Automatisierte Logik und Programmierung

Einheit 11

Fortgeschrittene Konzepte der Typentheorie

- 1. "Nichtkonstruktive" Datentypen
- 2. Rekursive Datentypen
- 3. Neuere Konstrukte

Mathematik benutzt nichtkonstruktive Konzepte

• Mengentheoretische Operationen

- Teilmengenbildung $\{x:T \mid P[x]\}$
- Vereinigung $S \cup T$ und Durchschnitt $S \cap T$ zweier Mengen
- Vereinigung/Durchschnitt von Mengenfamilien $\bigcup_{x \in S} T[x]$, $\bigcap_{x \in S} T[x]$
- Elemente dieser Typen sind Elemente der ursprünglichen Mengen
- Informationen über Herkunft oder Selektionsprädikat sind nur implizit vorhanden (und nicht etwa in den Elementen gespeichert)

• Äquivalenzklassen

- Äquivalenzrelation E induziert Klassen von Elementen eines Typs T
- $-[x]_E$ ist die Menge der zu x unter E äquivalenten Elemente
- Menge der Klassen bildet einen neuen Typ T//E
- Elemente von T sind Repräsentanten der Elemente von T//E
- E induziert Gleichheit auf T//E: $[x]_E = [y]_E$ gilt g.d.w. E(x,y)

Mit bisherigen Typkonstrukten nicht simulierbar

HILFREICHE VORDEFINIERTE TYPEN

Konservative Definition gängiger Grundkonstrukte

- Singulärer Typ: Unit $\equiv 0 \in \mathbb{Z}$
 - Einziges Element ist Ax
 - Andere Bezeichnung: t ("der Wahrheitstyp" Gegenstück zu f)
- ullet Boolescher Datentyp: $\mathbb{B} \equiv \text{Unit}+\text{Unit}$
 - $-T \equiv inI(Ax), F \equiv inr(Ax)$
 - $\text{ if } b \text{ then } s \text{ else } t \equiv \text{ case } b \text{ of } \text{inl}(x) \mapsto s \mid \text{inr}(y) \mapsto t$
 - Einbettung boolescher Werte in logische Prädikate durch Lifting: $\uparrow b \equiv \text{if } b \text{ then t else f}$
- Rekursive Funktionen definiert durch Y-Kombinator
 - $-Y \equiv \lambda f. (\lambda x.f (x x)) (\lambda x.f (x x))$
 - $-\text{function } f(x) = t \equiv Y(\lambda f.\lambda x.t)$ (geschlossener Term für f)
 - Nicht jede rekursiv definierte Funktion ist typisierbar Typ von function f(x) = t muß im Kontext nachgewiesen werden

Teilmengenkonstrukt $\{x: S \mid P[x]\}$

Standardkonzept mit klarer intuitiver Bedeutung

- Ermöglicht natürliche Repräsentation von Teiltypen (\mathbb{N}, T List⁺,...) ohne ständige explizite Verwendung einschränkender Prädikate
- z.B. $\forall n : \mathbb{N}$. $\exists r : \mathbb{N}$. $r^2 \le n < (r+1)^2$ anstatt $\forall n : \mathbb{Z}$. $0 \le n \Rightarrow \exists r : \mathbb{Z}$. $0 \le r \land r^2 \le n < (r+1)^2$

ullet Konstruktive Interpretation von $\{x\!:\!S\mid P[x]\}$ schwierig

- Elemente sind Elemente aus $s \in S$, welche Eigenschaft P[s] besitzen
- Evidenz für P[s] nur implizit vorhanden (kein Bestandteil des Elements)

ullet Formale Ähnlichkeit zu x : S imes P[x] nutzt wenig

- Elemente von $x: S \times P[x]$ sind Paare $\langle s, pf \rangle$ mit $s \in \{x: S \mid P[x]\}$
- Evidenz $pf \in P[s]$ bleibt Bestandteil des Elements
- Führt zu unnatürlichen Spezifikationen vieler Algorithmen Nullstellen finden $\{f:\mathbb{N}\to\mathbb{N}\mid\exists r:\mathbb{N}.\ f(r)=0\}\to\mathbb{N}$ (Suche nötig) würde zu $f:(\mathbb{N}\to\mathbb{N})\times\exists r:\mathbb{N}.\ f(r)=0\to\mathbb{N}$ (Projektion reicht)
- $x: S \times P[x]$ ist zur Beschreibung von Teilmengen nicht geeignet

Der Teilmengenkonstruktor in der Typentheorie

• Formalisierung der mengentheoretischen Aspekte

- Elemente von $\{x: S \mid P[x]\}$ sind Elemente von S
- Es muß Evidenz für P[s] geben, die aber nicht explizit bekannt ist

ullet Sonderform des unabhängigen Konstruktors $\{oldsymbol{S}\mid oldsymbol{P}\}$

- Identisch mit S, wenn es Evidenz für P gibt, sonst leer

• Häufigste Anwendung: Type-Squashing

- Definere $\downarrow P \equiv \{t \mid P\}$ Reduziert Struktur des Prädikats (Typs) P auf den "Wahrheitstyp" t
- Wenn P nicht leer ist, enthält $\downarrow P$ nur das Element Ax Die Struktur der Elemente von P wird entfernt Alle Elemente von $\downarrow P$ sind gleich und besagen "P besitzt Evidenz"
- Entfernt Überstrukturierung aus benutzerdefinierten Prädikaten

(siehe Folie 24)

FORMULIERUNG DES TEILMENGENTYPS

Ausdrücke

Kanonisch: $\{x: S \mid T\}$ S, T Terme, x Variable $\{S \mid T\}$ S, T Terme

Nichtkanonisch: —

Reduktion von Ausdrücken

- entfällt, da keine kanonischen Elemente für den Teilmengenkonstruktor definiert

• Urteile für Typ- und Elementgleichheit

Prinzip der getrennten Definition von Typen kann nicht eingehalten werden

$$T = \{S_2 \mid T_2\}$$
 falls $T = \{x_2 : S_2 \mid T_2\}$ für ein beliebiges $x_2 \in \mathcal{V}$
$$\{S_1 \mid T_1\} = T$$
 für ein beliebiges $x_1 \in \mathcal{V}$

$$s = t \in \{x : S \mid T\}$$
 falls $\{x : S \mid T\}$ Typ und $s = t \in S$ und es gibt einen Term p mit der Eigenschaft $p \in T[s/x]$

Wichtige benutzerdefinierte Teilmengentypen

• Zahlenmengen und -intervalle:

```
\mathbb{N} \equiv \{i: \mathbb{Z} \mid 0 \leq i\}

\mathbb{N}^+ \equiv \{i: \mathbb{Z} \mid 0 \leq i\}

\{i...\} \equiv \{j: \mathbb{Z} \mid i \leq j\}

\{...i\} \equiv \{j: \mathbb{Z} \mid j \leq i\}

\{i...j\} \equiv \{k: \mathbb{Z} \mid i \leq k \leq j\}

\{i...j^-\} \equiv \{k: \mathbb{Z} \mid i \leq k \leq j\}
```

