Kryptographie und Komplexität

Einheit 5.2

Angriffe auf Diskrete Logarithmen

- 1. Shanks Babystep-Giantstep
- 2. Pollard ρ Algorithmus
- 3. Pohlig-Hellman Algorithmus
- 4. Die Index-Calculus Methode

Das Problem des diskreten Logarithmus

• Allgemeine Formulierung

- Gegeben multiplikative Gruppe (G, \cdot) , Element g der Ordnung n und $y \in \langle g \rangle$. Bestimme die eindeutige Zahl x < n mit $y = g^x$

ullet Über \mathbb{Z}_p ähnlich schwer wie Faktorisierung

- Viele Faktorisierungsalgorithmen lassen sich übertragen
- Kryptosysteme werden durch Verwendung des DL Problems alleine nicht sicherer als durch das Faktorisierungsproblem

• Es gibt viele DL-Algorithmen

- Aufzählungsverfahren, Shanks, Pollard ρ , Pohlig-Hellman, Index-Calculus, Zahlkörpersiebe
- Zunehmende Kompliziertheit senkt die Komplexität

• Schwieriger über nichtnumerischen Gruppen

Die besten DL-Algorithmen sind nur zahlentheoretisch verwendbar

Aufzählung

• Einfacher, leicht zu programmierender Ansatz

- Lösungskandidaten $x=1,2,3,\ldots$ werden der Reihe nach überprüft
- Die Bestimmung von $x = \log_q y$ benötigt x-1 Multiplikationen
- Hochgradig ineffizient

Laufzeit $\mathcal{O}(n \cdot ||n||^2) = \mathcal{O}(2^{||n||})$

• Nur für Zahlen mit kleinen Logarithmen

- Suche nach Logarithmen muß auf Schranke B begrenzt werden
- Schranke jenseits von 10^7 wenig sinnvoll Anders als bei Faktorisierung sagt dies nichts über die Größe von n oder y aus

• Keine Optimierungen wie bei Faktorisierung

- Jede Zahl könnte der geeignete Logarithmus sein
- Man kann wenig über Struktur von x sagen (z.B. ungerade)
- Außer n gibt es keine obere Grenze für x

• Beispiel für (\mathbb{Z}_p, \cdot) mit p = 944137

 $-\log_2 3 = 467306$, $\log_2 4 = 2$, $\log_2 5$ existiert nicht, $\log_2 6 = 467307$, ...

SHANKS BABYSTEP-GIANTSTEP-ALGORITHMUS

• Idee: Beschleunigung durch Zwischenspeicherung

- Zerlege das gesuchte $x = \log_q y$ in $x = q \cdot m + r$
- Für diese Zerlegung gilt $g^{q\cdot m+r}=y$ also $(g^m)^q=y\cdot g^{-r}$
- Teste diese Gleichung für alle Paare (q, r) um x zu bestimmen
- Die Werte $y \cdot g^{-r}$ und $(g^m)^q$ können separat berechnet werden
- Für $m = \lfloor \sqrt{n} \rfloor$ müssen nur $2 \cdot \lfloor \sqrt{n} \rfloor$ Werte berechnet werden

Algorithmus

- Babystep: Speichere für r < m die Werte $(y \cdot g^{-r}, r)$ in einer Tabelle B
- Giantstep: Für q = 0, 1, 2, ... prüfe, ob $(g^m)^q$ in B vorkommt
- Im Erfolgsfall gebe $x = q \cdot m + r$ als Lösung für $\log_q y$ aus

Komplexität

- Je eine Multiplikation für Berechnung eines $y \cdot g^{-r}$ bzw. eines $(g^m)^q$
- Bei Hashtabellen konstante Zeit für Test, ob $(g^m)^q$ in B vorkommt
- Maximal m Baby- und Giantsteps erforderlich
- Laufzeit $\mathcal{O}(\sqrt{n}) = \mathcal{O}(2^{\|n\|/2})$ Speicherbedarf $\mathcal{O}(\sqrt{n})$

