Automatisierte Logik und Programmierung

Einheit 3

Formale Logik (Teil 2)

- 1. Formalisierung in Aussagenlogik
- 2. Evidenz für logische Aussagen
- 3. Evidenzkonstruktion mit Refinement Logik
- 4. Formale Prädikatenlogik
- 5. Metamathematik der Refinement Logik

Systematische Konstruktion von Evidenz

• Evidenzkonstruktion ist wie Programmieren

- Man muß einen Term finden, der eine (Datentyp-)Spezifikation erfüllt
- Nicht immer einfach, wenn man semantisch argumentiert, da tiefes
 Verständnis des Zusammenhangs zwischen Ein- und Ausgabe nötig
- Die Konstruktion einer Evidenz für $\neg\neg(P\lor\neg P)$ ist nicht trivial

• Evidenzkonstruktion ist logische Beweisführung

- Spezifikationen der Evidenzterme sind logische Formeln
- Logische Formeln können in Teilformeln zerlegt werden
- Beweise von Formeln sind reduzierbar auf Beweise der Teilformeln
 Beweisaufgabe wird verfeinert zu einfacheren Teilaufgaben

• Evidenzkonstruktion durch schrittweise Verfeinerung

- Zerlege Beweisaufgabe in kleinere Teilaufgaben
- Konstruiere Evidenz für atomare Beweisaufgaben
- Setze Evidenz einer Formel aus Evidenzen für Teilformeln zusammen

Beweis durch Verfeinerung

- ullet Informaler Beweis für $P \Rightarrow (Q \Rightarrow (P \land Q))$
 - Wir nehmen an, daß P gilt und müssen $Q \Rightarrow (P \land Q)$ zeigen
 - Dafür nehmen wir an, daß zusätzlich Q gilt und müssen $P \wedge Q$ zeigen
 - Da P und Q gilt, gilt auch $P \wedge Q$

Beweis durch Verfeinerung

ullet Informaler Beweis für $P \Rightarrow (Q \Rightarrow (P \land Q))$

- Wir nehmen an, daß P gilt und müssen $Q \Rightarrow (P \land Q)$ zeigen
- Dafür nehmen wir an, daß zusätzlich Q gilt und müssen $P \wedge Q$ zeigen
- Da P und Q gilt, gilt auch $P \wedge Q$

ullet Beweis für $P \Rightarrow (Q \Rightarrow (P \land Q))$ mit Evidenzkonstruktion

- Wir nehmen p:[P] an und müssen $f_p:[Q\Rightarrow (P\land Q)]$ konstruieren
- Dafür nehmen wir q:[Q] an und müssen $x:[P \land Q]$ konstruieren
- Um x zu konstruieren, brauchen wir ein $p_0 : [P]$ und ein $q_0 : [Q]$.
- Da wir p:[P] und q:[Q] haben, können wir $p_0=p:[P]$ wählen
- Da wir p:[P] und q:[Q] haben, können wir $q_0=q:[Q]$ wählen
- Damit ist $x = (p, q) : [P \land Q]$ und $f_p = \lambda q. (p, q) : [Q \Rightarrow (P \land Q)]$ $\lambda p. \lambda q. (p, q) : [P \Rightarrow (Q \Rightarrow (P \land Q))]$ ist die gesuchte Evidenz

Beweis durch Verfeinerung

ullet Informaler Beweis für $P \Rightarrow (Q \Rightarrow (P \land Q))$

- Wir nehmen an, daß P gilt und müssen $Q \Rightarrow (P \land Q)$ zeigen
- Dafür nehmen wir an, daß zusätzlich Q gilt und müssen $P \wedge Q$ zeigen
- Da P und Q gilt, gilt auch $P \wedge Q$

ullet Beweis für $P \Rightarrow (Q \Rightarrow (P \land Q))$ mit Evidenzkonstruktion

- Wir nehmen p:[P] an und müssen $f_p:[Q\Rightarrow (P\land Q)]$ konstruieren
- Dafür nehmen wir q:[Q] an und müssen $x:[P \land Q]$ konstruieren
- Um x zu konstruieren, brauchen wir ein $p_0 : [P]$ und ein $q_0 : [Q]$.
- Da wir p:[P] und q:[Q] haben, können wir $p_0=p:[P]$ wählen
- Da wir p:[P] und q:[Q] haben, können wir $q_0=q:[Q]$ wählen
- Damit ist $x = (p, q) : [P \land Q]$ und $f_p = \lambda q. (p, q) : [Q \Rightarrow (P \land Q)]$ $\lambda p. \lambda q. (p, q) : [P \Rightarrow (Q \Rightarrow (P \land Q))]$ ist die gesuchte Evidenz

• Methodik läßt sich durch formale Regeln beschreiben

- Regeln zerlegen logische Formeln und setzen Evidenzterme zusammen
- Regeln sind implementierbar durch Pattern Matching und Instantiierung

Refinement Logik

Beweisen durch Verfeinerung logischer Formeln

Notationen und Begriffe

- Kalkül verwaltet zu beweisende Formel und Annahmen
- Regeln operieren auf Beweiszielen (Sequenzen) der Form $H \vdash C$ Lesart: Konklusion C folgt aus Liste der Annahmen (Hypothesen) H
- Initialziel ist $\vdash A$, d.h. Beweis der Formel A ohne weitere Annahmen
- Regeln transformieren Beweisziele in Listen von Teilzielen

Regeln werden als Regelschemata dargestellt mit Platzhaltern für Formeln

$$H \vdash G$$

$$H_1 \vdash G_1$$

$$\vdots$$

$$H_n \vdash G_n$$

Beweisbarkeit der Teilziele impliziert Beweisbarkeit des Hauptziels

Refinement Logik und Evidenz

• Regelschema für Konjunktionen

$$H \vdash A \land B$$
 $H \vdash A$
 $H \vdash B$ and $A \vdash B$

$$\begin{array}{|c|c|c|} \vdash (P \Rightarrow Q) \land (R \Rightarrow Q) & \text{BY andR} \\ \text{1.} \vdash P \Rightarrow Q \\ \text{2.} \vdash R \Rightarrow Q \\ \end{array}$$

- Beweisbarkeit von $A \wedge B$ folgt aus Beweisbarkeit von A und von B
- Anwendung der Regel and Rauf konkrete Formel $(P\Rightarrow Q) \land (R\Rightarrow Q)$ instantiiert A mit $P\Rightarrow Q$ und B mit $R\Rightarrow Q$
- Entstehende Teilziele werden numeriert

Refinement Logik und Evidenz

• Regelschema für Konjunktionen

- Beweisbarkeit von $A \wedge B$ folgt aus Beweisbarkeit von A und von B
- Anwendung der Regel and R auf konkrete Formel $(P\Rightarrow Q)\land (R\Rightarrow Q)$ instantiiert A mit $P\Rightarrow Q$ und B mit $R\Rightarrow Q$
- Entstehende Teilziele werden numeriert

• Regelschema mit Evidenzkonstruktion

- Beweisbarkeit der Teilziele impliziert Beweisbarkeit des Hauptziels
- Evidenz des Hauptziels entsteht aus Evidenz für Teilziele

$$H \vdash A \land B$$
 ev = (a, b)
 $H \vdash A$ ev = a
 $H \vdash B$ ev = b and B

– Evidenz für $H \vdash A \land B$ ist (a, b), wenn a Evidenz für $H \vdash A$ ist und b Evidenz für $H \vdash B$

Regeln für Aussagenvariablen

• Aussagenvariablen können nicht zerlegt werden

- Kein fester Beweis für A, solange nichts über A bekannt ist
- Aber A kann bewiesen werden, wenn A eine der Hypothesen ist

$$H,A,H'\vdash A$$
 axiom

- -H und H' sind (möglicherweise leere) Listen von Formeln
- Es werden keine Teilziele generiert, da Sequenz selbsterklärend ist

Regeln für Aussagenvariablen

• Aussagenvariablen können nicht zerlegt werden

- Kein fester Beweis für A, solange nichts über A bekannt ist
- Aber A kann bewiesen werden, wenn A eine der Hypothesen ist

$$H,A,H'\vdash A$$
 axiom

- -H und H' sind (möglicherweise leere) Listen von Formeln
- Es werden keine Teilziele generiert, da Sequenz selbsterklärend ist

• Evidenzkonstruktion benötigt Labels für Hypothesen

$$H, a: A, H' \vdash A \quad \text{ev} = a \quad \text{axiom}$$

- Label der verwendeten Hypothese ist "Variable" der Evidenzsprache
- Evidenz für Konklusion A ist Label der verwendeten Hypothese

REGELN FÜR IMPLIKATIONEN (I)

• Implikation auf rechter Seite einer Sequenz

- $-\operatorname{Um} H \vdash A \Rightarrow B$ zu zeigen, nimmt man A an und zeigt B
- -A wird zusätzliche Hypothese im Teilziel mit Variable a als Label

$$H \vdash A \Rightarrow B$$
 ev = $\lambda a.b$ $H, a:A \vdash B$ ev = b impliesR

