
Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Implementing ATP Systems
Unit 11: Optimizations and Extensions

Jens Otten

University of Potsdam

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 1 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Outline

1 Optimizations

2 leanCoP 2.0

3 Performance

4 Extensions

5 Summary and Further Research

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 2 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

The Basic Connection Calculus

I Axiom {},M,Path

I Start Rule
C2,M, {}
ε,M, ε

C2 is copy of C1∈M

I Reduction Rule

C ,M,Path∪{L2}
C∪{L1},M,Path∪{L2}

{σ(L1), σ(L2)} is a connection

I Extension Rule

C2\{L2},M,Path∪{L1} C ,M,Path C2 is copy of C1∈M, L2∈C2,
C∪{L1},M,Path {σ(L1), σ(L2)} is a connection

I Connection proof
⇔ ∃ derivation for ε,M, ε in which all leaves are axioms.

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 3 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

leanCoP 1.0: Implementing the Basic Calculus

prove(M,I) :- append(Q,[C|R],M), \+member(-_,C),

append(Q,R,S), prove([!],[[-!|C]|S],[],I).

prove([],_,_,_).

prove([L|C],M,P,I) :- (-N=L; -L=N) -> (member(N,P);

append(Q,[D|R],M), copy_term(D,E), append(A,[N|B],E),

append(A,B,F), (D==E -> append(R,Q,S); length(P,K), K<I,

append(R,[D|Q],S)), prove(F,S,[L|P],I)), prove(C,M,P,I).

I Connection driven proof search.

I “append technique” selects clause/literal from matrix/clause.

I Only positive start clauses are considered.

I Only copies of first-order clauses are made.

I Path limit only checked for connections to first-order clauses.

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 4 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Optimizations

I Goal: Select a few highly effective techniques for pruning the
search space in the basic connection calculus.

I Definitional clausal form translation. +

I Regularity. ++

I Lemmata. +

I Restricted backtracking. +++

I “Lean Prolog technology”. +

I Strategy scheduling. ++

(+: modest effect; ++: significant effect; +++: strong effect)

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 5 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Definitional Clausal Form Translation

I Idea: Introduce definitions for certain subformulae.

I Example: (A ∨ ¬A) ∧ (B ∨ ¬B) ∧ (C ∨ ¬C)

Standard translation:
AB
C

 A
B
¬C

 A
¬B
C

 A
¬B
¬C

¬AB
C

¬AB
¬C

¬A¬B
C

¬A¬B
¬C

Definitional translation:
((A∨¬A)⇒ P)∧ (B ∨¬B)⇒ Q)∧ (C ∨¬C)⇒ R))⇒ (P ∧Q ∧R) [A ¬A]

[B ¬B]
[C ¬C]

 P
Q
R

[¬P
A

] [
¬P
¬A

] [
¬Q
B

] [
¬Q
¬B

] [
¬R
C

] [
¬R
¬C

]

I Important: Minimize number of possible connections, i.e.
minimize number of possible extension and reduction steps.

I Other translations (e.g. E, FLOTTER) do not work well.

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 6 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Definitional Clausal Form Translation – Formal

I Let F be a formula in negation normal form and let cla(D) be
the standard transformation of formula D into clausal form.

I The definitional tuple (F ′,D) of F , where D is a set of
formulae, is inductively defined as follows:

1. F is a literal: (F , {}) is the definitional tuple of F ; otherwise
2. F is of the form A ∨ B and F occurs within a conjunction and

(A′,DA) and (B ′,DB) are the definitional tuples of A and B:

(S(x1, ..., xn), {¬S(x1, ..., xn)∧A′,¬S(x1, ..., xn)∧B ′}∪DA∪DB)
is the definitional tuple of F , where S is a new predicate symbol
and x1, ..., xn are the variables occurring in (A ∨ B); otherwise

3. F is of the form A ◦ B with ◦ ∈ {∧,∨} and if (A′,DA) and
(B ′,DB) are the definitional tuples of A and B:
(A′ ◦ B ′,DA ∪ DB) is the definitional tuple of F .

