Implementing ATP Systems

Unit 11: Optimizations and Extensions

Jens Otten

University of Potsdam

Optimizations			
	Outli	ne	
	0 4 6 1 1		

Optimizations	leanCoP 2.0	Performance	Extensions	Summary and Further Research
	The	Basic Connect	ion Calcı	ulus
▶.	Axiom	{}, <i>M</i> , <i>Path</i>	1	
	Start Rule	$\frac{C_2, M, \{\}}{\varepsilon, M, \varepsilon}$	$-C_2$ is c	opy of $C_1 {\in} M$
•	Reduction Rule	$C, M, Path \cup \{L_2\}$	$- \{\sigma(L_1)$	$\{\sigma(L_2)\}$ is a connection
•	Extension Rule	J{L1}, W, Paln∪{L2}		

 $\frac{C_2 \setminus \{L_2\}, M, Path \cup \{L_1\} \quad C, M, Path}{C \cup \{L_1\}, M, Path} \qquad C_2 \text{ is copy of } C_1 \in M, \ L_2 \in C_2, \\ \{\sigma(L_1), \sigma(L_2)\} \text{ is a connection}$

Connection proof

 $\Leftrightarrow \exists$ derivation for $\varepsilon, M, \varepsilon$ in which all leaves are axioms.

leanCoP 1.0: Implementing the Basic Calculus

```
prove(M,I) :- append(Q,[C|R],M), \+member(-_,C),
append(Q,R,S), prove([!],[[-!|C]|S],[],I).
prove([],_,_,).
prove([L|C],M,P,I) :- (-N=L; -L=N) -> (member(N,P);
append(Q,[D|R],M), copy_term(D,E), append(A,[N|B],E),
append(A,B,F), (D==E -> append(R,Q,S); length(P,K), K<I,
append(R,[D|Q],S)), prove(F,S,[L|P],I)), prove(C,M,P,I).
```

Connection driven proof search.

- "append technique" selects clause/literal from matrix/clause.
- Only positive start clauses are considered.
- Only copies of first-order clauses are made.
- Path limit only checked for connections to first-order clauses.

Optimizations			
	Optimiza	tions	

 Goal: Select a few highly effective techniques for pruning the search space in the basic connection calculus.

Definitional clausal form translation.	+
Regularity.	++
Lemmata.	+
Restricted backtracking.	+++
"Lean Prolog technology".	+
Strategy scheduling.	++
(+: modest effect; ++: significant effect; +++: strong	effect)

 Optimizations
 leanCoP 2.0
 Performance
 Extensions
 Summary and Further Research

 Definitional Clausal Form Translation

- Idea: Introduce definitions for certain subformulae.
- Example: $(A \lor \neg A) \land (B \lor \neg B) \land (C \lor \neg C)$

Standard translation:
$$\begin{bmatrix} A \\ B \\ C \end{bmatrix} \begin{bmatrix} A \\ B \\ \neg C \end{bmatrix} \begin{bmatrix} A \\ \neg B \\ C \end{bmatrix} \begin{bmatrix} A \\ \neg B \\ \neg C \end{bmatrix} \begin{bmatrix} A \\ B \\ \neg C \end{bmatrix} \begin{bmatrix} \neg A \\ B \\ \neg C \end{bmatrix} \begin{bmatrix} \neg A \\ \neg C \end{bmatrix} \bigcirc \Box \begin{bmatrix} \neg A \\ \neg C \end{bmatrix} \bigcirc \Box C \neg C$$

Definitional translation:

 $((A \lor \neg A) \Rightarrow P) \land (B \lor \neg B) \Rightarrow Q) \land (C \lor \neg C) \Rightarrow R)) \Rightarrow (P \land Q \land R)$ $\begin{bmatrix} [A & \neg A] \\ [B & \neg B] \\ [C & \neg C] \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} P \\ Q \\ R \end{bmatrix} \begin{bmatrix} \neg P \\ A \end{bmatrix} \begin{bmatrix} \neg P \\ \neg A \end{bmatrix} \begin{bmatrix} \neg Q \\ B \end{bmatrix} \begin{bmatrix} \neg Q \\ \neg B \end{bmatrix} \begin{bmatrix} \neg R \\ C \end{bmatrix} \begin{bmatrix} \neg R \\ \neg C \end{bmatrix}$

- Important: Minimize number of possible connections, i.e. minimize number of possible extension and reduction steps.
- Other translations (e.g. E, FLOTTER) do not work well.