Listen

$$T \operatorname{list}^+ \equiv \{1: T \operatorname{list} \mid 1 \neq [] \in T \operatorname{list} \}$$

Behandlung von Teilmengen im Inferenzsystem

• Verwaltung von implizitem Wissen erforderlich

- $-\{x:T\mid P\}$ hat mehr Information als T und weniger als $x:T\times P$ Nullstellenbestimmung ist verschieden aufwendig für Elemente von $\mathbb{N}\to\mathbb{N}, \ \{f:\mathbb{N}\to\mathbb{N}\mid \exists r:\mathbb{N}.\ f(r)=0\}$ und $f:(\mathbb{N}\to\mathbb{N})\times\exists r:\mathbb{N}.\ f(r)=0$
- Für $s \in \{x: T \mid P\}$ wissen wir, daß P[s] gilt, aber wir wissen nicht, wie die Evidenz für P[s] konkret aussieht
- In Beweisen müssen wir das Wissen P[s] verwenden können, ohne die Evidenz für P[s] algorithmisch einzusetzen

Evidenz für P[s] darf nicht im Extraktterm vorkommen

• Unterstütze versteckte Hypothesen

– Erzeugung durch Dekomposition der Annahme $z: \{x: S \mid T\}$

$$\begin{array}{lll} \Gamma,\,z\colon\{x\colon\!S\mid T\,\},\,\Delta\vdash C & \text{ext }(\lambda y\,.\,t)\,\,z \\ \text{setElimination }i\ y\ v \\ \Gamma,\,z\colon\!\{x\colon\!S\mid T\,\},\,y\colon\!S,\,[\![v]\!]\colon\!T[y/x],\,\Delta[y/z]\vdash C[y/z] & \text{ext }t \\ \end{array}$$

- Freigabe der Hypothese nur in Teilzielen mit Extraktterm Ax

(Gleichheiten, Kleiner-Relation)

REGELN FÜR TEILMENGENTYPEN

$$\begin{array}{l} \Gamma \vdash \{x_{\scriptscriptstyle 1} \colon S_{\scriptscriptstyle 1} \mid T_{\scriptscriptstyle 1}\} = \{x_{\scriptscriptstyle 2} \colon S_{\scriptscriptstyle 2} \mid T_{\scriptscriptstyle 2}\} \; \in \; \mathbb{U}_{j} \\ \text{setEquality } x \\ \Gamma \vdash S_{\scriptscriptstyle 1} = S_{\scriptscriptstyle 2} \in \mathbb{U}_{j} \\ \Gamma, \, x \colon S_{\scriptscriptstyle 1} \vdash T_{\scriptscriptstyle 1}[x/x_{\scriptscriptstyle 1}] = T_{\scriptscriptstyle 2}[x/x_{\scriptscriptstyle 2}] \; \in \; \mathbb{U}_{j} \end{array} \qquad \text{[Ax]}$$

```
\begin{array}{|c|c|c|c|c|}\hline \Gamma \vdash s = t \in \{x \colon S \mid T\} & \text{[Ax]}\\ \text{set\_memberEquality } j & x' \\ \hline \Gamma \vdash s = t \in S & \text{[Ax]}\\ \hline \Gamma \vdash T[s/x] & \text{[Ax]}\\ \hline \Gamma, x' \colon S \vdash T[x'/x] \in \mathbb{U}_j & \text{[Ax]} \\ \hline \end{array}
```

$$\begin{array}{|c|c|c|c|c|}\hline \Gamma \vdash \{x \colon S \mid T \} & \text{ext } s \\ \text{set_memberFormation } j \mid s \mid x' \\ \hline \Gamma \vdash s \in S & \text{eas} \\ \hline \Gamma \vdash T[s/x] & \text{eas} \\ \hline \Gamma, x' \colon S \vdash T[x'/x] \in \mathbb{U}_j & \text{eas} \\ \end{array}$$

$$\begin{array}{c} \Gamma,\,z\colon\{x\colon\!S\mid T\,\},\,\Delta\vdash C\\ \\ \text{setElimination }i\ y\ v\\ \\ \Gamma,\,z\colon\!\{x\colon\!S\mid T\,\},\,y\colon\!S,\,\|\,v\,\|\colon\!T[y/x],\,\Delta[y/z]\vdash C[y/z] \end{array} \qquad \text{ext }t_{\mathbb{D}}$$

Logische Interpretation des Teilmengentyps

ullet $\{x\!:\!S\mid P[x]\}$ verhält sich wie ein Existenzquantor

- $-\{x:S\mid P[x]\}$ ist genau dann nicht leer, wenn $\exists x:S.P[x]$ gültig ist
- Elemente $s \in \{x : S \mid P[x]\}$ sind Zeugen für Gültigkeit von $\exists x : S . P[x]$ Evidenz für P[s] existiert, wird aber unterdrückt
- $-\{x:S\mid P[x]\}$ beschreibt nur den algorithmischen Aspekt des Quantors
- ~∃-Theorem auf Basis des Teilmengentyps liefern bessere Extraktterme

ullet $\{P\mid Q\}$ verhält sich ähnlich wie die Konjunktion $P\wedge Q$

- $-\{P \mid Q\}$ hat Elemente, wenn P und Q gültig sind
- Elemente $p \in \{P \mid Q\}$ sind Elemente von P (partielle Evidenz) Evidenz für Q existiert, wird aber unterdrückt
- $-\{P \mid Q\}$ beschreibt eine nichtkommutative Konjunktion
- $-\{P \mid t\}$ ist isomorph zu P
- $-\{t \mid Q\}$ hat genau dann Elemente, wenn dies für Q gilt aber alle Elemente von $\{t \mid Q\}$ sind gleich ("Squashing")

Quadratwurzelalgorithmus mit Teilmengentypen

• Beweis hat die gleiche Struktur wie zuvor

- set_memberR ist Taktik für set_memberFormation
- Versteckte Hypothese $r^2 \le i \div 4 < (r+1)^2$ wird für die Beweisziele $r^2 \le i$ und $i < (r+1)^2$ freigegeben,
- Extrakt-Term enthält keine Beweiskomponenten
- Effizienter Algorithmus für $\lfloor \sqrt{n} \rfloor$ wird ohne Projektion generiert

Durchschnittskonstruktor $\cap x: S.T[x]$

ullet Durchschnitt einer Familie von Typen T[x] mit $x \in S$

- Verallgemeinerung des einfachen Durchschnitts $S \cap T$ zweier Typen
- Elemente sind Objekte, die für alle $x \in S$ zum Typ T[x] gehören
- Keine Abhängigkeit der Elemente von der Wahl eines konkreten $x \in S$

ullet Strukturell ähnlich zu $x{:}S{\to}T[x]$ (aber andere Semantik)

