Implementing ATP Systems Unit 10: Testing and Problem Libraries

Jens Otten

University of Potsdam

Problem Libraries	TPTP Library	Other Libraries and CASC
	Outline	

- 2 Standardized Syntax
- **3** TPTP Library
- ILTP Library

Problem Libraries: Motivation

- Important questions when developing ATP systems.
 - What is its performance compared to existing ATP systems?
 - Does a new strategy really improve performance?
 - Is the ATP system correct and/or complete?
- Important questions when applying ATP systems.
 - ▶ Which ATP systems are available? Where can I get them?
 - How fast are they? How well suited for specific problem class?
- Objectives:
 - Provide large collection of problems in a standardized syntax for testing and benchmarking ATP systems.
 - Put evaluation of ATP systems onto a firm basis and make meaningful system comparisons possible.
 - Measuring progress in ATP research.

ATP Problem Libraries: Requirements

- Easy to discover and obtain; provides guidelines for its use in evaluating ATP systems.
- Well structured and documented; provides statistics about the library as a whole.
- It is easy to use; the problems are provided in an easy-tounderstand format, and conversion tools to other known syntax formats are included.
- It is large enough for statistically significant testing.
- It contains problems of varying difficulty.
- It assigns each problem a unique name and provides status and difficulty rating for each problem.
- ► Largest problem library: TPTP library (Sutcliffe '09).

TPTP Syntax for Representing Problems

- Uniform syntax for representing problems in first-order logic.
- ► Example: $\neg(\exists x(Sx \land Qx))$ Axiom 1 (1) (SYN054+1) $\forall(Px \Rightarrow (Qx \lor Rx))$ Axiom 2 (2) $\neg(\exists xPx) \Rightarrow \exists yQy$ Axiom 3 (3) $\forall x((Qx \lor Rx) \Rightarrow Sx)$ Axiom 4 (4) $\exists x(Px \land Rx)$ Conjecture (5)
- Block: language(name,role,formula,source,useful_info). language=thf|fof|cnf; role=axiom|conjecture (e.g.); source and useful_info are optional.

```
%-----
% File
           : SYN054+1 : TPTP v4.0.1. Released v2.0.0.
% Domain
          : Syntactic
% Problem : Pelletier Problem 24
% Status
           : Theorem
% Rating
           : 0.00 v2.1.0
fof(pel24_1,axiom, ( ~ ( ? [X] : ( big_s(X) & big_q(X) ) ))).
fof(pel24_2,axiom, ( ! [X] : ( big_p(X) => ( big_q(X) | big_r(X) ) )).
fof(pel24_3,axiom, ( ~ ( ? [X] : big_p(X) ) => ? [Y] : big_q(Y) )).
fof(pel24_4,axiom, ( ! [X] : ( ( big_q(X) | big_r(X) ) => big_s(X) ) )).
fof(pel24, conjecture, ( ? [X] : ( big_p(X) & big_r(X) ) )).
Y-----
```

Jens Otten (University of Potsdam)

< 47 ►

5 / 14

TPTP Syntax for Representing Resolution Proofs

Block: language(name,role,formula,source,useful_info).

```
source= file(file_name,file_info)
```

inference(inference_name,inference_info,parents)

inference_info lists additional information; *parents* is list of the (logical) parents; variable bindings captured in bind/2 terms.

The TPTP Library for Classical Logic

- Web: www.tptp.org (Sutcliffe/Suttner '98).
- ► TPTP v5.0.0 (September 2010): 18480 problems.
- 46 problem classes (domains), e.g., ALG (general algebra, 533 problems), ARI (arithmetic, 571) COL (combinatory logic, 239), COM (computing theory, 50), CSR (commonsense reasoning, 838), GRP (algebra/groups, 1090), MGT (management, 56), NLP (natural language, 520), NUM (number theory, 1207), PUZ (puzzles, 194), SET (set theory, 1395), SWV (software verification, 1390), SYN (syntactic, 1294).
- ► 7634 clausal (CNF), 7137 non-clausal (FOF) problems; 74%/86% with status Unsatisfiable/Theorem (of CNF/FOF).
- Provides tptp2X tool for converting problems in the library into syntax of existing ATP systems.
- Problems are given a unique name: DDD.NNN+V[.SSS].p, where DDD is mnemonic of the domain, NNN is number of the problem, V is version number, and SSS is size of the instance. E.g. SYN054+1.p is the 54th problem in the domain SYN.

Rating and Status Information

- Rating indicates difficulty of a problem with respect to current state-of-the-art ATP systems.
- Rating defined as ratio of state-of-the-art ATP systems that do not solve a problem within a given time limit.
- ► E.g. a rating of 0.30 indicates that 30% of the state-of-the-art systems do *not* solve the problem.
- Status is, e.g., Theorem or Countersatisfiable (FOF problems), Unsatisfiable or Satisfiable (CNF problems), Unknown or Open.
- Problems with status Unknown or Open have not been solved by any state-of-the-art ATP system.
- For Open problems it is unknown if they are theorems or not (the abstract problem has not been solved so far).