- Regel nimmt an, daß Evidenz b für das Teilziel H, $a:A \vdash B$ existiert d.h. es gibt generische Methode, b:[B] aus a:[A] zu konstruieren
- Evidenz für $H \vdash A \Rightarrow B$ muß Funktion $\lambda a.b : [A] \rightarrow [B]$ sein

REGELN FÜR IMPLIKATIONEN (I)

• Implikation auf rechter Seite einer Sequenz

- $-\operatorname{Um} H \vdash A \Rightarrow B$ zu zeigen, nimmt man A an und zeigt B
- -A wird zusätzliche Hypothese im Teilziel mit Variable a als Label

$$H \vdash A \Rightarrow B$$
 ev = $\lambda a.b$ $H, a:A \vdash B$ ev = b impliesR

- Regel nimmt an, daß Evidenz b für das Teilziel H, $a:A \vdash B$ existiert d.h. es gibt generische Methode, b:[B] aus a:[A] zu konstruieren
- Evidenz für $H \vdash A \Rightarrow B$ muß Funktion $\lambda a.b : [A] \rightarrow [B]$ sein

• Beweis für $P \Rightarrow P$

$$\vdash P \Rightarrow P$$
 ev = $\lambda p. p$ BY implies R
1. $p:P \vdash P$ ev = p BY axiom

- implies Rerzeugt Teilziel mit neuer Hypothese p:[P]
- axiom beweist Teilziel mit Evidenz p
- implies R konstruiert hieraus Evidenz λp . p für $P \Rightarrow P$

REGELN FÜR IMPLIKATIONEN (II)

• Implikation auf linker Seite einer Sequenz

- Um C unter der Annahme $A\Rightarrow B$ zu zeigen, benötigt man Evidenz für A und kann dann die Annahme B verwenden, um C zu zeigen

$$H, f: A \Rightarrow B, H' \vdash C$$
 $ev = c[f(a)/b]$ $H, f: A \Rightarrow B, H' \vdash A$ $ev = a$ $H, b: B, H' \vdash C$ $ev = c$

impliesL

- Annahme $A \Rightarrow B$ benötigt Label f
- -B wird zusätzliche Hypothese im Teilziel 2 mit Variable b als Label
- Regel nimmt an, daß Evidenzen a:[A] bzw. c:[C] existieren es gibt Methode, c:[C] aus beliebigen b:[B] zu konstruieren und f(a) ist konkrete Evidenz in [B]
- Anwendung von $\lambda b.c$ auf f(a) liefert Evidenz für C im Hauptziel Evidenz $(\lambda b.c)(f(a))$ wird evaluiert zu reduzierter Form c[f(a)/b]
- Annahme $A \Rightarrow B$ wird im Teilziel 1 möglicherweise noch benötigt

Anwendung der Implikationsregeln

• Beweis für $P \Rightarrow (Q \Rightarrow P)$

- Zwei Anwendungen von impliesR erzeugen Beweisbaum der Tiefe 2
- Numerierung 1.1. beschreibt erstes Teilziel des Teilziels 1
- Beweis für $P \Rightarrow ((P \Rightarrow Q) \Rightarrow Q)$

$$P \Rightarrow ((P \Rightarrow Q) \Rightarrow Q) \qquad \text{ev} = \lambda p. (\lambda h. (h(p))) \text{ BY impliesR}$$

$$1. \ p:P \vdash (P \Rightarrow Q) \Rightarrow Q \qquad \text{ev} = \lambda h. h(p) \qquad \text{BY impliesR}$$

$$1.1. \ p:P, h:(P \Rightarrow Q) \vdash Q \qquad \text{ev} = h(p) \qquad \text{BY impliesL}$$

$$1.1.1. \ p:P, h:(P \Rightarrow Q) \vdash P \qquad \text{ev} = p \qquad \text{BY axiom}$$

$$1.1.2. \ p:P, q:Q \vdash Q \qquad \text{ev} = q \qquad \text{BY axiom}$$

- Evidenz h(p) in Schritt 1.1 ist reduzierte Form von $(\lambda q.q)(h(p))$

REGELN FÜR KONJUNKTION

• Konjunktion auf rechter Seite einer Sequenz

 $-\operatorname{Um} H \vdash A \land B$ zu zeigen, muß A und B gezeigt werden

$$H \vdash A \land B$$
 ev = (a, b)
 $H \vdash A$ ev = a
 $H \vdash B$ ev = b and B

- Regel setzt Evidenzen a und b der Teilziele zu (a, b) zusammen

Konjunktion auf linker Seite einer Sequenz

– Die Annahme $A \wedge B$ ist äquivalent zu den beiden Annahmen A und B

$$H, x: A \land B, H' \vdash C$$
 ev = $c[x.1, x.2/a, b]$ and $H, a: A, b: B, H' \vdash C$ ev = c and L

- Label x für $A \wedge B$ entspricht Paar der Labels a:A und b:B
- Evidenz c hängt im Teilziel von a und b ab
- Im Hauptziel muß a durch x.1 und b durch x.2 ersetzt werden Evidenz $((\lambda a. (\lambda b.c))(x.1))(x.2)$ wird evaluiert zu c[x.1, x.2/a, b]

Anwendung der Konjunktionsregeln

• Beweis für $P \Rightarrow (Q \Rightarrow (P \land Q))$

- Naheliegender Beweis liefert gleiche Evidenz wie zuvor
- Beweis für $(P \land Q) \Rightarrow P$

- Evidenz x.1 in Schritt 1 ist reduzierte Form von $((\lambda p. (\lambda q. p))(x.1))(x.2)$

REGELN FÜR DISJUNKTIONEN

• Disjunktion auf rechter Seite einer Sequenz

- $-\operatorname{Um} H \vdash A \lor B$ zu zeigen, muß A oder B gezeigt werden
- Zwei Regeln ermöglichen es, eine Wahl zu treffen

$$H \vdash A \lor B$$
 ev = inl(a) $H \vdash A \lor B$ ev = inr(b) $H \vdash A$ ev = a orR1 $H \vdash B$ ev = b orR2

Regeln kennzeichnen Herkunft der Evidenzen a / b mit inl / inr

• Disjunktion auf linker Seite einer Sequenz

- Um C unter der Annahme $A \vee B$ zu zeigen, muß C unter der Annahme A und unter der Annahme B gezeigt werden können (Fallanalyse)

```
H, x: A \vee B, H' \vdash C ev= case x of inl(a) \rightarrow c_1
                                                   inr(b) \rightarrow c_2
    H, a: A, H' \vdash C ev = c_1
    H, b: \mathbf{B}, H' \vdash C ev = c_2
                                                                        orL
```

- Label x für $A \vee B$ ist entweder inl(a) mit a:A oder inr(b) mit b:B
- Evidenz c_1 hängt von a, Evidenz c_2 von b ab
- Evidenz im Hauptziel wird durch Fallanalyse zusammengesetzt

Anwendung der Disjunktionsregeln

• Beweis für $P \Rightarrow (P \lor Q)$

• Beweis für $(P \lor Q) \Rightarrow (Q \lor P)$

REGELN FÜR NEGATION

Spezialisierte Implikationsregeln, da $\neg A = A \Rightarrow f$

Negation auf rechter Seite einer Sequenz

 $-\operatorname{Um} H \vdash \neg A$ zu zeigen, muß aus Annahme A ein Widerspruch folgen

$$H \vdash \neg A \quad \text{ev} = \lambda a.b$$

 $H, a:A \vdash \mathbf{f} \quad \text{ev} = b \quad \text{notR}$

– Es gibt keine direkte Methode, Evidenz für f zu konstruieren

Negation auf linker Seite einer Sequenz

- Um C unter Annahme $\neg A$ zu zeigen, benötigt man Evidenz für A
- Aus dem resultierenden Widerspruch folgt C ohne weiteren Beweis (!)

$$H, f: \neg A, H' \vdash C \qquad \text{ev = any}(f(a)) \\ H, f: \neg A, H' \vdash A \qquad \text{ev = } a \qquad \qquad \text{notL}$$

- Evidenz any(f(a)) drückt aus, daß aus Widerspruch alles folgt
- Typisierung ist any: $\{\} \rightarrow [C]$ für beliebige Formeln C
- Eingabe für any beschreibt Quelle des Widerspruchs, Der Term f(a) konstruiert ein Element, das es gar nicht geben kann

Anwendung der Negationsregeln

• Beweis für $P \Rightarrow \neg \neg P$

```
\vdash P \Rightarrow \neg \neg P \quad \text{ev} = \lambda p. (\lambda h. \operatorname{any}(h(p)))
                                                                       BY impliesR
1. p:P \vdash \neg \neg P ev = \lambda h. \operatorname{any}(h(p))
                                                                       BY notR
1.1. p:P, h:(\neg P) \vdash f \text{ ev = any}(h(p))
                                                                       BY notL
1.1.1. p:P, h:(\neg P) \vdash P \quad \text{ev} = p
                                                                       BY axiom
```