- Elemente von $x:S \rightarrow T[x]$ konstruieren für alle $x \in S$ ein $y \in T[x]$
- $-x \in S$ als Argument der Funktionen aus $x:S \to T[x]$ angegeben werden
- Starke Abhängigkeit von $y \in T[x]$ von der Wahl des konkreten $x \in S$

• Viele Anwendungen

- Record-Strukturen in Programmiersprachen
- Definition eines Typs aller Terme der Typentheorie
- Repräsentation eines echten Polymorphismus (ohne Abhängigkeiten)
- Polymorphe Logik
- "Guarded" Types

FORMULIERUNG DES DURCHSCHNITTSTYPS

Ausdrücke

Kanonisch: $\bigcap x:S.T$ x Variable, S und T Terme

Nichtkanonisch: —

Reduktion von Ausdrücken

- entfällt, da keine kanonischen Elemente für den Teilmengenkonstruktor definiert

• Urteile für Typ- und Elementgleichheit

$$\cap x_1:S_1.T_1 = \cap x_2:S_2.T_2$$
 falls $S_1=S_2$ und $T_1[s_1/x_1]=T_2[s_2/x_2]$ für alle Terme s_1, s_2 mit $s_1=s_2 \in S_1$.

$$\bigcap x_1:S_1.T_1=\bigcap x_2:S_2.T_2\in \mathbb{U}_j \text{ analog}$$

$$t_1 = t_2 \in \cap x : S.T$$
 falls $\cap x : S.T$ Typ und

$$t_1 = t_2 \in T[s/x]$$
 für alle Terme $s \in S$

Regeln für Durchschnittsbildung

$$\begin{array}{ll} \Gamma \vdash \cap x_1 \hspace{-0.1cm} : \hspace{-0.1cm} S_1 \hspace{-0.1cm} : \hspace{-0.1cm} T_1 \hspace{-0.1cm} = \hspace{-0.1cm} \cap x_2 \hspace{-0.1cm} : \hspace{-0.1cm} S_2 \hspace{-0.1cm} T_2 \hspace{-0.1cm} \in \hspace{-0.1cm} \mathbb{U}_j \hspace{1cm} \text{[Ax]} \\ \text{isectEquality } x \\ \Gamma \vdash S_1 \hspace{-0.1cm} = \hspace{-0.1cm} S_2 \hspace{-0.1cm} \in \hspace{-0.1cm} \mathbb{U}_j \hspace{1cm} \text{[Ax]} \\ \Gamma, x \hspace{-0.1cm} : \hspace{-0.1cm} S_1 \hspace{-0.1cm} \vdash \hspace{-0.1cm} T_1 \hspace{-0.1cm} [x/x_1] = T_2 \hspace{-0.1cm} [x/x_2] \hspace{-0.1cm} \in \hspace{-0.1cm} \mathbb{U}_j \hspace{1cm} \text{[Ax]} \end{array}$$

$$\begin{array}{ll} \Gamma \vdash t_1 = t_2 \in \cap x : S.T & \text{[Ax]} \\ \text{isect_memberEquality } j \ x' & \\ \Gamma, \, x' : S \vdash t_1 = t_2 \in T[x'/x] & \text{[Ax]} \\ \Gamma \vdash S \in \mathbb{U}_j & \text{[Ax]} \end{array}$$

$$\begin{array}{ll} \Gamma \vdash \cap x : S . T & \text{ [ext } t_{\text{]}} \\ \text{isect_memberFormation } j \ x' \\ \Gamma, \ x' : S \vdash T[x'/x] & \text{ [ext } t_{\text{]}} \\ \Gamma \vdash S \ \in \ \mathbb{U}_j & \text{ [Ax]} \end{array}$$

```
|\Gamma \vdash f| = f_2 \in T[t/x]
                                                               |Ax|
  isect_member_caseEquality \cap x:S.T t
  \Gamma \vdash f_1 = f_2 \in \cap x:S.T
                                                               |Ax|
  \Gamma \vdash \underline{t \in S}
                                                               |Ax|
```

$$\begin{array}{|c|c|c|c|}\hline \Gamma, f: \cap x : S.T, \ \Delta \vdash C & \text{ext } t[f, \mathsf{Ax}/y, z] \\ \text{isectElimination } i \ s \ y \ z \\ \hline \Gamma, f: \cap x : S.T, \ \Delta \vdash s \in S & \text{ext} \\ \Gamma, f: \cap x : S.T, \ y : T[s/x], \ z : y = f \in T[s/x], \ \Delta \vdash C & \text{ext } t = f \in T[s/x], \ z : f \in$$

Anwendungen des Durchschnittstyps

• Einfacher (binärer) Durchschnitt $S \cap T$

Durchschnitt einer Mengenfamilie mit booleschem Index

```
S \cap T \equiv \cap b : \mathbb{B}. if b then S else T
```

Achtung: $S \cap T$ ist nicht identisch mit $x: S \cap T$ mit T unabhängig von x

• Top: Typ aller Terme der Typentheorie

- Leerer Durchschnitt hinterläßt keine Bedingungen an Elemente Top $\equiv \cap x : Void . Void$
- Wegen $t \in \text{Top}$, falls $t \in \text{Void}$ für alle $x \in \text{Void}$ gehört jeder Term t zu Top

• Record Strukturen $\{l_1:T_1:..;l_n:T_n\}$

– Durchschnitt einer Familie von Funktionen auf Labels l_i (Folie 26)

$$-\{l_1:T_1;..;l_n:T_n\} \equiv \cap 1:$$
Atom. if $1=l_1$ then T_1 else if $1=l_n$ then T_n else Top

ullet Guarded types $\cap x$:S.T, wobei T unabhängig von x

- Isomorph zu Top, wenn S leer ist, und sonst isomorph zu ${\cal T}$
- Nützlich für Wohlgeformtheitsbeweise zu Mengenaussagen, die in pathologischen Fällen nicht einmal Typen wären (z.B. $x \in S \Rightarrow x \in T$)

Logische Interpretation des Durchschnittstyps

ullet $\cap x : S.P[x]$ verhält sich wie ein Allquantor

- $-\cap x:S.P[x]$ ist genau dann nicht leer, wenn $\forall x:S.P[x]$ gültig ist
- Elemente $p \in \cap x$:S.P[x] sind uniforme Evidenz für alle P[s]
- Anders als bei $\forall x : S.P[x]$ wird Evidenz für P[s] nicht aus s konstruiert algorithmischer Aspekt des Allquantors entfällt
- Definition $\forall [x:S].P[x] \equiv \cap x:S.P[x]$ liefert polymorphe Logik Viele Quantoren in Theoremen können polymorph gewählt werden z.B. $\forall [i:\mathbb{Z}] . \forall [j:\mathbb{Z}] . i+j=j+i \in \mathbb{Z}$