I F ′ ∨ cla(D1) ∨ . . . ∨ cla(Dn) is definitional clausal form of F
where (F ′, {D1, ...,Dn}) is the definitional tuple of F .

I A formula F is valid iff its definitional clausal form is valid.
Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 7 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Regularity and Lemmata

I Regularity: No (ground) literal occurs more than once in the
active path (in the current branch of the tableau).

Impose the following restriction on reduction/extension rule:
∀L′ ∈ C ∪{L} : σ(L′) 6∈ σ(Path) (and L′ is ground).

I Lemmata: If a branch with (ground) literal L has been closed,
all branches containing L (below/to the right) can be closed.

Add the following lemma rule to the connection calculus:

Lemma rule
C ,M,Path

C∪{L},M,Path
and L is a lemma in that branch.

I Example (regularity and lemmata): P

R

¬P
Qx

¬Qb

P

¬Qc

¬P
P

¬R

 P

R

¬P
Qx

¬Qb

P

¬Qc

¬P
P

¬R

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 8 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Restricted Backtracking

I Fact: In contrast to saturation-based calculi (e.g. resolution),
connection calculi are not proof confluent.

I A significant amount of backtracking is required when
I selecting start clause C1 in start rule,
I selecting literal L2 in the reduction rule,
I selecting clause C1 and literal L2 in the extension rule.

I Example: Pa ¬Px
Pb

¬Py
¬Pz
Qz

Pc
Pd

Pe
Re . . .

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 9 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Restricted Backtracking (cont.)

I Idea: Reduce amount of backtracking by restricting
backtracking for start, reduction and extension rule.

I Restricted backtracking for start rule:
→ do not consider alternative start clauses.

I Restricted backtracking for reduction/extension rule:
→ once a branch has successfully been closed, do not

consider alternative rule applications anymore.

I Example:
 Pa ¬Px

Qy

Ry

¬Qb
¬Pa

¬Qc
S

¬Rc ¬Pa

6 6

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 10 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Restricted Backtracking (cont.)

I Correct, but not complete. Consider, e.g., for extension and
start rule, respectively:[

Px

Qx

¬Pa ¬Pc ¬Qc
6 6

] [
P Q ¬Q

]

I Very successful in practice, in particular for problems
containing many axioms, e.g. equality axioms.

I Illustration of complete proof search (left) and proof search
using restricted backtracking (right).

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 11 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

leanCoP 2.0 (“Garlic”): Implementing Optimizations

I Definitional clausal from translation in module def_mm.pl.

I leanCoP v1.0: Implements basic calculus.

I leanCoP v2.0 “Garlic” (minimal code: 555 bytes):

prove(I,S) :- \+member(scut,S) -> prove([-(#)],[],I,[],S) ;

lit(#,C,_) -> prove(C,[-(#)],I,[],S).

prove(I,S) :- member(comp(L),S), I=L -> prove(1,[]) ;

(member(comp(_),S);retract(p)) -> J is I+1, prove(J,S).

prove([],_,_,_,_).

prove([L|C],P,I,Q,S) :- \+ (member(A,[L|C]), member(B,P),

A==B), (-N=L;-L=N) -> (member(D,Q), L==D ;

member(E,P), unify_with_occurs_check(E,N) ; lit(N,F,H),

(H=g -> true ; length(P,K), K<I -> true ;

\+p -> assert(p), fail), prove(F,[L|P],I,Q,S)),

(member(cut,S) -> ! ; true), prove(C,P,I,[L|Q],S).

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 12 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Lean Prolog Technology

I Use Prolog’s indexing mechanism to quickly find connections.

The set of clauses M is written into Prolog’s database:
∀ clauses C∈M and ∀ literals L∈C the fact lit(L,C1,Grnd)
is stored, where C1=C\{L} and Grnd is g iff C is ground.

Example: The clause {a(x),¬b, c} is stored as
lit(a(X),[-b,c],n). lit(-b,[a(X),c],n). lit(c,[a(X),-b],n).

I Main predicate: prove(Cla,Path,PathLim,Lem,Set).

I Realizes the proof search: Cla and Path are Prolog lists and
represent the branch Cla,M,Path in the connection calculus.

