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Abstract

The usage of mobile devices is rapidly growing with Android being the most preva-
lent mobile operating system. Thanks to the vast variety of mobile applications,
users are preferring smartphones over desktops for day to day tasks like Internet
surfing. Consequently, smartphones store a plenitude of sensitive data. This data
together with the high values of smartphones make them an attractive target for
device/data theft (thieves/malicious applications).

Unfortunately, state-of-the-art anti-theft solutions do not work if they do not have
an active network connection, e.g., if the SIM card was removed from the device.
In the majority of these cases, device owners permanently lose their smartphone
together with their personal data, which is even worse.

Apart from that malevolent applications perform malicious activities to steal sen-
sitive information from smartphones. Recent research considered static program
analysis to detect dangerous data leaks. These analyses work well for data leaks
due to inter-component communication, but suffer from shortcomings for inter-app
communication with respect to precision, soundness, and scalability.

This thesis focuses on enhancing users’ privacy on Android against physical de-
vice loss/theft and (un)intentional data leaks. It presents three novel frameworks:
(1) ThiefTrap, an anti-theft framework for Android, (2) IIFA, a modular inter-app
intent information flow analysis of Android applications, and (3) PIAnalyzer, a pre-
cise approach for PendingIntent vulnerability analysis.

ThiefTrap is based on a novel concept of an anti-theft honeypot account that pro-
tects the owner’s data while preventing a thief from resetting the device. We imple-
mented the proposed scheme and evaluated it through an empirical user study with
35 participants. In this study, the owner’s data could be protected, recovered, and
anti-theft functionality could be performed unnoticed from the thief in all cases.

ITFA proposes a novel approach for Android’s inter-component/inter-app com-
munication (ICC/IAC) analysis. Our main contribution is the first fully automatic,
sound, and precise ICC/IAC information flow analysis that is scalable for realistic
apps due to modularity, avoiding combinatorial explosion: Our approach deter-
mines communicating apps using short summaries rather than inlining intent calls
between components and apps, which requires simultaneously analyzing all apps
installed on a device. We evaluate IIFA in terms of precision, recall, and demon-
strate its scalability to a large corpus of real-world apps. IIFA reports 62 problematic
ICC-/IAC-related information flows via two or more apps/components.

PIAnalyzer proposes a novel approach to analyze PendingIntent related vulner-
abilities. PendingIntents are a powerful and universal feature of Android for inter-
component communication. We empirically evaluate PIAnalyzer on a set of 1000
randomly selected applications and find 1358 insecure usages of PendingIntents,
including 70 severe vulnerabilities.






Zusammenfassung

Die Nutzung von mobilen Gerdten nimmt rasant zu, wobei Android das h&dufigste mo-
bile Betriebssystem ist. Dank der Vielzahl an mobilen Anwendungen bevorzugen Benutzer
Smartphones gegentiber Desktops fiir alltdgliche Aufgaben wie das Surfen im Internet. Fol-
glich speichern Smartphones eine Vielzahl sensibler Daten. Diese Daten zusammen mit
den hohen Werten von Smartphones machen sie zu einem attraktiven Ziel fiir Gerdte/Da-
tendiebstahl (Diebe /bdsartige Anwendungen).

Leider funktionieren moderne Diebstahlsicherungslosungen nicht, wenn sie keine aktive
Netzwerkverbindung haben, z. B. wenn die SIM-Karte aus dem Gerdt entnommen wurde.
In den meisten Fillen verlieren Geritebesitzer ihr Smartphone dauerhaft zusammen mit
ihren personlichen Daten, was noch schlimmer ist.

Abgesehen davon gibt es bosartige Anwendungen, die schddliche Aktivitdten ausfiihren,
um vertrauliche Informationen von Smartphones zu stehlen. Kiirzlich durchgefiihrte Un-
tersuchungen berticksichtigten die statische Programmanalyse zur Erkennung geféhrlicher
Datenlecks. Diese Analysen eignen sich gut fiir Datenlecks aufgrund der Kommunika-
tion zwischen Komponenten, weisen jedoch hinsichtlich der Prézision, Zuverldssigkeit und
Skalierbarkeit Nachteile fiir die Kommunikation zwischen Apps auf. Diese Dissertation
konzentriert sich auf die Verbesserung der Privatsphére der Benutzer auf Android gegen
Verlust/Diebstahl von physischen Gerédten und (un)vorsitzlichen Datenverlust. Es werden
drei neuartige Frameworks vorgestellt: (1) ThiefTrap, ein Anti-Diebstahl-Framework fiir
Android, (2) ITFA, eine modulare Inter-App Analyse des Informationsflusses von Android
Anwendungen, und (3) PIAnalyzer, ein prédziser Ansatz fiir PendingIntent Schwachstellen-
analyse.