Polymorphe Typdeklarationen sind möglich

- z.B. besagt $f \in \cap T: \mathbb{U}$. $T \rightarrow T$, daß f auf beliebigen Typen operiert
- Typparameter T muß in Deklaration von f nicht verwendet werden

• $P \cap Q$ verhält sich wie Konjunktion

- $-P\cap Q$ ist genau dann nicht leer, wenn $P\wedge Q$ gültig ist
- Elemente $p \in P \cap Q$ sind uniforme Evidenz für alle P und Q
- Keine Paarbildung erforderlich

Vereinigungskonstruktor $\cup x:S.T[x]$

ullet Vereinigungs einer Familie von Typen T[x] mit $x \in S$

- Verallgemeinerung der einfachen Vereinigung $S \cap T$ zweier Typen
- Elemente sind Objekte y, die für ein $x \in S$ zum Typ T[x] gehören
- Keine Angabe eines konkreten $x \in S$ erforderlich
- Strukturell ähnlich zu $x:S \times T[x]$ (aber andere Semantik)
 - Elemente von $x:S\times T[x]$ sind Paare (x,y) mit $x\in S$ und ein $y\in T[x]$
 - Starke Abhängigkeit von $y \in T[x]$ von der Wahl des konkreten $x \in S$
 - $-x \in S$ muß als Teil des Elements mit angegeben werden

Nichttriviale Formalisierung

– Bei nicht disjunkten Typen muß Urteil der Elementgleichheit im Überlappingsbereich auf allen Typen übereinstimmen

Derzeit nicht in Nuprl eingebettet

Logische Interpretation des Vereinigungstyps

$\bullet \cup x: S.P[x]$ verhält sich wie ein Existensquantor

- $\cup x: S.P[x]$ ist genau dann nicht leer, wenn $\exists x: S.P[x]$ gültig ist
- Elemente $p \in \bigcup x: S.P[x]$ sind Evidenz für ein P[s]
- Anders als bei $\exists x: S.P[x]$ fehlt der Zeuge $s \in S$ für den P[s] gilt algorithmischer Aspekt des Existenzquantors entfällt
- $-\exists [x:S].P[x] \equiv \cup x:S.P[x]$ liefert semi-klassischen Existenzquantor

• $P \cup Q$ verhält sich wie Disjunktion

- $-P \cup Q$ ist genau dann nicht leer, wenn $P \vee Q$ gültig ist
- Elemente $p \in P \cup Q$ sind Evidenz für P oder für Q
- Keine Kennzeichnung, welche der beiden Aussagen bewiesen wurde
- $-P[\vee]Q \equiv P\cup Q$ liefert semi-klassische Disjunktion

QUOTIENTENTYPEN

Modifikation der Gleichheit auf Typen

- Rationale Zahlen: Paare ganzer Zahlen mit $\langle z_1, n_1 \rangle = \langle z_2, n_2 \rangle$, falls $z_1 * n_2 = z_2 * n_1$

- Reelle Zahlen: (rationale) Cauchyfolgen mit gleichem Grenzwert
- Restklassenräume: $\mathbb{Z} \mod k$

• Entspricht Faktorisierung modulo einer Äquivalenz

- Elemente s,t werden aus Typ T ausgewählt
- Gleichheit von s und t wird über Äquivalenzrelation E neu definiert
- Benutzerdefinierte Gleichheit wird in das Typsystem eingebettet Substitutions- und Gleichheitsregeln werden direkt anwendbar

Quotiententypen wichtig für formale Mathematik

QUOTIENTENTYPEN, FORMAL

Ausdrücke

Kanonisch: x, y: T//E E, T Terme, x, y Variablen

Nichtkanonisch: —

Reduktion von Ausdrücken

- entfällt, da keine kanonischen Elemente für Quotiententypen definiert

• Urteile für Typ- und Elementgleichheit

$$x_1, y_1: T_1/\!/E_1$$

= $x_2, y_2: T_2/\!/E_2$ falls

 $T_1 = T_2$ und es gibt (verschiedene) Variablen x, y, z, die weder in E_1 noch in E_2 vorkommen, und Terme p_1, p_2, r, s und t mit der Eigenschaft

$$p_1 \in \forall x : T_1 . \forall y : T_1 . E_1[x, y/x_1, y_1] \Rightarrow E_2[x, y/x_2, y_2]$$

und
$$p_2 \in \forall x : T_1 . \forall y : T_1 . E_2[x, y/x_2, y_2] \Rightarrow E_1[x, y/x_1, y_1]$$

und
$$r \in \forall x : T_1 . E_1[x, x/x_1, y_1]$$

und
$$s \in \forall x : T_1 . \forall y : T_1 . E_1[x, y/x_1, y_1] \Rightarrow E_1[y, x/x_1, y_1]$$

und
$$t \in \forall x : T_1 . \forall y : T_1 . \forall z : T_1$$
.

$$E_1[x, y/x_1, y_1] \Rightarrow E_1[y, z/x_1, y_1] \Rightarrow E_1[x, z/x_1, y_1]$$

 $s=t\in x$, $y:T/\!/E$ falls $x,y:T/\!/E$ Typ und $s\in T$ und $t\in T$ und es gibt einen Term p mit der Eigenschaft $p\in E[s,t/x,y]$

Behandlung von Quotienten im Inferenzsystem

ullet Gleichheit $E[s,t\,/\,x,y]$ ist implizites Wissen

- Wir wissen E[s, t/x, y] wenn $s = t \in x$, y : T//E
- In Beweisen müssen wir das Wissen E[s,t/x,y] verwenden können, ohne die Evidenz für E[s,t/x,y] algorithmisch einzusetzen

Evidenz für E[s,t/x,y] darf nicht im Extraktterm vorkommen

• Versteckte Hypothesen erforderlich

Dekomposition einer Quotientengleichheit muß versteckte
 Hypothesen generieren

$$\begin{array}{ll} \Gamma,\,v\colon s=t\,\in\,x\,,y\,\colon T/\!/E\,,\,\Delta\vdash C & \text{ext }u\text{]}\\ \text{quotient_equalityElimination }i\,\,j\,\,v'\\ \Gamma,\,v\colon s=t\,\in\,x\,,y\,\colon T/\!/E\,,\,\|v'\|\colon\!E[s,t/x,y],\,\Delta\vdash C & \text{ext }u\text{]}\\ \Gamma,\,v\colon s=t\,\in\,x\,,y\,\colon T/\!/E\,,\,\Delta\vdash E[s,t/x,y]\,\in\,\mathbb{U}_{j} & \text{Ax} \end{array}$$