- Beweis konstruiert Evidenz für $P \Rightarrow (\neg P \Rightarrow Q)$ für beliebige Q
- Direkt entwickelte Evidenz $\lambda p. (\lambda h. h(p))$ benötigt $Q = \mathsf{f}$

• Beweis für $\neg(P \lor Q) \Rightarrow \neg P$

```
\vdash \neg (P \lor Q) \Rightarrow \neg P ev = \lambda h. (\lambda p.any(h(inl(p))))
                                                                        BY impliesR
1. h: \neg (P \lor Q) \vdash \neg P ev = \lambda p.\operatorname{any}(h(\operatorname{inl}(p)))
                                                                        BY notR
1.1. h: \neg (P \lor Q), p: P \vdash f \text{ ev = any}(h(\text{inl}(p)))
                                                                        BY notL
1.1.1. h: \neg (P \lor Q), p: P \vdash P \lor Q ev = inl(p)
                                                                       BY orR1
1.1.1.1. h:\neg(P \lor Q), p:P \vdash P ev= p
                                                                        BY axiom
```

– Beweis konstruiert Evidenz für $\neg(P \lor Q) \Rightarrow (P \Rightarrow R)$ für beliebige R

EIN KOMPLEXERER BEWEIS

```
\vdash ((P \lor Q) \land ((P \Rightarrow R) \land (Q \Rightarrow R))) \Rightarrow R \quad \text{ev} = \lambda x. (case x.1 of inl(p) \rightarrow x.2.1(p))
                                                                                         inr(q) \rightarrow x.2.2(q)
                                                                                           BY impliesR
1. x:(P \lor Q) \land ((P \Rightarrow R) \land (Q \Rightarrow R)) \vdash R ev = case x.1 of inl(p) \rightarrow x.2.1(p)
                                                                                      inr(q) \rightarrow x.2.2(q)
                                                                                           BY and I.
1.1. z: P \lor Q, y: (P \Rightarrow R) \land (Q \Rightarrow R) \vdash R ev = case z of inl(p) \rightarrow y.1(p)
                                                                                   | \mathtt{inr}(q) \rightarrow y.2(q)
                                                                                           BY and I.
1.1.1. z:P \lor Q, g:P \Rightarrow R, h:Q \Rightarrow R \vdash R ev = case z of inl(p) \rightarrow g(p)
                                                                                   |\operatorname{inr}(q) \to h(q)|
                                                                                           BY orl.
1.1.1.1. p:P, g:P \Rightarrow R, h:Q \Rightarrow R \vdash R
                                                                                           BY impliesL g
                                                                  ev = g(p)
1.1.1.1.1. p:P, g:P \Rightarrow R, h:Q \Rightarrow R \vdash P
                                                                                           BY axiom
                                                                    ev = p
1.1.1.1.2. p:P, r:R, h:Q \Rightarrow R \vdash R
                                                                                          BY axiom
                                                                    ev = r
1.1.1.2. q:Q, g:P \Rightarrow R, h:Q \Rightarrow R \vdash R
                                                                                           BY implies L h
                                                                  ev = h(q)
1.1.1.2.1. q:Q, g:P \Rightarrow R, h:Q \Rightarrow R \vdash Q
                                                                                           BY axiom
                                                                    ev = q
1.1.1.2.2. q:Q, g:P \Rightarrow R, r:R \vdash R
                                                                                           BY axiom
                                                                     ev = r
```

Was passiert mit $P \vee \neg P$, $\neg \neg P \Rightarrow P$, etc.?

ullet Beweisansätze für $P \lor \neg P$

$$\vdash P \lor \neg P$$
 BY orR1
1. $\vdash P$ BY ?????

$$\vdash P \lor \neg P$$
 BY orR2
1. $\vdash \neg P$ BY notR
1.1. $p:P \vdash f$ BY ?????

Beide Ansätze können nicht fortgesetzt werden

Was passiert mit $P \vee \neg P$, $\neg \neg P \Rightarrow P$, etc.?

ullet Beweisansätze für $P \lor \neg P$

$$\vdash P \lor \neg P$$
 BY orR1
1. $\vdash P$ BY ?????

$$\vdash P \lor \neg P$$
 BY orR2
1. $\vdash \neg P$ BY notR
1.1. $p:P \vdash f$ BY ?????

- Beide Ansätze können nicht fortgesetzt werden
- Beweisansatz für $\neg \neg P \Rightarrow P$

Keine sinnvolle Fortsetzung möglich

Was passiert mit $P \vee \neg P$, $\neg \neg P \Rightarrow P$, etc.?

ullet Beweisansätze für $P \lor \neg P$

$$\vdash P \lor \neg P$$
 BY orR2
1. $\vdash \neg P$ BY notR
1.1. $p:P \vdash f$ BY ?????

- Beide Ansätze können nicht fortgesetzt werden
- Beweisansatz für $\neg \neg P \Rightarrow P$

- Keine sinnvolle Fortsetzung möglich
- ullet Beweisansatz für $(P \Rightarrow Q) \Rightarrow (\neg P \lor Q)$

- Keine der drei möglichen Fortsetzungen führt zum Erfolg

Refinement Logik – Zusammenfassung

Links			Rechts		
$H, f: A \Rightarrow B, H' \vdash C$	ev = c[f(a)/b] im	pliesL	$H \vdash A \Rightarrow B$	$ev = \lambda a.b$	impliesR
$H, f: A \Rightarrow B, H' \vdash A$	ev = a		$H, a:A \vdash B$	ev = b	
$H, b: \mathbf{B}, H' \vdash C$	ev = c				
$H, x: A \wedge B, H' \vdash C$	ev = c[x.1, x.2/a, b]	andL	$H \vdash A \land B$	ev = (a, b)	andR
$H, a: A, b: B, H' \vdash C$	ev = c		$H \vdash A$	ev = a	
			$H \vdash B$	ev = b	
$H, x: A \lor B, H' \vdash C$	$ev = case x of inl(a) \rightarrow c$		$H \vdash A \lor B$	ev = inl(a)	orR1
$H, a: A, H' \vdash C$	$ev = c_1$ $ inr(b) \rightarrow c$	2	$H \vdash A$	ev = a	
$H, b: \mathbf{B}, H' \vdash C$	$ev = c_2$		$H \vdash A \lor B$	ev = inr(b)	orR2
			$H \vdash B$	ev = b	
$H, f: \neg A, H' \vdash C$	ev = any(f(a))	notL	$H \vdash \neg A$	$ev = \lambda a.b$	notR
$H, f: \neg A, H' \vdash A$	ev = a		H , a : $A \vdash f$	ev = b	
			$H, a: A, H' \vdash A$	ev = a	axiom

Prädikatenlogik

Das übliche Verständnis des Begriffs "Logik"

• Ermöglicht Formulierung universeller Zusammenhänge

... und ihre Anwendung auf Individuen

"Jeder Mensch ist sterblich.

Sokrates ist ein Mensch.

Also ist Sokrates sterblich"

 $((\forall x)(Human(x) \Rightarrow Mortal(x)))$

 $\land Human(sokrates))$

 $\Rightarrow Mortal(sokrates)$

• Unterstützt unterspezifizierte Aussagen und Funktionen

"Studierende, die mindestens 120 Leistungspunkte erworben haben, können ein Thema für die Bachelorarbeit bekommen"

$$(\forall st) \ (lp(s) \geq 120 \Rightarrow (\exists t) \ (BA(t) \land Bekommt(s,t)))$$

• Erweiterung der Aussagenlogik

- Syntax wird ergänzt um Variablen, Funktionen, und Quantoren
- Neue Konzepte: Bindungsbereich, Variablenvorkommen und Substitution

Syntax der Prädikatenlogik

• Erlaubte Symbole

- Variablen $x, y, z, x_0, y_0, \ldots$
- Funktionssymbole $f, g, h, a, b, c, f_0, g_0, \ldots$ (mit Stelligkeit, a, b, c oft nullstellig)
- Prädikatssymbole $P, Q, R, P_0, Q_0, R_0, \dots$ (mit Stelligkeit)
- Logische Symbole f, \neg , \land , \lor , \Rightarrow , \forall , \exists und Klammern

• Terme: Syntax für individuelle Objekte

- Variablen und nullstellige Funktionen (Konstante) sind (atomare) Terme
- Sind $t_1, ..., t_n$ Terme und f n-stellige Funktion, dann ist $f(t_1, ..., t_n)$ Term

• Formeln: Syntax für Aussagen

- f und nullstellige Prädikate (Aussagenvariablen) sind (atomare) Formeln
- $-P(t_1,\ldots,t_n)$ ist (atomare) Formel (t_1,\ldots,t_n) Terme, P n-stelliges Prädikat)
- Sind A und B Formeln, dann auch $\neg A$, $(A \Rightarrow B)$, $(A \land B)$, $(A \lor B)$
- Ist B Formel und x eine Variable, dann sind $(\forall x)B$ und $(\exists x)B$ Formeln Bindungsbereich des Quantors (Scope) ist die kürzeste Formel, die auf den Quantor folgt Später: alternative Notationen $\forall x. B$ und $\exists x. B$ und Konventionen, Klammern zu sparen

