
Applied Logic Lecture 13: First-Order Logic
CS 4860 Fall 2012 Thursday, October 4, 2012

First-Order Logic is the calculus one usually has in mind when using the word “logic”. It is widely
used in mathematics and computer science because it is expressive enough for all of mathematics,
except for those concepts that rely on a notion of construction or computation. However, dealing
with more advanced concepts is often somewhat awkward and researchers often design specialized
logics for that reason.

In our account of propositional logic we already made use of first-order logic to describe metamath-
ematical concepts such as tautologies, soundness, or completeness. For instance, the definition of a
formula X being a tautology, which requires the boolean value of X under an arbitrary assignment
of values to the variables of X to be true, is expressed as ∀v:Var(X)→B. (bval(X ,v)=t, and the
goal of tableaux proofs (find a falsifying assignment) as ∃v:Var(X)→B. (bval(X ,v)=f. Using for-
mulas to represent metamathematical concepts makes the descriptions more precise and provides
a foundation for the implementation of logical calculi on a computer.

Our account of first-order logic will be similar to the one of propositional logic. We will present

• The syntax, or the formal language of first-order logic, that is symbols, formulas, sub-
formulas, formation trees, substitution, etc.

• The semantics of first-order logic

• Proof systems for first-order logic, such as the axioms, rules, and proof strategies of the
first-order tableau method and refinement logic

• The meta-mathematics of first-order logic, which established the relation between the se-
mantics and a proof system

In many ways, first-order logic is a straightforward extension of propositional logic. One must,
however, be aware that there are subtle differences.

13.1 Syntax

The syntax of first-order logic is essentially an extension of propositional logic by quantification
∀ and ∃. Propositional variables are replaced by n-ary predicate symbols (P , Q, R) which may be
instantiated with either variables (x, y, z, ...) or parameters (a, b, ...). Here is a summary of the
most important concepts.

Definition 13.1 (Syntax of first-order logic)

(1) Atomic formulas are expressions of the form Pc1..cn where P is an n-ary predicate symbol
and the ci are variables or parameters.

(2) The formulas of first-order logic are recursively defined as follows
(a) Every atomic formula is a formula.
(b) If A is a formula then so is ¬A.
(c) If A and B are formulas then so are (A⇒B), (A ∧B), and (A ∨B).
(d) If B is a formula and x a variable then (∀x)B and (∃x)B are formulas.

1

(3) Pure formulas are formulas without parameters.

(4) The scope of a quantifier is the smallest formula that follows the quantifier.

(5) The degree d(A) of a formula A is the number of logical connectives and quantifiers in A.

Note that many accounts of first-order logic use terms built from variables and function symbols
instead of parameters. This makes the formal details a bit more complex but the fundamental
concepts remain the same.

Note that conventions about the scope of quantifiers differ in the literature and that many accounts
of logic provide preference rules that permit dropping parentheses. As this usually leads to con-
fusion we require that parentheses should always be used to avoid ambiguities. Outer parentheses
and parentheses around quantified formulas may be omitted.

Thus in (∀x)Px ∨Qx the scope of (∀x) is just Px, while Qx is outside the scope of the quantifier.
To include Qx in the scope of (∀x) one has to add parentheses: (∀x)(Px ∨Qx).

Definition 13.2 (Free and bound variables / Substitution)

(1) A variable x occurs bound in A if it occurs in the scope of a quantifier (∀x) or (∃x). Any
other occurrence of x in A is free.

(2) Closed formulas (or sentences) are formulas without free variables.

(3) Substitution: A|xa (or A[a/x]) is the result of replacing every free occurrence of the variable
x in A by the parameter a.1

(4) Subformulas are defined similar to propositional logic. The only modification is that for any
parameter a the formula B|xa is an immediate subformula of (∀x)B and (∃x)B.

(5) The formation tree of a formula F is a representation of all subformulas of A in tree format.
(a) The root of the tree is F .
(b) The sucessor of a formula of the form ¬A is A.
(c) The successors of A ∧B, A ∨B, A⇒B are A and B.
(d) The successors of (∀x)B and (∃x)B are A|xai for all parameters ai.

Note that quantifiers usually have infinitely many successors.
(e) Atomic formulas have no successors.

From now on, closed formulas are the default when we use the word “formula”.