leanCoP 2.0

Definitional Clausal Form Translation – Formal

- ▶ Let *F* be a formula in negation normal form and let *cla*(*D*) be the standard transformation of formula *D* into clausal form.
- ► The definitional tuple (F', D) of F, where D is a set of formulae, is inductively defined as follows:
 - 1. F is a literal: $(F, \{\})$ is the definitional tuple of F; otherwise
 - 2. *F* is of the form $A \vee B$ and *F* occurs within a conjunction and (A', \mathcal{D}_A) and (B', \mathcal{D}_B) are the definitional tuples of *A* and *B*:

 $(S(x_1, ..., x_n), \{\neg S(x_1, ..., x_n) \land A', \neg S(x_1, ..., x_n) \land B'\} \cup \mathcal{D}_A \cup \mathcal{D}_B)$ is the definitional tuple of *F*, where *S* is a new predicate symbol and $x_1, ..., x_n$ are the variables occurring in $(A \lor B)$; otherwise

- F is of the form A ∘ B with ∘ ∈ {∧, ∨} and if (A', D_A) and (B', D_B) are the definitional tuples of A and B: (A' ∘ B', D_A ∪ D_B) is the definitional tuple of F.
- F' ∨ cla(D₁) ∨ ... ∨ cla(D_n) is definitional clausal form of F where (F', {D₁, ..., D_n}) is the definitional tuple of F.
- ► A formula *F* is valid iff its definitional clausal form is valid.

Regularity and Lemmata

 Regularity: No (ground) literal occurs more than once in the active path (in the current branch of the tableau).

Impose the following restriction on reduction/extension rule: $\forall L' \in C \cup \{L\} : \sigma(L') \notin \sigma(Path)$ (and L' is ground).

Lemmata: If a branch with (ground) literal L has been closed, all branches containing L (below/to the right) can be closed.

Add the following lemma rule to the connection calculus:

Lemma rule $\frac{C, M, Path}{C \cup \{L\}, M, Path}$

and L is a lemma in that branch.

Example (regularity and lemmata):

$$\begin{bmatrix} P & \neg P & \neg Qb & \neg Qc & P \\ R & Qx & P & \neg P & \neg R \end{bmatrix} \begin{bmatrix} P & \neg P & \neg Qb & \neg Qc & P \\ \hline R & Qx & P & \neg P & \neg R \end{bmatrix}$$

Optimizations	Optimizations leanCoP 2.0 Pe			
	Re	stricted Ba	cktracking	
			U	

- Fact: In contrast to saturation-based calculi (e.g. resolution), connection calculi are not proof confluent.
- A significant amount of backtracking is required when
 - selecting start clause C_1 in start rule,
 - selecting literal L_2 in the reduction rule,
 - selecting clause C_1 and literal L_2 in the extension rule.

► Example:

Optimizations				
	Restricte	d Backtracl	king (cont.)

- Idea: Reduce amount of backtracking by restricting backtracking for start, reduction and extension rule.
- Restricted backtracking for start rule:

 → do not consider alternative start clauses.
- ▶ Restricted backtracking for reduction/extension rule:
 → once a branch has successfully been closed, do not consider alternative rule applications anymore.

Optimizations leanCoP 2.0 Performance Extensions Summary and Further Research
Restricted Backtracking (cont.)

Correct, but not complete. Consider, e.g., for extension and start rule, respectively:

$$\left[\begin{array}{cc} P_X \neg P_a \neg P_c \neg Q_c \\ Q_X \end{array}\right] \left[\begin{array}{cc} P & Q & \neg Q \\ \end{array}\right]$$

- Very successful in practice, in particular for problems containing many axioms, e.g. equality axioms.
- Illustration of complete proof search (left) and proof search using restricted backtracking (right).

- Definitional clausal from translation in module def_mm.pl.
- leanCoP v1.0: Implements basic calculus.
- leanCoP v2.0 "Garlic" (minimal code: 555 bytes):

```
prove(I,S) :- \+member(scut,S) -> prove([-(#)],[],I,[],S) ;
    lit(#,C,_) -> prove(C,[-(#)],I,[],S).
prove(I,S) :- member(comp(L),S), I=L -> prove(1,[]) ;
    (member(comp(_),S);retract(p)) -> J is I+1, prove(J,S).
prove([],_,_,_).
prove([],C],P,I,Q,S) :- \+ (member(A,[L|C]), member(B,P),
    A==B), (-N=L;-L=N) -> ( member(D,Q), L==D ;
    member(E,P), unify_with_occurs_check(E,N) ; lit(N,F,H),
    (H=g -> true ; length(P,K), K<I -> true ;
    \+p -> assert(p), fail), prove(F,[L|P],I,Q,S) ),
    (member(cut,S) -> ! ; true), prove(C,P,I,[L|Q],S).
```

Optimizations	leanCoP 2.0			
	Lean	Prolog Tee	chnology	

Use Prolog's indexing mechanism to quickly find connections.

The set of clauses M is written into Prolog's database: \forall clauses $C \in M$ and \forall literals $L \in C$ the fact lit(L,C1,Grnd) is stored, where $C1=C \setminus \{L\}$ and Grnd is g iff C is ground.

Example: The clause $\{a(x), \neg b, c\}$ is stored as lit(a(X), [-b,c],n). lit(-b, [a(X),c],n). lit(c, [a(X),-b],n).

- Main predicate: prove(Cla,Path,PathLim,Lem,Set).
 - Realizes the proof search: Cla and Path are Prolog lists and represent the branch Cla, M, Path in the connection calculus.
 - ▶ Lem and Set represent the lemma literals and the settings.
 - PathLim is the maximum length of the active path (used for iterative deepening to achieve completeness).
 - The substitution σ is stored implicitly by Prolog.

leanCoP 2.0 The leanCoP 2.0 Source Code prove([],_,_,_). (1)prove([Lit|Cla],Path,PathLim,Lem,Set) :-(2) \+ (member(LitC, [Lit|Cla]), member(LitP,Path), LitC==LitP), (3) (-NegLit=Lit:-Lit=NegLit) -> (4) (member(LitL,Lem), Lit==LitL 5) (6) member(NegL,Path), unify_with_occurs_check(NegL,NegLit) (7) (8) ; lit(NegLit,Cla1,Grnd1), (9) (Grnd1=g -> true ; length(Path,K), K<PathLim -> true ; (10)\+ pathlim -> assert(pathlim), fail), (11)prove(Cla1,[Lit|Path],PathLim,Lem,Set) (12)), (13)(member(cut,Set) -> ! ; true), (14)prove(Cla,Path,PathLim, [Lit | Lem],Set). (15)

► The complete leanCoP core code (v2.0, without start rule).

Optimizations	leanCoP 2.0			
	The leanC	CoP 2.0 Soi	urce Code	(cont.)
(a) (b) (c)	prove(PathLim,Set \+member(scut lit(#,C,_) ->) :- ,Set) -> prove prove(C,[-(#)	e([-(#)],[],Pa],PathLim,[],	thLim,[],Set) ; Set).
(d)	prove(PathLim,Set) :-		. (4 57)
(e) (f)	member(comp(L (member(comp(1mit),Set), Pa _),Set);retrac	thLim=Limit - t(pathlim)) -	> prove(1,[]) ; >
(g)	PathLim1 is P	athLim+1, prov	re(PathLim1,Se	t).

- The leanCoP code of the start rule with iterative deepening and restricted backtracking.
- The special literal # has to be added to all possible start clauses (i.e. to positive clauses or conjecture clauses).
- leanCoP is invoked with, e.g., prove(1, [cut])., where the formula is stored in Prolog's database using the lit predicate.

Optimizations	leanCoP 2.0	Performance		Summary and Further Research
	<u> </u>	Strategy Scl	neduling	
			-	

- Different settings control the proof search of the core prover.
- Possible settings \subseteq {nodef,def,conj,cut,scut,reo(I),comp(I)}:

nodef/def: standard/definitional clausal form translation is used (default: definitional translation only for conjecture).

- conj: start with conjecture clauses (default: positive clauses).
- cut/scut: restricted backtracking is used for reduction & extension rule / start rule (default: no restricted backtracking).
- reo(1): reorder clauses I times (default: no reordering).
 comp(I): complete search strategy when proof depth I is reached.
- Different settings are consecutively invoked by shell script.
- The used fixed strategy scheduling preserves completeness.

Optimizations leanCoP 2.0 **Performance** Extensions Summary and Further Research

Analyzing Restricted Backtracking

► TPTP library v3.7.0: 5051 FOF problems; 600 sec time limit.

Domain	# of	1st start	Essent.	Non-es.	Essent.	Non-es.
	proofs	clause	steps	steps	proofs	proofs
CSR	93	87	605	57	75	18
SET	193	141	2005	227	117	76
SWC	14	14	54	0	14	0
SWV	160	117	1297	51	135	25
SYN	204	190	1734	41	189	15
Total	1256	981	19403	2485	882	374
[%]	100%	78%	89%	11%	70%	30%

▶ 1st start clause: first start clause is used in the final proof.

- Essential steps: proof steps that did not require backtracking.
- Essential proofs: proofs that only contain essential steps.
- Observation: about 90%/70% essential proof steps/proofs.