- Freigabe versteckter Hypothesen wie zuvor

REGELN FÜR QUOTIENTENTYPEN

```
\Gamma \vdash \mathbb{U}_i
                                                                                                                                                              \text{ext } x, y: T//E
   quotientFormation T E x y z v v'
   \Gamma \vdash T \in \mathbb{U}_i
                                                                                                                                                                                         |Ax|
  \Gamma, x:T, y:T \vdash E \in \mathbb{U}_i
                                                                                                                                                                                        |Ax|
  \Gamma, x:T, \vdash E[x, x/x, y]
                                                                                                                                                                                        |Ax|
  \Gamma, x:T, y:T, v: E[x, y/x, y] \vdash E[y, x/x, y]
                                                                                                                                                                                        |Ax|
   \Gamma, x:T, y:T, z:T, v:E[x, y/x, y], v':E[y, z/x, y] \vdash E[x, z/x, y]
                                                                                                                                                                                        |Ax|
\Gamma \vdash x_1, y_1 : T_1/E_1 = x_2, y_2 : T_2/E_2 \in \mathbb{U}_i
                                                                                                                                                                                         |Ax|
   quotientWeakEquality x y z v v'
  \Gamma \vdash T_1 = T_2 \in \mathbb{U}_i
                                                                                                                                                                                        |Ax|
  \Gamma, x: \tilde{T}_1, y: \tilde{T}_1 \vdash E_1[x, y/x_1, y_1] = E_2[x, y/x_2, y_2] \in \mathbb{U}_i
                                                                                                                                                                                        |Ax|
   \Gamma, x:T_1 \vdash E_1[x, x/x_1, y_1]
                                                                                                                                                                                        |Ax|
  \Gamma, x:T_1, y:T_1, v: E_1[x, y/x_1, y_1] \vdash E_1[y, x/x_1, y_1]
                                                                                                                                                                                        |Ax|
   \Gamma, x:T, y:T, z:T, v:E_1[x, y/x_1, y_1], v':E_1[y, z/x_1, y_1] \vdash E_1[x, z/x_1, y_1]
                                                                                                                                                                                         |Ax|
\Gamma \vdash x_1, y_1 : T_1/E_1 = x_2, y_2 : T_2/E_2 \in \mathbb{U}_i
                                                                                                                                                                                         |Ax|
   quotientEquality
  \begin{array}{l} \Gamma \vdash x_{\scriptscriptstyle 1}, y_{\scriptscriptstyle 1} \colon T_{\scriptscriptstyle 1} \! / \! / \! E_{\scriptscriptstyle 1} \in \mathbb{U}_{\!j} \\ \Gamma \vdash x_{\scriptscriptstyle 2}, y_{\scriptscriptstyle 2} \colon T_{\scriptscriptstyle 2} \! / \! / \! E_{\scriptscriptstyle 2} \in \mathbb{U}_{\!j} \\ \Gamma \vdash T_{\scriptscriptstyle 1} = T_{\scriptscriptstyle 2} \in \mathbb{U}_{\!j} \end{array}
                                                                                                                                                                                        |Ax|
                                                                                                                                                                                        |Ax|
                                                                                                                                                                                        |Ax|
  \Gamma, v: T_1 = T_2 \in \mathbb{U}_i, x: T_1, y: T_1 \vdash E_1[x, y/x_1, y_1] \Rightarrow E_2[x, y/x_2, y_2]
                                                                                                                                                                                        |Ax|
  \Gamma, v: T_1 = T_2 \in \mathbb{U}_i, x: T_1, y: T_1 \vdash E_2[x, y/x_2, y_2] \Rightarrow E_1[x, y/x_1, y_1]
                                                                                                                                                                                         |Ax|
                                                                                                   |\Gamma \vdash x, y: T//F|
\Gamma \vdash s = t \in x, y : T//F
                                                                                   |Ax|
                                                                                                                                                                                   ext t
   quotient_memberWeakEquality j
                                                                                                        quotient_memberFormation j
  \Gamma \vdash x, y : T/\!\!/E \in \mathbb{U}_j
                                                                                                       \Gamma \vdash x , y:T/\!/\!E \in \mathbb{U}_j
                                                                                   |Ax|
                                                                                                                                                                                       |Ax|
   \Gamma \vdash s = t \in T
                                                                                   |Ax|
                                                                                                                                                                                    ext t_{
m l}
```

REGELN FÜR QUOTIENTENTYPEN II

```
\Gamma \vdash s = t \in x, y : T//E
                                                                   |Ax|
  quotient_memberEquality j
  \Gamma \vdash x, y : T/\!/\!E \in \mathbb{U}_j
                                                                   |Ax|
  \Gamma \vdash s \in T
                                                                   |Ax|
  \Gamma \vdash t \in T
                                                                   |Ax|
  \Gamma \vdash E[s, t/x, y]
                                                                   |Ax|
```

```
\Gamma, v: s=t \in x, y: T//E, \Delta \vdash C
                                                                                                                                               \operatorname{ext} u
  quotient_equalityElimination i \ j \ v'
  \Gamma, v: s=t \in x, y: T//E, \|v'\|: E[s, t/x, y], \Delta \vdash C
                                                                                                                                               \operatorname{ext} u
  \Gamma, v: s = t \in x, y : T/\!/E, \Delta \vdash E[s, t/x, y] \in \mathbb{U}_i
                                                                                                                                                   |Ax|
```

```
\Gamma, z: x, y: T//E, \Delta \vdash s = t \in S
                                                                                                                                        |Ax|
  quotientElimination i \ j \ x' \ y' \ v
  \Gamma, z: x, y: T//E, \Delta, x':T, y':T \vdash E[x', y'/x, y] \in \mathbb{U}_i
                                                                                                                                        |Ax|
  \Gamma, z: x, y: T//E, \Delta \vdash S \in \mathbb{U}_{j}
                                                                                                                                        |Ax|
  \Gamma, z: x, y: T/\!/E, \Delta, x':T, y':T, v: E[x', y'/x, y] \vdash s[x'/z] = t[y'/z] \in S[x'/z]
                                                                                                                                        |Ax|
```

```
\Gamma, z: x, y: T//E, \Delta \vdash s = t \in S
                                                                                                                                      |Ax|
  quotientElimination_2 i j x' y' v
 \Gamma, z: x, y: T//E, \Delta, x':T, y':T \vdash E[x', y'/x, y] \in \mathbb{U}_{j}
                                                                                                                                      |Ax|
 \Gamma, z: x, y: T/\!/E, \Delta \vdash S \in \mathbb{U}_{j}
                                                                                                                                      |Ax|
  \Gamma, z: x, y: T/\!/E, x': T, y': T, v: E[x', y'/x, y], \Delta[x'/z] \vdash s[x'/z] = t[y'/z] \in S[x'/z]
                                                                                                                                      |Ax|
```