13.2 Evidence Semantics

As in the propositional case, the meaning of formulas will be defined through evidence. A formula
X is considered valid if we are able to provide evidence that justifies the validity of X . Evidence
will described in the form of terms that can be used in a computational fashion. In a sense, evidence
terms form a primitive functional programming language that can be executed on a computer.

1Since we only allow variables to be substituted by terms, issues like capture cannot occur

2

• Evidence for atomic formulas

A predicate symbol P is a placeholder for some arbitrary unknown predicate and an atomic
formula A = Pc1..cn is a placeholder for some unknown proposition. As such, it cannot
have a fixed evidence and the type of its evidences [A] remains unspecified.2

• The evidence terms for A⇒B, A ∧B, A ∨B, ¬A are formal justifications for implications,
conjunctions, disjunctions, and negations as in the case of propositional logic. They are
summarized in the upper part of table ??.

• Evidence for (∀x)B
To know (∀x)B we must know how to generate some evidence b for B for every possible
instance of the variable x. Thus the evidence for (∀x)B must be a function f that generates
the evidence b : [B] for every possible value a that we may provide as input.

To some extent the evidence for (∀x)B is similar to the one for A⇒B as in both cases the
type of evidences is a function type. There are, however, some important differences. While
in the case of implication the input type is some evidence type [A] the input for evidences
for (∀x)B is taken from some (unspecified) universe of objects, which we denote by U.
Furthermore, since the formula B may contain x as free variable, there is some dependency
between the value of the input a : U and the type of the output of the evidence function.

Consider, for instance, the formula (∀x)(Pa⇒Px). Here the subformula B = (Pa⇒Px)
has evidence if we instantiate x with a and no evidence otherwise. So the evidence type for
B clearly depends on the object we choose as input for the evidence function f : [(∀x)B].

As a consequence, the evidence type of (∀x)B cannot be a simple function type like U→[B]
but has to be a function type that captures the dependency between input value and output
type. In programming, such types are called dependent function types.

Adopting programming notation we write [(∀x)B] = x : U→[B] 3

Let us look at two simple concrete examples.

– (∀x)(Px⇒Px): The evidence must be a function f : (x:U→([Px]→[Px])) that takes
some object x and produces evidence for Px⇒Px. The latter is a function that takes
some evidence p : [Px] and produces evidence for Px. Using identity function λp. p
as solution for that the overall evidence has the form λx. (λp. p).

– ((∀x)Px)⇒Pa: The evidence must be a function that takes as input some evidence
f : [(∀x)Px] and produces evidence for Pa. Since f has the type x : U→[Px],
applying f to the parameter a will result in an element of [Pa], which we can use as
the desired evidence. Thus the overall evidence will have the form λf. fa.

• Evidence for (∃x)B
To know (∃x)B we must be able to generate evidence for B for at least one possible instance
of the variable x. As in the case of the universal quantifier the formula B may contain x as
free variable, which means that there is some dependency between element that instantiates
x and the type of the evidence for B that we need to provide. Therefore we cannot simply

2This may change when we study advanced logics in which certain predicate symbols like the equality symbol
have a predefined meaning. Atomic formulas like 0=0 will then have atomic evidences.

3Dependent function types are often written as x : S→T [x], where T [x] expresses that the output type T may
contain x as free variable. x : S→T [x] is the the type of functions that on input s : S return a value of a type T [s/x].

3

proposition A evidence type [A] evidence term evidence decomposition
A⇒B [A]→[B] λa.b f(a)
A ∧B [A]×[B] (a, b) p1, p2
A ∨B [A] + [B] inl(a), inr(b) case e of inl(a)→ s | inr(b)→ t
¬A [A]→{} λa.b f(a)

(∀x)B x : U→[B] λa.b f(a)
(∃x)B x : U×[B] (a, b) p1, p2

Table 1: Evidence terms for first-order logic

provide some element of [B] as evidence for (∃x)B but we also have to provide the specific
element a : U for which we claim B to be valid.

Therefore the evidence for (∃x)B must give us the concrete witness a and the evidence
b : B[a/x], that is a pair (a, b) where a : U and b : [B[a/x]]. Thus the type of evidences
[(∃x)B] is a dependent product type.

We write [(∃x)B] = x : U×[B].