 8 / 14

Performance of leanCoP 1.0 on TPTP

► Tested on all 3644 FOF problems of TPTP library v3.3.0.

System	leanTAP	leanCoP	SETHEO	Otter	Prover9	E
Version	2.3	1.0	3.3	3.3	Dec-2007	0.999
Proved	375	1004	1192	1310	1677	2250
[%]	10%	28%	33%	36%	46%	62%
Os to 1s	351	787	864	987	1281	1760
1s to 10s	12	84	205	183	197	229
10s to 100s	11	74	62	106	141	192
100s to 600s	1	59	61	34	58	69
0.000.24	22.8%	56.2%	63.9%	72.2%	72.8%	77.7%
0.250.49	5.9%	26.0%	34.2%	39.7%	69.9%	84.5%
0.500.74	2.2%	7.1%	8.5%	3.0%	28.2%	69.1%
0.751.00	0.4%	0.0%	1.5%	0.7%	2.5%	18.5%

✓ □
→
9 / 14

The ILTP Library for Intuitionistic Logic

- ► Web: www.iltp.de (Raths/Otten/Kreitz '05).
- ► ILTP v1.1.2 (January 2007): 2754 problems.
- Propositional/first-order part: 274/2550 problems.
- Provides intuitionistic status information: either Theorem, Non-Theorem, Unsolved or Open.
- Provides intuitionistic rating information (like TPTP rating).
- For rating information eight state-of-the-art systems were chosen according to their performance on the ILTP library.
- Provides converting tool and list of intuitionistic ATP systems.
- Puts evaluation of intuitionistic ATP systems onto a firm basis and makes meaningful systems comparisons possible.

< □10 / 14

Performance of ileanCoP

► Tested on all 2550 first-order problems of ILTP library v1.1.2.

System	JProver	ft _{Prolog}	ileanSeP	ileanTAP	ft_C	ileanCoP
Version	11-2005	1.23	1.0	1.17	1.23	1.0
Solved	268	299	313	364	315	690
Proved	264	299	309	334	311	610
Refuted	4	0	4	30	4	80
0 to $<$ 1 s	243	285	249	351	299	557
1 to $<\!\!10~{ m s}$	11	9	33	6	8	46
10 to ${<}100~{\rm s}$	8	1	19	7	5	44
100 to 600 s	6	4	12	0	3	43
rated 0.0	203	193	176	203	203	203
to ≤ 0.7	63	99	85	127	101	154
to ≤ 1.0	2	7	52	34	11	340

▶ 258 problems could only be solved by ileanCoP.

Jens Otten (University of Potsdam)

The QMLTP Library for Modal Logic

- Web: www.iltp.de/qmltp (Raths/Otten '09).
- ▶ QMLTP v0.2 (Juli 2009): 200 problems in 7 domains.
- ► The TPTP syntax is extended by the modal operators "box" and "dia": □F and ◊F represented by "box:F" and "dia:F".
- The multi-modal operators are expressed by "box(i)" and "dia(i)" with constant i.
- Format files are used to convert problems into syntax of existing ATP systems (using tptp2X tool).
- Syntax will be changed to "#box:F" and "#dia:F"!
- ► First official release: Beginning of 2011.
- Partly funded by National Science Foundation (DFG) within the project "ATP in First-Order Modal Logic".

Example: Modal Syntax for Representing Problems

```
%------
% File : SYM002+1 : QMLTP v0.2
% Domain : Syntactic (modal)
% Problem : Converse Barcan scheme instance
% Version : Especial.
% English : If it is necessary that for all x f(x), then for all x
%
          necessarily f(x)
% Refs : [Brc46] [1] R. C. Barcan. A functional calculus of first
%
          order based on strict implication. Journal of Symbolic Logic
%
          11:1-16, 1946.
% Source : [Brc46]
% Names : Instance of the converse Barcan formula
% Status: S4 cumulative : Theorem
% Rating: S4 cumulative : 0.00 v0.2
%
% Comments :
<u>%_____</u>
fof(con,conjecture,
(( box : ( ! [X] : ( f(X) ) ) ) => ( ! [X] : ( box : ( f(X) ) ))).
%----
         < 47 →
```

CASC: The ATP System Competition

- ► Web: www.tptp.org/CASC (Sutcliffe '10/'09/'08/...).
- Yearly competition that evaluates the performance of sound, fully automatic ATP systems.
- Several divisions, e.g.,
 - FOF: Valid first-order problems.
 - FNT: Invalid first-order problems.
 - CNF: Valid first-order problems in clausal form.
 - SAT: Satisfiable propositional problems.
 - THF: Typed higher-order problems.
 - ► TFA: Valid typed first-order problems with arithmetic.
- ► Typical between 75 and 200 problems in each division.
- Typical time limit of about 300 seconds.
- Winners in 2010 (CASC-J5) are, e.g., Vampire, E, iProver, LEO-II, Waldmeister, leanCoP-Ω.

 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