Wichtige benutzerdefinierte Quotiententypen

• Rationale Zahlen

```
\begin{array}{lll} x_1 =_q x_2 & \equiv \ \operatorname{match} \ x_1 \ \operatorname{with} \ \langle z_1, n_1 \rangle \mapsto \operatorname{match} \ x_2 \ \operatorname{with} \ \langle z_2, n_2 \rangle \mapsto z_1 * n_2 = z_2 * n_1 \\ \mathbb{Q} & \equiv \ \operatorname{x}, \operatorname{y} : \mathbb{Z} \times \mathbb{N}^+ / / \operatorname{x} =_q \operatorname{y} \\ x_1 + x_2 & \equiv \ \operatorname{match} \ x_1 \ \operatorname{with} \ \langle z_1, n_1 \rangle \mapsto \operatorname{match} \ x_2 \ \operatorname{with} \ \langle z_2, n_2 \rangle \mapsto \langle z_1 * n_2 + z_2 * n_1, \ n_1 * n_2 \rangle \\ x_1 - x_2 & \equiv \ \operatorname{match} \ x_1 \ \operatorname{with} \ \langle z_1, n_1 \rangle \mapsto \operatorname{match} \ x_2 \ \operatorname{with} \ \langle z_2, n_2 \rangle \mapsto \langle z_1 * n_2 - z_2 * n_1, \ n_1 * n_2 \rangle \\ x_1 * x_2 & \equiv \ \operatorname{match} \ x_1 \ \operatorname{with} \ \langle z_1, n_1 \rangle \mapsto \operatorname{match} \ x_2 \ \operatorname{with} \ \langle z_2, n_2 \rangle \mapsto \langle z_1 * z_2, \ n_1 * n_2 \rangle \\ x_1 <_q x_2 & \equiv \ \operatorname{match} \ x_1 \ \operatorname{with} \ \langle z_1, n_1 \rangle \mapsto \operatorname{match} \ x_2 \ \operatorname{with} \ \langle z_2, n_2 \rangle \mapsto z_1 * n_2 < z_2 * n_1 \end{array}
```

Restklassenräume

```
x_1=x_2 mod k \equiv k divides x_1-x_2 \mathbb{Z} mod k \equiv x,y:\mathbb{Z}/\!/\!\mathrm{x=y} mod k
```

Operationen auf $\mathbb{Z} \mod k$ können direkt von \mathbb{Z} übernommen werden

Behandlung überstrukturierter Prädikate

• Manche Prädikate auf $\mathbb Q$ enthalten zu viel Struktur

- $-x_1 <_q x_2$ muß im Quotiententyp (!) wohlgeformt sein
- Gilt $x_1 <_q x_2 = x_1' <_q x_2'$, wenn $x_1 = x_1' \in \mathbb{Q}$ und $x_2 = x_2' \in \mathbb{Q}$? $z_1 * n_2 < z_2 * n_1 = z_1' * n_2' < z_2' * n_1' \text{ verlangt } z_1 * n_2 = z_1' * n_2' \in \mathbb{Z}$ $\text{und } z_2 * n_1 = z_2' * n_1' \in \mathbb{Z}$

Nicht gültig für $x_1 = \langle 2, 1 \rangle$, $x'_1 = \langle 4, 2 \rangle$, $x_2 = x'_2 = \langle 3, 1 \rangle$

- Unabhängigkeit vom Repräsentanten nicht mehr gegeben
- Definition von <_q enthält zu viel Struktur, wo nur "Wahrheit" nötig ist
- Type-Squashing erforderlich (neue Definition von <_q)

 $x_1 <_q x_2 \equiv \ \downarrow \text{match} \ x_1 \ \text{with} \ \langle z_1, n_1 \rangle \mapsto \text{match} \ x_2 \ \text{with} \ \langle z_2, n_2 \rangle \mapsto z_1 * n_2 < z_2 * n_1$

Definition Reeller Zahlen mit Quotiententypen

```
x_1 \leq_q x_2 \equiv x_1 < x_2 \lor x_1 = x_2 \in \mathbb{Q}
z/n \equiv \langle z, n \rangle
|x| \equiv match x with \langle z, n \rangle \mapsto \text{if } z < 0 then \langle -z, n \rangle else \langle z, n \rangle
\mathbb{R}_{pre} \equiv \{f: \mathbb{N}^+ \to \mathbb{Q} \mid \forall m, n: \mathbb{N}^+. \mid f(n) - f(m) \mid \leq 1/m+1/n \}
\mathbf{x_1} = \mathbf{x_2} \equiv \forall \mathbf{n} : \mathbb{N}^+. \mid x_1(\mathbf{n}) - x_2(\mathbf{n}) \mid \leq 2/\mathbf{n}
\mathbb{R}
                    \equiv \mathtt{x},\mathtt{y}: \mathbb{R}_{pre}/\!/_{\mathtt{X}=_{r}\mathtt{y}}
x_1+x_2 \equiv \lambda n \cdot x_1(n) + x_2(n)
x_1-x_2 \equiv \lambda n \cdot x_1(n) - x_2(n)
|x| \equiv \lambda n \cdot |x(n)|
```

Elegante Beweise erfordern viele Spezialtaktiken

Atomare Bezeichner

Verwaltung eindeutiger Namen

- Token: Textketten, die (anders als Strings) keine Struktur haben
- Einzig mögliche Analyse ist Test auf Gleichheit von Token
- Wichtig für Programmiersprachen und Sicherheitsprotokolle

Ausdrücke

Kanonisch: Atom

"token"

token Text-Token

Nichtkanonisch: if a=b then s else t a, b, s, t Terme

Reduktion von Ausdrücken

if a=b then s else $t \longrightarrow s$, falls a=b, sonst t

• Urteile für Typ- und Elementgleichheit

Atom = Atom"token" = "token" \in Atom —für alle token! — $\mathsf{Atom} = \mathsf{Atom} \in \mathbb{U}_j$ — für alle j! —

REGELN FÜR ATOMARE BEZEICHNER

$$\begin{array}{c} \Gamma \vdash \mathsf{Atom} = \mathsf{Atom} \; \in \; \mathbb{U}_{j} \\ \mathsf{atomEquality} \end{array} \hspace{0.5cm} \mathsf{\scriptscriptstyle{[AX]}}$$