ThiefTrap basiert auf einem neuartigen Konzept eines Diebstahlschutzkontos, das die
Daten des Besitzers schiitzt und verhindert, dass ein Dieb das Gerat zurticksetzt. Wir haben
das vorgeschlagene Schema implementiert und durch eine empirische Anwenderstudie mit
35 Teilnehmern ausgewertet. In dieser Studie konnten die Daten des Besitzers geschiitzt
und wiederhergestellt werden, und die Diebstahlsicherungsfunktion konnte in jedem Fall
unbemerkt vom Dieb ausgefiihrt werden.

ITFA schlédgt einen neuen Ansatz fiir die Analyse von Komponenten zwischen Kompo-
nenten/ Inter-App Kommunikation (ICC/IAC) von Android vor. Unser Hauptbeitrag ist
die erste vollautomatische, solide und prizise ICC/IAC Informationsflussanalyse, die auf-
grund ihrer Modularitét fiir realistische Apps skalierbar ist und eine kombinatorische Ex-
plosion vermeidet: Unser Ansatz bestimmt, dass Apps tiber kurze Zusammenfassungen
kommuniziert werden, anstatt Absichtsaufrufe zwischen Komponenten zu verwenden und
Apps, bei denen gleichzeitig alle auf einem Gerét installierten Apps analysiert werden
miissen. Wir bewerten IIFA in Bezug auf Prézision, Riickruf und demonstrieren seine
Skalierbarkeit fiir einen grofsen Korpus realer Apps. IIFA meldet 62 problematische ICC- /
IAC-bezogene Informationsfliisse iiber zwei oder mehr Apps / Komponenten.

PIAnalyzer schldgt einen neuen Ansatz vor, um Schwachstellen im Zusammenhang mit
PendingIntent zu analysieren. PendingIntents nutzen eine leistungsstarke und universelle
Funktion von Android fiir die Kommunikation zwischen Komponenten. Wir evaluieren
PIAnalyzer empirisch an einem Satz von 1000 zufillig ausgewahlten Anwendungen und
finden 1358 unsichere Verwendungen von PendingIntents, einschliefilich 70 schwerwiegen-
der Schwachstellen.






Contributions of this Dissertation

This dissertation focuses on improving users’ privacy in Android operating system.
This dissertation would not have been possible without the guidance and valuable
teedback of my supervisor (Prof.Dr.-ing. Christian Hammer). The major contribu-
tions are as follows:

The author and Sascha Grofs are the two main co-authors of ThiefTrap [39]. The
author and Sascha Grof had the initial idea and motivation for a deceiving GUI
as an anti-theft measure. The author and Sascha Grof? transformed the initial idea
to a working concept of ThiefTrap on Android operating system. The author was
responsible for configuring the Android open source project, implementing fake
factory reset scenarios on both boot loader and Settings menu, and the implemen-
tation of some fake settings required after the fake factory reset. Additionally, the
author along with Sascha Grofs came up with the suitable evaluation criteria re-
quired for empirically evaluation of ThiefTrap. All authors performed reviews of
the paper.

The IIFA [82] concept was developed in a joint effort between the author and
Sascha Grof3. The author was further responsible for the implementation and eval-
uation of IIFA. The author took great effort in implementing all aspects of the prob-
lem (Wrote approximately 8k lines of code). The author empirically evaluated IIFA
on three state-of-the-art benchmarks, compared it with six state-of-the-art related
tools in terms of precision and recall. Additionally, the author evaluated IIFA’s out-
put with state-of-the-art related tools and demonstrated IIFA’s effectiveness on real
world applications. All authors performed reviews of the paper.

The author and Sascha Grof3 are the two main co-authors of PIAnalyzer [38]. The
author and Sascha Grof3 created the attack scenario of PendinglIntent. The author
was further responsible for evaluating PIAnalyzer. All authors performed reviews
of the paper.