Again let us look at a few concrete examples

– Pa⇒ ((∃x)Px): The evidence must be a function that takes some evidence p : [Pa]
and produces a pair (x, p′) where x : U and p′ is evidence for Px. The obvious choice
is x = a and p′ = p and the the overall evidence is λp. (a, p).

– ((∃x)Px)⇒ ((∃y)Py): The evidence must be a function that takes as input an element
z : (x : U×[Px]), i.e. a pair z (a, p), where a : U and p is evidence for Pa, and
produces a pair (x, p′) where x : U and p′ is evidence for Px. The obvious choice is
again x = a and p′ = p and the the overall evidence is λz. (z1, z2). Since (z1, z2) is
identical to z we can simplify the evidence to λz. z. 4

Table ?? summarizes the evidence terms and types for the first-order quantifiers. Note that the evi-
dence terms associated with universal quantifiers are the same as those associated with implication
and that he evidence terms associated with existential quantifiers are the same as those associated
with conjunction. The difference is only in the evidence types – quantifiers require dependent types
while “ordinary”function and product types are sufficient for the propositional connectives.

We conclude this section by posing a few problems that should be elaborated in groups. For each
of the formulas below the group should find the evidence that validates the formula or explain why
evidence cannot be constructed.

(1) ((∀x)(Px ∧Qx))⇒ ((∀x)Px ∧ (∀x)Qx):

The evidence must be a function that takes as input a function f : (x:U→[Px]×[Qx]) and
produces a pair of functions (g, h) : (x:U→[Px])×(x:U→[Qx]). To construct g and g we
take an input x:U and generate the evidence for [Px] by applying f to x and selecting the
first and second component. Thus the overall evidence is λf. (λx.(f x)1, λx.(f x)2)

(2) ((∀x)Px ∧ (∀x)Qx)⇒ ((∀x)(Px ∧Qx)): The evidence is λz. (λx. (z1 x, z2 x))

4One could also attempt to argue semantically, claiming that (∃x)Px and (∃y)Py must express the same, and
provide λx.x as overall evidence. But the justification for this claim is the argument that we just provided.

4

(3) ((∀x)Px ∨ (∀x)Qx)⇒ ((∀x)(Px ∨Qx)):

The evidence is λz. (λx. (case z of inl(f)→ inl(f x) | inr(g)→ inr(g x)))

(4) ((∀x)(Px ∨Qx))⇒ ((∀x)Px ∨ (∀x)Qx): This formula is not valid.

A possible counterexample is P x being odd(x) and Qx being even(x).

(5) ((∃x)(Px ∧Qx))⇒ ((∃x)Px ∧ (∃x)Qx): The evidence is λz. ((z1, z21), (z1, z22))

(6) ((∃x)Px ∧ (∃x)Qx)⇒ ((∃x)(Px ∧Qx)): This formula is not valid.

A possible counterexample is P x being odd(x) and Qx being even(x).

(7) ((∃x)Px ∨ (∃x)Qx)⇒ ((∃x)(Px ∨Qx)):

The evidence is λz. (case z of inl(x)→ (x1,inl(x2)) | inr(y)→ (y1,inr(y2)))

(8) ((∃x)(Px ∨Qx))⇒ ((∃x)Px ∨ (∃x)Qx):

The evidence is λz. (case z2 of inl(x)→ inl(z1, x) | inr(y)→ inr(z1, y))

(9) (∃x)(Px⇒ (∀y)Py):

The evidence must be a pair (a, f) where a:U and f is a function that takes evidence p for
Pa as input and generates a function g : (x:U→[Px]). There is no way to construct the
generic “evidence function” g solely on the basis of the evidence for a specific Pa.

(10) (∀x)((∀y)Py⇒Px): The evidence is λx. (λf. f x)

(11) (∃x)((∃y)Py⇒Px):

The evidence must be a pair (a, f) where a:U and f is a function that takes a pair (b, p) :
(y:U×([Py]) as input and generates evidence for Pa. The only way to construct f is to
make sure that a matches its input b – then the evidence for Pa would be the second input
component. There is no way to do this without knowing the input.