Shanks Algorithmus am Beispiel

Bestimme $\log_3 5$ in $(\mathbb{Z}_{3137}, \cdot)$

Berechne Intialwerte

$$-m = |\sqrt{n}| = 56$$
, $g^{-1} = 3^{-1} \mod 3137 = 1046$, $g^m = 893$

• Erzeuge Babystep-Tabelle $B = [(y \cdot g^{-r}, r) \mid r < m]$

```
-B = [(5,0); (2093,1); (2789,2); (3021,3); (1007,4); \dots (541,55)]
```

```
- Sortiert: [(5,0); (92,17); (146,35); (226,26); (276,16); (394,43); (397,12); (409,41); (436,10); (438,34); (518,48); (541,55); (544,39); (678,25); (787,8); (805,32); (809,6); (828,15); (971,30); (1007,4); (1121,27); (1177,44); (1178,13); (1182,42); (1191,11); (1227,40); (1308,9); (1314,33); (1438,45); (1525,46); (1554,47); (1589,21); (1623,54); (1630,20); (1632,38); (1732,53); (1753,19); (1759,37); (2034,24); (2059,52); (2093,1); (2122,18); (2140,36); (2264,49); (2361,7); (2415,31); (2427,5); (2465,28); (2484,14); (2621,22); (2789,2); (2846,50); (2913,29); (2965,23); (3021,3); (3040,51)]
```

ullet Berechne Giantstep Werte $(g^m)^q, q=0,1,2,...$

```
1; 893; 651; 998; 306; 339; 1575; 1099; 2663; 213; 1989; 635; 2395;2438; 56; 2953; 1949; 2559; 1451; 162; 364; 1941; 1689; 2517; 1589
```

- Treffer (1589, 21) für
$$q = 24$$
 liefert $x = 24.56 + 21 = 1365$

Pollard ρ Algorithmus

ullet Modifikation der Pollard ho Faktorisierung

- Suche $a\neq a', b\neq b'\in \mathbb{Z}_n$ mit $g^a\cdot y^b=g^{a'}\cdot y^{b'}$
- Ist $x = \log_g y$ in G so gilt $g^a \cdot g^{x \cdot b} = g^{a'} \cdot g^{x \cdot b'}$ also $g^{a+x \cdot b} = g^{a'+x \cdot b'}$ somit $a+x \cdot b \equiv a'+x \cdot b' \mod n$ bzw. $(a-a') \equiv x \cdot (b'-b) \mod n$
- Damit ist $x = (a-a')(b'-b)^{-1} \mod n$ falls $\gcd(b'-b,n)=1$ Bei Erzeugung einer Zufallsfolge mit $\mathcal{O}(\sqrt{n})$ Elementen findet man diese Kollision mit Wahrscheinlichkeit 50% (Geburtstagsparadox)

• Erzeuge und prüfe Zufallskandidaten

- Berechne Folge (β_1, a_1, b_1) , (β_2, a_2, b_2) ... mit $\beta_i = g^{a_i} \cdot y^{b_i}$ und $(\beta_{i+1}, a_{i+1}, b_{i+1}) = f(\beta_i, a_i, b_i)$ für eine "Zufallsfunktion" f
- Gilt $\beta_i = \beta_j$ für ein i < j, dann auch $\beta_{i+1} = \beta_{j+1}$ also $\beta_{i+k} = \beta_{j+k}$ für alle k Folge der β_k läuft in eine Schleife, was aussieht wie ein ρ
- Hat die Schleife die Länge l=j-i, so gibt es ein $k \in \{i...j-1\}$, das Vielfaches von l ist. Für dieses k gilt $\beta_k=\beta_{2k}$

• Einfaches Suchverfahren

– In Schritt k bestimme β_k , β_{2k} bis Werte gleich sind und berechne x

Pollard ρ im Detail

• Wahl der "Zufallsfunktion" f

- Teile Gruppe G in drei gleich große Teilgruppen G_1, G_2, G_3 auf

$$- \text{ Definiere } \boldsymbol{f}(\boldsymbol{\beta}, \boldsymbol{a}, \boldsymbol{b}) := \left\{ \begin{array}{ll} (\boldsymbol{\beta} \cdot \boldsymbol{g}, a +_n 1, \boldsymbol{b}) & \text{falls } \boldsymbol{\beta} \in G_1 \\ (\boldsymbol{\beta}^2, 2 \cdot_n a, 2 \cdot_n \boldsymbol{b}) & \text{falls } \boldsymbol{\beta} \in G_2 \\ (\boldsymbol{\beta} \cdot \boldsymbol{y}, a, \boldsymbol{b} +_n 1) & \text{falls } \boldsymbol{\beta} \in G_3 \end{array} \right.$$

– Per Konstruktion erhält f die Eigenschaft $\beta = g^a \cdot y^b$

• Konstruktion der (β_i, a_i, b_i)

- Definiere $(\beta_0, a_0, b_0) = (1, 0, 0)$ und $(\beta_{i+1}, a_{i+1}, b_{i+1}) = f(\beta_i, a_i, b_i)$
- Dann gilt $\beta_i = g^{a_i} \cdot y^{b_i}$ für alle i

Suchverfahren

- In Schritt k bestimme (β_k, a_k, b_k) und $(\beta_{2k}, a_{2k}, b_{2k})$ bis $\beta_k = \beta_{2k}$
- Ist $gcd(b_{2k}-b_k, n)=1$ so berechne $x = (a_k-a_{2k})(b_{2k}-a_{2k})^{-1} \mod n$
- Ansonsten breche ohne Erfolg ab

Laufzeit
$$\mathcal{O}(\sqrt{n}) = \mathcal{O}(2^{\|n\|/2})$$

konstanter Speicherbedarf

Pollard ρ : Ablaufbeispiel

ullet Trace der Berechnung von $\log_{89}618$ in \mathbb{Z}_{809}

- Ordnung von g = 89 in $(\mathbb{Z}_{809}^*, \cdot)$ ist n = 101
- Wähle $G_{1/2/3} = \{g \le 808 \mid g \equiv 1/0/2 \mod 3\}$

```
Schleife 1. \beta = 618 a = 0 b = 1 \beta' = 76 a' = 0 b' = 2 Schleife 2. \beta = 76 a = 0 b = 2 \beta' = 113 a' = 0 b' = 4 Schleife 3. \beta = 46 a = 0 b = 3 \beta' = 488 a' = 1 b' = 5 Schleife 4. \beta = 113 a = 0 b = 4 \beta' = 605 a' = 4 b' = 10 Schleife 5. \beta = 349 a = 1 b = 4 \beta' = 683 a' = 7 b' = 11 Schleife 6. \beta = 488 a = 1 b = 5 \beta' = 683 a' = 7 b' = 11 Schleife 7. \beta = 555 a = 2 b = 5 \beta' = 451 a' = 8 b' = 12 Schleife 8. \beta = 605 a = 4 b = 10 \beta' = 344 a' = 9 b' = 13 Schleife 9. \beta = 451 a = 5 b = 10 \beta' = 112 a' = 11 b' = 13 Schleife 10. \beta = 422 a = 5 b = 11 \beta' = 422 a' = 11 b' = 15
```

- Resultat: $x = (a -_n a')(b' -_n b)^{-1} = 95 \cdot_n 4^{-1} = 95 \cdot_n 76 = 49$

• Erweiterung des Algorithmus

- Originalverfahren bricht ab, wenn $gcd(b_{2k}-b_k, n)\neq 1$
- Kongruenz $(a_k-a_{2k}) \equiv x \cdot (b_{2k}-b_k) \mod n$ hat d mögliche Lösungen x_i wenn $d = \gcd(b_{2k}-b_k,n) > 1$
- Für kleine d kann man für alle x_i prüfen, ob $g^{x_i} = y$ ist

DER POHLIG-HELLMAN ALGORITHMUS (I)

Wenn die Faktorisierung von n=|G| bekannt ist

• Bestimme Logarithmen in Untergruppen von G

- $-\operatorname{Sei} n = |G| = \prod_{p|n} p^{e_p} \text{ und } x = \log_g y$
- Für jedes p setze $n_p = n/p^{e_p}$, $g_p = g^{n_p}$, $y_p = y^{n_p}$
- Dann ist p^{e_p} die Ordnung von g_p und es gilt $g_p^x = g^{n_p \cdot x} = y^{n_p} = y_p$ also existiert der diskrete Logarithmus $x_p = \log_{q_p} y_p$
- Berechne alle x_p mit dem Shanks- oder dem Pollard ρ Algorithmus

ullet Berechne $x=\log_q y$ aus den Komponenten

Satz: Gilt $x \equiv \log_{g_p} y_p mod p^{e_p}$ für alle p, dann ist $x = \log_g y$

Beweis: Es gilt $(g^{-x} \cdot y)^{n_p} = (g^{n_p})^{-x} \cdot y^{n_p} = g_p^{-x_p} \cdot y_p = 1$ für alle Primteiler p von n. Also ist die Ordnung von $g^{-x} \cdot y$ (in G) ein Teiler von allen n_p . Da 1 der größte gemeinsame Teiler aller n_p ist, gilt $g^{-x} \cdot y = 1 \in G$ also $g^x = y$

- Berechne $x = \log_g y$ aus allen x_p mit dem chinesischem Restsatz

Gesamtlaufzeit $\mathcal{O}(\sum_{p|n} \sqrt{p^{e_p}})$

konstanter Speicherbedarf

Der Pohlig-Hellman Algorithmus (II)

ullet Bestimme p-adische Darstellung von $x_p = \log_{g_p} y_p$

Der Übersichtlichkeit halber wird der Index \bar{p} im folgenden fallen gelassen

- Wegen $x < p^e$ gilt $x = \sum_{i < e} x_i p^i$ für bestimmte Koeffizienten x_i
- Folglich ist $y^{p^{e-1}} = g^{x \cdot p^{e-1}} = (g^{p^{e-1}})^{x_0} \cdot (g^{p^e})^{\sum_{0 < i < e} x_i p^{i-1}} = (g^{p^{e-1}})^{x_0}$ da p^e die Ordnung von g ist
- Da $g_* = g^{p^{e-1}}$ die Ordnung p hat, kann $x_0 = \log_{g_*} y^{p^{e-1}}$ in einer Gruppe der Ordnung p in der Laufzeit $\mathcal{O}(\sqrt{p})$ berechnet werden

ullet Berechne Koeffizienten von x_p iterativ

- Berechne x_0 mit dem Shanks- oder dem Pollard ρ Algorithmus
- Sind $x_0, ..., x_{k-1}$ bereits bestimmt, so setze $y_k = (y \cdot g^{-\sum_{i < k} x_i p^i})^{p^{e-k-1}}$ Es gilt $y_k = (g^{\sum_{k \le i < e} x_i p^i})^{p^{e-k-1}} = (g^{\sum_{i < e-k} x_{i+k} p^i})^{p^{e-1}}$ $= (g^{p^{e-1}})^{x_k} \cdot (g^{p^e})^{\sum_{0 < i < e-k} x_{i+k} p^{i-1}} = g_*^{x_k}$, also $x_k = \log_{g_*} y_k$

Berechne x_k mit dem Shanks- oder dem Pollard ρ Algorithmus

• Gesamtkomplexität

$$\mathcal{O}(\sum_{p|n} e_p \cdot \sqrt{p})$$

- Berechnung der Koeffizienten von x_p benötigt Laufzeit $\mathcal{O}(e_p \cdot \sqrt{p})$
- Aufwand für chinesischen Restsatz vernachlässigbar

Pohlig-Hellman Algorithmus für $x = \log_5 3$ in \mathbb{Z}_{2017}

Reduktion auf Primzahlpotenzen

- Die Gruppenordnung ist $n=2016=2^5\cdot 3^2\cdot 7$
- Zu berechnen sind $x_2 = \log_{563} 3^{63} = \log_{500} 913$, $x_3 = \log_{5224} 3^{224} = \log_{576} 1933$ und $x_7 = \log_{5288} 3^{288} = \log_{1879} 1879$

ullet Berechnung von $x_2 = \sum_{i=0}^4 x_{2,i} 2^i$

- Es ist $g_* = 500^{16} \mod 2017 = 2016$ und $913^{16} \mod 2017 = 1$
- Damit ist
- Es ist $y_{2,1} = (913.500^0)^8 = 913^8 = 2016$ also
- Es ist $y_{2,2} = 1579^4 = 2016$ also
- Es ist $y_{2,3} = 1^2 = 1$ also
- Es ist $y_{2,4} = 1$ also
- Insgesamt ergibt sich $x_2 = 6$

$x_{2,0} = \log_{2016} 1 = 0$

$$x_{2,1} = \log_{2016} 2016 = 1$$

$$x_{2,2} = \log_{2016} 2016 = 1$$

$$x_{2,3} = \log_{2016} 1 = 0$$

$$x_{2,4} = \log_{2016} 1 = 0$$

ullet Berechnung von x

- Analog ergibt sich $x_3 = 4$ und $x_7 = 1$
- Lösung der simultanen Kongruenzen $x \equiv 6 \mod 32$, $x \equiv 4 \mod 9$ und $x \equiv 1 \mod 7$ ergibt x = 1030

DIE INDEX-CALCULUS METHODE

Verwandt mit Siebverfahren für Faktorisierung

• Einfache Grundidee

- Wähle eine Faktorbasis $\mathcal{B} = \{p \text{ prim } | p \leq b\}$ für eine Zahl b
- Bestimme diskrete Logarithmen $x_p = \log_q p$ für alle Elemente von \mathcal{B}
- Suche Exponenten a < n für die $y \cdot g^a$ b-glatt ist (d.h. $y \cdot g^a = \prod_{p \in \mathcal{B}} p^{e_p}$)
- Dann ist $y \cdot g^a \equiv \prod_{p \in \mathcal{B}} (g^{x_p})^{e_p} \equiv g^{\sum_{p \in \mathcal{B}} x_p \cdot e_p} \mod n$ also $x = \log_g y \equiv \sum_{p \in \mathcal{B}} x_p \cdot e_p - a \mod \varphi(n)$

ullet Bestimmung der $x_p = \log_q p$ für $p \in \mathcal{B}$

- Wähle zufällige $1 \le z_i < n$ für die $g^{z_i} \mod n$ zerlegbar in $\prod_{p \in \mathcal{B}} p^{e_{i,p}}$
- Dann ist $g^{z_i} \equiv \prod_{p \in \mathcal{B}} p^{e_{i,p}} \equiv \prod_{p \in \mathcal{B}} g^{x_p \cdot e_{i,p}} \mod n$ also $z_i \equiv \sum_{p \in \mathcal{B}} x_p \cdot e_{i,p} \mod \varphi(n)$
- Hat man $|\mathcal{B}|$ derartige Relationen $(e_{i,p})_{p \in \mathcal{B}}$ gefunden, so kann man die x_p mit Hilfe eines modifizierten Gaußalgorithmus bestimmen
- - Analyse ähnlich wie bei quadratischen Sieben für Faktorisierung

DIE INDEX-CALCULUS METHODE AM BEISPIEL

Logarithmen der Faktorbasis für g=2 in \mathbb{Z}_{2027}

• Relationen der Faktorbasis $\{2, 3, 5, 7, 11\}$

- Zufällige Erzeugung von Zahlen z_i liefert

$$\cdot 2^{1593} \mod 2027 = 33 = 3.11$$

$$\cdot 2^{983} \mod 2027 = 385 = 5 \cdot 7 \cdot 11$$

$$\cdot 2^{1318} \mod 2027 = 1408 = 2^7 \cdot 11$$

$$2^{293} \mod 2027 = 63 = 3^2 \cdot 7$$

$$\cdot 2^{1918} \mod 2027 = 1600 = 2^6 \cdot 5^2$$

• Bestimme $x_p = \log_2 p$ für $p \in \{2, 3, 5, 7, 11\}$

$$\cdot x_3 + x_{11} \equiv 1593 \mod 2026$$

$$x_5 + x_7 + x_{11} \equiv 983 \mod 2026$$

$$\cdot 7x_2 + x_{11} \equiv 1318 \mod 2026$$

$$\cdot 2x_3 + x_7 \equiv 293 \mod 2026$$

$$\cdot 6x_2 + 2x_5 \equiv 1918 \mod 2026$$

Löse Kongruenzen mit modifiziertem Gaußalgorithmus

DIE INDEX-CALCULUS METHODE AM BEISPIEL (II)

• Modifizierter Gaußalgorithmus

- Löse Kongruenzen modulo 2 und 1013 (die Primteiler von 2026)
- Berechne x_p aus Einzellösungen mit Chinesischem Restsatz
- Wegen g = 2 ist $x_2 = \log_q 2 = 1$

Löse Kongruenzen modulo 2

$$\cdot x_3 + x_{11} \equiv 1593 \mod 2$$

$$x_2 + x_{11} \equiv 1318 \mod 2$$

$$x_5 + x_7 + x_{11} \equiv 983 \mod 2$$

$$x_7 \equiv 293 \mod 2$$

- Es ergibt sich $x_5 \equiv x_7 \equiv x_{11} \equiv 1 \mod 2$ und $x_3 \equiv 0 \mod 2$

• Löse Kongruenzen modulo 1013

$$x_3 + x_{11} \equiv 580 \mod 1013$$

$$x_{11} \equiv 298 \mod 1013$$

$$\cdot 2x_5 \equiv 899 \bmod 1013$$

$$x_5 + x_7 + x_{11} \equiv 983 \mod 1013$$

$$2x_3 + x_7 \equiv 293 \mod 1013$$

- Ergibt $x_{11} \equiv 298$, $x_5 \equiv 956$, $x_7 \equiv 742$, $x_3 \equiv 282 \mod 1013$

• Lösung der simultanen Kongruenz

$$-x_2 = 1, x_3 = 282, x_5 = 1969, x_7 = 1755, x_{11} = 1311$$

Das Index-Calculus Verfahren am Beispiel (III)

Berechnung von $\log_2 13$ in \mathbb{Z}_{2027}

- Suche ein 11-glattes $13 \cdot 2^a$ für ein $a \in \{1, ...2026\}$
 - Zufallssuche ergibt a = 1397 und $13 \cdot 2^{1397} \equiv 110 \equiv 2 \cdot 5 \cdot 11 \mod 2027$
- Berechne $x \equiv \sum_{p \in \mathcal{B}} x_p \cdot e_p a \mod \varphi(n)$
 - Liefert $x \equiv x_2^1 + x_5^1 + x_{11}^1 a \equiv 1 + 1969 + 1311 1397 \mod 2026$
 - Ergebnis ist $x = \log_2 13 = 1884$

Verallgemeinerung auf andere Gruppen

- Methode stützt sich auf zahlentheoretische Eigenschaften
- Andere Gruppen müssen Aufbau einer Faktorbasis und Konstruktion von Relationen aus Exponentenvektoren unterstützen
- Relationenfindung in \mathbb{Z}_p^* baut auf Primfaktorzerlegung in \mathbb{Z} auf
- Verfahren zur Relationenfindung in anderen Gruppen nicht bekannt

DL ALGORITHMEN IM RÜCKBLICK

Aufzählungsverfahren

- Standardverfahren, gut für kleine Gruppenordnungen

 $\mathcal{O}(2^{\|n\|})$

• Algorithmus Algorithmus von Shanks

- Zerlegung der Suche in Baby- und Giantsteps

Zeit/Platz $\mathcal{O}(2^{\|n\|/2})$

\bullet Pollard ρ

- Systematische Suche nach Kollisionen

 $\mathcal{O}(2^{\|n\|/2})$

• Pohlig-Hellman Verfahren

- Reduktion auf Primfaktoren von n

$$\mathcal{O}(\sum_{p|n} e_p \cdot \sqrt{p})$$

• Index-Calculus Methode

Aufbau von Logarithmen einer Faktorbasis

$$\mathcal{O}(2^{(1+o(1))\cdot ||n||^{1/2}\cdot \log ||n||^{1/2}})$$

Zahlkörpersieb als effizienteste Variante

$$\mathcal{O}(2^{1.92 \cdot ||n||^{1/3} \cdot \log ||n||^{2/3}})$$

Verallgemeinert sehr schlecht auf andere Gruppen