
Applied Logic Lecture 4: Refinement proofs and evidence construction
CS 4860 Fall 2012 Tuesday, September 4, 2012

The examples of the previous lecture show that finding evidence for a logical proposition isn’t
always easy, as it requires semantical reasoning about the structure of the components involved,
i.e. a deep understanding of how an input may be used in order to construct the desired output. In
general there is little machine support for semantical reasoning (although in the propositional case
an algorithm based on type-analysis could be developed), which means that evidence terms would
have to be constructed entirely by hand.

There is a different approach to solving proof and programming problems which makes the task
of finding a solution easier. Instead of constructing the evidence term for a formula all at once, we
consider the formula as proof task that needs to be solved and decompose this task into smaller
subtasks until each of these subtasks can be solved in a single step. We then compose the evi-
dence terms for these subtasks into evidence terms for the respective larger tasks until we have
constructed the evidence term for the original formula. This process is called proof by refinement.
We will illustrate it by a simple example.

Example 4.1 (Proof by refinement)
Consider the formula P ⇒ (Q⇒ (P ∧Q)). In order to prove the implication, we assume P and
now have to show Q⇒ (P ∧Q). In the next decomposition step we make Q our second assumption
and have to show P ∧Q. To prove P ∧Q we have to prove P and we have to prove Q. In both cases
we have P and Q as assumption, so the solution is immediate.

In principle, this series of refinements is sufficient to assure the validity of P ⇒ (Q⇒ (P ∧Q)).
But it also tells us how to assemble evidence for this formula. The proof of P under the as-
sumptions P and Q yields as evidence a term p : [P ], which we get from the assumption P .
Likewise the proof of Q yields as evidence a term q : [Q], which we get from the assump-
tion Q. Since both tasks were the result of refining P ∧Q, we can assemble the two evidence
terms into the pair (p, q) : [P ∧Q]. Since the assumptions P and Q, which gave us the two
terms p and q, resulted from refining Q⇒ (P ∧Q) and P ⇒ (Q⇒ (P ∧Q)), the evidence term
for the former must be λq. (p, q) : [Q⇒ (P ∧Q)] and the evidence term for the original formula is
λp. (λq. (p, q)) : [P ⇒ (Q⇒ (P ∧Q))]. ut

At a first glance the refinement approach to justifying the validity of a logical formula seems
more complicated than constructing evidence terms directly. But it can be described in terms of
formal refinement rules, which in turn can be implemented on a computer. A user of such an
implementation would guide the proof process by selecting appropriate rules while the machine
would execute each refinement step and generate the corresponding subtasks. Once the refinement
is complete, the evidence terms can be assembled automatically.

We have seen in the above example that refinement proofs operate not just on formulas but on
formulas that need to be proven and associated assumptions. We use the notation H ` C, called a
sequent, to express that a conclusion C can be shown under the assumption that all the hypotheses
in H are valid. In a sequent H `C the conclusion C is a single formula and H is a list of formulas1.

1Some formalizations of sequents use sets of formulas as assumptions, since in propositional and first-order logic

1



Refinement proofs for a given formula A start with the initial goal ` A, i.e. the task of proving
A without additional assumptions, and apply refinement rules that transform a goal sequent into
subgoal sequents. Refinement rules are usually written as rule schemes of the form

H ` G
H1 ` G1...
Hn ` Gn

where the formulas in the Hi and Gi may contain placeholders for logical propositions. Rules
have to be designed in a way such that the provability of the original goal follows from that of the
subgoals. The provability of A ∧B, for instance, follows from the provability of A and that of B
(without any changes to the hypostheses). Thus the rule for the refinement of a conclusion A ∧B
will be written as

H ` A ∧B
H ` A
H ` B

Since it operates on the right side of a sequent, we give it the name andR. Applying a refinement
rule means matching H ` G against the goal sequent and generating the appropriate instantiations
of the Hi `Gi as subgoal sequents. Thus applying andR to the sequent ` (P ⇒Q) ∧ (R⇒Q) will
instantiate A by P ⇒Q and B by R⇒Q and generate the two subgoals ` P ⇒Q and ` R⇒Q.
To simplify the presentation of formal proofs we write rule applications in a schematic fashion.