(12) ¬((∃x)Px)⇒ ((∀x)(((∃y)Py)⇒Px)): The evidence is λf. (λx. (λz. any(f z)))

(13) ((∃x)Px)⇒ ((∀x)(Px⇒Qx)⇒ ((∃y)Qy)): The evidence is λz. (λf. (z1, (f z1) z2))

(14) ¬((∃x)Px)⇒ ((∀x)¬(Px)):

The evidence must be a function that takes as input a function f : (x:U×[Px])→{} and
produces a function g : (x:U→([Px]→{})). To construct g we take an input x:U and evi-
dence p : [Px] and create the element of {} by applying f to the pair (x, p). Thus the overall
evidence is λf. (λx. (λp. f(x, p)))

(15) ((∀x)¬(Px))⇒¬((∃x)Px): The evidence is λf. (λz. (fz1)z2)

(16) ((∃x)Px)⇒¬((∀x)¬(Px)): The evidence is λz. (λf. (fz1)z2)

(17) ¬((∀x)Px)⇒ ((∃x)¬(Px)):

The evidence must be a function that takes as input a function f : (x:U→[Px])→{} and
produces a pair z : (x:U×([Px]→{})). To construct g we have to find an element a:U and
evidence p for Pa. There is no uniform way to construct these two evidences solely from f .

5

13.3 First-Order refinement proofs and evidence construction

Similar to evidence semantics, the proof calculus of refinement logic can be extended from propo-
sitional to first-order logic. Most rules follow immediately from an intuitive understanding of the
logical operators. As in our discussion of evidence we investigate each connective separately.

• Refinement rules for atomic formulas

An atomic formula A = Pc1..cn cannot be decomposed into smaller components because it
is a placeholder for an unknown proposition. But if A is also one of the assumptions in the
hypotheses, we can prove A it using the axiom rule.

H, a:A,H ′ ` A ev = a by axiom

• Refinement rules for A⇒B, A ∧B, A ∨B, ¬A are the refinement rules for implications,
conjunctions, disjunctions, and negations that we already know from propositional logic.
They are summarized in the upper part of table ??.

• Refinement rules for (∀x)B
To prove a universally quantified formula (∀x)B we have to be able to prove B for every
possible instance of the variable x. The only way to do this formally is to come up with a
generic proof for B that does not depend on how x is being instantiated. For this purpose we
substitute x by a new parameter a′ that does not occur elsewhere in the sequent and prove
B[a′/x]. The fact that a′ is new makes sure that nothing is known about a′ in the proof of
B[a′/x], which means that the proof will in fact apply to every possible instance of x.5

H ` (∀x)B by allR

H ` B[a′/x]

To describe the evidence constructed by this rule we assume that we have some evidence b
for the the subgoal sequent H `B[a′/x]. This means that we must have found a generic way
to generate the evidence b for B[a′/x] for arbitrary a′. In other words, there is a function
that on input a′ computes b and this function must be the evidence for (∀x)B. Using the
λ-notation for evidence terms introduced previously, we can write the rule as

H ` (∀x)B ev = λa′. b by allR

H ` B[a′/x] ev = b

In addition to refining a universal quantifier in the conclusion of a sequent we also need
rules for decomposing quantifiers in assumptions. To prove a goal C by decomposing the
assumption (∀x)B we introduce the assumption B[a/x] for some parameter a and prove C
on that basis.

For the construction of evidence let us assume that f is a label for (∀x)B in the main goal,
that b is a label for B[a/x] in the subgoal, and that c the evidence for C. The latter means
that there is a function that computes evidence c for C from arbitrary evidences b for B[a/x].
Since f(a) is a specific evidence for B[a/x] we can apply this function, i.e. λb.c, to f(a),
evaluate it and get the desired evidence for C in the main goal. If we integrate evidence
construction into the rule we get

5In our description of the formal rules we use the stroke only to emphasize the fact that a′ is new, which is a side
condition on the parameters that may actually be chosen when the rule is applied. Apart from that condition, any
parameter may be chosen.

6

H, f :(∀x)B,H ′ ` C ev = c[f(a)/b] by allL a

H, f :(∀x)B, b:B[a/x], H ′ ` C ev = c

Note that the parameter a has to be provided when executing the rule since the parameter
that instantiates the formula (∀x)B is not determined by the context of the rule. The user
applying the rule has to choose it.

Let us look at two simple concrete examples.