Minor Contributions

The IFC for Hybrid Android Applications [41] was developed in a joint effort be-
tween the author and Enrico Hoschler. The author came up with the initial idea
and motivation of the work. The author further designed the methodology and the
evaluation criteria. Enrico Hoschler was involved in major parts of the implemen-
tation and evaluation.

The author upgraded [81] the DexLib (from version 1 to 2) in the widely used
framework WALA [20], to facilitate the analysis of newer Android applications.
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Introduction and Background






Chapter 1

Introduction

The usage of mobile devices is rapidly growing with Android being the most preva-
lent mobile operating system (with a global market share of 72.23% as of Novem-
ber 2018 [40]). Various reports [46,17] reveal that the mobile application (app) usage
is growing by 6% year-over-year and users are preferring mobile apps over desktop
apps. As is, mobile devices store a plenitude of sensitive data, including sensi-
tive personal or financial information as well as session tokens of online services
used in installed applications. This data together with the high values of smart-
phones make them an attractive target for physical theft. Clearly, the device owner
would like to regain the device in such a case. Additionally, if this data is leaked
to a malevolent entity (a malicious application) these tokens can be leveraged to
perform unauthorized actions on the victim’s behalf, potentially leading to severe
harm for the device owner. Therefore, protecting the information stored on smart-

phones from unauthorized access has become imperative.

In this thesis, we propose novel frameworks to protect the user’s privacy/data on
Android operating system. In general we answer to the following research ques-
tions: RQ1. How to protect user’s privacy/data against physical device loss/theft?

RQ2. How to protect user’s privacy/data against (un)intentional application leaks?

To protect against physical device loss/theft, there were two possible mecha-
nisms: 1. Anti-theft applications: Most of the anti-theft applications provide the

functionality to lock the phone, erase it or triggering an alarm from remote. Unfor-
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tunately, anti-theft applications do not work if they do not have an active network
connection e.g., if the SIM card was removed from the device. 2. Google Device
Protection: Starting from Android version 5.1, Google released a new feature called
“Device Protection” [68]. This anti-theft feature makes it impossible for a thief to
use a stolen phone after it was factory reset. However, this feature is only available
for a small number of devices, which are capable of running Android version 5.1 or
greater. More than 45% of the Android phones use a lower Android version [32].
Moreover, this mechanism gives no profit to the thief, but the device owner still

losses the device and/or his personal data.

To protect against (un)intentional application leaks on Android, various infor-
mation flow control (IFC) analyses [5, 43,50, 84, 53| [7] have been developed. These
approaches analyze the (potential) flow of information in apps and report a warning
if a flow from a sensitive data source to an untrusted /public data sink (like sending
sensitive information to the internet) is determined to be possible at runtime. Infor-
mation flow is not restricted to a single component, but occurs frequently between
components of the same [53, 36] and even different apps [84]. Our study using the
top 90 apps from the Google play store revealed more than 10,000 inter-component
calls. Scrutinizing the flows between components therefore becomes imperative.
While state-of-the-art information flow analyses handle the information flow well
inside one app, they suffer from several shortcomings with respect to precision,

soundness, and scalability in case of inter-app communication.

Further, in our study we discover that the Android permission system can be
circumvented in many cases in the form of denial-of-service, identity theft, and
privilege escalation attacks. By exploiting vulnerable but benign applications that
are insecurely using PendingIntents, a malicious application without any permissions
can perform many critical operations, such as sending text messages (SMS) to a pre-
mium number. PendingIntents are a widespread Android callback mechanism and
reference token. While the concept of Pendinglntents is flexible and powerful, in-
secure usage can lead to severe vulnerabilities. Yu et al. [83] report a PendingIntent
vulnerability in Android’s official Settings app, which made a privilege escalation
attack up to SYSTEM privileges possible for every installed application. Thus, given
the severe security implications, the official Android documentation on PendingIn-
tents [27] now warns against insecure usage. However, to the best of our knowledge,

to-date no analysis tool detects the described PendingIntent vulnerabilities. Thus,
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an automated analysis tool is envisioned that scales to a large number of applica-

tions.