` (P ⇒Q) ∧ (R⇒Q) by andR

1. ` P ⇒Q
2. ` R⇒Q

This means that the application of the rule andR to the sequent ` (P ⇒Q) ∧ (R⇒Q) has generated
two (numbered) subgoals that still need to be proven. A goal can be closed by applying a proof
rule that does not generate subgoals. If all generated proof branches are closed, the refinement
proof is complete. We will give examples of complete proofs in our discussion of the refinement
rules for the propositional calculus.

Refinement rules may also be associated with the construction of evidence2. The fact that the
provability of the original goal must follow from that of the subgoals also means that evidence for
the original goal can be constructed from evidence for the subgoals. The evidence for a goal H `
A ∧B, for instance, is a pair (a, b) where a is evidence for H ` A and b evidence for H ` B. We
indicate that by writing the rule andR as

H ` A ∧B ev = (a, b) by andR

H ` A ev = a

H ` B ev = b

the order and multiplicity of hypotheses doesn’t matter. By using lists instead of sets it becomes easier to address
a specific hypothesis in the cours of a refinement. Some logics also permit the use of sequents with multiple goal
formulas. The task is then to prove at least one of the goals. In this situation, however, it is not always possible to
construct evidence for the original formula to be proven. We will discuss this issue in one of the future lectures.2This is not necessary because a complete refinement proof provides as much assurance for the validity of a
proposition as an evidence term would do. But evidence construction provides a link between refinement proofs
and evidence semantics. It also has an interesting side-effect on the mplementation of proof systems: it allows the
extraction of programs from proofs of formulas that state the existence of certain algorithms and thus the construction
of verified programs through theorem proving.

2



In propositional refinement logic, most rules follow immediately from an intuitive understanding
of the logical connectives. As in our discussion of evidence semantic we will investigate each
connective separately.

• Refinement rules for propositional variables

A propositional variable A cannot be decomposed into smaller components because it is
a placeholder for an unknown proposition. But if A is also one of the assumptions in the
hypotheses, we can obviously prove A. We write this schematically as

H,A,H ′ ` A

to indicate that the formula A occurs somewhere in the list of assumptions. H and H ′ are
lists of formulas. H is empty if A is the first hypothesis, H ′ is empty if A is the last one. We
call the rule that proves A under these assumption axiom. It does not generate any subgoals,
because the sequent is self-evident.

What is the evidence constructed by this rule?

Essentially the evidence needs to show that the hypothesis A was used to prove the conclu-
sion A. To indicate that we need to associate hypotheses with labels.3

So if we label the assumption A by a, then the label a is sufficient evidence for the validity
of the conclusion A in the sequent H,A,H ′ ` A. If we integrate that information into the
rule then the axiom rule appears as follows.

H, a:A,H ′ ` A ev = a by axiom

• Refinement rules for A⇒B

To prove an implication ` A⇒B it is sufficient to assume A and then prove B. This means
that A will be added to the hypotheses of the sequent and B becomes the new conclusion.

H ` A⇒B
H,A ` B

We call the rule impliesR, as it decomposes an “implies” on the right side of the sequent.

To describe the evidence constructed by this rule we have to associate the newly generated
hypothesis A with a label a and assume that we have some evidence b for the the subgoal
sequent H, a:A ` B. This means that we must have found a generic way to turn an evidence
a for A into the evidence b for B. In other words, there is a function that on input a computes
b and this function must be the evidence for A⇒B. Using the λ-notation for evidence terms
introduced previously, we can now write the rule as

H ` A⇒B ev = λa.b by impliesR

H, a:A ` B ev = b

Let us look at a few concrete examples

– P ⇒P : The refinement proof for this formula is straightforward. We decompose the
implication and then apply the axiom rule to the generated subgoal:

` P ⇒P by impliesR

3Labels are easier to track than, for instance, the position of the formula A in a list of hypotheses.

3



1. P ` P by axiom

If we include the generated evidence terms, then the hypothesis P in the subgoal will
receive a label p and the evidence created by applying the axiom rule is p. Using the
evidence constructor associated with impliesR we get the evidence λp. p, which is
exactly what we expected. If we integrate evidence construction into our presentation
of the proof we get:4

` P ⇒P ev = λp. p by impliesR

1. p:P ` P ev = p by axiom

One should keep in mind that while the proof is constructed top-down the evidence will
be constructed bottom-up after the refinement proof has been completed.

– P ⇒ (Q⇒P ): The refinement proof for this formula is straightforward.
` P ⇒ (Q⇒P ) ev = λp. (λq. p) by impliesR

1. p:P ` Q⇒P ev = λq. p by impliesR

1.1. p:P, q:Q ` P ev = p by axiom

In the schematic presentation, the index 1.1. indicates that the last subgoal is the first
subgoal of subgoal number 1.