– (∀x)(Px⇒Px): The refinement proof is straightforward.
` (∀x)(Px⇒Px) ev = λa. (λp.p) by allR

1 ` Pa⇒Pa ev = λp.p by impliesR

1.1 p:Pa ` Pa ev = p by axiom

– ((∀x)Px)⇒Pa: The obvious choice for instantiating x is the parameter a.
` ((∀x)Px)⇒Pa ev = λf. f(a) by impliesR

1 f :(∀x)Px ` Pa ev = p[f(a)/p] by allL a
1.1 f :(∀x)Px, p:Pa ` Pa ev = p by axiom

In both cases the constructed evidence is the same as we had in section ??.

Note that the rule allL explicitly re-introduces the assumption (∀x)B in the subgoal. The
reason for this is that univerally quantified formulas in the assumptions may have to be in-
stantiated several times in order to complete the proof. Any proof of ((∀x)Px)⇒ (Pa ∧ Pb)
must instantiate the variable x with both a and b. If allL would drop the assumption (∀x)B,
then some proof attempts would not succeed as they cannot show both Pa and Pb. Here is a
proof of that statement in refinement logic.
` ((∀x)Px)⇒ (Pa ∧Pb) ev = λf.(f(a), f(b)) by impliesR

1 f :(∀x)Px ` Pa ∧Pb ev = (f(a), f(b)) by allL a
1.1 f :(∀x)Px, pa:Pa ` Pa ∧Pb ev = (pa, f(b)) by allL b
1.1.1 f :(∀x)Px, pa:Pa, pb:Pb ` Pa ∧Pb ev = (pa, pb) by andR

1.1.1.1 f :(∀x)Px, pa:Pa, pb:Pb ` Pa ev = pa by axiom

1.1.1.2 f :(∀x)Px, pa:Pa, pb:Pb ` Pb ev = pb by axiom

• Refinement rules for (∃x)B
To prove an existentially quantified formula (∃x)B we have to be able to prove B[a/x] for
some parameter a. If b is the evidence for B[a/x] then combining this evidence with the
parameter a is evidence for the existence of an x such that B holds.

H ` (∃x)B ev = (a, b) by exR a

H ` B[a/x] ev = b

Again, the parameter a has to be provided when executing the rule.

To prove a goal C by decomposing the assumption (∃x)B we introduce the assumption
B[a′/x] for a new parameter a′ and prove C on that basis. As in the case of allR requiring
a′ to be new makes sure that nothing is known about a′ when we use B[a′/x] to prove C
except that a′ does exist. For the construction of evidence let us assume that z is a label for
(∃x)B in the main goal, b is the evidence for the assumption B[a/x] in the subgoal, and c the
evidence for C. Then z is assumed to be the same as the evidence pair (a′, b), which means
that replacing a by z1 and b by z2 in c gives us the evidence for the main goal.

H, z:(∃x)B,H ′ ` C ev = c[z1, z2/a
′, b] by exL

H, b:B[a′/x], H ′ ` C ev = c

7

left right
impliesL H, f :A⇒B,H ′ ` C ev = c[f(a)/b] H ` A⇒B ev = λa.b impliesR

H, f :A⇒B,H ′ ` A ev = a H, a:A ` B ev = b

H, b:B,H ′ ` C ev = c

andL H,x:A ∧B,H ′ ` C ev = c[x1, x2/a, b] H ` A ∧B ev = (a, b) andR

H, a:A, b:B,H ′ ` C ev = c H ` A ev = a

H ` B ev = b

orL H,x:A ∨B,H ′ ` C ev = case x of inl(a)→ c1 H ` A ∨B ev = inl(a) orR1

| inr(b)→ c2 H ` A ev = a

H, a:A,H ′ ` C ev = c1
H, b:B,H ′ ` C ev = c2 H ` A ∨B ev = inr(b) orR2

H ` B ev = b

notL H, f :¬A,H ′ ` C ev = any(f(a)) H ` ¬A ev = λa.b notR

H, f :¬A,H ′ ` A ev = a H, a:A ` f ev = b

H, a:A,H ′ ` A ev = a axiom

allL a H, f :(∀x)B,H ′ ` C ev = c[f(a)/b] H ` (∀x)B ev = λa′. b allR

H, f :(∀x)B, b:B[a/x],H ′ ` C ev = c H ` B[a′/x] ev = b

exL H, z:(∃x)B,H ′ ` C ev = c[z1, z2/a
′, b] H ` (∃x)B ev = (a, b) exR a

H, b:B[a′/x],H ′ ` C ev = c H ` B[a/x] ev = b

a can be an arbitrary parameter while a′ must be new

Table 2: Rules of the first-order refinement calculus

Again let us look at a few concrete examples
– Pa⇒ ((∃x)Px): Again a simple and straightforward proof