Semantik der Prädikatenlogik

Evidenz für Gültigkeit von Formeln

– Formuliert als Terme in erweiterter λ -Notation

(Einheit 5)

Konstruktion von Evidenz folgt induktivem Aufbau der Syntax

Evidenz für atomare Formeln

f hat keine Evidenz

 $[f] = \{\}$

 $-A = P(t_1, ..t_n)$ steht für unbekannte Aussagen

[A] unspezifiziert

• "Aussagenlogische" Evidenzkonstruktion wie zuvor

Implikation

 $[A \Rightarrow B] = [A] \rightarrow [B]$

Konjunktion

$$[A \land B] = [A] \times [B]$$

Disjunktion

$$[A \vee B] = [A] + [B]$$

Negation

$$[\neg A] = [A] \rightarrow \{\}$$

• $(\forall x)B$: "Für alle x gilt B"

$$[(orall x)B] = x : \mathbb{U} {
ightarrow} [B]$$

- Für jede Instanz von x muß eine Evidenz b für B konstruiert werden
- Evidenz für $(\forall x)B$ muß Funktion f sein mit f(x):[B] für alle x
- Eingabe x für f stammt aus einem Universum von Objekten $\mathbb U$
- Ausgabetyp [B] von f kann von konkretem Eingabewert $x:\mathbb{U}$ abhängen z.B. $B=(P\,a\Rightarrow P\,x)$ hat genau dann Evidenz, wenn x mit a instantiiert
- Typ der Evidenzen für $(\forall x)B$ ist ein "abhängiger" Funktionenraum

- $(\forall x)B$: "Für alle x gilt B"
- $[(orall x)B] = x: \mathbb{U} {
 ightarrow} [B]$
- Für jede Instanz von x muß eine Evidenz b für B konstruiert werden
- Evidenz für $(\forall x)B$ muß Funktion f sein mit f(x):[B] für alle x
- Eingabe x für f stammt aus einem Universum von Objekten $\mathbb U$
- Ausgabetyp [B] von f kann von konkretem Eingabewert $x: \mathbb{U}$ abhängen z.B. $B=(P\,a\Rightarrow P\,x)$ hat genau dann Evidenz, wenn x mit a instantiiert
- Typ der Evidenzen für $(\forall x)B$ ist ein "abhängiger" Funktionenraum
- Konkrete Evidenz für $(\forall x)(P \ x \Rightarrow P \ x)$

• $(\forall x)B$: "Für alle x gilt B"

$$[(orall x)B] = x: \mathbb{U} {
ightarrow} [B]$$

- Für jede Instanz von x muß eine Evidenz b für B konstruiert werden
- Evidenz für $(\forall x)B$ muß Funktion f sein mit f(x):[B] für alle x
- Eingabe x für f stammt aus einem Universum von Objekten U
- Ausgabetyp [B] von f kann von konkretem Eingabewert $x:\mathbb{U}$ abhängen z.B. $B=(P\,a\Rightarrow P\,x)$ hat genau dann Evidenz, wenn x mit a instantiiert
- Typ der Evidenzen für $(\forall x)B$ ist ein "abhängiger" Funktionenraum

• Konkrete Evidenz für $(\forall x)(P \ x \Rightarrow P \ x)$

- Evidenz ist Funktion $f:(x:\mathbb{U}\to([P\,x]\to[P\,x]))$, wobei für alle x gilt $f(x)=g_x:[P\,x]\to[P\,x]$ und $q_x(p):[P\,x]$, falls $p:[P\,x]$
- Einfachste Lösung ist $g_x(p) = p$, also $f = \lambda x. (\lambda p. p)$

• $(\forall x)B$: "Für alle x gilt B"

$$[(orall x)B] = x: \mathbb{U} {
ightarrow} [B]$$

- Für jede Instanz von x muß eine Evidenz b für B konstruiert werden
- Evidenz für $(\forall x)B$ muß Funktion f sein mit f(x):[B] für alle x
- Eingabe x für f stammt aus einem Universum von Objekten U
- Ausgabetyp [B] von f kann von konkretem Eingabewert $x: \mathbb{U}$ abhängen z.B. $B=(P\,a\Rightarrow P\,x)$ hat genau dann Evidenz, wenn x mit a instantiiert
- Typ der Evidenzen für $(\forall x)B$ ist ein "abhängiger" Funktionenraum

• Konkrete Evidenz für $(\forall x)(P \ x \Rightarrow P \ x)$

- Evidenz ist Funktion $f:(x:\mathbb{U}\to([P\,x]\to[P\,x]))$, wobei für alle x gilt $f(x)=g_x:[P\,x]\to[P\,x]$ und $q_x(p):[P\,x]$, falls $p:[P\,x]$
- Einfachste Lösung ist $g_x(p) = p$, also $f = \lambda x. (\lambda p. p)$
- Konkrete Evidenz für $((\forall x)P \ x) \Rightarrow P \ a$

• $(\forall x)B$: "Für alle x gilt B"

$$[(orall x)B]$$
 = $x:\mathbb{U}{
ightarrow}[B]$

- Für jede Instanz von x muß eine Evidenz b für B konstruiert werden
- Evidenz für $(\forall x)B$ muß Funktion f sein mit f(x):[B] für alle x
- Eingabe x für f stammt aus einem Universum von Objekten U
- Ausgabetyp [B] von f kann von konkretem Eingabewert $x: \mathbb{U}$ abhängen z.B. $B=(P\,a\Rightarrow P\,x)$ hat genau dann Evidenz, wenn x mit a instantiiert
- Typ der Evidenzen für $(\forall x)B$ ist ein "abhängiger" Funktionenraum

• Konkrete Evidenz für $(\forall x)(P \ x \Rightarrow P \ x)$

- Evidenz ist Funktion $f:(x:\mathbb{U}\to([P\,x]\to[P\,x]))$, wobei für alle x gilt $f(x)=g_x:[P\,x]\to[P\,x]$ und $q_x(p):[P\,x]$, falls $p:[P\,x]$
- Einfachste Lösung ist $g_x(p) = p$, also

$$f = \lambda x. (\lambda p. p)$$

• Konkrete Evidenz für $((\forall x)P x) \Rightarrow P a$

- Evidenz ist Funktion $f:(x:\mathbb{U}\to[P\ x])\to[P\ a]))$ mit $f(h)=x_h:[P\ a]$ für alle $h:(x:\mathbb{U}\to[P\ x]).$
- Einfachste Lösung ist Anwendung von h auf Konstante a $f = \lambda h \cdot h(a)$

EVIDENZ FÜR EXISTENTIELLE QUANTIFIKATION

- $(\exists x)B$: "Es gibt ein x, für das B gilt" $[(\exists x)B] = x : \mathbb{U} \times [B]$
 - Um Evidenz für $(\exists x)B$ zu konstruieren, braucht man b:[B] für ein $x:\mathbb{U}$
 - Formel B kann von Wahl des konkreten Wertes für x abhängen
 - Typ der Evidenzen für $(\exists x)B$ ist ein "abhängiger" Produktraum

EVIDENZ FÜR EXISTENTIELLE QUANTIFIKATION

- $(\exists x)B$: "Es gibt ein x, für das B gilt" $[(\exists x)B] = x : \mathbb{U} \times [B]$
 - Um Evidenz für $(\exists x)B$ zu konstruieren, braucht man b:[B] für ein $x:\mathbb{U}$
 - Formel B kann von Wahl des konkreten Wertes für x abhängen
 - Typ der Evidenzen für $(\exists x)B$ ist ein "abhängiger" Produktraum
- Konkrete Evidenz für $Pa \Rightarrow ((\exists x)Px)$