In addition to refining the conclusion of a sequent we also have to be able to decompose
assumptions. A refinement proof of the formula P ⇒ ((P ⇒Q)⇒Q), for instance, will
eventually generate the subgoal P, P ⇒Q ` Q. The proof will only be able to proceed if
we decompose the implication on the left side of the sequent. This will generate two goals.
The first requires us to show that we are able to provide evidence for the left side of the
implication. Once we have this evidence we may use the right side of the implication to
prove the conclusion. The corresponding refinement rule is:

H,A⇒B,H ′ ` C by impliesL

H,A⇒B,H ′ ` A
H,B,H ′ ` C

Note that we have to preserve the hypothesis A⇒B because we may have to use it again.

For the construction of evidence let us assume that f is a label for A⇒B in the main goal,
that a is the evidence for A in the first subgoal, and that in the last subgoal b is a label for B
and c the evidence for C. The latter means that there is a function that computes evidence c
for C from arbitrary evidences b for B. Since f(a) is a specific evidence for B we can apply
this function, i.e. λb.c, to f(a) and get the desired evidence for C in the main goal. If we
integrate evidence construction into the rule we get

H, f :A⇒B,H ′ ` C ev = (λb.c)(f(a)) by impliesL

H, f :A⇒B,H ′ ` A ev = a

H, b:B,H ′ ` C ev = c

Taking the reduction rules of the lambda-calculus into consideration the evidence could also
be presented in its reduced form c[f(a)/b], which often leads to shorter evidence terms.

Using this rule we may now complete the proof of P ⇒ ((P ⇒Q)⇒Q)

` P ⇒ ((P ⇒Q)⇒Q) ev = λp. (λh. (λq.q)(h(p))) by impliesR

1. p:P ` (P ⇒Q)⇒Q ev = λh. (λq.q)(h(p)) by impliesR

1.1. p:P, h:(P ⇒Q) ` Q ev = (λq.q)(h(p)) by impliesL

4In an computerized proof system the impliesR rule has to provide the label for P and the axiom rule has to give
the hypothesis number of P . Since this is an implementation detail we will ignore rule parameters in these notes.

4



1.1.1. p:P, h:(P ⇒Q) ` P ev = p by axiom

1.1.2. p:P, q:Q ` Q ev = q by axiom

Note that the evidence λp. (λh. (λq.q)(h(p))) is not identical to the evidence λp. (λh. h(p))
that we constructed when we investigated the formula in the previous section. However, if
we use the reduction rules of the lambda calculus to compute the result of the application of
λq.q to h(p) (i.e. h(p)) then the two terms become identical.

• Refinement rules for A ∧B

We already discussed the refinement of conjunctions on the right side of a sequent:
H ` A ∧B ev = (a, b) by andR

H ` A ev = a

H ` B ev = b

To decompose a conjunction A ∧B in the hypotheses we only need to split it into two separate
assumptions A and B, leaving the rest unchanged.

For the construction of evidence let us assume that x is a label for A ∧B, a one for A, b one
for B, and c the evidence for the subgoal sequent H,A,B,H ′ ` C. Then by construction
a must be the same as x1 and b the same as x2 and the evidence for the main goal can be
constructed by providing x1 and x2 as inputs to the function λa. (λb.c).

H, x:A ∧B,H ′ ` C ev = ((λa. (λb.c))(x1))(x2) by andL

H, a:A, b:B,H ′ ` C ev = c

Again, the evidence could also be presented in a reduced form, which is c[x1, x2/a, b]. In the
following examples we will make use of this form if it makes the extracted evidence terms
simpler.

– P ⇒ (Q⇒ (P ∧Q)): The refinement proof is fairly straightforward.
` P ⇒ (Q⇒ (P ∧Q)) ev = λp. (λq. (p, q)) by impliesR

1. p:P ` Q⇒ (P ∧Q) ev = λq. (p, q) by impliesR

1.1. p:P, q:Q ` P ∧Q ev = (p, q) by andR

1.1.1. p:P, q:Q ` P ev = p by axiom

1.1.2. p:P, q:Q ` P ev = q by axiom

The constructed evidence is the same as we had before.
– (P ∧Q)⇒P : The refinement proof is

` (P ∧Q)⇒P ev = λx. x1 by impliesR

1. x:(P ∧Q) ` P ev = x1 by andL

1.1. p:P, q:Q ` P ev = p by axiom

Note that the evidence term p[x1, x2/p, q] generated by andL is x1 because this is the
result of replacing every occurrence of p by x1 and of q by x2 in the term p.

• Refinement rules for A ∨B

Decomposing a disjunction A ∨B in the conclusion of a sequent requires us to make a choice.
In order to prove A ∨B we may either prove A or we may prove B. As a result there will be
two rules, one that directs the proof towards proving the left disjunct and another that directs
it towards proving the right one. Consequently, the first rule will wrap the evidence for the
subgoal with inl and the other one with inr:

H ` A ∨B ev = inl(a) by orR1

H ` A ev = a

5



H ` A ∨B ev = inr(b) by orR2

H ` B ev = b

Refining a disjunction A ∨B in the hypotheses of a proof will cause the proof to branch. If
we want to prove a conclusion C under the assumption A ∨B, then it is sufficient to show
how to prove C assuming A and how to prove C if we assume B. Since we have evidence
for either A or for B these two conditions will tell us how to prove C in either case.

H,A ∨B,H ′ ` C by orL

H,A,H ′ ` C
H,B,H ′ ` C

For the construction of evidence let us assume that that x is a label for A ∨B in the main
goal, that in the first subgoal a is a label for A and c1 the evidence for C, and that in the
second subgoal b is a label for B and c2 the evidence for C. Then by construction x is either
inl(a) or inr(b) and therefore the evidence for the main goal is constructed by the case
analysis term for disjunctions, i.e. case x of inl(a)→c1 | inr(b)→ c2.

H, x:A ∨B,H ′ ` C ev = case x of inl(a)→c1 | inr(b)→ c2 by orL

H, a:A,H ′ ` C ev = c1

H, b:B,H ′ ` C ev = c2

Again let us look at concrete examples

– P ⇒ (P ∨Q): The refinement proof is
` P ⇒ (P ∨Q) ev = λp. inl(p) by impliesR

1. p:P ` P ∨Q ev = inl(p) by orR1

1.1. p:P ` P ev = p by axiom

– (P ∨Q)⇒ (Q ∨P ): The refinement proof is
` (P ∨Q)⇒ (Q ∨P ) ev = λx. (case x of inl(p)→ inr(p) | inr(q)→ inl(q))

by impliesR

1. x:(P ∨Q) ` Q ∨P ev = case x of inl(p)→ inr(p) | inr(q)→ inl(q)
by orL

1.1. p:P ` Q ∨P ev = inr(p) by orR2

1.1.1. p:P ` P ev = p by axiom

1.2. p:P ` Q ∨P ev = inl(q) by orR1

1.2.1. q:Q ` Q ev = q by axiom

• Refinement rules for ¬A
Since we already explained the relation between negation and implication we should expect
the rules to be similar. To prove a negation ` ¬A one usually assumes A and then prove
a contradiction, which we denoted by the term f. For the construction of the associated
evidence we assume that a is a label for A in the subgoal and b is the evidence for that
subgoal (if the hypotheses are contradictory we will be able to construct that evidence). The,
using the same argument as before, λa.b will be the evidence for the main goal.

H ` ¬A ev = λa.b by notR

H, a:A ` f ev = b

The rule for decomposing a hypothesis of the form ¬A is a simplified version of impliesL.
The only way to make use of the negation is trying to prove A. If we can do that we have a
contradiction (we have both A and ¬A), which means that there is nothing else to prove.