` Pa⇒ ((∃x)Px) ev = λp.(a, p) by impliesR

1 p:Pa ` (∃x)Px ev = (a, p) by exR a
1.1 p:Pa ` Pa ev = p by axiom

– ((∃x)Px)⇒ ((∃y)Py):
` ((∃x)Px)⇒ ((∃y)Py) ev = λz. (z1, z2) by impliesR

1 z:(∃x)Px ` (∃y)Py ev = (z1, z2) by exL

1.1 p:Pa ` (∃y)Py ev = (a, p) by exR a
1.1.1 p:Pa ` Pa ev = p by axiom

Note that (z1, z2) is idential to z so the evidence constructed is the same as in section ??.
Note also that the order of rule applications is important. Had we used the rule exR a
first we wouldn’t be able to complete the proof.

` ((∃x)Px)⇒ ((∃y)Py) by impliesR

1 z:(∃x)Px ` (∃y)Py by exR a
1.1 z:(∃x)Px ` Pa by ???

Table ?? summarizes all the rules of the refinement calculus for first order logic.

Exercises

As an exercise the following problems should be investigated in groups. For each of the formulas
below the group should find a refinement proof and construct the evidence from the proof. In cases
where no proof can be found, try to explain why the proof has to get stuck.

8

(1) ((∀x)(Px ∧Qx))⇒ ((∀x)Px ∧ (∀x)Qx):
` ((∀x)(Px ∧Qx))⇒ ((∀x)Px ∧ (∀x)Qx) by impliesR

1 (∀x)(Px ∧Qx) ` ((∀x)Px ∧ (∀x)Qx) by andR

1.1 (∀x)(Px ∧Qx) ` (∀x)Px by allR

1.1.1 (∀x)(Px ∧Qx) ` Pa by allL a
1.1.1.1 (∀x)(Px ∧Qx), Pa ∧Qa ` Pa by andL

1.1.1.1.1 (∀x)(Px ∧Qx), Pa,Qa ` Pa by axiom

1.2 (∀x)(Px ∧Qx) ` (∀x)Qx by allR

1.2.1 (∀x)(Px ∧Qx) ` Qa by allL a
1.2.1.1 (∀x)(Px ∧Qx), Pa ∧Qa ` Qa by andL

1.2.1.1.1 (∀x)(Px ∧Qx), Pa,Qa ` Qa by axiom

The evidence extracted from this proof is λf. (λx.(f x)1, λx.(f x)2)

(2) ((∀x)Px ∧ (∀x)Qx)⇒ ((∀x)(Px ∧Qx)):
` ((∀x)Px ∧ (∀x)Qx)⇒ ((∀x)(Px ∧Qx)) by impliesR

1 (∀x)Px ∧ (∀x)Qx ` (∀x)(Px ∧Qx) by andL

1.1 (∀x)Px, (∀x)Qx ` (∀x)(Px ∧Qx) by allR

1.1.1 (∀x)Px, (∀x)Qx ` Pa ∧Qa by andR

1.1.1.1 (∀x)Px, (∀x)Qx ` Pa by allL a
1.1.1.1.1 (∀x)Px, (∀x)Qx,Pa ` Pa by axiom

1.1.1.2 (∀x)Px, (∀x)Qx ` Qa by allL a
1.1.1.2.1 (∀x)Px, (∀x)Qx,Qa ` Qa by axiom

(3) ((∀x)Px ∨ (∀x)Qx)⇒ ((∀x)(Px ∨Qx)):
` ((∀x)Px ∨ (∀x)Qx)⇒ ((∀x)(Px ∨Qx)) by impliesR

1 (∀x)Px ∨ (∀x)Qx ` (∀x)(Px ∨Qx) by orL

1.1 (∀x)Px ∨ (∀x)Qx ` Pa ∨Qa by allR

1.1.1 (∀x)Px ` Pa ∨Qa by allL a
1.1.1.1 Pa ` Pa ∨Qa by orR1

1.1.1.1.1 Pa ` Pa by axiom

1.1.2 (∀x)Qx ` Pa ∨Qa by

1.1.2.1 Qa ` Pa ∨Qa by orR2

1.1.2.1.1 Qa ` Qa by axiom

(4) ((∀x)(Px ∨Qx))⇒ ((∀x)Px ∨ (∀x)Qx): A proof attempt will get stuck
` ((∀x)(Px ∨Qx))⇒ ((∀x)Px ∨ (∀x)Qx) by impliesR

1 (∀x)(Px ∨Qx) ` (∀x)Px ∨ (∀x)Qx by ???