EVIDENZ FÜR EXISTENTIELLE QUANTIFIKATION

- $(\exists x)B$: "Es gibt ein x, für das B gilt" $[(\exists x)B] = x : \mathbb{U} \times [B]$
 - Um Evidenz für $(\exists x)B$ zu konstruieren, braucht man b:[B] für ein $x:\mathbb{U}$
 - Formel B kann von Wahl des konkreten Wertes für x abhängen
 - Typ der Evidenzen für $(\exists x)B$ ist ein "abhängiger" Produktraum
- Konkrete Evidenz für $P a \Rightarrow ((\exists x) P x)$
 - Evidenz ist Funktion $f:(p:[P\ a] \to (x:\mathbb{U} \times [P\ x]))$ mit f(p)=(x,p') für alle $p:[P\ a]$, wobei $x:\mathbb{U}$ und p' Evidenz für $P\ x$
 - Einfachste Lösung ist x = a and p' = p

$$f = \lambda p. (a, p)$$

EVIDENZ FÜR EXISTENTIELLE QUANTIFIKATION

- $(\exists x)B$: "Es gibt ein x, für das B gilt" $[(\exists x)B] = x : \mathbb{U} \times [B]$
 - Um Evidenz für $(\exists x)B$ zu konstruieren, braucht man b:[B] für ein $x:\mathbb{U}$
 - Formel B kann von Wahl des konkreten Wertes für x abhängen
 - Typ der Evidenzen für $(\exists x)B$ ist ein "abhängiger" Produktraum
- Konkrete Evidenz für $P a \Rightarrow ((\exists x) P x)$
 - Evidenz ist Funktion $f:(p:[P\ a] \to (x:\mathbb{U} \times [P\ x]))$ mit f(p)=(x,p') für alle $p:[P\ a]$, wobei $x:\mathbb{U}$ und p' Evidenz für $P\ x$
 - Einfachste Lösung ist x = a and p' = p

$$f = \lambda p. (a, p)$$

• Konkrete Evidenz für $((\exists x)P \ x) \Rightarrow ((\exists y)Py)$

EVIDENZ FÜR EXISTENTIELLE QUANTIFIKATION

- $(\exists x)B$: "Es gibt ein x, für das B gilt" $[(\exists x)B] = x : \mathbb{U} \times [B]$
 - Um Evidenz für $(\exists x)B$ zu konstruieren, braucht man b:[B] für ein $x:\mathbb{U}$
 - Formel B kann von Wahl des konkreten Wertes für x abhängen
 - Typ der Evidenzen für $(\exists x)B$ ist ein "abhängiger" Produktraum
- Konkrete Evidenz für $P a \Rightarrow ((\exists x) P x)$
 - Evidenz ist Funktion $f:(p:[P\ a] \to (x:\mathbb{U} \times [P\ x]))$ mit f(p)=(x,p') für alle $p:[P\ a]$, wobei $x:\mathbb{U}$ und p' Evidenz für $P\ x$
 - Einfachste Lösung ist x = a and p' = p

$$f = \lambda p. (a, p)$$

- Konkrete Evidenz für $((\exists x)P \ x) \Rightarrow ((\exists y)Py)$
 - Evidenz ist Funktion f mit f(z)=(y,p') für alle $z:(x:\mathbb{U}\times[P\,x])$, wobei $y:\mathbb{U}$ und p' Evidenz für $P\,y$
 - -z muß ein Paar (a, p) mit $a : \mathbb{U}$ und p : [P a]
 - Einfachste Lösung: x = a = z.1 and p' = p = z.2, also $f = \lambda z.$ (z.1, z.2)
 - Wegen z=(z.1,z.2) kann Evidenz vereinfacht werden zu $f=\lambda z.z$

$$\bullet \ ((\forall x)(P\ x \land Q\ x)) \Rightarrow ((\forall x)P\ x \land (\forall x)Q\ x)$$

- $\bullet ((\forall x)(P \ x \land Q \ x)) \Rightarrow ((\forall x)P \ x \land (\forall x)Q \ x)$
 - Evidenz ist Funktion f so daß für alle $h:(x:\mathbb{U}\to[P\,x]\times[Q\,x])$ gilt $f(h)=(g_p,g_q):(x:\mathbb{U}\to[P\,x])\times(x:\mathbb{U}\to[Q\,x])$
 - $-g_p$ und g_q nehmen ein $x:\mathbb{U}$ und erzeugen Elemente von $[P\,x]$ bzw. $[Q\,x]$
 - Einfachste Lösung ist $g_p(x) = h(x).1$ und $g_q(x) = h(x).2$ $f = \lambda h. (\lambda x. h(x).1, \ \lambda x. h(x).2)$

- $\bullet \ ((\forall x)(P\ x \land Q\ x)) \Rightarrow ((\forall x)P\ x \land (\forall x)Q\ x)$
 - Evidenz ist Funktion f so daß für alle $h:(x:\mathbb{U}\to [P\,x]\times [Q\,x])$ gilt $f(h)=(g_p,g_q):(x:\mathbb{U}\to [P\,x])\times (x:\mathbb{U}\to [Q\,x])$
 - $-g_p$ und g_q nehmen ein $x:\mathbb{U}$ und erzeugen Elemente von $[P\,x]$ bzw. $[Q\,x]$
 - Einfachste Lösung ist $g_p(x) = h(x).1$ und $g_q(x) = h(x).2$ $f = \lambda h. (\lambda x. h(x).1, \ \lambda x. h(x).2)$
- $\bullet \neg ((\forall x) \neg (P x)) \Rightarrow (\exists x) P x$

- $\bullet ((\forall x)(P \ x \land Q \ x)) \Rightarrow ((\forall x)P \ x \land (\forall x)Q \ x)$
 - Evidenz ist Funktion f so daß für alle $h:(x:\mathbb{U}\to [P\,x]\times [Q\,x])$ gilt $f(h) = (g_p, g_q) : (x: \mathbb{U} \rightarrow [P x]) \times (x: \mathbb{U} \rightarrow [Q x])$
 - $-g_p$ und g_q nehmen ein $x:\mathbb{U}$ und erzeugen Elemente von [Px] bzw. [Qx]
 - Einfachste Lösung ist $g_p(x) = h(x).1$ und $g_q(x) = h(x).2$ $f = \lambda h. (\lambda x. h(x).1, \lambda x. h(x).2)$
- $\bullet \neg ((\forall x) \neg (P x)) \Rightarrow (\exists x) P x$
 - Evidenz ist Funktion f so daß für alle $h: (x: \mathbb{U} \to ([P x] \to \{\})) \to \{\}$ gilt f(h) = (x, p) mit p : [P x]
 - Zur Konstruktion von f(h) benötigt man Kenntnisse über P und Objekte x, für die Px gilt
 - Es gibt keinen allgemeinen Weg, x oder p aus h zu konstruieren, solange das Prädikatssymbol P unspezifiziert ist

Keine universelle Evidenz

EVIDENZSEMANTIK – ZUSAMMENFASSUNG

Aussage A	Evidenztyp $[A]$	Evidenzkonstruktion	Dekompositionsterm
$A \Rightarrow B$	$[A] \rightarrow [B]$	$\lambda a.b$	f(a)
$A \wedge B$	$[A] \times [B]$	(a,b)	x.1, x.2
$A \lor B$	[A] + [B]	inl(a), inr(b)	case x of $inl(a) \rightarrow s$ $ inr(b) \rightarrow t $
$\neg A$	$[A] \rightarrow \{\}$	$\lambda a.b$	f(a)
f	{}	_	_
$(\forall x)B$	$x: \mathbb{U} \rightarrow [B]$	$\lambda a.b$	f(a)
$(\exists x)B$	$x: \mathbb{U} \times [B]$	(a,b)	x.1, x.2

• Formeln korrespondieren mit Datentyp ihrer Evidenzen

- Es gibt Terme, um Evidenz zu konstruieren oder zu zerlegen
- Beide sind invers zueinander und ermöglichen "Rechnen" mit Evidenz (Einheit 5)

• Evidenzterme bilden eine Programmiersprache

- Sprache umfasst Terme der Prädikatenlogik
- Prädikatenlogik kann nur Programme ohne Schleifen spezifizieren
- Mehr Ausdruckskraft benötigt Gleichheit, Zahlen, Induktion, ...

Prädikatenlogische Refinement Logik

• Erweiterung der aussagenlogische Regeln

- Regel axiom ist auf atomare prädikatenlogische Formeln anwendbar
- Unveränderte Regeln für $A \Rightarrow B$, $A \land B$, $A \lor B$, $\neg A$
- Konstruktierte Evidenz ändert sich ebenfalls nicht

Behandlung von Quantoren

- Um $(\forall x)B$ zu zeigen, muß man B für jede Instanz von x zeigen Hierzu wählt man x': $\mathbb U$ beliebig aber fest und zeigt B für x' statt x
- $-\operatorname{Um}(\exists x)B$ zu zeigen, muß man eine B für eine Instanz von x zeigen Hierzu gibt man ein Objekt a an und zeigt B für a statt x
- Regeln benötigen "syntaktische Instantiierung" von Variablen

ullet Formales Konzept: Substitution B[t/x]

- Ersetzen der Variablen x in Formel B durch Term t Unvollständiger Ersatz für Instantiierung, wenn Universum überabzählbar
- Substitution muß Verständnis von "Für alle" und "es gibt" erhalten $(\forall x)P\,x$ und $(\forall y)P\,y$ bedeuten dasselbe
- Nur ungebundene Variablen dürfen ersetzt werden

ullet Vorkommen der Variablen x in Formel B, informal

- Gebunden: x erscheint im Scope eines Quantors $(\forall x)$ oder $(\exists x)$
- Frei: x kommt in B vor, ohne gebunden zu sein
- B heißt geschlossen falls B keine freien Variablen enthält

ullet Vorkommen der Variablen x in Formel B, informal

- Gebunden: x erscheint im Scope eines Quantors $(\forall x)$ oder $(\exists x)$
- Frei: x kommt in B vor, ohne gebunden zu sein
- B heißt geschlossen falls B keine freien Variablen enthält