Our Contributions:

Our work on enhancing users’ privacy on Android comprises of the following pub-
lications [39, 182} 38]], each of which contribute to the development of a secure An-

droid operating system as presented in this thesis:

ThiefTrap. [39] To answer the RQ1, we propose ThiefTrap, an anti-theft frame-
work that uses the Android account feature as a security measure to protect against
device thieves. We are the first to use this feature in that we set up a honeypot ac-
count simulating the device owner’s account. In this mechanism the device owner
has the option to configure an anti-theft honeypot account, which resembles the
owner’s regular account except for some modifications. A person that is not the
device owner can never distinguish interacting with the anti-theft account or the
real account. The anti-theft account hides the personal data of the device owner
and performs hidden anti-theft functionality while the thief uses the device. One
important feature of this framework is that when the thief performs a factory reset,
our approach only gives the illusion that a factory reset is being done, while in re-
ality all of the owner’s data is preserved. After a fake factory reset the device hides
the owner’s account completely but still executes the anti-theft functionality. The
thief will then start using the smartphone as a new device, unaware of anti-theft
functionality executing in the background. It is likely that after the fake factory
reset a thief will establish an internet connection by inserting a SIM card or estab-
lishing a WIFI connection. At this point of time the hidden anti-theft functionality
can for example send identifying information of the thief to the device owner or
start listening for remote commands from the device owner. So the device owner
likely will be able to recover the device and the personal data. The key benefit of
this approach is that it improves chances of identifying the thief and regaining the

stolen phone as well as the personal data.

We evaluated our approach in the form of an empirical user study. Our study
with 35 participants, showed that in all cases our approach prevented loss of owner’s
personal data and performed the required anti-theft functionality. In the very vast

majority of cases the potential thief was completely oblivious to our approach.
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To answer the RQ2, we provide the following frameworks:

ITFA. [82] ITFA is a novel information-flow analysis for IAC (and ICC) based on an
intent-flow pre-analysis that evades combinatorial explosion of analyzing all poten-
tial communication partners, while precisely matching type and key information of
intent data. Our approach can predict which combinations of apps communicate
by separating information flow analysis within app components and matching of
communication partners. In a first step we create a database of summary informa-
tion about senders of intents, their characteristics including types and keys, and
outbound intent data, as well as apps registered to receive certain implicit intents.
This information can then be matched in a subsequent step to identify potential
communication partners. Further we propose a novel matching algorithm, based
on a baseline IFC analysis providing potential intra-component flows (including
a program slices of the receiver’s key value) for all potential intent receivers. We
leverage senders’ outbound intent data as input to the information flows identified
in respective receivers, which eliminates the need for inlining or merging apps and
thus combinatorial explosion, as only summaries of actual communication partners
are subsumed. In case multiple apps are involved in intent communication our ap-
proach performs a light-weight fixed point iteration through the DB information.
Note that our tool is not a stand-alone IFC analysis tool. Rather, IIFA leverages
flows and slices generated by other IFC analyzers. As these tools are already heav-
ily engineered for the intra-app case, we concentrated on the peculiarities of intent

communication and evasion of inlining and combinatorial explosion.

As a noteworthy novelty, our approach is modular and thus compositional with
respect to app installation. Whenever a new (version of an) app is available for
analysis, the database is updated (in case of new version) or extended (new app) to
include the intents broadcast or received by this app. Only the new app has to be
(re-)analyzed, as well as combinations with flows identified in potential receivers.
We compute precise communication paths between components, handling complex
control flows such as in callback methods (see section[4.4.2). As intent targets are
specified via a string parameter, our approach can resolve common string manip-
ulations, which improves our precision significantly for regular (non-obfuscated)
apps. As a minor contribution we took great effort to handle the full spectrum of
intent communication, supporting explicit and implicit intents as well as dynam-

ically created intent receivers. All previous approaches miss at least one of these



1. Introduction 7

features, leading to unsoundness and imprecision. Our analysis is fully automated
and does not require the source code of the app under analysis. We aim to answer

the following research questions:

* Does our pre-analysis approach negatively impact the precision or soundness of the

results with respect to state-of-the-art analyses?
* Does our approach scale to a realistic corpus of real-world apps?

* How do common real-world apps communicate through IAC?

We evaluated IIFA on DroidBench [18], the IccTA extension on DroidBench, ICC
Bench, our own benchmarks evaluating key and type matching of intent extra data,
and a large set of apps from the Google Playstore. We compared our results with
multiple related analysis tools. Our tool (combined with an external baseline intra-
component IFC analysis) achieves perfect precision and soundness on all bench-
mark sets, being more than on par with related IFC tools that consider intent com-
munication. Additionally, we demonstrate that IIFA can improve the IAC precision
of other base IFC analyses with experiments, and assess the scalability of IIFA, ap-
plying it to the 90 most downloaded Playstore apps. Our experiments demonstrate
that due to its compositionality IIFA’s execution time scales well even to a large cor-

pus of real-world apps.

