.install name l

let opt_stack state =

let default = ...

in

 let hdlr (s1,s2,s3)

 =

 match ev with

 Dn −> h(s1,s2,s3,ev)

 Up −> up ev msg

in

 (s, hdlr)

1. Use known optimizations ofmicro-protocols A priori: ENSEMBLE + Nuprl experts

2. Compose into optimizations ofprotocol stacks automatic: application designer

3. Integratemessage header compression automatic:
...

4. Generate codefrom optimization theorems and reconfigure systemautomatic:
...

PROOF AUTOMATION IN CATEGORY THEORY 13 4. CONCLUSION

Static optimization of micro protocols

•A-priori analysis of common execution sequences
– Generate local CCP from conditionals in a layer’s code

•Assuming the CCP, apply code transformations
– Controlledfunction inliningandsymbolic evaluation (rewrite tactics)
– Directedequality substitutions (lemma application)
– Context-dependent simplifications (substitute part of CCP and rewrite)

•Store result in library as optimization theorem
OPTIMIZING LAYER Pt2pt

FOR EVENT DnM (ev, msg)

AND STATE s pt2pt

ASSUMING (getType ev) = ESend ∧ not (getPeer ev = ls.rank)

YIELDS HANDLERS dn ev (Full (Data (Iq.hi

(Arraye.get s pt2pt.sends (getPeer ev))), msg))

AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev))

(getIov ev) msg

– Theorem proves correctness of the local optimization
– Optimizations of micro protocols part of ENSEMBLE’s distribution

PROOF AUTOMATION IN CATEGORY THEORY 14 4. CONCLUSION

Dynamic Optimization of Application Stacks

•Compose Optimization Theorems
– Consult optimization theorems forindividual layers

– Apply composition theoremsto generatestack optimization theorems
(Linear, simple split, bouncing – send/receive)

OPTIMIZING LAYER Upper

FOR EVENT DnM(ev, hdr) AND STATE s up

YIELDS HANDLERS dn ev msg1 AND UPDATES stmt1

∧ OPTIMIZING LAYER Lower

FOR EVENT DnM(ev, hdr1) AND STATE s low

YIELDS HANDLERS dn ev msg2 AND UPDATES stmt2

⇒ OPTIMIZING LAYER Upper || Lower

FOR EVENT DnM(ev, hdr) AND STATE (s up, s low)

YIELDS HANDLERS dn ev msg2 AND UPDATES stmt2; stmt1

– Formal proof complex because of complex code for composition

•Optimization of Protocol Stacks in Linear Time
– Use of optimization theorems reduces proof burden for optimizer

– Pushbutton Technology: requires only configuration of stack

PROOF AUTOMATION IN CATEGORY THEORY 15 4. CONCLUSION

Header compression for fast-path code

�
�
�
�
�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��
��
��
��

��
��
����
��
��

��
��
��
�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

BOTTOM LAYER

LAYER

LAYER

LAYER

LAYER

BOTTOM LAYER

LAYER

LAYER

LAYER

LAYER

Header

Protocol StackProtocol Stack Event

NET

Compressed Message

ExpansionCompression

RECEIVERSENDER

Integrate compression into optimization process
– Generate code for compression and expansion from fast-path headers
– Combine optimization theorem for stack withcompression theorems
– Optimized stack uses compressed headers directly

PROOF AUTOMATION IN CATEGORY THEORY 16 4. CONCLUSION

Example Optimization of Bottom::Mnak::Pt2pt

• Generated optimization theorem for application stack
OPTIMIZING LAYER Pt2pt::Mnak::Bottom

FOR EVENT DnM(ev, msg)

AND STATE (s pt2pt, s mnak, s bottom)

ASSUMING getType ev = ESend ∧ getPeer ev 6= ls.rank ∧ s bottom.enabled

YIELDS HANDLERS dn ev (Full(NoHdr, Full(NoHdr,

Full(Data(Iq.hi s pt2pt.sends.(getPeer ev)),msg))))

AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev))(getIov ev) msg

• Generated code for header compression
let compress hdr = match hdr with

Full(NoHdr, Full(NoHdr, Full(Data(seqno), hdr))) -> OptSend(seqno, hdr)

| Full(NoHdr, Full(Data(seqno), Full(NoHdr, hdr))) -> OptCast(seqno, hdr)

| hdr -> Normal(hdr)

• Optimization theorem including header compression
OPTIMIZING LAYER Pt2pt::Mnak::Bottom

FOR EVENT DnM(ev, msg)

AND STATE (s pt2pt, s mnak, s bottom)

ASSUMING getType ev = ESend ∧ getPeer ev 6= ls.rank ∧ s bottom.enabled

YIELDS HANDLERS dn ev (OptSend(Iq.hi s pt2pt.sends.(getPeer ev), msg))

AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev))(getIov ev) msg

PROOF AUTOMATION IN CATEGORY THEORY 17 4. CONCLUSION

Code generation

Bottom

no

Top

Pt2Pt

Mnak

F
ull S

tack

no

APPLICATION

yes

yes

CCP
down

CCPup

NETWORK

TRANSPORT

Bypass
Code

1.Convert Theorems into Code Pieces
– handlers+ updates7→ command sequence

– CCP 7→ conditional / case-expression

– Call original event handlerif CCP fails

2.Assemble Code Pieces
– Case expression for 4 common cases

(send/receive, broadcast/point-to-point)

– Call original event handlerin final case

3.Export into OCaml environment

Fully automated,
generated code 3–10 times faster

PROOF AUTOMATION IN CATEGORY THEORY 18 4. CONCLUSION

Lessons learned

•Results
– Type theoryexpressive enoughto formalize today’s software systems

– Nuprl capable of supportingreal designat reasonable pace

– Formal optimization can significantly improvepractical performance

– Formal verificationreveals errorseven in well-investigated designs

• Ingredients for success . . .
– Collaborationbetween systems and formal reasoning groups

– Small andsimple components, well-defined module composition

– Implementation language withprecise semantics

– Formal modelsof: communication, programming language

– Knowledge-basedapproach based on algorithmic knowledge

– Cooperating reasoning tools

PROOF AUTOMATION IN CATEGORY THEORY 19 4. CONCLUSION

Future Challenges

The ENSEMBLE case study is just a ‘proof of concept’

•We still need
– Better reasoning tools (w.r.t performance and application range)

– Extensivelibrary of formal algorithmic knowledge

– Moreinsightsfrom increasingly complex applications

– Tools forsynthesisinstead of just verification and optimization

– Strong cooperation between research groups

... and most of all ...more people to get involved