• Präzise, induktive Definition

die Variable x kommt frei vor; $y\neq x$ kommt nicht vor
die Variable x kommt nicht vor
freie Vorkommen von x in t_i bleiben frei
gebundene Vorkommen von x bleiben gebunden.
freie Vorkommen von x in A , B bleiben frei
gebundene Vorkommen von x bleiben gebunden.
beliebige Vorkommen von x in B werden gebunden
Vorkommen von $y\neq x$ in B bleiben unverändert

ullet Vorkommen der Variablen x in Formel B, informal

- Gebunden: x erscheint im Scope eines Quantors $(\forall x)$ oder $(\exists x)$
- Frei: x kommt in B vor, ohne gebunden zu sein
- B heißt geschlossen falls B keine freien Variablen enthält

• Präzise, induktive Definition

x	die Variable x kommt frei vor; $y\neq x$ kommt nicht vor
f	die Variable x kommt nicht vor
$f(t_1,, t_n)$	freie Vorkommen von x in t_i bleiben frei
$P(t_1,,t_n)$	gebundene Vorkommen von x bleiben gebunden.
$\neg A, A \Rightarrow B$	freie Vorkommen von x in A , B bleiben frei
$A \wedge B$, $A \vee B$	gebundene Vorkommen von x bleiben gebunden.
$(\forall x)B$	beliebige Vorkommen von x in B werden gebunden
$(\exists x)B$	Vorkommen von $y\neq x$ in B bleiben unverändert

$$(\forall x)(P(x) \land Q(x)) \land R(x)$$

ullet Vorkommen der Variablen x in Formel B, informal

- Gebunden: x erscheint im Scope eines Quantors $(\forall x)$ oder $(\exists x)$
- Frei: x kommt in B vor, ohne gebunden zu sein
- B heißt geschlossen falls B keine freien Variablen enthält

Präzise, induktive Definition

```
die Variable x kommt frei vor; y\neq x kommt nicht vor die Variable x kommt nicht vor f(t_1,...,t_n) freie Vorkommen von x in t_i bleiben frei P(t_1,...,t_n) gebundene Vorkommen von x bleiben gebunden. \neg A, \ A\Rightarrow B freie Vorkommen von x in A, B bleiben frei A \land B, \ A \lor B gebundene Vorkommen von x bleiben gebunden. (\forall x)B beliebige Vorkommen von x in x werden gebunden (\exists x)B Vorkommen von x in x bleiben unverändert
```

$$(\forall x)\underbrace{(P(x) \land Q(x))}_{x \ \textit{frei}}) \land \underbrace{R(x)}_{x \ \textit{frei}}$$

ullet Vorkommen der Variablen x in Formel B, informal

- Gebunden: x erscheint im Scope eines Quantors $(\forall x)$ oder $(\exists x)$
- Frei: x kommt in B vor, ohne gebunden zu sein
- B heißt geschlossen falls B keine freien Variablen enthält

Präzise, induktive Definition

die Variable x kommt frei vor; $y\neq x$ kommt nicht vor die Variable x kommt nicht vor $f(t_1,...,t_n)$ freie Vorkommen von x in t_i bleiben frei $P(t_1,...,t_n)$ gebundene Vorkommen von x bleiben gebunden. $\neg A, A\Rightarrow B$ freie Vorkommen von x in A,B bleiben frei $A\land B, A\lor B$ gebundene Vorkommen von x bleiben gebunden. $(\forall x)B$ beliebige Vorkommen von x in B werden gebunden $(\exists x)B$ Vorkommen von $y\neq x$ in B bleiben unverändert

$$\begin{array}{cccc} x & gebunden \\ \hline (\forall x) \underbrace{(P(x) \land Q(x)))}_{x & frei} & \land & \underbrace{R(x)}_{x & frei} \end{array}$$

ullet Vorkommen der Variablen x in Formel B, informal

- Gebunden: x erscheint im Scope eines Quantors $(\forall x)$ oder $(\exists x)$
- Frei: x kommt in B vor, ohne gebunden zu sein
- B heißt geschlossen falls B keine freien Variablen enthält

Präzise, induktive Definition

```
die Variable x kommt frei vor; y\neq x kommt nicht vor
\mathcal{X}
               die Variable x kommt nicht vor
f(t_1,...,t_n) freie Vorkommen von x in t_i bleiben frei
P(t_1,...,t_n) gebundene Vorkommen von x bleiben gebunden.
\neg A, A \Rightarrow B freie Vorkommen von x in A, B bleiben frei
A \wedge B, A \vee B gebundene Vorkommen von x bleiben gebunden.
(\forall x)B
               beliebige Vorkommen von x in B werden gebunden
(\exists x)B
               Vorkommen von y\neq x in B bleiben unverändert
                  x frei und gebunden
                 x gebunden
```

Substitution B[t/x] formal

Endliche Abbildung σ von Variablen in Terme

$$-\sigma = [t_1, ..., t_n/x_1, ..., x_n] = \sigma(x_1) = t_1, ..., \sigma(x_n) = t_n$$

 $-A\sigma$: Anwendung von σ auf den Ausdruck $A\tau$ und σ

$$\lfloor x \rfloor [t/x] = t \qquad \qquad \lfloor x \rfloor [t/y] = x \qquad (y \neq x)$$

$$\lfloor f(t_1, ..., t_n) \rfloor \sigma = f(t_1 \sigma, ..., t_n \sigma) \qquad \qquad \lfloor f \rfloor \sigma \qquad = f$$

$$\lfloor P(t_1, ..., t_n) \rfloor \sigma = P(t_1 \sigma, ..., t_n \sigma) \qquad \qquad \qquad \lfloor A \land B \rfloor \sigma \qquad = A \sigma \land B \sigma$$

$$\lfloor A \lor B \rfloor \sigma \qquad = A \sigma \lor B \sigma \qquad \qquad \lfloor A \Rightarrow B \rfloor \sigma \qquad = A \sigma \Rightarrow B \sigma$$

$$\lfloor (\forall x) B \rfloor [t/x] = (\forall x) B \qquad \qquad \lfloor (\exists x) B \rfloor [t/x] = (\exists x) B$$

$$\lfloor (\forall x) B \rfloor [t/y] = \lfloor (\forall z) B [z/x] \rfloor [t/y] \qquad \qquad \lfloor (\exists x) B \rfloor [t/y] = \lfloor (\exists z) B [z/x] \rfloor [t/y] ^*$$

$$\lfloor (\forall x) B \rfloor [t/y] = (\forall x) . \lfloor B \lfloor t/y \rfloor \rfloor \qquad \qquad (\exists x) B \rfloor [t/y] = (\exists x) \lfloor B \lfloor t/y \rfloor \rfloor$$

$$= (\exists x) B \rfloor [t/y] = (\exists x) \lfloor B \rfloor [t/y] \rfloor \qquad \qquad (\exists x) B \rfloor [t/y] = (\exists x) \lfloor B \rfloor [t/y] \rfloor$$

^{*:} $y\neq x$, y frei in B, x frei in t, z neue Variable

^{**:} $y\neq x$, y nicht frei in B oder x nicht frei in t

REGELN FÜR ALLQUANTOR

• Allquantor auf rechter Seite einer Sequenz

- $-\operatorname{Um} H \vdash (\forall x)B$ zu zeigen, muß man B für jede Instanz von x zeigen Einziger Weg ist generischer Beweis, der nicht von Instanz abhängt
- Wähle neue Variable x' und beweise B[x'/x]

$$H \vdash (\forall x)B$$
 ev = $\lambda x'.b$ $H, x': \mathbb{U} \vdash B[x'/x]$ ev = b allR

- Im Teilziel wird generische Evidenz b für B[x'/x] und alle x' konstruiert
- Evidenz für $(\forall x)B$ muß Funktion $\lambda x'.b$ sein

REGELN FÜR ALLQUANTOR

• Allquantor auf rechter Seite einer Sequenz

- Um $H \vdash (\forall x)B$ zu zeigen, muß man B für jede Instanz von x zeigen Einziger Weg ist generischer Beweis, der nicht von Instanz abhängt
- Wähle neue Variable x' und beweise B[x'/x]

$$H \vdash (\forall x)B$$
 ev = $\lambda x'.b$ $H, x': \mathbb{U} \vdash B[x'/x]$ ev = b allR

- Im Teilziel wird generische Evidenz b für B[x'/x] und alle x' konstruiert
- Evidenz für $(\forall x)B$ muß Funktion $\lambda x'.b$ sein

• Allquantor auf linker Seite einer Sequenz

– Um C unter Annahme $(\forall x)B$ zu zeigen, darf man jede Instanz von x verwenden, also die Annahme B[t/x] für beliebige Terme t ergänzen

$$H, f: (\forall x)B, H' \vdash C$$
 ev = $c[f(t)/b]$
 $H, f: (\forall x)B, b: B[t/x], H' \vdash C$ ev = c all t

- Regel nimmt an, daß Evidenz c aus Evidenz b:B[t/x] konstruierbar ist
- Anwendung von $\lambda b.c$ auf f(t) liefert Evidenz für C im Hauptziel