PIAnalyzer. [38] PIAnalyzer is a novel approach and a tool to detect Pending-
Intent related vulnerabilities in Android applications. In multiple analysis steps,
PIAnalyzer computes the relevant information of the potentially vulnerable code
based a program slicing [85]. PIAnalyzer is fully automated and does not require
the source code of the application under inspection. PIAnalyzer assists human an-
alysts by computing and presenting vulnerability details in easily understandable
log files. We evaluated PIAnalyzer on 1000 randomly selected applications from the
Google Play Store. We discover 435 applications that wrap at least one implicit base
intent with a PendingIntent object, out of which 1358 insecure usages of PendingIn-
tents arise. These include 70 PendingIntent vulnerabilities leading up to the execu-
tion of critical operations from unprivileged applications. We manually investigate
multiple findings and inspect reports on examples known to be vulnerable. Our

investigation show that PIAnalyzer is highly precise and sound.






Chapter 2

Background

2.1 Android Framework

Android is the world’s most popular mobile operating system. Figure 2.1/ depicts

the internal structure of Android OS.

The Android framework can be best described in the form of different layers. The
lowest layer, a customized Linux Kernel, is used for drivers and hardware support.
The subsequent hardware abstraction layer (HAL) provides a standard interface for
exposing the hardware capabilities to the higher-level Android frameworks. HAL

implementations are built into shared library modules (.so files).

Android applications are compiled to a specific bytecode format (DEX) designed
specially for Android. The Android runtime (ART) provides a Dalvik virtual ma-
chine, which is similar to the standard Java virtual machine, but designed and op-

timized for Android.

The Android framework layer provides many higher-level services in the form of
an API to the Application layer. These APIs act as the building blocks to create An-
droid applications. Application developers utilize these APIs in their applications.

Most of our changes are implemented in this layer.

The topmost layer, the application layer, provides different applications to be

used by end users, such as alarms, browser, calculator etc. Google provides a cen-
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% ALARM » BROWSER * CALCULATOR *
CALENDAR * CAMERA * CLOCK + CONTACTS +
DIALER * EMAIL « HOME = IM « MEDIA PLAYER
* PHOTO ALBUM + SMS/MMS » VOICE DIAL

| CONTENT PROVIDERS + MANAGERS
| (ACTIVITY, LOCATION, PACKAGE,
~ NOTIFICATION, RESOURCE, TELEFHONY,

AUDIO MANAGER - ~ WINDOW) « VIEW SYSTEM

FREETYPE « LIBC +
MEDIA FRAMEWORK «
OPENGL/ES »
SQLITE» S5L+
SURFACE MANAGER »
WEBKIT

CORE LIBRARIES »
ART = DALVIK VM

| AUDIO + BLUETOOTH + CAMERA - DRM
* EXTERNAL STORAGE + GRAPHICS »
INPUT + MEDIA » SENSORS + TV

| DRIVERS (AUDIO, BINDER (IPC),
BLUETOOTH, CAMERA, DISPLAY,
KEYPAD, SHARED MEMORY, USB,
WIFI) » POWER MANAGEMENT

Figure 2.1: Android Architecture [30]

tral store, for developers to publish their applications, called the Google play store.
As of December 2016, the Google play store included over 2.5 million apps.

2.2 Anti-theft Mechanisms

Anti-theft mechanisms are supposed to prevent device theft or mitigate the damage
in case a device gets stolen or is lost. One kind of anti-theft solutions tracks infor-
mation of the device after it was stolen and provides the information to the device
owner. Several anti-theft solutions rely on providing location information and re-
mote administration functionality to the device owner. Some of them also provide
the possibility to recover personal data or remotely wipe the device. At present,
there are two options for Android owners to protect their device against theft. The
tirst option is to use the Android device theft protection feature (available for de-
vices capable of supporting Android version greater than 5.0). The second option

is to use an third party anti-theft application.

* Android built-in anti-theft mechanisms: Starting from Android version 5.1, Google
released a new feature called "Android Device Protection” [86,68]. This anti-
theft feature prevents a thief from using a stolen phone that has been wiped.