At this point we have to prove either (∀x)Px or (∀x)Qx but there is no way to prove that.

(5) ((∃x)(Px ∧Qx))⇒ ((∃x)Px ∧ (∃x)Qx):
` ((∃x)(Px ∧Qx))⇒ ((∃x)Px ∧ (∃x)Qx) by impliesR

1 (∃x)(Px ∧Qx) ` (∃x)Px ∧ (∃x)Qx) by exL

1.1 Pa ∧Qa ` (∃x)Px ∧ (∃x)Qx by andL

1.1.1 Pa,Qa ` (∃x)Px ∧ (∃x)Qx by andR

1.1.1.1 Pa,Qa ` (∃x)Px by exR a
1.1.1.1.1 Pa,Qa ` Pa by axiom

1.1.1.2 Pa,Qa ` (∃x)Qx by exR a
1.1.1.2.1 Pa,Qa ` Qa by axiom

9

(6) ((∃x)Px ∧ (∃x)Qx)⇒ ((∃x)(Px ∧Qx)): Here is a proof attempt
` ((∃x)Px ∧ (∃x)Qx)⇒ ((∃x)(Px ∧Qx)) by impliesR

1 (∃x)Px ∧ (∃x)Qx ` (∃x)(Px ∧Qx) by andL

1.1 (∃x)Px, (∃x)Qx ` (∃x)(Px ∧Qx) by exL

1.1.1 Pa, (∃x)Qx ` (∃x)(Px ∧Qx) by exL

1.1.1 Pa,Qb ` (∃x)(Px ∧Qx) by ???

The proof gets stuck because in the second application of exL we will have to use a new
parameter instead of using a again.

(7) ((∃x)Px ∨ (∃x)Qx)⇒ ((∃x)(Px ∨Qx)):
` ((∃x)Px ∨ (∃x)Qx)⇒ ((∃x)(Px ∨Qx)) by impliesR

1 (∃x)Px ∨ (∃x)Qx ` (∃x)(Px ∨Qx) by orL

1.1 (∃x)Px ` (∃x)(Px ∨Qx) by exL

1.1.1 Pa ` (∃x)(Px ∨Qx) by exR a
1.1.1.1 Pa ` Pa ∨Qa by orR1

1.1.1.1.1 Pa ` Pa by axiom

1.2 (∃x)Qx ` (∃x)(Px ∨Qx) by exL

1.2.1 Qa ` (∃x)(Px ∨Qx) by exR a
1.2.1.1 Qa ` Pa ∨Qa by orR2

1.2.1.1.1 Qa ` Qa by axiom

(8) ((∃x)(Px ∨Qx))⇒ ((∃x)Px ∨ (∃x)Qx):
` ((∃x)(Px ∨Qx))⇒ ((∃x)Px ∨ (∃x)Qx) by impliesR

1 (∃x)(Px ∨Qx) ` (∃x)Px ∨ (∃x)Qx by exL

1.1 Pa ∨Qa ` (∃x)Px ∨ (∃x)Qx by orL

1.1.1 Pa ` (∃x)Px ∨ (∃x)Qx by orR1

1.1.1.1 Pa ` (∃x)Px by exR a
1.1.1.1.1 Pa ` Pa by axiom

1.1.2 Pa ` (∃x)Px ∨ (∃x)Qx by orR1

1.1.2.1 Pa ` (∃x)Px by exR a
1.1.2.1.1 Pa ` Pa by axiom

(9) (∃x)(Px⇒ (∀y)Py): Here is a proof attempt
` (∃x)(Px⇒ (∀y)Py) by exR a
1 ` Pa⇒ (∀y)Py by impliesR

1.1 Pa ` (∀y)Py by allR

1.1.1 Pa ` Pb by ???

The proof gets stuck because in the application of allR we will have to use a new parameter
instead of using a again.