 $\Gamma \vdash \mathbb{U}_i$ ext Atom atomFormation

$$\Gamma \vdash "token" = "token" \in Atom$$
 tokenEquality

 $\Gamma \vdash \mathsf{Atom}$ ext "token" tokenFormation "token"

```
\Gamma \vdash \text{if } u_1 = v_1 \text{ then } s_1 \text{ else } t_1 = \text{if } u_2 = v_2 \text{ then } s_2 \text{ else } t_2 \in T
                                                                                                                                                                                                            |Ax|
   atom_eqEquality v
   \Gamma \vdash u_1 = u_2 \in \mathsf{Atom}
                                                                                                                                                                                                            |Ax|
   \Gamma \vdash v_{\scriptscriptstyle 1} = v_{\scriptscriptstyle 2} \in \mathsf{Atom}
                                                                                                                                                                                                            |Ax|
   \Gamma, v: u_1 = v_1 \in Atom \vdash s_1 = s_2 \in T
                                                                                                                                                                                                            |Ax|
   \Gamma, v: \neg (u_1 = v_1 \in \mathsf{Atom}) \vdash t_1 = t_2 \in T
                                                                                                                                                                                                            |Ax|
```

$$\begin{array}{ll} \Gamma \vdash \text{if } u = v \text{ then } s \text{ else } t = t_2 \in T \\ \text{atom_eqReduceTrue} \\ \Gamma \vdash s = t_2 \in T \\ \Gamma \vdash u = v \in \mathsf{Atom} \end{array} \qquad \text{[Ax]}$$

REKURSIVE DEFINITION

Größere Freiheit in der Formulierung

- Zahlen unterstützen induktive Beweise und primitive Rekursion
- Unnatürliche Simulation rekursiver Datentypen (Bäume, Graphen,..)
- Y-Kombinator unterstützt freie, schwer zu kontrollierende Rekursion Direkte Einbettung rekursiver Definition für bekannte Konstrukte

• Induktive Typkonstruktoren

- Wohlfundierte, rekursiv definierte Datentypen und ihre Elemente

Partiell Rekursive Funktionen

- Totale rekursive Funktionen auf eingeschränktem Definitionsbereich
- (Fast exakter) Definitionsbereich aus Algorithmus ableitbar

• Lässige Typkonstruktoren

Schließen über unendliche Objekte

Induktive Datentypen

Repräsentation rekursiv definierter Strukturen

ullet Rekursive Typdefinition mit Gleichung X=T[X]

- -z.B. rectype bintree = $\mathbb{Z} + \mathbb{Z} \times \text{bintree} \times \text{bintree}$
- Kanonische Elemente definiert durch Aufrollen der Gleichung
- Verarbeitung durch induktiven Operator f(e) where f(x) = tliefert terminierende freie rekursive Funktionsdefinitionen

```
sum(t) where
sum(b-tree) =
   case b-tree of inl(leaf) \mapsto leaf
                | inr(triple) → match triple with ⟨num,pair⟩

→ match pair with ⟨left,right⟩
                                    → num+sum(left)+sum(right)
```

• Parametrisierte simultane Rekursion möglich

- rectype $X_1(x_1) = T_{X_1}$ and ... and $X_n(x_n) = T_{X_n}$ select $X_i(a_i)$
- Allgemeinste Form einer rekursiven Typdefinition

Induktive Typen, formal

Ausdrücke

Kanonisch: rectype X = T Terme, X Variable

Nichtkanonisch: f(e) where f(x) = t e, t Terme, f, x Variablen

Reduktion von Ausdrücken

f(e) where f(x) = t $\xrightarrow{\beta}$ $t[\lambda y. f(y)]$ where f(x) = t, e / f, x*Terminierung von* f(e) where f(x) = t verlangt $e \in \text{rectype } X = T[X]$

• Urteile für Typ- und Elementgleichheit

rectype
$$X_1=T_1$$
 = rectype $X_2=T_2$ falls $T_1[X/X_1]=T_2[X/X_2]$ für alle Typen X $s=t$ \in rectype $X=T_X$ falls rectype $X=T_X$ Typ und $s=t$ \in $T_X[rectype $X=T_X/X]$$

Rahmenbedingungen für rectype $X = T_X$

Induktive Definitionen müssen wohlfundiert sein

ullet Semantik ist kleinster Fixpunkt von T[X]

- Existenz des Fixpunkts muß gesichert sein T[X] muß Basisfall für Induktionsanfang enthalten Rekursiver Aufruf von X muß "natürliche" Elemente ermöglichen
- Typen wie rectype $X = X \rightarrow \mathbb{Z}$ müssen ausgeschlossen werden rectype $X = X \rightarrow \mathbb{Z}$ hat $\lambda x \cdot x$ als kanonisches Element $\lambda x \cdot x$ wäre sogar Extrakt-Term von \vdash rectype $X = X \rightarrow \mathbb{Z}$

• Syntaktische Einschränkungen erforderlich

- Allgemeine Wohlfundiertheit rekursiver Typen ist unentscheidbar
 Entspricht dem Halteproblem rekursiver Programme
- Kriterium: T[X] darf X nur positiv enthalten Innerhalb von Funktionenräumen darf X nur "rechts" vorkommen

REGELN FÜR INDUKTIVE TYPEN

```
\begin{array}{c} \Gamma \vdash \mathsf{rectype} \ X_1 = T_{X1} = \mathsf{rectype} \ X_2 = T_{X2} \in \mathbb{U}_j \\ \mathsf{recEquality} \ X \\ \Gamma, \ X : \mathbb{U}_j \vdash T_{X1}[X/X_1] = T_{X2}[X/X_2] \in \mathbb{U}_j \end{array}
```

```
\begin{array}{ll} \Gamma \vdash s = t \in \mathsf{rectype} \ X = T_X \\ \mathsf{rec\_memberEquality} \ j \\ \Gamma \vdash s = t \in T_X[\mathsf{rectype} \ X = T_X/X] \\ \Gamma \vdash \mathsf{rectype} \ X = T_X \in \mathbb{U}_j \end{array} \quad \text{[Ax]}
```

```
\begin{array}{ll} \Gamma \vdash \mathsf{rectype} \ X = T_X & \mathsf{ext} \ t_\mathsf{I} \\ \mathsf{rec\_memberFormation} \ j \\ \Gamma \vdash T_X[\mathsf{rectype} \ X = T_X/X] & \mathsf{ext} \ t_\mathsf{I} \\ \Gamma \vdash \mathsf{rectype} \ X = T_X \in \mathbb{U}_j & \mathsf{ext} \ t_\mathsf{I} \end{array}
```

```
\begin{array}{l} \Gamma \vdash f_{1}\!(e_{1}\!) \text{ where } f_{1}\!(x_{1}\!) = t_{1} = f_{2}\!(e_{2}\!) \text{ where } f_{2}\!(x_{2}\!) = t_{2} \in T[e_{1}/z] \\ \text{rec\_indEquality } \boldsymbol{z} \quad \boldsymbol{T} \quad \text{rectype } \boldsymbol{X} = T_{X} \quad \boldsymbol{j} \quad \boldsymbol{P} \quad \boldsymbol{f} \quad \boldsymbol{x} \\ \Gamma \vdash e_{1} = e_{2} \in \text{rectype } \boldsymbol{X} = T_{X} \\ \Gamma \vdash \text{rectype } \boldsymbol{X} = T_{X} \in \mathbb{U}_{\boldsymbol{j}} \\ \Gamma, \, \boldsymbol{P} \colon (\text{rectype } \boldsymbol{X} = T_{X}) \rightarrow \mathbb{P}_{\boldsymbol{j}}, \, \boldsymbol{f} \colon (\boldsymbol{x} \colon \{\boldsymbol{x} \colon \text{rectype } \boldsymbol{X} = T_{X} \mid \boldsymbol{P}(\boldsymbol{x}) \mid \} \rightarrow T[\boldsymbol{y}/\boldsymbol{z}]), \\ \boldsymbol{x} \colon T_{X}[\{\boldsymbol{x} \colon \text{rectype } \boldsymbol{X} = T_{X} \mid \boldsymbol{P}(\boldsymbol{x}) \mid \} / \boldsymbol{X}] \quad \vdash \quad t_{1}[f, \boldsymbol{x}/f_{1}, x_{1}] = t_{2}[f, \boldsymbol{x}/f_{2}, x_{2}] \in T[\boldsymbol{x}/\boldsymbol{z}] \end{array} \quad \text{Ax}
```

```
\begin{array}{lll} \Gamma, z \colon \mathsf{rectype} \ X = T_X, \ \Delta \vdash C & \mathsf{ext} \ f(z) \ \mathsf{where} \ f(x) = t[\lambda y.\mathsf{f}/P]_{\mathbb{F}} \\ \mathsf{recElimination} \ i \ j \ P \ y \ f \ x \\ \Gamma, z \colon \mathsf{rectype} \ X = T_X, \ \Delta \vdash \mathsf{rectype} \ X = T_X \in \mathbb{U}_j \\ \Gamma, z \colon \mathsf{rectype} \ X = T_X, \ \Delta, \ P \colon (\mathsf{rectype} \ X = T_X) \to \mathbb{P}_j, \ f \colon (y \colon \{x \colon \mathsf{rectype} \ X = T_X \mid P(x) \ \} \to C[y/z]), \\ x \colon T_X[\{x \colon \mathsf{rectype} \ X = T_X \mid P(x) \ \}/X] \ \vdash \ C[x/z] & \mathsf{ext} \ t \end{bmatrix}
```