I Lem and Set represent the lemma literals and the settings.
I PathLim is the maximum length of the active path (used for

iterative deepening to achieve completeness).
I The substitution σ is stored implicitly by Prolog.

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 13 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

The leanCoP 2.0 Source Code

(1)

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)

prove([],_,_,_,_).

prove([Lit|Cla],Path,PathLim,Lem,Set) :-

\+ (member(LitC,[Lit|Cla]), member(LitP,Path), LitC==LitP),

(-NegLit=Lit;-Lit=NegLit) ->

(member(LitL,Lem), Lit==LitL

;

member(NegL,Path), unify_with_occurs_check(NegL,NegLit)

;

lit(NegLit,Cla1,Grnd1),

(Grnd1=g -> true ; length(Path,K), K<PathLim -> true ;

\+ pathlim -> assert(pathlim), fail),

prove(Cla1,[Lit|Path],PathLim,Lem,Set)

),

(member(cut,Set) -> ! ; true),

prove(Cla,Path,PathLim,[Lit|Lem],Set).

I The complete leanCoP core code (v2.0, without start rule).

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 14 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

The leanCoP 2.0 Source Code (cont.)

(a)
(b)
(c)
(d)
(e)
(f)
(g)

prove(PathLim,Set) :-

\+member(scut,Set) -> prove([-(#)],[],PathLim,[],Set) ;

lit(#,C,_) -> prove(C,[-(#)],PathLim,[],Set).

prove(PathLim,Set) :-

member(comp(Limit),Set), PathLim=Limit -> prove(1,[]) ;

(member(comp(_),Set);retract(pathlim)) ->

PathLim1 is PathLim+1, prove(PathLim1,Set).

I The leanCoP code of the start rule with iterative deepening
and restricted backtracking.

I The special literal # has to be added to all possible start
clauses (i.e. to positive clauses or conjecture clauses).

I leanCoP is invoked with, e.g., prove(1,[cut])., where the
formula is stored in Prolog’s database using the lit predicate.

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 15 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Strategy Scheduling

I Different settings control the proof search of the core prover.

I Possible settings ⊆ {nodef,def,conj,cut,scut,reo(I),comp(I)}:
nodef/def: standard/definitional clausal form translation is used

(default: definitional translation only for conjecture).

conj: start with conjecture clauses (default: positive clauses).

cut/scut: restricted backtracking is used for reduction & extension
rule / start rule (default: no restricted backtracking).

reo(I): reorder clauses I times (default: no reordering).

comp(I): complete search strategy when proof depth I is reached.

I Different settings are consecutively invoked by shell script.

I The used fixed strategy scheduling preserves completeness.

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 16 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Analyzing Restricted Backtracking

I TPTP library v3.7.0: 5051 FOF problems; 600 sec time limit.

Domain # of 1st start Essent. Non-es. Essent. Non-es.
proofs clause steps steps proofs proofs

CSR 93 87 605 57 75 18
SET 193 141 2005 227 117 76
SWC 14 14 54 0 14 0
SWV 160 117 1297 51 135 25
SYN 204 190 1734 41 189 15

Total 1256 981 19403 2485 882 374
[%] 100% 78% 89% 11% 70% 30%

I 1st start clause: first start clause is used in the final proof.

I Essential steps: proof steps that did not require backtracking.

I Essential proofs: proofs that only contain essential steps.

I Observation: about 90%/70% essential proof steps/proofs.

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 17 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Performance of Different Clausal Form Translations

I TPTP library v3.7.0: 5051 FOF problems; 600 sec time limit.

System TPTP Flotter E ——- leanCoP 2.0 ——-
Version 3.7.0 3.0 1.0 “def” “nodef” (default)

Proved 1205 1365 1369 1486 1514 1560
[%] 24% 27% 27% 29% 30% 31%

Rating
0.00...0.24 53% 56% 58% 62% 60% 62%
0.25...0.49 39% 47% 47% 52% 51% 53%
0.50...0.74 10% 16% 16% 17% 22% 24%
0.75...1.00 1% 1% 1% 1% 2% 2%

I leanCoP 2.0 with strategy “[cut,comp(7)]”.

I Using clausal form translations of TPTP2X/SPASS(Flotter)/E
and “def”/“nodef”/default translation of leanCoP 2.0.

I Best: leanCoP’s default translation (“def” only for conjecture).

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 18 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Performance of Different Techniques

I TPTP library v3.7.0: 5051 FOF problems; 600 sec time limit.

leanCoP 1.0 basic define regular restrict leanCoP 2.0

Proved 1105 1086 1094 1256 1560 1797
[%] 22% 22% 22% 25% 31% 36%

Average time 12.2 s 2.6 s 2.8 s 3.6 s 2.6 s 6.1 s

Rating 0.0 458 450 446 501 531 554
Rating >0.0 647 636 648 755 1029 1243

No equality 532 526 515 552 587 616
With equality 573 560 579 704 973 1181

I “basic”: using lean Prolog technology.
“define”: plus (default) definitional clausal translation.
“regular”: plus regularity and lemmata (leanCoP settings: []).
“restrict”: plus restricted backtracking ([cut,comp(7)]).

I leanCoP 2.0: plus strategy scheduling.
Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 19 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Performance of leanCoP 2.1 and Other ATP Systems

I TPTP library v3.7.0: 5051 FOF problems; 600 sec time limit.

System leanTAP Otter Prover9 SNARK leanCoP E
Version 2.3 3.3 2009-02A 08/07 2.1 1.0

Proved 404 1389 1664 1735 1893 2541
[%] 8% 27% 33% 34% 37% 50%

Rating
0.00...0.24 17% 64% 61% 69% 68% 75%
0.25...0.49 18% 47% 71% 68% 68% 92%
0.50...0.74 2% 3% 27% 21% 35% 74%
0.75...1.00 0% 0% 1% 1% 5% 12%

(rating 0.0: easy; rating 1.0: very difficult)

I leanCoP 1.0/2.0: 1105/1797 problems (SETHEO 3.3: 1296).
I leanCoP 2.1 accepts TPTP syntax and outputs a proof.
I Ranked 3rd at CADE system competition 2010 (CASC-J5) of

provers that output a proof in the first-order division (FOF).

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 20 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

The ileanCoP 1.2 Source Code

prove(I,S) :- (\+member(scut,S) ->

prove([(-(#)):(-[])],[],I,[],[Z,T],S) ;

lit((#):_,G:C,_) -> prove(C,[(-(#)):(-[])],I,[],[Z,R],S),

append(R,G,T)), check_addco(T), prefix_unify(Z).

prove(I,S) :- member(comp(L),S), I=L -> prove(1,[]) ;

(member(comp(_),S);retract(p)) -> J is I+1, prove(J,S).

prove([],_,_,_,[[],[]],_).

prove([L:U|C],P,I,Q,[Z,T],S) :- \+ (member(A,[L:U|C]),member(B,P),

A==B), (-N=L;-L=N) -> (member(D,Q), L:U==D, X=[], O=[] ;

member(E:V,P), unify_with_occurs_check(E,N),

\+ \+ prefix_unify([U=V]), X=[U=V], O=[] ;

lit(N:V,M:F,H), \+ \+ prefix_unify([U=V]),

(H=g -> true ; length(P,K), K<I -> true ;

\+ p -> assert(p), fail), prove(F,[L:U|P],I,Q,[W,R],S),

X=[U=V|W], append(R,M,O)), (member(cut,S) -> ! ; true),

prove(C,P,I,[L:U|Q],[Y,J],S), append(X,Y,Z), append(J,O,T).

I ileanCoP 1.2 core prover plus prefix unification (23 more lines).

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 21 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Performance of ileanCoP 1.2

I TPTP library v3.3.0: 3644 FOF problems; 600 sec time limit.

System JProver ileanTAP ft (C) ileanSeP Imogen ileanCoP
Version 11-2005 1.17 1.23 1.0 2.1 1.2

Proved 186 255 262 303 842 1127
[%] 5% 7% 7% 8% 23% 31%

Rating
0.00...0.24 13.1% 15.3% 16.1% 17.1% 48.3% 54.5%
0.25...0.49 0.4% 4.5% 5.0% 9.1% 20.1% 34.1%
0.50...0.74 0.0% 1.2% 0.2% 0.0% 4.2% 20.2%
0.75...1.00 0.0% 0.3% 0.2% 0.0% 0.5% 2.3%

I CADE system competition 2007 (CASC-21): ileanCoP proved
more problems than some classical provers and proved two
problems for which Vampire did not find a classical proof.

I Intuitionistic problem library ILTP (Raths/Otten/Kreitz ’07).

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 22 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

leanCoP-Ω: First-Order Logic with Linear Arithmetic

prove([],_,_,_,_,[],Eq,Eq).

prove([L|C],P,I,Q,S,Pr,Eq,Eq1) :-

Pr=[[[R|F]|Pr1]|Pr2], \+ (member(A,[L|C]), member(B,P), A==B),

(-N=L;-L=N) -> (member(D,Q), L==D, F=[], Pr1=[], Eq2=Eq ;

member(E,P), unify_with_arith(E,N,EqU,S), append(EqU,Eq,Eq2),

omega(Eq2), F=[], Pr1=[] ; lit(N,E,F,H), unify_with_arith(E,N,EqU,S),

append(EqU,Eq,Eq3), omega(Eq3), (H=g -> true ; length(P,K), K<I ->

true ; \+ pathlim -> assert(pathlim), fail),

prove(F,[L|P],I,Q,S,Pr1,Eq3,Eq2) ;

(L=(_=_);-(_=_)=L;L=(_<_);-(_<_)=L) -> (leanari(L) -> Eq2=Eq, F=[],

Pr1=[] ; member(eq(_),S), path_eq(P,L,EqP), (omega([EqP|Eq]) ->

Eq2=[EqP|Eq], F=[], Pr1=[] ; member(eq(2),S), lit(_,R,F,H),

(R=(_=_);-(_=_)=R;R=(_<_);-(_<_)=R), (H=g -> true ; length(P,K),

K<I -> true ; \+ pathlim -> assert(pathlim), fail),

prove([R|F],[L|P],I,Q,S,Pr1,Eq,Eq2)))), (var(R) -> R=N ; true),

(member(cut,S) -> ! ; true), prove(C,P,I,[L|Q],S,Pr2,Eq2,Eq1).

+ Omega test system (Pugh ’92) for linear integer arithmetic.

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 23 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Performance of leanCoP-Ω

I CADE system competition 2010 (CASC-J5):
New division (TFA) containing problems in first-order logic
with linear integer arithmetic.

I CASC-J5, TFA division: 75 problems; 300 sec time limit.

System leanCoP-Ω SPASS+T
Version 0.1 2.2.12

Proved 64 62 46 39 35
[%] 85% 83% 61% 52% 47%

I leanCoP-Ω still in a very experimental state.

I Joint work with Holger Trölenberg (interface to Omega) and
Thomas Raths (parsing of type information and testing).

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 24 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Summary

I Connection calculus well suited to automate logic reasoning in
classical and non-classical logics.

I leanCoP currently fastest connection/tableau prover.
I ileanCoP currently fastest prover for intiutionistic logic.
I leanCoP-Ω CASC-winner for linear integer arithmetic.

Web: www.leancop.de

I Restricted backtracking is single most effective technique to
reduce the search space in connection calculi.

I First-order logic = propositional logic + term unification.

I Non-classical logics = classical logic + prefix unification.

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 25 / 26

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research

Further Research

I Develop non-clausal connection calculus that does require any
translation steps into clausal form.

I Improving algorithm for prefix unification.

I Extend calculus/implementation to other non-classical logics.

I Modal logics, e.g. D, D4, K, K4, T, S4, S5.
I Fragments of linear logic, e.g. multiplicative fragment.

I Build problem libraries for other non-classical logics, e.g. for
some first-order modal logics (QMLTP library).

Jens Otten (University of Potsdam) Implementing ATP Systems Inferenzmethoden (SS 2010) 26 / 26

	Optimizations
	leanCoP 2.0
	Performance
	Extensions
	Summary and Further Research