6



left right
impliesL H, f :A⇒B,H ′ ` C ev = c[f(a)/b] H ` A⇒B ev = λa.b impliesR

H, f :A⇒B,H ′ ` A ev = a H, a:A ` B ev = b

H, b:B,H ′ ` C ev = c

andL H,x:A ∧B,H ′ ` C ev = c[x1, x2/a, b] H ` A ∧B ev = (a, b) andR

H, a:A, b:B,H ′ ` C ev = c H ` A ev = a

H ` B ev = b

orL H,x:A ∨B,H ′ ` C ev = case x of inl(a)→ c1 H ` A ∨B ev = inl(a) orR1

| inr(b)→ c2 H ` A ev = a

H, a:A,H ′ ` C ev = c1
H, b:B,H ′ ` C ev = c2 H ` A ∨B ev = inr(b) orR2

H ` B ev = b

notL H, f :¬A,H ′ ` C ev = any(f(a)) H ` ¬A ev = λa.b notR

H, f :¬A,H ′ ` A ev = a H, a:A ` f ev = b

H, a:A,H ′ ` A ev = a axiom

Table 1: Rules of the propositional refinement calculus

For the construction of evidence assume that f is a label for ¬A in the main goal and that
a is the evidence for A in the subgoal. This means that applying f to a will result in an
element of the empty type, which by definition cannot exist. We can utilize this information
to claim that anything is valid now5 and that anything could serve as evidence for the main
goal. We could use the term axiom. But we want to indicate that f(a) is the reason for the
contradictory situation and will therefore make it a part of the evidence that we generate. For
this purpose we introduce a new function any which, when applied to an element of the type
{}, will serve as evidence for anything. With this special term we get the following rule.

H, f :¬A,H ′ ` C ev = any(f(a)) by notL

H, f :¬A,H ′ ` A ev = a

Again we will consider two examples

– P ⇒¬¬P : overall evidence is λp. (λh. h(p)).
` P ⇒¬¬P ev = λp. (λh. any(h(p))) by impliesR

1. p:P ` ¬¬P ev = λh. any(h(p)) by notR

1.1. p:P, h:(¬P ) ` f ev = any(h(p)) by notL

1.1.1. p:P, h:(¬P ) ` P ev = p by axiom

– ¬(P ∨Q)⇒¬P : overall evidence is λh. (λp. h(inl(p))).
` ¬(P ∨Q)⇒¬P ev = λh. (λp.any(h(inl(p))) by impliesR

1. h:¬(P ∨Q) ` ¬P ev = λp.any(h(inl(p)) by notR

1.1. h:¬(P ∨Q), p:P ` f ev = any(h(inl(p)) by notL

1.1.1. h:¬(P ∨Q), p:P ` P ∨Q ev = inl(p) by orR1

1.1.1.1. h:¬(P ∨Q), p:P ` P ev = p by axiom

Note that in both examples the evidence does not show that the rule notL has been applied
to a goal with the conclusion f. In that special situation the element of type {} could have
been used directly as evidence for f instead of being wrapped by any6.

5The principle ex falso quodlibet (from a false proposition, anything follows) has been disputed by philosophers
for centuries. In mathematics, it makes sense to adopt this principle, since in a contradictory theory we may be able to
prove propositions like 0=1 or all numbers are equal, which makes as much sense as accepting that everything is true.

6Had we defined negation ¬A as abbreviation for A⇒ f, dropped the negation rules, and created a rule falseL for

7



Table ?? summarizes all the rules of the propositional refinement calculus. As we can see, there is
a correspondence between right rules and the construction of evidence for a given connective, and
between left rules and terms for decomposing evidence for that connective.

We conclude our investigation of refinement proofs by giving a precise definition of sequents,
proofs, and the extraction mechanism. These definitions will help in the discussion of issues like
correctness (is every proven formula semantically valid?) and completeness (can every seman-
tically valid formula be proved) of the refinement calculus and also serve as a foundation for
implementations.

Definition 4.2 (Sequents)

(1) A declaration has the form x:A where x is a (term) variable and A is a formula. It declares
x to be evidence for A.

(2) A hypotheses list H is a list of declarations, written as x1:A1, ldots, xn:An, where all the xi

are distinct.

(3) A sequent (or goal) has the form H ` C where H is a hypotheses list and C (the conclusion)
is a formula.

(4) An evidence term for a sequent S = x1:A1, ldots, xn:An ` C is a term whose variables are
declared in the hypotheses and which is evidence for the conclusion C whenever its variables
xi are instantiated by evidence for the Ai.

A sequent S = x1:A1, ldots, xn:An ` C is usually intended to express that the conclusion C is
valid under the assumption that all the formulas in the hypothesis list are valid. If this is actually
the case then the sequent is valid itself. Using evidence we can give a precise definition of the
validity of sequents.

Definition 4.3 (Validity of sequents)

(1) An evidence term for a sequent S = x1:A1, . . . , xn:An ` C is a term whose variables are
declared in the hypotheses and which is evidence for the conclusion C whenever its variables
xi are instantiated by evidence for the Ai.

(2) A sequent is valid if there is an evidence term for it.

To prove the validity of a sequent, refinement rules decompose sequents into subgoal sequents and
provide a validation mechanism that constructs evidence terms for the main goal from evidence
terms for the subgoals.