REKURSIVE FUNKTIONEN

ullet Definition von Funktionen durch $\ f(x)=t[f,x]$

- -z.B. $\lambda f.$ $\min_f(0)$ where $\min_f(y) = if f(y) = 0$ then y else $\min_f(y+1)$ $\lambda x.$ sqr(0) where $sqr(y) = if x < (y+1)^2$ then y else sqr(y+1)
- Semantik: Kleinster Fixpunkt von t[f, x]
- ullet Analog zu f(e) where f(x) = t aber
 - Keine Koppelung an bekannte rekursiver Struktur erforderlich
 - Kein Extraktterm einer Eliminationsregel
 - Flexiblerer Einsatz in Programmierung ("reale" Programme)
 - Benötigt Bestimmung der induktiven Struktur des Definitionsbereichs

• Explizite Verankerung in Typentheorie bis Nuprl-3

- Datentyp der partiell-rekursiven Funktionen
- Automatische Bestimmung einer Approximation des Definitionsbereichs
- Logisch komplex und beschränkt auf Funktionen erster Stufe

• Heute ersetzt durch Y-Kombinator

- Behandlung totaler Funktionen auf nachgewiesenem Definitionsbereich
- Terminierungsbeweis durch Benutzer erforderlich

LÄSSIGE TYPEN

• Repräsentation unendlicher Datenstrukturen

- Rekursive Definition durch die Gleichung X = T[X]

```
z.B. inftree = \mathbb{Z} \times \text{inftree} \times \text{inftree}
      stream = Atom \times stream
```

• Formal ähnlich zum induktiven Datentyp

- Kanonische Elemente definiert durch Aufrollen der Gleichung
- Andere Semantik für inftype $X = T_X$: größter Fixpunkt von T[X],
- Kein Basisfall für Induktionsanfang erforderlich
- Verarbeitung durch induktiven Operator f(e) where f(x) = t

• Parametrisierte simultane Rekursion möglich

Kein fester Bestandteil der Nuprl Typentheorie

Neuere Typkonstrukte

ullet Abhängiger Durchschnitt $x:S\cap T[x]$

Bisher nur in MetaPRL

- Element s muß zu S und gleichzeitig zu T[s] gehören (Selbstreferenz!)
- Squiggle-Equality s~t
 - Einfacherer, syntaktischer Gleichheitstyp, ohne Abhängigkeit vom Typ s t gilt, wenn t und t zum gleichen Term reduzierbar sind oder in \mathbb{Z} oder Atom semantisch gleich sind
 - Substitutionregel gilt auch für Terme die squiggle-gleich sind
- ullet Stark abhängige Funktionen $\{f \mid x : S \rightarrow T[f, x]\}$
 - Selbstreferenz: Bildbereich hängt ab von Eingabe und Funktion f selbst
 - Mächtiger als abhängiger Durchschnitt, aber Beweise werden aufwendig
- Aktuell in Entwicklung
 - Logic of Events: Schließen über Kommunikation und verteilte Prozesse
 - Reflektion: Schließen über Beweisverfahren und das Meta-Level der CTT

Typentheorie im Rückblick

Inferenzkalkül für Mathematik & Programmierung

• Ausdrucksstarkes Inferenzsystem

- Vereinheitlicht und erweitert Logik, λ -Kalkül und einfache Typentheorie
- Formalisierung "natürlicher" Gesetze der zentralen Konzepte
- Direkte Darstellung anstatt Simulation
- Umfangreiche Theorie bestehend aus
 - · Prädikatenlogik (höherer Stufe)
 - · Mathematischen Grundkonzepten
 - · Grundkonstrukten der Programmierung, einschließlich Rekursion

• Praktische Probleme

- Beweise erfordern viel Schreibarbeit

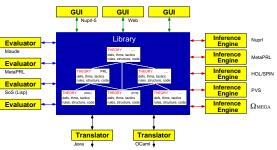
- \rightarrow Interaktive Beweissysteme
- Beweise sind unübersichtlich (viele Regelanwendungen)
- Beweise sind schwer zu finden (viele Regeln und Parameter)
 - \rightarrow Automatisierung der Beweisführung

AUSBLICK: THEMEN DES ZWEITEN TEILS (Sommer 2014)

Konstruiere semiautomatische Beweissysteme

Aufbau von Beweissystemen

- Implementierung interaktiver Beweisassistenten
- Das NuPRL Logical Programming Environment



• Automatisierung des formalen Schließens

- Taktisches Beweisen
- Entscheidungsprozeduren
- Integration externer Systeme in den Inferenzmechanismus

• Anwendungen & Demonstrationen

- Formalisierung mathematischen Wissens
- Synthese effizienter Algorithmen aus formalen Spezifikationen

: