Inferenzmethoden

Einheit 14

Logiken höherer Stufe

- 1. Lineare Logik
- 2. Matrixmethoden für Fragmente
- 3. Higher-order Logik

Lineare Logik

LINEARE LOGIK

Ressourcen-orientierte Logik

Schließen über Konsequenzen von Handlungen

- Formeln sind Ressourcen, die aufgebraucht werden
- Manche Ressourcen werden als wiederverwendbar gekennzeichnet
- Adäquater für Planung und Modellierung von Aktionen
- Keine Frame-Axiome erforderlich

• Viele andersartige Grundoperatoren erforderlich

- Mehrerere Varianten von Konjunktion, Disjunktion, Implikation Kommutative und nichtkommutative Versionen Idempotente und nicht-idempotente Versionen (z.B. $A \not\vdash A \land A$)
- Additive, multiplikative und exponentielle Operatoren

• Logik gilt nach 30 Jahren immer noch als kompliziert

- Semantik von der Fachwelt nur wenig verstanden
- Bereits aussagenlogisch unentscheidbar
- $\ Nur \ in \ Fragmenten \ automatisierbar \quad (\mapsto \mathsf{Proof} \ \mathsf{Nets} \ / \ \mathsf{Lineare} \ \mathsf{Konnektionsmethode})$

_ Inferenzmethoden $\S 14$: _______ 1 _____ Logiken höherer Stufe _

SYNTAX UND SEMANTIK

• Syntax der (aussagenlogischen) linearen Logik

- -1, \bot , \top , 0 und elementare Propositionen sind (atomare) Formeln
- Sind A und B Formeln, dann auch A^{\perp} , $A \otimes B$, $A \otimes B$, $A \otimes B$, A B, $A \otimes B$, $A \otimes B$,
- Prädikatenlogische Syntax ist analog zur Standardlogik

• Keine leicht zu definierende Semantik

- Dialogische Semantik (Game Semantics) erklärt Operatoren
- Einfachere Semantik basiert auf Beweisbarkeit im Sequenzenkalkül

• Lineare Logik ist als substrukturelle Logik beschreibbar

- Sequenzenkalkül ohne allgemeine Kontraktion und Ausdünnung
 Nur wiederverwendbare Ressourcen können verdoppelt werden
 Alle anderen Hypothesen werden "verbraucht" (Linearität)
- Regeln definieren Bedeutung der einzelnen Operatoren

Bedeutung der Konnektive

- A^{\perp} : Lineare Negation (Wechsel zwischen Verwenden und Erzeugen)
- ullet $A \otimes B$: Multiplikative Konjunktion, ein A und ein B
- \bullet A&B: Additive Konjunktion, freie Wahl zwischen A und B (nicht beide)
- $A^{\gamma}B \equiv (A^{\perp} \otimes B^{\perp})^{\perp}$: Multiplikative Disjunktion
- $A \oplus B \equiv (A^{\perp} \& B^{\perp})^{\perp}$: Additive Disjunktion, genau ein A oder ein B
- $A \multimap B \equiv (A \otimes B^{\perp})^{\perp}$: Multiplikative Implikation
 - genau ein A wird verbraucht um ein B zu erzeugen
- 1: Multiplikative Einheit
 - Kann verbraucht werden, ohne daß etwas produziert werden muß
 - Kann ohne Ressourcen erzeugt werden
- T: Additive Einheit
 - Kann nicht verbraucht werden
 - Kann erzeugt werden und dabei beliebige Ressourcen verbrauchen/erzeugen
- $\perp \equiv 1^{\perp}$: Multiplikativ leere Ressource
- $0 \equiv T^{\perp}$: Additiv leere Ressource
- !A: A kann beliebig oft verwendet werden (Exponential)
- $?A \equiv (!(A^{\perp}))^{\perp}$: A kann beliebig oft erzeugt werden (Exponential)

Beispielformalisierungen

- Chemische Reaktion: 2xWasserstoff+Sauerstoff=2xWasser
 - Klassische Formel $H_2 \wedge H_2 \wedge O_2 \Rightarrow H_2O \wedge H_2O$ drückt dies nicht aus, denn dies wäre gleichwertig zu $H_2 \wedge O_2 \Rightarrow H_2O$
 - Lineare Logik beschreibt Ressourcen $H_2 \otimes H_2 \otimes O_2 \longrightarrow H_2 O \otimes H_2 O$

Planungsprobleme mit Auswahl

- Für 6€ bekomme ich Zigaretten
 Für 6€ bekomme ich ein Tagesticket Berlin ABC
- Klassische Logik: $6 \in \Rightarrow$ Cig, $6 \in \Rightarrow$ ABC \vdash $6 \in \Rightarrow$ Cig ∧ ABC
- Lineare Logik: $6 \in \multimap \text{Cig}, 6 \in \multimap \text{ABC} \vdash 6 \in \multimap \text{Cig} \& \text{ABC}$ $6 \in \multimap \text{Cig}, 6 \in \multimap \text{ABC} \vdash 12 \in \multimap \text{Cig} \otimes \text{ABC}$ oder sogar $!(6 \in \multimap \text{Cig}), !(6 \in \multimap \text{ABC})$ $\vdash 12 \in \multimap \text{(Cig} \otimes \text{ABC}) \& \text{(Cig} \otimes \text{Cig}) \& \text{(ABC} \otimes \text{ABC})$

• Tagesmenü eines Restaurants

- -25€ \multimap ((Tomatensuppe \oplus Hühnersuppe) & Salat) \otimes (Fisch & Rind) \otimes (5€ \multimap ((Eiskreme & Kuchen) \otimes !Kaffee))
- In klassischer Logik nicht beschreibbar

Refinement Kalkül für Lineare Logik

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$H', B \vdash G'$ $H, A \otimes B \vdash G$ $H, A, B \vdash G$ $H, H' \vdash G, G', A \otimes B$ $H \vdash G, A$ $H' \vdash G', B$ $H, H', A \otimes B \vdash G, G'$ $H, A \vdash G$ $H', B \vdash G'$ $H, 1 \vdash G$ $H \vdash G$ $\bot \vdash A$ $\bot A$ \bot					
$H, A \otimes B \vdash G \qquad \otimes \mathbb{L} \qquad H, H' \vdash G, G', A \otimes B \qquad \otimes \mathbb{R}$ $H, A, B \vdash G \qquad H \vdash G, A \qquad H' \vdash G', B$ $H, H', A \nearrow B \vdash G, G' \qquad \nearrow \mathbb{L} \qquad H \vdash G, A \nearrow B \qquad Y \nearrow \mathbb{R}$ $H, A \vdash G \qquad H \vdash G, A, B \qquad H \vdash G, A, B$ $H', B \vdash G' \qquad 1 \mathbb{L} \qquad \vdash 1 \qquad 1 \mathbb{R}$ $H \vdash G \qquad \bot \mathbb{L} \qquad \bot \mathbb{L} \qquad \bot \mathbb{R}$					
$H, A, B \vdash G$ $H, H', A \nearrow B \vdash G, G'$ $H, H \vdash G, A \nearrow B$ $H, A \vdash G$ $H', B \vdash G'$ $H, 1 \vdash G$ $H \vdash G$ $\bot \vdash H \vdash G, \bot$ $\bot \vdash \bot$ $\bot \vdash H \vdash G, \bot$ $\bot \vdash \bot$					
$H' \vdash G', B$ $H, H', A \nearrow B \vdash G, G' \qquad \nearrow \bot \qquad H \vdash G, A \nearrow B \qquad \nearrow \nearrow$					
$H, H', A \nearrow B \vdash G, G' \qquad \nearrow \bot \qquad H \vdash G, A \nearrow B \qquad \qquad \nearrow \R$ $H, A \vdash G \qquad \qquad H \vdash G, A, B \qquad \qquad H \vdash G, A, B \qquad \qquad H \vdash G$ $H, 1 \vdash G \qquad \qquad \bot \bot \qquad \bot \bot \qquad \bot \R$ $\bot \vdash \qquad \bot \bot \qquad \bot \bot \qquad \bot \bot \qquad \bot \bot \R$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$H', B \vdash G'$ $H, 1 \vdash G$ $H \vdash G$ $L \vdash H \vdash G, \bot$ $L \vdash H \vdash G, \bot$ $L \vdash H \vdash G, \bot$					
$\begin{array}{c cccc} H, 1 \vdash G & & 1 L & \vdash 1 & & 1 R \\ H \vdash G & & & & & & \\ \bot \vdash & & \bot L & H \vdash G, \bot & & \bot R \end{array}$					
$H \vdash G$ $\bot \vdash \qquad \bot \bot \qquad \bot \bot $					
\bot \vdash \bot					
$II \vdash C$					
$H \vdash G$					
Negation					
$H, A^{\perp} \vdash G$ $^{\perp}$ L $H \vdash G, A^{\perp}$ $^{\perp}$ R					
$H \vdash G, A$ $H, A \vdash G$					
Allgemeine Regeln					
$H, H' \vdash G, G'$ cut $A \vdash A$ axiom					
$H \vdash G, A$					
$H', A \vdash G'$					

Additives Fragment						
$H, 0 \vdash G$	0L	$H \vdash G, \top$	TR			
$H, A\&B' \vdash G$	&L1	$H \vdash G, A\&B$	<i>B</i> &R			
$H, A \vdash G$		$H \vdash G, \underline{A}$				
$H, A\&B \vdash G$	&L2	$H \vdash G, \underline{B}$				
$H, \mathbf{B} \vdash G$						
$H, A \oplus B \vdash G$	$\oplus L$	$H \vdash G, A \oplus B$	⊕R1			
$H, A \vdash G$		$H \vdash G, \underline{A}$				
$H, \underline{B} \vdash G$		$H \vdash G, A \oplus B$	\oplus R2			
		$H \vdash G, \mathbf{B}$				
	Expor	nentiale				
$H, !A \vdash G$	$\mathbb{A} {-} \Gamma$	$H \vdash G, ?A$	w-R			
$H \vdash G$		$H \vdash G$				
$H, !A \vdash G$	c-L	$H \vdash G, ?A$	c-R			
$H, !A, !A \vdash G$		$H \vdash G, ?A, ?A$				
$H, !A \vdash G$!L	$H^! \vdash G^?, !A$!R			
$H, A \vdash G$		$H^! \vdash G^?, A$				
$H^!, ?A \vdash G^?$?L	$H \vdash G, ?A$?R			
$H^!, A \vdash G^?$		$H \vdash G, \underline{A}$				
Regeln für Quantoren wie bei Prädikatenlogik						

H,H',G,G' sind multi-sets. Weakening und contraction gibt es nur für Exponentiale $H^!$ und $G^?$ bestehen nur aus den entsprechenden Exponentialen Die Regel axiom darf keine verbleibenden Hypothesen haben. Es gibt keine 0R oder $\top L$ regel

_ Inferenzmethoden §14: _______5 _____ Logiken höherer Stufe ___

Beweis für 6€⊸Cig, 6€⊸ABC ⊢ 12€⊸(Cig⊗ABC)

\vdash (6€ \multimap Cig) \multimap (6€ \multimap ABC) \multimap ((6€ \otimes 6€) \multimap (Cig \otimes ABC))	BY ⊸R
1. 6€ \multimap Cig \vdash (6€ \multimap ABC) \multimap ((6€ \otimes 6€) \multimap (Cig \otimes ABC))	BY ⊸R
1.1. 6€ \multimap Cig, 6€ \multimap ABC \vdash (6€ \otimes 6€) \multimap (Cig \otimes ABC)	BY —∘R
1.1.1. 6€—∞Cig, 6€—∞ABC, 6€⊗6€ ⊢ Cig⊗ABC	$BY \otimes L$
1.1.1.1. 6€—∞Cig, 6€—∞ABC, 6€, 6€ ⊢ Cig⊗ABC	$BY \otimes \! R$
1.1.1.1.1 6€—∞Cig, 6€ ⊢ Cig	BY ⊸L
1.1.1.1.1. 6€ ⊢ 6€	BY axiom
1.1.1.1.2. Cig ⊢ Cig	BY axiom
1.1.1.1.2. 6€—∘ABC, 6€ ⊢ ABC	BY ⊸L
1.1.1.1.1. 6€ ⊢ 6€	BY axiom
1.1.1.1.2. ABC ⊢ ABC	BY axiom

BEWEIS FÜR $!(6 \in \multimap Cig) \vdash 12 \in \multimap (Cig \otimes Cig)$

⊢ !(6€⊸Cig) ⊸ ((6€⊗6€)⊸(Cig⊗Cig))	BY ⊸R
1. !(6€—∞Cig) ⊢ ((6€⊗6€)—∘(Cig⊗Cig))	BY ⊸R
1.1. !(6€—oCig), 6€⊗6€ ⊢ Cig⊗Cig	BY c-L
1.1.1. !(6€—oCig), !(6€—oCig), 6€⊗6€ ⊢ Cig⊗Cig	BY !L
1.1.1.1. 6€—∞Cig, !(6€—∞Cig), 6€⊗6€ ⊢ Cig⊗Cig	BY !L
1.1.1.1.1 6€—⊙Cig, 6€—⊙Cig, 6€⊗6€ ⊢ Cig⊗Cig	BY ⊗L
1.1.1.1.1 6€—∞Cig, 6€—∞Cig, 6€, 6€ ⊢ Cig⊗Cig	$\mathtt{BY} \otimes \! \mathtt{R}$
1.1.1.1.1.1.6€—∞Cig, 6€ ⊢ Cig	BY ⊸L
1.1.1.1.1.1.1 6€ ⊢ 6€	BY axiom
1.1.1.1.1.1.2. Cig ⊢ Cig	BY axiom
1.1.1.1.1.2. 6€—∞Cig, 6€ ⊢ Cig	BY ⊸L
1.1.1.1.1.2.1. 6€ ⊢ 6€	BY axiom
1.1.1.1.1.2.2. Cig ⊢ Cig	BY axiom

_ Inferenzmethoden §14: ______ 7 _____ Logiken höherer Stufe ____

Beweis für $((A \ \ A^{\perp}) \otimes (B \ \ A)) \ \ (A \ \ B)^{\perp}$

$\vdash ((A \ ? A^{\perp}) \otimes (B \ ? A)) \ ? (A \ ? B)^{\perp}$	BY NR
$1. \vdash (A \ \mathcal{A} \ A^{\perp}) \otimes (B \ \mathcal{A} \ A), \ (A \ \mathcal{B} \ B)^{\perp}$	BY $^{\perp}$ R
1.1. $A \otimes B \vdash (A \otimes A^{\perp}) \otimes (B \otimes A)$	$BY \otimes \! R$
$1.1.1. \vdash A \otimes A^{\perp}$	BY R
$1.1.1.1. \vdash A, A^{\perp}$	BY $^{\perp}$ R
$1.1.1.1.1. A \vdash A$	BY axiom
1.1.2. $A \otimes B \vdash B \otimes A$	BY R
1.1.2.1. $A \approx B \vdash B, A$	BY %L
1.1.2.1.1. $B \vdash B$	BY axiom
$1.1.2.1.2. A \vdash A$	BY axiom

Matrixbasierte Beweissuche für Lineare Logik

• Erweitere Matrixcharakterisierung der Gültigkeit

- -F ist gültig gdw. alle Pfade durch F komplementär
- Komplementaritätsbegriff muß ergänzt werden
 - · Unifizierbarkeit der konnektierten Terme (wenn Prädikatenlogik)
 - · Erreichbarkeit der Literale bei exakter Verwendung der Ressourcen

• Erweitertes Beweissuchverfahren

- Unverändertes konnektionen-orientiertes Pfadüberprüfungsverfahren
- Erweiterter Komplementaritätstest
 - · Termunifikation liefert Substitution σ_Q von γ -Variablen durch Terme
 - · Präfixunifikation liefert Substitution σ_L für lineare Präfixe
 - · Zusätzliche Linearitätstests sichern Ressourcenverwendung
- Substitutionen liefern Reihenfolge von Regeln im Sequenzenbeweis

• Bisher nur für multiplikatives Fragment gelungen

- Charakterisierung + Beweisverfahren für \mathcal{MLL} (\multimap , \otimes , ?, 1, \bot , $^{\bot}$)
- Matrixcharakterisierung für \mathcal{MELL} (\mathcal{MLL} + Exponentiale !, ?))
- Für \mathcal{ALL} (&, ⊕, 0, \top , $^{\perp}$) gibt es nur separate Verfahren \mapsto Galmiche

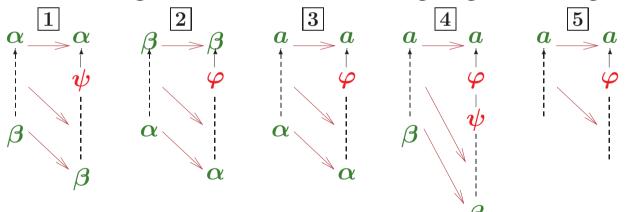
Lineare Positionsbäume

- Zuordnung von Typen und Polaritäten (analog zu \land , \lor , \Rightarrow , \neg)
 - Wurzel hat Polarität F
 - Nachfolgerpolaritäten und -typen werden tabellarisch bestimmt

α	$(A \otimes B)^{\mathbf{T}}$	$(A \Re B)^{F}$	$(A \multimap B)^{\mathbf{F}}$	β	$(A \otimes B)^{F}$	$(A \Re B)^T$	$(A \multimap B)^T$	0	$(A^{\perp})^T$	$(A^{\perp})^{F}$
α_1	A^T	A^F	A^T	β_1	A^F	A^T	A^{F}	01	A^F	A^T
$lpha_2$	B^{T}	B^{F}	B^{F}	eta_2^-	B^{F}	B^{T}	$B^{\mathbf{T}}$			

ullet Ergänze lineare Positionen arphi, ψ zum Formelbaum

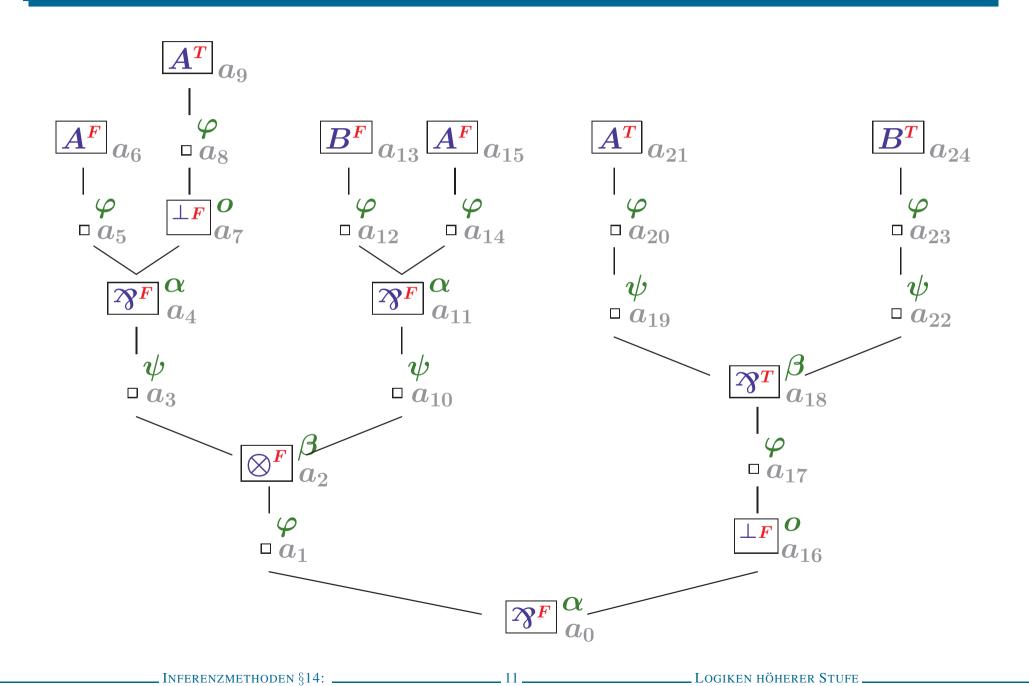
- Wende die folgenden fünf Erweiterungsregeln solange wie möglich an



 α , β , a stehen für α -, β -, atomare Positionen --- steht für beliebig viele o-Positionen

- z.B. 1: Füge ψ -Position unmittelbar vor α ein, wenn vor α ein β vorkommt
- Entstehender Baum ist linearer Positionsbaum der Formel
- $-\varphi$ -Positionen gelten als Variablen, ψ -Positionen als Konstante

Positionsbaum für $((A \% A^{\perp}) \otimes (B \% A)) \% (A \% B)^{\perp}$



Lineare Präfixe

• Lineare Positionen codieren Linearitätsbedingungen

- Trennen α -Ebenen von β -Ebenen und atomare Positionen vom Rest
- Helfen sicherzustellen, daß jede Position genau einmal verwendet wird und Sequenzenregeln in der richtigen Reihenfolge angewandt werden
- Stellen sicher, daß Ressourcen korrekt aufgeteilt werden können
- Technische Verwendung ähnlich wie bei konstruktiver Logik

• Bestimme lineares Präfix eines Atoms P

– Liste der linearen Positionen zwischen Wurzel und P

ullet Definiere lineare Substitution σ_L

- Abbildung von φ -Positionen in Strings über linearen Positionen
- $-\sigma_L$ induziert Reduktionsordnung \sqsubseteq_L auf linearen Positionen: Ist $\sigma_L(u) = v_1...v_n$ dann gilt $v_i \sqsubseteq_L u$ für jede ψ -Position v_i

ullet Lineare Multiplizität nur für Exponentiale (\mathcal{MELL})

Komplementaritätsbedingungen

Komplexeres Kriterium als in konstruktiver Logik

- Aufspannende Menge Con von Konnektionen
 - Jeder Pfad durch Positionsbaum enthält Konnektion aus Con
- ullet Komplementarität jeder Konnektionen $\{u,v\}$
 - $-\sigma_L(pre(u)) = \sigma_L(pre(v))$ (ggf. auch Komplementarität unter σ_Q)
- ullet Zulässigkeit von σ_L
 - $-\operatorname{Ist} \sigma_L(\operatorname{pre}(u)) = s_1 v s_2$, dann muß $\sigma_L(\operatorname{pre}(v)) = s_1 v$ sein
- Linearität von Con
 - Jede atomare Position ist maximal einmal konnektiert
 - Keine Ressource wird mehrfach verwendet
- Relevanz von F für Con
 - Jede atomare Position ist mindestens einmal konnektiert
 - Jede Ressource wird auch eingesetzt
- Minimalität von Con
 - Keine echte Teilmenge von Con spannt den Positionsbaum auf

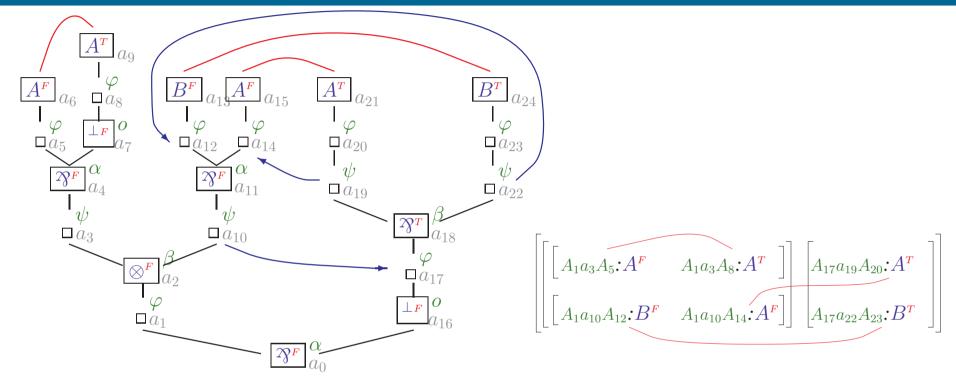
Matrixcharakterisierung für \mathcal{MLL}

• Wichtige Erkenntnisse

- Ist eine aufspannde Paarung $Con \sigma_L$ -komplementär für F, dann ist die induzierte Ordnung $\lhd = (\lhd \cup \sqsubseteq_L)^+$ irreflexiv
- Ist eine aufspannde Paarung $Con \sigma_L$ -komplementär für F und σ_L zulässig, dann ist Con linear (vereinfacht die Matrixcharakterisierung)
- Ist eine aufspannde Paarung $Con \sigma_L$ -komplementär für F, linear und relevant, dann ist Con genau dann minimal, wenn $|Con| = \#_{\beta}(F) + 1$ (vereinfacht den Test auf Minimalität)

Eine Formel F ist gültig in \mathcal{MLL} , wenn es eine zulässige Substitution σ_L und eine minimale Menge $\mathcal{C}on$ von σ_L -komplementären Konnektionen gibt, so daß F relevant für $\mathcal{C}on$ ist und jeder Pfad durch den Positionsbaum von F ein Element von \mathcal{C} enthält

Matrixbeweis für $((A \% A^{\perp}) \otimes (B \% A)) \% (A \% B)^{\perp}$



• Alle vier Pfade sind durch drei Konnektion aufgespannt

- Con = {{ a_6, a_9 }, { a_{15}, a_{21} }, { a_{13}, a_{24} }}
- Con ist minimal (es gibt zwei β -Positionen in F)
- -F ist relevant für Con (alle atomaren Positionen erscheinen in Con)
- Con ist σ_L -komplementär für die zulässige Substition $\sigma_L = \{ \varepsilon/A_1, \ \varepsilon/A_5, \ \varepsilon/A_8, \ a_{22}/A_{12}, \ a_{19}/A_{14}, \ a_{10}/A_{17}, \ \varepsilon/A_{20}, \ \varepsilon/A_{23} \}$

• Die Formel ist gültig in \mathcal{MLL}

Extensionsverfahren für \mathcal{MLL}

• Pfadüberprüfungsverfahren wird geringfügig erweitert

- Regeln aus Einheit 6 müssen verwendete Konnektionen verwalten
- Linearitätstest wird dynamisch im Extensionsschritt durchgeführt
 Guter Filter, um erfolglose Suchpfade frühzeitig zu eliminieren
- Keine Reduktionsregel (Anwendung würde Linearität verletzen)
- Relevanz und Minimalität muß separat am Ende geprüft werden

• Komplementaritätstest wird erweitert

- Termunifikationsverfahren entfällt für \mathcal{MLL}
- Präfixunifikationsverfahren mit Logik-spezifischen Regeln
- Überprüfung der Zulässigkeit separat am Ende

Verfahren bisher nur auf MLL anwendbar

Matrixcharakterisierung für MELL ist komplexer und benötigt
 Multiplizitäten, Weakening-Tabelle, aufwendigere Präfixunifikation

Konnektionskalkül für lineare Matrizen

• Regeln verwalten Objekte der Form $\mathcal{C}, \mathcal{M}, \mathcal{P}, \sigma, \mathcal{C}on$

- Aktuelle Klausel, Restmatrix, Pfad, Substitution, Konnektionsmenge
- Substitution σ und Konnektionsmenge Con werden lokal bestimmt, und an Unterziele weitergereicht und von dort zurückgereicht

Startregel

- Für Beweis von \mathcal{M} wähle Startziel $\mathcal{C}=\mathcal{M}$, setze $\mathcal{P}=\{\}, \sigma=[], \mathcal{C}on=\{\}$

```
\vdash \mathcal{M}
                                                                     ret \sigma,\mathcal{C}on
        \vdash \mathcal{M}, \mathcal{M}, \{\}, [], \{\} ret \sigma, \mathcal{C}on
        \vdash admissible(\sigma)
        \vdash |\mathcal{C}on| = \#_{\beta}(\mathcal{M}) + 1
         \vdash atoms(\mathcal{M}) \subseteq \bigcup \mathcal{C}on
```

Start

- Substitution und Konnektionsmenge werden im Unterziels bestimmt und auf Zulässigkeit, Minimalität und Relevanz geprüft

Regeln des linearen Konnektionskalküls

• Bereinigung: Abschluß des aktuellen Pfades

 $-\mathcal{C}, \mathcal{M}, \mathcal{P}, \mathcal{C}on$ ist beweisbar, wenn \mathcal{C} leer ist

```
\vdash \{\}, \mathcal{M}, \mathcal{P}, \sigma, \mathcal{C}on \quad \text{ret } \sigma, \mathcal{C}on \mid
                                                                                                Axiom
```

- Regel schließt einen Ast im Konnektionskalkülbeweis
- Eingabesubstitution und -konnektionsmenge werden Rückgabewert

• Extension: Verlängerung des aktuellen Pfades

 $-\mathcal{C}, \mathcal{M}, \mathcal{P}, \mathcal{C}on$ ist beweisbar, wenn es $L \in \mathcal{C}, L' \sim_{\alpha} \mathcal{P} \cup \{L\}$ gibt, sodaß $c = \{L, L'\}$ komplementär, $c \in \mathcal{C}on$ oder $c \cap \bigcup \mathcal{C}on = \emptyset$ (Linearität) und $L'_{\beta}(\mathcal{P} \cup \{L\}), \mathcal{M}, \mathcal{P} \cup \{L\}$ sowie $\mathcal{C} \cap L_{\beta}, \mathcal{M}, \mathcal{P}$ beweisbar sind

```
\vdash \mathcal{C}, \mathcal{M}, \mathcal{P}, \sigma, \mathcal{C}on
                                                                                                                                               ret \sigma_2, \mathcal{C}on_2
          \vdash L'_{\beta}(\mathcal{P} \cup \{L\}), \mathcal{M}, \mathcal{P} \cup \{L\}, \sigma \rho, \mathcal{C}on \cup \{L, L'\} \text{ ret } \sigma_1, \mathcal{C}on_1
          \vdash \mathcal{C} \cap L_{\beta}, \mathcal{M}, \mathcal{P}, \sigma_1, \mathcal{C}on_1
                                                                                                                                              ret \sigma_2, \mathcal{C}on_2
          \vdash L \in \mathcal{C}
          \vdash L' \sim_{\alpha} \mathcal{P} \cup \{L\}
          \vdash \sigma \rho(L') = \sigma \rho(\overline{L})
           \vdash \{L, L'\} \in \mathcal{C}on \lor \{L, L'\} \cap \bigcup \mathcal{C}on = \emptyset
```

Extension L, L', ρ

- Bisherige Substitution und Konnektionsmenge kann erweitert werden
- Resultat des ersten Teilziels wird weitergereicht, dann zurückgegeben

Extensionsbeweis für $((A \% A^{\perp}) \otimes (B \% A)) \% (A \% B)^{\perp}$

```
\vdash \mathcal{M}
                                                                        BY Start
                                                                                                                       \sigma_3, \{\{A^F, A^T\}, \{B^F, B^T\}, \{A^T, A^F\}\}
                                                    BY Extension A^{	extbf{	extit{F}}}, A^{	extbf{	extit{T}}}, 
ho_1
1. \vdash M, M, \{\}, [], \{\}
                                                                                                                      \sigma_3, \{\{A^F, A^T\}, \{B^F, B^T\}, \{A^T, A^F\}\}
1.1. \vdash \{\}, \mathcal{M}, \{A^{F}\}, \sigma_{1}, \{\{A^{F}, A^{T}\}\} BY Axiom
                                                                                                                      \sigma_1, \{\{A^F, A^T\}\}
1.2. \vdash \{B^{F}, A^{F}\}, \mathcal{M}, \{\}, \sigma_{1}, \{\{A^{F}, A^{T}\}\}\ BY Extension B^{F}, B^{T}, \rho_{2} \quad \sigma_{3}, \{\{A^{F}, A^{T}\}, \{B^{F}, B^{T}\}, \{A^{T}, A^{F}\}\}\ 
1.2.1. \vdash \{A^T\}, \mathcal{M}, \{B^F\}, \sigma_2, \{\{A^F, A^T\}, \{B^F, B^T\}\}
                                                                        BY Extension A^{T}, A^{F}, \rho_{3}
                                                                                                                    \sigma_3, \{\{A^F, A^T\}, \{B^F, B^T\}, \{A^T, A^F\}\}
1.2.1.1. \vdash \{\}, \mathcal{M}, \{B^F, A^T\}, \sigma_3, \{\{A^F, A^T\}, \{B^F, B^T\}, \{A^T, A^F\}\}
                                                                        BY Axiom
                                                                                                                      \sigma_3, \{\{A^F, A^T\}, \{B^F, B^T\}, \{A^T, A^F\}\}
1.2.1.2. \vdash \{\}, \mathcal{M}, \{B^F\}, \sigma_3, \{\{A^F, A^T\}, \{B^F, B^T\}, \{A^T, A^F\}\}\}
                                                                        BY Axiom
                                                                                                                      \sigma_3, \{\{A^F, A^T\}, \{B^F, B^T\}, \{A^T, A^F\}\}
1.2.2. \vdash \{\}, \mathcal{M}, \{\}, \sigma_3, \{\{A^F, A^T\}, \{B^F, B^T\}\}
                                                                        BY Axiom
                                                                                                                      \sigma_3, \{\{A^F, A^T\}, \{B^F, B^T\}, \{A^T, A^F\}\}
```

$$\rho_{1} = \{\varepsilon/A_{5}, \varepsilon/A_{8}\} \qquad \rho_{3} = \{a_{22}/A_{12}, a_{19}/A_{14}, a_{10}/A_{17}, \varepsilon/A_{20}\}$$

$$\begin{bmatrix} A_{1}a_{3}A_{5} : A^{F} & A_{1}a_{3}A_{8} : A^{T} \\ A_{1}a_{10}A_{12} : B^{F} & A_{1}a_{10}A_{14} : A^{F} \end{bmatrix} \begin{bmatrix} A_{17}a_{19}A_{20} : A^{T} \\ A_{17}a_{22}A_{23} : B^{T} \end{bmatrix}$$

$$\rho_{2} = \{\varepsilon/A_{1}, a_{22}/A_{12}, \varepsilon/A_{23}\}$$

$$\rho_{2} = \{\varepsilon/A_{1}, a_{22}/A_{12}, \varepsilon/A_{23}\}$$

$$\rho_{3} = \{\varepsilon/A_{1}, \varepsilon/A_{5}, \varepsilon/A_{8}, a_{22}/A_{12}, \varepsilon/A_{23}\}$$

$$\rho_{4} = \{\varepsilon/A_{1}, a_{22}/A_{12}, \varepsilon/A_{23}\}$$

$$\rho_{5} = \{\varepsilon/A_{1}, a_{22}/A_{12}, \varepsilon/A_{23}\}$$

Inferenzmethoden §14:

_ 19

LINEARE PRÄFIX-UNIFIKATION

Unifiziere Präfix-Strings konnektierter Atome

• Ähnlich zur Präfix-Unifikation für konstruktive Logik

- Gleiches Transformationsverfahren im Stil von Martelli-Montanari
- Regeln wie bei konstruktiver Logik
- Regeln R_2, R_4, R_6, R_7 können entfallen, da alle \mathcal{MLL} -Präfixe die Form $\psi_1 \varphi_1 \psi_2 \varphi_2 \dots \psi_n \varphi_n$ oder $\varphi_1 \psi_2 \varphi_2 \dots \psi_n \varphi_n$ haben

Transformationsregeln f ür Lineare Logik

$$R_{1} \quad \{\varepsilon = \varepsilon | \varepsilon\}, \sigma \qquad \leadsto \ \{\}, \sigma$$

$$R_{3} \quad \{Xs = \varepsilon | Xt\}, \sigma \qquad \leadsto \ \{s = \varepsilon | t\}, \sigma$$

$$R_{5} \quad \{Vs = z | \varepsilon\}, \sigma \qquad \leadsto \ \{s = \varepsilon | \varepsilon\}, [z/V] \cup \sigma$$

$$R_{8} \quad \{Vs^{+} = \varepsilon | V_{1}t\}, \sigma \qquad \leadsto \ \{V_{1}t = V | s^{+}\}, \sigma$$

$$R_{9} \quad \{Vs^{+} = z^{+} | V_{1}t\}, \sigma \qquad \leadsto \ \{V_{1}t = V' | s^{+}\}, [z^{+}V'/V] \cup \sigma$$

$$R_{10} \quad \{Vs = z | Xt\}, \sigma \qquad \leadsto \ \{Vs = zX | t\}, \sigma \quad (V \neq X, \text{ und } s = \varepsilon, t \neq \varepsilon, \text{ oder } X \text{ Konstante})$$

Lineare Logik im Rückblick

• Ressourcenlogik mit andersartigen Grundoperatoren

- Additive, multiplikative und exponentielle Operatoren
- Logik höherer Stufe
- Klassische und nichtklassische Logik simulierbar

Modifikation des Matrixkalküls erforderlich

- Formelbaum muß um spezielle lineare Positionen erweitert werden
- Komplementarität verlangt Unifizierbarkeit linearer Präfixe
- Ressourcenverwaltung verlangt Linearität, Relevanz, Minimalität
- Charakterisierung bisher nur für MLL und MELL möglich
 Integration des additiven Fragments bisher nicht gelungen
- Wird mit \mathcal{MELL} die Grenze von Matrixkalkülen erreicht?

• Erweiterung des Extensionsverfahrens entsprechend

- Pfadüberprüfungsverfahren muß um Linearitätstest erweitert werden
- Komplementaritätstest benötigt lineare Präfix-Unifikation
- Implementiert als kompakte Beweiser lin Tap und lin Cop für MLL

Higher-order Logik

Logik höherer Stufe

• Logik erster Stufe hat nur einfache Variablen

- Keine Quantifizierung über Funktions- oder Prädikatensymbole erlaubt

• Konstrukte höherer Stufe kommen in der Realität vor

- Funktionen (2. Stufe): "Bestimme x+2 bei Eingabe x" $\lambda x.x+2$

– Induktionsprinzip: $\forall P.P(0) \land (\forall y: \mathbb{N}.P(y) \Rightarrow P(y+1)) \Rightarrow \forall x: \mathbb{N}.P(x)$

– Zwischenwertsatz: $\forall f: \mathbb{R} \to \mathbb{R}. \forall a < b: \mathbb{R}. (f(a) > 0 \land f(b) < 0) \Rightarrow \exists x: \mathbb{R}. f(x) = 0$

- Funktionale (3. Stufe): Ableitungsoperator $\lambda f.df/dx$

– Quantifizierung über Funktionale, ...

• Logik höherer Stufe hat keine Einschränkungen

- Extrem einfache Syntax: x, $\lambda x.t$, f(a), $\forall x P$, $P \Rightarrow Q$
- Fester Auswertungsmechanismus Reduktion: $(\lambda x.t)(a) \longrightarrow t[a/x]$

• Logik höherer Stufe ist minimale Grundlagentheorie

- Keine Abstützung auf Mengentheorie erforderlich
- Reduktion erklärt Wert von Ausdrücken
- Mathematische Konzepte werden nicht über Axiome erklärt sondern als definitorische Abkürzung für komplexe Terme (logizistischer Ansatz)

Logik höherer Stufe – Syntax

Alphabet für erlaubte Symbole

 $-\mathcal{V}$: Variablensymbole

• Terme

- Variablen $x \in \mathcal{V}$

 $-\lambda x.t$, wobei $x \in \mathcal{V}$ und t Term

-ft, wobei t und f Terme

-(t), wobei t Term

 $-(P \Rightarrow Q)$, wobei P,Q Terme

 $-(\forall x P)$, wobei $x \in \mathcal{V}$ und P Term

Konventionen

– Applikation bindet stärker als λ -Abstraktion

– Applikation ist links-assoziativ:

$$oldsymbol{f} \ oldsymbol{t}_1 oldsymbol{t}_2 \ \hat{=} \ (oldsymbol{f} \ oldsymbol{t}_1) \ oldsymbol{t}_2$$

- Notation $f(t_1, \dots t_n)$ entspricht iterierter Applikation $f(t_1, \dots t_n)$

 λ -Abstraktion

Applikation

Logik höherer Stufe – (Wert-)Semantik

• α -Konversion: Umbenennung gebundener Variablen

– Ersetze Teilterm der Gestalt $\lambda x.t$ durch $\lambda z.t[z/x]$

(z neue Variable)

- Ersetze Teilterm der Gestalt $\forall x \ P$ durch $\forall z \ P[z/x]$
- Terme t und u sind kongruent (α -konvertibel), wenn sie auseinander durch endlich viele Umbenennungen gebundener Variablen entstehen
- $(\beta$ -)Reduktion: Auswertung von Termen
 - Ersetze Teilterm der Gestalt $(\lambda x.t)(s)$ (Redex) durch t[s/x] (Kontraktum)
 - -t ist reduzierbar auf u ($t \xrightarrow{*} u$), wenn u aus t durch endlich viele Reduktionen und Umbenennungen entsteht (\(\hat{=}\) Termersetzung)
- (Semantische) Gleichheit t = s
 - Es gibt einen Term u mit $t \xrightarrow{*} u$ und $s \xrightarrow{*} u$
- Normalform von t: Wert eines Terms
 - Irreduzibler (Redex-freier) Term u mit t = u
 - Der Wert eines Terms ist eindeutig

 $(\stackrel{*}{\longrightarrow} \text{ ist konfluent})$

– Nicht jeder Term hat einen Wert

(keine starke Normalisierbarkeit)

• Semantik von \forall und \Rightarrow analog zur Prädikatenlogik

_ Inferenzmethoden $\S 14$: ______ 24 _____ Logiken höherer Stufe ____

Definition Logischer Standardkonzepte

Junktoren werden zu benutzerdefinierten Funktionen

$$\wedge \equiv \lambda A.\lambda B. \forall P (A \Rightarrow (B \Rightarrow P)) \Rightarrow P$$

$$\lor$$
 $\equiv \lambda A.\lambda B. \forall P ((A \Rightarrow P) \Rightarrow (B \Rightarrow P)) \Rightarrow P$

$$\perp \equiv \forall P P$$

(intuitionistisch)

$$\neg \equiv \lambda A. \forall P (A \Rightarrow P)$$

Existenzquantor
$$\exists x A \equiv \forall P (\forall x (A \Rightarrow P)) \Rightarrow P$$

$$\stackrel{\cdot}{=} \equiv \lambda x. \lambda y. \forall P(P(x) \Rightarrow P(y))$$

DEFINITION VON ZAHLEN: CHURCH NUMERALS

```
\overline{n} \equiv \lambda f. \lambda x. f^n x \equiv \lambda f. \lambda x. \underbrace{f(f...(fx)...)}_{n-mal} s \equiv \lambda n. \lambda f. \lambda x. n f(fx)
add \equiv \lambda m. \lambda n. \lambda f. \lambda x. \ m f(n f x)
 mul \equiv \lambda m. \lambda n. \lambda f. \lambda x. \ m \ (n \ f) \ x
 \exp \equiv \lambda m. \lambda n. \lambda f. \lambda x. \ n \ m \ f \ x
 zero \equiv \lambda n. \ n (\lambda n.F) T
           \equiv \lambda n. \operatorname{snd}((n (\lambda fx. (s, match fx with (f, x) \mapsto f x)) (\lambda z. \overline{0}, \overline{0})))
  N \equiv \lambda x. \forall P (\forall y P(y) \Rightarrow P(s y)) \Rightarrow P(\overline{O}) \Rightarrow P(x)   N(x) = x \in \mathbb{N}
```

Abkürzungen

```
\equiv \lambda x. \lambda y. x
                                          \equiv \lambda x. \lambda y. y
if b then s else t
                             \equiv bst
                                  \equiv \lambda p. p s t
(s,t)
match pair with (x, y) \mapsto t \equiv pair(\lambda x. \lambda y. t)
```

__INFERENZMETHODEN §14: _______26 ______LOGIKEN HÖHERER STUFE _____

Church Numerals: Auswertung von Funktionen

_Inferenzmethoden §14: _____

. 27

LOGIKEN HÖHERER STUFE _

Beweisführung in Logik höherer Stufe

Extensionsverfahren ähnlich wie bei Prädikatenlogik

- Erweiterte Matrixcharakterisierung der Gültigkeit
 - -F ist gültig gdw. alle Pfade durch F komplementär
 - Komplementarität mit erweitertem Substitutionsbegriff
 - · Prädikats- und Funktionssymbole dürfen ersetzt werden
 - · Konnektierte Terme müssen nur semantisch gleich sein
- Erweitertes Beweissuchverfahren

→ TPS (Andrews)

- Konnektionen-orientiertes Pfadüberprüfungsverfahren
- Komplementaritätstest mit Unifikation höherer Stufe

 \rightarrow Huet

- · i.A. unentscheidbar (!) und erheblich komplizierteres Verfahren
- Beweise sind normalerweise sehr kurz und elegant
 - Aber erheblich schwerer zu finden

Beweis der Grundeigenschaften der Gleichheit

$$\doteq \equiv \lambda x.\lambda y. \forall P(P(x) \Rightarrow P(y))$$

• Reflexivität: a = a

$$\begin{bmatrix} \widehat{Pa^T} & \widehat{Pa^F} \end{bmatrix}$$

• Kommutativität: $a = b \Rightarrow b = a$

$$\begin{bmatrix} Xa^{\mathbf{F}} & Pb^{\mathbf{T}} & Pa^{\mathbf{F}} \\ Xb^{\mathbf{T}} & \end{bmatrix}$$

 $[\lambda z. \neg Pz/X]$

• Transitivität: $a = b \land b = c \Rightarrow a = c$

$$\begin{bmatrix} Xa^{\mathbf{F}} & Yb^{\mathbf{F}} & Pa^{\mathbf{T}} & Pc^{\mathbf{F}} \\ Xb^{\mathbf{T}} & Yc^{\mathbf{T}} & & \end{bmatrix} \qquad [P/X, P/Y]$$

• Substitutivität: $Pa \land a = b \Rightarrow Pb$

$$\begin{bmatrix}
Pa^T & Xa^F & Pb^F \\
 & Xb^T
\end{bmatrix}$$

Intuitionistische Logik höherer Stufe

• Unterstützt formale Manipulation von Algorithmen

- Synthese aus Spezifikationen, Optimierung, Verifikation, ...
- Einheitliche Sprache für Spezifikation, Programmierung, Deduktion...

• (Zur Zeit noch) viele verschiedene Formulierungen

- Martin-Löf'sche Typentheorie (Computational Type Theory)
- Kalkül der Konstruktionen
- System *F*
- LCF (Logik berechenbarer Funktionen)

• Beweissysteme interaktiv mit taktischer Steuerung

- **AUTOMATH** (historischer Vorläufer)
- Nuprl, MetaPRL (Computational Type Theory)
- Alf / Agda, ... (Martin-Löf Typentheorie)
- Lego, Coq (Kalkül der Konstruktionen)
- Cambridge LCF
- Viele erfolgreiche Anwendungen