Anwendung der Allquantorregeln

• Beweis für $(\forall x)(Px \Rightarrow Px)$

Anwendung der Allquantorregeln

• Beweis für $(\forall x)(Px \Rightarrow Px)$

• Beweis für $((\forall x)Px) \Rightarrow Pa$

Anwendung der Allquantorregeln

• Beweis für $(\forall x)(Px \Rightarrow Px)$

• Beweis für $((\forall x)Px) \Rightarrow Pa$

• Beweis für $((\forall x)Px) \Rightarrow (Pa \land Pb)$

REGELN FÜR EXISTENZQUANTOR

• Existenzquantor auf rechter Seite einer Sequenz

 $-\operatorname{Um} H \vdash (\exists x)B$ zu zeigen, muß B[t/x] für einen Term t gezeigt werden

$$H \vdash (\exists x)B$$
 ev = (t,b)
 $H \vdash B[t/x]$ ev = b exR t

-Regel setzt Term t und Evidenz b:B[t/x]zur Evidenz (t,b)zusammen

REGELN FÜR EXISTENZQUANTOR

• Existenzquantor auf rechter Seite einer Sequenz

 $-\operatorname{Um} H \vdash (\exists x)B$ zu zeigen, muß B[t/x] für einen Term t gezeigt werden

$$H \vdash (\exists x)B$$
 ev = (t,b)
 $H \vdash B[t/x]$ ev = b exR t

- Regel setzt Term t und Evidenz b: B[t/x] zur Evidenz (t,b) zusammen

• Existenzquantor auf linker Seite einer Sequenz

- $-\operatorname{Um} C$ unter Annahme $(\exists x)B$ zu beweisen, muß man C unter Annahme Bfür eine beliebige Instanz von x, also generisch, zeigen können
- Wähle neue Variable x' und verwende Annahme B[x'/x]

$$H, z: (\exists x)B, H' \vdash C$$
 ev = $c[z.1, z.2/x', b]$
 $H, x': \mathbb{U}, b: B[x'/x], H' \vdash C$ ev = c exL

- Label z für $(\exists x)B$ entspricht Paar aus Variablen x' und Label b:B
- Evidenz c hängt im Teilziel von x' und b ab
- Im Hauptziel muß x' durch z.1 und b durch z.2 ersetzt werden

Anwendung der Existenzquantorregeln

• Beweis für $Pa \Rightarrow ((\exists x)Px)$

$$\vdash Pa \Rightarrow ((\exists x)Px)$$
 ev = $\lambda p.(a,p)$ BY implies R
1 $p:Pa \vdash (\exists x)Px$ ev = (a,p) BY ex R a
1.1 $p:Pa \vdash Pa$ ev = p BY axiom

Anwendung der Existenzquantorregeln

• Beweis für $Pa \Rightarrow ((\exists x)Px)$

• Beweis für $((\exists x)Px) \Rightarrow ((\exists y)Py)$

- Evidenz (z.1, z.2) kann zu z vereinfacht werden

Anwendung der Existenzquantorregeln

• Beweis für $Pa \Rightarrow ((\exists x)Px)$

• Beweis für $((\exists x)Px) \Rightarrow ((\exists y)Py)$

- Evidenz (z.1, z.2) kann zu z vereinfacht werden
- Reihenfolge der Regelanwendungen wichtig für erfolgreichen Beweis

$\vdash ((\exists x)Px) \Rightarrow ((\exists y)Py)$	ВҮ	impliesR
$1 z: (\exists x) Px \vdash (\exists y) Py$	ВҮ	$\operatorname{exR} x$
$1.1 z:(\exists x)Px \vdash Px$	ВҮ	exL
$1.1.1 x': \mathbb{U}, p: Px' \vdash Px$	BY	???

EIN KOMPLEXERER BEWEIS

$\vdash ((\forall x)(Px \land Qx)) \Rightarrow ((\forall x)Px \land (\forall x)Qx)$	ВҮ	impliesR
1. $f:(\forall x)(Px \land Qx) \vdash ((\forall x)Px \land (\forall x)Qx)$	BY	andR
1.1. $f:(\forall x)(Px \land Qx) \vdash (\forall x)Px$	BY	allR
1.1.1. $x: \mathbb{U}, f: (\forall x)(Px \land Qx) \vdash Px$	BY	allL x
1.1.1.1. $x:\mathbb{U}, f:(\forall x)(Px \land Qx), z:(Px \land Qx) \vdash Px$	BY	andL
1.1.1.1.1. $x: \mathbb{U}, f: (\forall x)(Px \land Qx), p: Px, q: Qx \vdash Px$	BY	axiom
1.2. $f:(\forall x)(Px \land Qx) \vdash (\forall x)Qx$	BY	allR
1.2.1. $x: \mathbb{U}, f: (\forall x)(Px \land Qx) \vdash Qx$	BY	allL x
1.2.1.1. $x:\mathbb{U}, f:(\forall x)(Px \land Qx), z:(Px \land Qx) \vdash Qx$	ВҮ	andL
1.2.1.1.1. $x:\mathbb{U}, f:(\forall x)(Px \land Qx), p:Px, q:Qx \vdash Qx$	ВҮ	axiom

Konstruierte Evidenz ist $\lambda f. (\lambda x. (f x).1, \lambda x. (f x).2)$

Refinement Logik – Zusammenfassung

	Links		F	Rechts		
$H, f: A \Rightarrow B, H' \vdash C$	ev=c[f(a)/b]	impliesL	$H \vdash A \Rightarrow B$	$ev=\lambda a.b$ i	mpliesR	
$H, f: A \Rightarrow B, H' \vdash A$	ev=a		$H, a: A \vdash B$	ev=b		
$H, b: \mathbf{B}, H' \vdash C$	ev=c					
$H, x: A \wedge B, H' \vdash C$	$\operatorname{ev=}c[x.1,x.2/a$,b] andL	$H \vdash A \wedge B$	ev=(a,b)	andR	
$H, a:A, b:B, H' \vdash C$	ev=c		$H \vdash A$	ev=a		
			$H \vdash B$	ev=b		
$H, x: A \lor B, H' \vdash C$	ev=case x of	$\mathtt{inl}(a) \rightarrow c_1 \mathtt{orL}$	$H \vdash A \lor B$	ev=inl(a)	orR1	
$H, a: A, H' \vdash C$	$ev=c_1$	$\operatorname{inr}(b) \rightarrow c_2$	$H \vdash A$	ev=a		
$H, b: \mathbf{B}, H' \vdash C$	$ev=c_2$		$H \vdash A \lor B$	ev=inr(b)	orR2	
			$H \vdash B$	ev=b		
$H, f: \neg A, H' \vdash C$	$\mathtt{ev=any}(f(a))$	notL	$H \vdash \neg A$	$ev=\lambda a.b$	notR	
$H, f: \neg A, H' \vdash A$	ev=a		$H, a: A \vdash f$	ev=b		
			$H, a: A, H' \vdash A$	ev=a	axiom	
$H, f: (\forall x)B, H' \vdash C$	ev=c[f(t)/b]	allL t	$H \vdash (\forall x)B$	$ev = \lambda x'. b$	allR	
$H, f: (\forall x)B, b: B[t/x], H' \vdash C$	Cev= c		$H, x': \mathbb{U} \vdash B[x'/x]$	[c] ev= b		
$H, z:(\exists x)B, H' \vdash C$	ev = c[z.1, z.2/x']	[a,b] exL	$H \vdash (\exists x)B$	ev=(t,b)	exR t	
$H, x': \mathbb{U}, b: B[x'/x], H' \vdash C$	ev=c		$H \vdash B[t/x]$	ev=b		
t ist ein beliebiger Term, x' eine neue Variable						

SINNVOLLE ZUSATZREGELN

• Einfügen von Zwischenbehauptungen

- C ist gültig, wenn C aus der Annahme A folgt und A gültig ist

$$H \vdash C$$
 ev = $(\lambda x.c)(a)$
 $H \vdash A$ ev = a
 $H, x:A \vdash C$ ev = c cut A

- A kann eine beliebige "Schnitt"-Formel sein
- Beweise werden signifikant kürzer, wenn A mehrfach benutzt wird
- Evidenz $(\lambda x.c)(a)$ wird nicht evaluiert (Gefahr der Termaufblähung)

Ausdünnen von Annahmen

– Hypothesen, die nicht gebraucht werden, können entfernt werden

$$H, a:A, H' \vdash C$$
 ev = c
 $H, H' \vdash C$ ev = c thin A

- Sinnvoll, um Hypothesenliste übersichtlich zu halten
- Evidenz c hängt im Hauptziel nicht vom Label a ab

Metamathematik der Refinement Logik

Aussagen über den logischen Kalkül

• Wichtig für Analyse der Eigenschaften des Kalküls

- Ist Refinement Logik korrekt? (sind beweisene Formeln gültig?)
- Ist Refinement Logik vollständig? (sind gültige Formeln beweisbar?)
- Welche Formeln sind entscheidbar?
- Was ist die Komplexität von Beweissuche?