However, more than 45% of the Android phones use a lower Android version
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Protect your phone Choose screen lock

Device protection is automatically activated
when you add a Google Account and set a
screen lock. Together with Android Device
Manager, you can locate and erase your
phone, and protect it from reuse if it's lost
or stolen.

Prevent others from using this phone without Pattern

your permission by activating device
protection features.
Learn more

PIN

Password

Even if your phone gets wiped, your Google
Account password will be required before
anyone can use this phone.

SET SCREEN LOCK NOW

GOT IT

SKIP >

Figure 2.2: The Android Device Protection feature [86]

[32]. In addition, this feature will not work without a proper setup. For ex-
ample, the user needs to log into a Google account on the device. Then, if a
device supports this feature, Android Device Protection is enabled as soon as
the user enables a locking mechanism. Figure 2.2 explains the activation of

this feature while enabling a device locking mechanism.

After a factory reset, Android Device Protection requires the user to enter the
Google account credentials on which the device was previously configured.
This renders the device unusable to the thief even after a factory reset was
performed. However, an unlocked bootloader still allows to flash a binary
on the device, thus this feature is not available for devices with an unlocked

bootloader.

o Anti-theft Applications: There is a multitude of third-party anti-theft applica-
tions available in the app stores. These applications provide features like lo-

cating the device, remotely administrating the device etc.

The anti-theft features of these applications heavily rely on a network con-
nection. These applications are mostly not functional if the SIM card was re-
moved from the device. A thief is likely to remove the SIM card from a stolen
device and to turn it off, such that the device loses its network connections.
Later, in order to reconfigure the device as new, a thief is likely to perform a
factory reset, so the anti-theft application is removed from the device, leav-

ing it unprotected. Additionally, the personal data of the device owner is lost
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unrecoverable.

2.3 Android Applications

Android applications are written Kotlin [10], Java and C++. Instead of defining
a main method they may consist of four component types: Activities, Services,
Broadcast Receivers and Content Providers. Activities are user interfaces a user
can interact with. Services run in the background and are intended for computa-
tionally expensive operations. Broadcast receivers are components that register to
receive system or application events. Content providers provide data for an ap-
plication via storage mechanisms. The message passing mechanism on Android is
inter-component communication via so-called intents. Each application in Android
needs to define a manifest file (AndroidManifest.xml). The manifest file provides es-
sential information about the application, e.g., which resources an application may

access. Components and their capabilities are defined in the manifest file.

Android applications are compiled from Java source code to Dalvik bytecode [26]
which is specialized for execution on Android. Finally, the compiled classes are
compressed into an Android Package (APK) together with additional metadata
and resources. APKs are usually published in market places, such as the Google
Playstore. Oberheide and Miller [60] showed that Google’s security analysis for
Android applications can easily be circumvented. Even though Google’s security
mechanisms are constantly improving, there is still a big potential for malicious and

vulnerable software in the Google Playstore.

As mentioned, in the first compilation step Android applications are compiled
from Java source code to Dalvik bytecode. This bytecode is hard to read and an-
alyze for humans. We use Apktool [1] to compile the bytecode into the Smali [23]
format, an intermediate representation of Dalvik bytecode. Smali improves code

readability and eases analysis and modification.

2.3.1 Android Intents

Android provides a dedicated mechanism to communicate between different com-
ponents, called intent. An intent is a message that is sent from one component to

another, for example, to notify another component of an event, trigger an action
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of another component, or transmit information from one component to another.
One should hereby notice the universal usage of intents in Android: Intents can be
sent from the system to applications (and vice versa), from one application to an-
other (inter-app communication), or even from one component to another within

the same app (intra-app-communication) [25]].

Additional information can be associated with an intent, namely an intent action,
a target component, and intent extra data. The intent action specifies the action
that is supposed to be performed by the receiving component. To receive a specific
intent action, the receiving component needs to declare it in the manifest file via an
intent filter (see discussion of Listing 4.2| below). On the receiver side, the sender
of an intent is unknown. The target component specifies a particular receiver for
the intent. Setting intent extra data adds additional information to be used by the

receiving component.