(10) (∀x)((∀y)Py⇒Px):
` (∀x)((∀y)Py⇒Px) by allR

1 ` (∀y)Py⇒Pa by impliesR

1.1 (∀y)Py ` Pa by allL a
1.1.1 Pa ` Pa by axiom

(11) (∃x)((∃y)Py⇒Px): Here is a proof attempt
` (∃x)((∃y)Py⇒Px) by exR a
1 ` (∃y)Py⇒Pa by impliesR

1.1 (∃y)Py ` Pa by exL

1.1.1 Pb ` Pa by ???

The proof gets stuck because in the application of exL we will have to use a new parameter
instead of using a again.

10

(12) ¬((∃x)Px)⇒ ((∀x)(((∃y)Py)⇒Px)):
` ¬((∃x)Px)⇒ ((∀x)(((∃y)Py)⇒Px)) by impliesR

1 ¬((∃x)Px) ` (∀x)(((∃y)Py)⇒Px) by allR

1.1 ¬((∃x)Px) ` ((∃y)Py)⇒Pa by impliesR

1.1.1 ¬((∃x)Px), (∃y)Py ` Pa by notL

1.1.1.1 ¬((∃x)Px), (∃y)Py ` (∃x)Px by axiom

(13) ((∃x)Px)⇒ ((∀x)(Px⇒Qx)⇒ ((∃y)Qy)):
` ((∃x)Px)⇒ ((∀x)(Px⇒Qx)⇒ ((∃y)Qy)) by impliesR

1 (∃x)Px ` (∀x)(Px⇒Qx)⇒ ((∃y)Qy) by impliesR

1.1 (∃x)Px, (∀x)(Px⇒Qx) ` (∃y)Qy by exL

1.1.1 Pa, (∀x)(Px⇒Qx) ` (∃y)Qy by allL a
1.1.1.1 Pa, Pa⇒Qa ` (∃y)Qy by exR a
1.1.1.1.1 Pa, Pa⇒Qa ` Qa by impliesL

1.1.1.1.1.1 Pa, Pa⇒Qa ` Pa by axiom

1.1.1.1.1.2 Pa, Pa⇒Qa,Qa ` Qa by axiom

(14) ¬((∃x)Px)⇒ ((∀x)¬(Px)):
` ¬((∃x)Px)⇒ ((∀x)¬(Px)) by impliesR

1 ¬((∃x)Px) ` (∀x)¬(Px) by allR

1.1 ¬((∃x)Px) ` ¬(Pa) by notR

1.1.1 ¬((∃x)Px), Pa ` f by notL

1.1.1.1 ¬((∃x)Px), Pa ` (∃x)Px by exR a
1.1.1.1.1 ¬((∃x)Px), Pa ` Pa by axiom

(15) ((∀x)¬(Px))⇒¬((∃x)Px):
` ((∀x)¬(Px))⇒¬((∃x)Px) by impliesR

1 (∀x)¬(Px)) ` ¬((∃x)Px) by notR

1.1 (∀x)¬(Px)), (∃x)Px ` f by exL

1.1.1 (∀x)¬(Px)), Pa ` f by allL a
1.1.1.1 ¬(Pa), Pa ` f by notL

1.1.1.1.1 ¬(Pa), Pa ` Pa by axiom

(16) ((∃x)Px)⇒¬((∀x)¬(Px)):
` ((∃x)Px)⇒¬((∀x)¬(Px) by impliesR

1 (∃x)Px ` ¬((∀x)¬(Px) by exL

1.1 Pa ` ¬((∀x)¬(Px) by notR

1.1.1 Pa, (∀x)¬(Px) ` f by allL a
1.1.1.1 Pa,¬(Pa) ` f by notL

1.1.1.1.1 Pa,¬(Pa) ` Pa by axiom

(17) ¬((∀x)Px)⇒ ((∃x)¬(Px)): Here is a proof attempt
` ¬((∀x)Px)⇒ ((∃x)¬(Px))) by impliesR

1 ` ¬((∀x)Px) ` ((∃x)¬(Px))) by ???

At this point we’re stuck. If we apply notL we will lose the conclusion ((∃x)¬(Px))) and
have to prove (∀x)Px, which clearly won’t work. But there are no other proof rule that can
be applied here.

11