Hilfreich für Implementierung und Automatisierung

- Beschreibung der Struktur der Grundelemente des Kalküls
- Daten- und Zugriffsstrukturen für Formeln, Beweise, Evidenz, ...
- Algorithmen zur Anwendung von Regeln und Evidenzkonstruktion
- Benutzerdefinierbare ("konservative") Erweiterung von Objektsprache und Regelsystem durch Definitionen und Beweisstrategien

Unterschied Objekt- / Metasprache

Präsentation von Kalkülen hat zwei Sprachebenen

Objektsprache:

- Sprache des Kalküls, in dem formalisiert wird
- Formale Sprache mit präzise definierter Syntax
- Konkretes Element z.B. $(\exists x)(Px) \lor Qx) \Rightarrow (\neg((\forall x)(\neg Px \land \neg Qx)))$

• Metasprache:

- Sprache, um Aussagen über den Kalkül zu machen
 - · Beschreibung von Syntax, Semantik, Eigenschaften des Kalküls
- Natürliche, oft stark schematisierte Sprache
- Enthält Objektsprache, angereichert um syntaktische Metavariablen
- -Konkretes Element z.B. aus $(\exists x) (A \lor B)$ folgt $\neg ((\forall x) (\neg A \land \neg B))$

Unterscheidung zuweilen durch Fonts / Farben

Ansonsten aus Kontext eindeutig erkennbar

Refinement Logik als formaler Kalkül (I)

Metasprachliche Präzisierung der verwendeten Konzepte

• Kalkül verwendet Objekt-Logik / Evidenz als Parameter

- Objektsprache ist (bisher) Sprache der Prädikatenlogik
- Evidenz formuliert als Terme in erweiterter λ -Notation
- Semantik der Logik erklärt, wann Terme Evidenz für Formeln sind

• Sequenz (Ziel) $H \vdash C$

- $-H = x_1:A_1,...,x_n:A_n$ Hypothesenliste (x_i verschieden), C Konklusionsformel
- $-x_i:A_i$ Deklaration " x_i ist Evidenz für A_i " (x Term-Variable, A Formel)
- Initialsequenz: Sequenz $\vdash C$ ohne Hypothesen

• Evidenzterm für $x_1:A_1,...,x_n:A_n \vdash C$

- Term e mit freien Variablen aus den x_i
 - e ist Evidenz für C, wenn alle x_i mit Evidenz für A_i instantiiert werden

Refinement Logik als formaler Kalkül (II)

• (Verfeinerungs-)Regel (dec, val)

- dec Dekomposition: Abbildung von Sequenzen in Liste von Sequenzen (vom Beweisziel in Liste der Teilziele)
- val Validierung: Abbildung von Liste von Sequenzen und Termen in Term
- Regeln werden als Regelschemata dargestellt mit Metavariablen als Platzhaltern für Formeln und Evidenzterme
- Konkrete Regeln entstehen hieraus durch Instantiierung der Metavariablen

Beweise

- Jede Sequenz $S = H \vdash C$ ist unvollständiger Beweis mit Wurzel S
- $-(S, r, [\pi_1, \dots, \pi_n])$ ist Beweis mit Wurzelsequenz S, wenn π_i Beweise für alle Sequenzen S_i sind, die durch Anwendung von r auf S entstehen
- vollständiger Beweis: Beweis ohne unvollständige Teilbeweise
- Theorem: vollständiger Beweis, dessen Wurzel eine Initialsequenz ist

• Extraktterm $ext(\pi)$ eines vollständigen Beweises

 $-ext(S, (dec, val), [\pi_1, ..., \pi_n]) = val([S, (S_1, ext(\pi_1)), ..., (S_n, ext(\pi_n))]),$ wobei S_i Wurzeln der π_i Definition gilt auch für $\pi = (S, (dec, val), [])$

Korrektheit und Vollständigkeit

• Gültigkeit von Sequenzen und Formeln

- Eine Sequenz ist gültig, wenn es einen Evidenzterm für sie gibt
- \mapsto Eine Formel C ist gültig, wenn die Initialsequenz \vdash C gültig ist

• Korrektheit einer Regel r = (dec, val)

- Sind $S_i = H_i \vdash C_i$ Ergebnis der Anwendung von dec auf $S = H \vdash C$ und c_i Evidenzterme für S_i , dann ist $val(S, (S_i, c_i))$ Evidenzterm für S

Refinement Logik ist korrekt

- Alle Regeln der Refinement Logik sind korrekt
- Alle Theoreme der Refinement Logik haben g
 ültige Formeln als Wurzeln
- → Alle beweisbaren Formeln sind gültig

Refinement Logik ist vollständig

- Für jede gültige Formel C gibt es ein Theorem mit Wurzel $\vdash C$
- → Alle gültigen Formeln sind beweisbar

Definitorische Erweiterung

Konservative Erweiterung der Objektsprache

- Neues Konstrukte sind definitorische Abkürzung für existierende objektsprachliche Ausdrücke (ggf. mit Parametern)
- Beispiel: Äquivalenz in der Prädikatenlogik

$$A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$$

- Bedeutung ergibt sich aus Semantik bestehender Konstrukte
- Auffalten der Definition in Beweisen ersetzt linke durch rechte Seite

$$H \vdash C$$
 ev = c
$$H \vdash C[rhs/lhs] \quad \text{ev = } c \quad \text{unfold } name$$

• Erlaubt kleinen Grundformalismus

- Einfache Syntax, Semantik und Inferenzsystem
- Eigenschaften leicht beweisbar

• Erhöht Flexibilität des Formalismus

- Erlaubt freiere Syntax und umfangreiche formale Sprache

Taktiken und Beweisstrategien

Konservative Erweiterung des Regelsystems

- Taktiken sind Abkürzungen für komplexe Regelanwendungen
- Einfache Taktiksprache unterstützt Verknüpfung von Regeln

 r_1 THEN r_2 : Führe Regel r_2 direkt nach r_1 aus

 r_1 ORELSE r_2 : Führe Regel r_2 aus, wenn r_1 nicht anwendbar ist

Repeat r: Führe Regel r solange wie möglich aus

- Ermöglicht kürzere und besser strukturierte Beweise

```
\vdash P \Rightarrow (Q \Rightarrow (P \land Q))
                                                    BY Repeat impliesR
1. p:P,q:Q \vdash P \land Q
                                                    BY andR THEN axiom
\vdash ((P \lor Q) \land ((P \Rightarrow R) \land (Q \Rightarrow R))) \Rightarrow R BY implies RTHEN Repeat and L
1.z:P\lor Q,g:P\Rightarrow R,h:Q\Rightarrow R\vdash R
                                             BY orL
1.1. p:P,g:P\Rightarrow R,h:Q\Rightarrow R\vdash R BY implies L g THEN axiom
1.2. q:Q, g:P \Rightarrow R, h:Q \Rightarrow R \vdash R BY implies Lh THEN axiom
```

- Elementarer Beweis und Extraktterm durch Expansion rekonstruierbar

• Taktiksprache formalisiert Metasprache der Logik (ML)

- Unterstützt Formulierung komplexer Taktiken und Strategien durch Analyse des Beweisziels für gezielte Regelauswahl (ALuP II)

Sequenzenkalkül: Beweismethodik

• Kalkül garantiert Korrektheit formaler Beweise

Kalkül ist selbst keine Methode um Beweise zu finden

• Es gibt Leitlinien für erfolgreiche Beweissuche

- Versuche vorrangig Zweige abzuschließen (axiom)
- Verwende Dekompositionsregeln, die Formeln äquivalent aufbrechen
- Verwende orL vor orR1 / orR2
- Verwende exL und allR vor exR und allL
- Wähle anwendbare Regel, welche die wenigsten Teilziele erzeugt Methodik ist als Taktik programmierbar (ALuP II)

Beweismethodik läßt Fragen offen

- Auswahl der Substitution für Quantoren erfordert "Vorausschau"
- Maschinennahe Methoden finden Substitution durch Unifikation

Mehr dazu in der Vorlesung "Inferenzmethoden"

ALTERNATIVE VORGEHENSWEISEN

Semantikdefinition durch Interpretation

- Interpretation von Variablen, Funktionen, Prädikaten in Zielsprache
- Homomorphe Fortsetzung der Interpretation auf komplexe Formeln
- Gültigkeit ist "Wahrheit" unter allen möglichen Interpretationen Benötigt Erklärung der Bedeutung der Zielsprache

Alternative Beweiskalküle

- Axiom-orientierte Frege-Hilbert-Kalküle Sehr mächtig, nur eine Regel, aufwendige Beweissuche
- Natürliches Schließen, Sequenzenkalküle Synthetische Vorgehensweise, gut für Beweispräsentation
- (Analytische) Tableaux-Kalküle kompakte, evidenzlose Version der Refinement Logik
- Maschinennahe Resolutions-/Konnektionskalküle Gut geeignet für automatische Beweissuche, schwer lesbare Beweise

Ausdrucksstärkere Logiken

- Gleichheit, Sorten, Arithmetik, Logik höherer Stufe