Definition 4.4 (Refinement rules)

(1) A decomposition (or refinement) is a mapping from a sequent (the main goal) into a into a
list of sequents, called the subgoals.

(2) A validation ist a mapping from a list of sequents and terms into a term7.

f, we would have had the option of proving H, f ` f bei either axiom, resulting in the evidence term λx. x, or falseL,
resulting in any.

7To construct an evidence term for a sequent a validation needs both the evidence terms of the subgoal sequents
and the variables declared in them.

8



(3) A rule is a pair (dec, val) where dec is a decomposition and val a validation.

The rule schemes that we have used so far describe both the decomposition and the validation.

H ` G ev = g

H1 ` G1 ev = g1...
Hn ` Gn ev = gn

The corresponding decomposition is a function that matches H ` G against the goal sequent,
instantiates the Hi ` Gi accordingly and returns them as subgoals. The validation takes the gener-
ated subgoals, matches the terms g1, .., gn against the evidence constructed for these subgoals and
computes the evidence term by instantiating the term g.

Obviously, a proof calculus should only use correct inference rules where the correctness of a rule
r = (dec, val) can be explained as follows.

Let S = H ` A be an arbitrary sequent, Si = Hi ` Ai be the subgoal sequents created
by applying dec to S, and ai be evidence terms for the Si. Then the term a resulting
from applying val to the list of all pairs Si, ai is an evidence term for S.

Proving that the inference rules of the propositional calculus presented here are in fact correct is a
straightforward but somewhat tedous task. We leave this as an exercise for the reader.

A proof of a formula C is generated by applying inference rules to the sequent ` C, to the gen-
erated subgoals, their subgoals, etc. This mechanism eventually generates a tree whose nodes are
marked with sequents and rules such that the successors of a node are marked with the subgoals
resulting from applying the (decomposition of the) rule to the sequent. An incomplete tree If the
tree contains nodes marked with a sequent but not yet with a rule. This means that a proof can only
be complete, if its leafs are marked with rules that do not generate subgoals.

Definition 4.5 (Proofs)

(1) Proofs are recursively defined as follows

• Any sequent S = H ` C is an incomplete proof with root S.
• Let S = H ` A be a sequent, r = (dec, val) a correct inference rule, S1, . . . , Sn be the

subgoal sequents created by applying dec to S, and πi be proofs with roots Si. Then
the tuple (S, r, [π1,. . . ,πn]) is a proof with root S.

(2) A proof is complete if it does not contain any incomplete subproofs.

(3) A theorem is a complete proof whose root is an initial sequent of the form ` C.

Since all the inference rules used in the construction of a proof are required to be correct, all the
sequents in the proof must be valid. The evidence terms for the leaf sequents are constructed from
scratch by the validations of their inference rules. The evidence terms of the remaining nodes are
constructed iteratively from their successor’s evidence terms, again by applying the corresponding
validations. Since the root of the proof tree is an initial sequent ` C, the evidence term of that
sequent is also the evidence for the formula C. Since evidence terms are generated only after a
proof has been completed, they are often viewed as extracted from the proof.

9



Definition 4.6 (Extract terms)
The extract term of a complete proof π = (S, (dec, val), [π1,. . . ,πn]) is recursively defined as
ext(π) = val([(S1, ext(π1)), . . . , (Sn, ext(πn))]), where the Si are the roots of the subproofs πi.

Note that this recursive definition does not require a base case. Since the leaf nodes of a complete
tree do not have any subgoals (π = (S, (dec, val), [])) the validation is applied to an empty list.

Exercises

As an exercise the following problems should be investigated in groups. For each of the formulas
below the group should find a refinement proof and construct the evidence from the proof. In cases
where no proof can be found, try to explain why the proof has to get stuck.

• (P ∧Q)⇒ (P ∨Q) (give two different proofs):

• (P ⇒Q)⇒ ((R⇒Q)⇒ (R⇒P )):

• (P ∨Q)⇒ (P ∨Q):

• (P ∨Q)⇒ ((P ⇒R)⇒ ((Q⇒R)⇒R)):

• (P ⇒Q)⇒ (¬Q⇒¬P ):

• (P ⇒Q)⇒ (¬P ⇒¬Q):

• ¬(P ∨Q)⇒ (¬P ∧¬Q):

• (¬P ∧¬Q)⇒¬(P ∨Q):

• ¬(¬P ∧¬Q)⇒ (P ∨Q):

• ¬¬P ⇒P :

• ¬P ∨P :

10