Performance of Different Clausal Form Translations

► TPTP library v3.7.0: 5051 FOF problems; 600 sec time limit.

System	TPTP	Flotter	E		leanCoP	2.0 ——-
Version	3.7.0	3.0	1.0	"def"	"nodef"	(default)
Proved	1205	1365	1369	1486	1514	1560
[%]	24%	27%	27%	29%	30%	31%
Rating						
0.000.24	53%	56%	58%	62%	60%	62%
0.250.49	39%	47%	47%	52%	51%	53%
0.500.74	10%	16%	16%	17%	22%	24%
0.751.00	1%	1%	1%	1%	2%	2%

- ▶ leanCoP 2.0 with strategy "[cut,comp(7)]".
- Using clausal form translations of TPTP2X/SPASS(Flotter)/E and "def"/"nodef"/default translation of leanCoP 2.0.
- Best: leanCoP's default translation ("def" only for conjecture).

18 / 26

izations leanCoP 2.0 **Performance** Extensions Summary and Further Resea

Performance of Different Techniques

► TPTP library v3.7.0: 5051 FOF problems; 600 sec time limit.

	leanCoP 1.0	basic	define	regular	restrict	leanCoP 2.0
Proved	1105	1086	1094	1256	1560	1797
[%]	22%	22%	22%	25%	31%	36%
Average time	12.2 s	2.6 s	2.8 s	3.6 s	2.6 s	6.1 s
Rating 0.0	458	450	446	501	531	554
Rating >0.0	647	636	648	755	1029	1243
No equality	532	526	515	552	587	616
With equality	573	560	579	704	973	1181

• "basic": using lean Prolog technology.

"define": plus (default) definitional clausal translation.

"regular": plus regularity and lemmata (leanCoP settings: []).

"restrict": plus restricted backtracking ([cut,comp(7)]).

IeanCoP 2.0: plus strategy scheduling.

Performance of leanCoP 2.1 and Other ATP Systems

► TPTP library v3.7.0: 5051 FOF problems; 600 sec time limit.

System	leanTAP	Otter	Prover9	SNARK	leanCoP	E
Version	2.3	3.3	2009-02A	08/07	2.1	1.0
Proved	404	1389	1664	1735	1893	2541
[%]	8%	27%	33%	34%	37%	50%
Rating						
0.000.24	17%	64%	61%	69%	68%	75%
0.250.49	18%	47%	71%	68%	68%	92%
0.500.74	2%	3%	27%	21%	35%	74%
0.751.00	0%	0%	1%	1%	5%	12%

(rating 0.0: easy; rating 1.0: very difficult)

- ▶ leanCoP 1.0/2.0: 1105/1797 problems (SETHEO 3.3: 1296).
- leanCoP 2.1 accepts TPTP syntax and outputs a proof.
- Ranked 3rd at CADE system competition 2010 (CASC-J5) of provers that output a proof in the first-order division (FOF).

Jens Otten (University of Potsdam)

< □20 / 26

The ileanCoP 1.2 Source Code

```
prove(I,S) :- ( \+member(scut,S) ->
    prove([(-(#)):(-[])],[],I,[],[Z,T],S);
    lit((#):_,G:C,_) -> prove(C,[(-(#)):(-[])],I,[],[Z,R],S),
    append(R,G,T) ), check_addco(T), prefix_unify(Z).
prove(I,S) :- member(comp(L),S), I=L -> prove(1,[]) ;
    (member(comp(_),S);retract(p)) -> J is I+1, prove(J,S).
prove([],_,_,_,[[],[]],_).
prove([L:U|C],P,I,Q,[Z,T],S) :- + (member(A,[L:U|C]),member(B,P),
    A==B), (-N=L;-L=N) \rightarrow (member(D,Q), L:U==D, X=[], O=[];
    member(E:V,P), unify_with_occurs_check(E,N),
    \+ \+ prefix_unify([U=V]), X=[U=V], O=[] ;
    lit(N:V,M:F,H), \+ \+ prefix_unify([U=V]),
    (H=g -> true ; length(P,K), K<I -> true ;
    + p \rightarrow assert(p), fail), prove(F, [L:U|P], I, Q, [W, R], S),
    X = [U = V | W], append(R,M,O)), (member(cut,S) -> !; true),
    prove(C,P,I,[L:U|Q],[Y,J],S), append(X,Y,Z), append(J,O,T).
```

► ileanCoP 1.2 core prover plus prefix unification (23 more lines).

< □ →21 / 26

ר דו ח	tioni		

Performance of ileanCoP 1.2

► TPTP library v3.3.0: 3644 FOF problems; 600 sec time limit.

System	JProver	ileanTAP	ft (C)	ileanSeP	Imogen	ileanCoP
Version	11-2005	1.17	1.23	1.0	2.1	1.2
Proved	186	255	262	303	842	1127
[%]	5%	7%	7%	8%	23%	31%
Rating						
0.000.24	13.1%	15.3%	16.1%	17.1%	48.3%	54.5%
0.250.49	0.4%	4.5%	5.0%	9.1%	20.1%	34.1%
0.500.74	0.0%	1.2%	0.2%	0.0%	4.2%	20.2%
0.751.00	0.0%	0.3%	0.2%	0.0%	0.5%	2.3%

- CADE system competition 2007 (CASC-21): ileanCoP proved more problems than some classical provers and proved two problems for which Vampire did not find a classical proof.
- Intuitionistic problem library ILTP (Raths/Otten/Kreitz '07).

< □22 / 26

 Optimizations
 leanCoP 2.0
 Performance
 Extensions
 Summary and Further Research

 leanCoP-Ω:
 First-Order Logic with Linear Arithmetic

prove([],_,_,_,[],Eq,Eq). prove([L|C],P,I,Q,S,Pr,Eq,Eq1) :-Pr=[[R|F]|Pr1]|Pr2], + (member(A, [L|C]), member(B,P), A==B),(-N=L;-L=N) -> (member(D,Q), L==D, F=[], Pr1=[], Eq2=Eq ; member(E,P), unify_with_arith(E,N,EqU,S), append(EqU,Eq,Eq2), omega(Eq2), F=[], Pr1=[]; lit(N,E,F,H), unify_with_arith(E,N,EqU,S), append(EqU,Eq,Eq3), omega(Eq3), (H=g -> true ; length(P,K), K<I -> true ; \+ pathlim -> assert(pathlim), fail), prove(F,[L|P],I,Q,S,Pr1,Eq3,Eq2) ; (L=(__);-(_=)=L;L=(_<);-(_<)=L) -> (leanari(L) -> Eq2=Eq, F=[], Pr1=[] ; member(eq(_),S), path_eq(P,L,EqP), (omega([EqP|Eq]) -> Eq2=[EqP|Eq], F=[], Pr1=[]; member(eq(2),S), lit(_,R,F,H), $(R=(_=);-(_=)=R;R=(_<);-(_<)=R)$, $(H=g \rightarrow true; length(P,K),$ K<I -> true ; \+ pathlim -> assert(pathlim), fail), prove([R|F],[L|P],I,Q,S,Pr1,Eq,Eq2)))), (var(R) -> R=N ; true), (member(cut,S) -> ! ; true), prove(C,P,I,[L|Q],S,Pr2,Eq2,Eq1).

+ Omega test system (Pugh '92) for linear integer arithmetic.

Optimizations			Extensions	
	Perf	ormance of	leanCoP-Ω	2

- CADE system competition 2010 (CASC-J5): New division (TFA) containing problems in first-order logic with linear integer arithmetic.
- ► CASC-J5, TFA division: 75 problems; 300 sec time limit.

System	$IeanCoP-\Omega$	SPASS+T			
Version	0.1	2.2.12			
Proved	64	62	46	39	35
[%]	85%	83%	61%	52%	47%

- leanCoP-Ω still in a very experimental state.
- Joint work with Holger Trölenberg (interface to Omega) and Thomas Raths (parsing of type information and testing).

Optimizations				Summary and Further Research		
		Summ	arv			
Jumilary						

- Connection calculus well suited to automate logic reasoning in classical and non-classical logics.
 - leanCoP currently fastest connection/tableau prover.
 - ileanCoP currently fastest prover for intiutionistic logic.
 - IeanCoP-Ω CASC-winner for linear integer arithmetic.

Web: www.leancop.de

- Restricted backtracking is single most effective technique to reduce the search space in connection calculi.
- ► First-order logic = propositional logic + term unification.
- ► Non-classical logics = classical logic + prefix unification.

Optimizations			Summary and Further Research
	Further Re	esearch	
		Joedi en	

- Develop non-clausal connection calculus that does require any translation steps into clausal form.
- Improving algorithm for prefix unification.
- Extend calculus/implementation to other non-classical logics.
 - Modal logics, e.g. D, D4, K, K4, T, S4, S5.
 - ► Fragments of linear logic, e.g. multiplicative fragment.
- Build problem libraries for other non-classical logics, e.g. for some first-order modal logics (QMLTP library).