It is important to remark that none of these pieces of information is mandatory.
When the target component is set one calls an intent explicit, otherwise implicit. The
important difference is that explicit intents are only delivered to the defined tar-
get component, while implicit intents can be delivered to every component with a
matching intent filter . If multiple components can receive the intent, the user is
asked to resolve the intent manually, generally displaying a list of potential receiver
apps. Li et al. [53] found that at runtime 40.1% of the intents in Google Playstore
applications are explicit intents. A third category of intents is broadcast intents,
which are broadcast to every registered component for an intent action instead of
only one. Finally, the last category of intents are pending intents. Pending intents
are intended for giving another application the possibility to perform a certain ac-
tion in the context of the sending application. The usage and security implications

of pending intents will be discussed below.

2.3.2 PendinglIntent

A Pendinglntent is a special kind of intent which stores a base intent that is to be
executed at some later point in time by another component/application, but with
the original app’s identity and permissions. The point is that the original app is not
required to be in memory or active at that point of time, as the receiver will exe-

cute it as if executed by the original application. Thus PendingIntent is applicable
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1 //Component A: Create the base Intent with a target component

> Intent baseIntent = new Intent ("TARGET_COMPONENT");

3 //Create a PendingIntent object wrapping the base Intent

4+ PendingIntent pendingIntent = PendingIntent.getActivity(this, 1,
baseIntent, PendingIntent.FLAG_UPDATE_CURRENT) ;

5 //Component B (may be in another application or within a system
manager) :

¢ //Execute the PendingIntent (internally launches the base intent)

7 try {

8 pendingIntent.send() ;

9 } catch (PendingIntent.CanceledException e) {}

Listing 2.1: A simple PendingIntent Usage

in cases where normal intents are not. “A PendingIntent itself is simply a reference
to a token maintained by the system describing the original data used to retrieve
it. This means that even if its owning application’s process is killed, the Pending-
Intent itself will remain usable from other processes that have been given it” [27]. A
possible usage scenario for PendingIntent is a notification. If an application wishes
to get notified by the system at a later point of time, it can create a PendingIntent
and pass this PendingIntent to the Notification Manager. The Notification Manager
will trigger this PendingIntent in the future, and so a predefined component of the

application will be notified and gets executed.

Programmatically, the usage of a PendingIntent is a three step process (Listing[2.1).
First, the so called base intent is created. The base intent is an ordinary intent which
defines the action to be performed on the execution of the PendingIntent. The
PendingIntent object wraps the base intent using the factory methods getActivity(),
getActivities(), getBroadcast() or getService(). These factory methods define the na-
ture of the base intent, e.g., PendingIntent.getBroadcast() will launch the base intent
as a broadcast intent. The PendingIntent object returned by these methods can be
passed to another application or system component, e.g., it can be embedded in an-
other intent object (the wrapping intent) as extra data to make it available to other
applications. It is also common to pass a PendingIntent object to a system compo-

nent, e.g., the AlarmManager, for callback purposes.

Security Implications: Whenever a PendingIntent is triggered, the associated
base intent is executed in the context (with the same privileges and name) of the
application that created it. However, the three main pieces of data of the base intent

may be changed even after the PendingIntent has been handed to another compo-
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nent, which may alter the semantics of the base intent that is to be executed with
the original app’s identity and permissions. While the Target Component or Ac-
tion of the base Intent cannot be overridden by an attacker if already defined by the
sender, an undefined Action or Target Component may be defined after handing it
to the receiver. Finally, extra data, which is effectively a key-value store, can always
be added after the fact. The implications include that an implicit intent (with no
target component defined) can be altered by the receiving app to target any compo-
nent it desires (and which the original app’s permission support), including system

features like wiping the phone.

As a consequence, the Android documentation of PendingIntent [27] explicitly
warns about potential vulnerabilities caused by misusage: "By giving a Pending-
Intent to another application, you are granting it the right to perform the operation
you have specified as if the other application was yourself (with the same permis-
sions and identity) (but just for a predefined piece of code). As such, you should
be careful about how you build the PendingIntent: almost always, for example, the
base Intent you supply should have the component name explicitly set to one of
your own components, to ensure it is ultimately sent there and nowhere else." In
fact, if a malicious application can retrieve a PendingIntent from another applica-
tion with an implicit base intent, it may perform a restricted form of arbitrary code
execution in the context of the application that created the PendingIntent object: As
many (but not all) permission-clad functionalities are accessible via intents, the at-

tacker can reroute the base intent to such functions.
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Chapter 3

ThiefTrap: An Anti-Theft Framework
for Android

3.1 Overview

Smartphones play a vital role in everyone’s life. Their contribution is significant
in every day to day activity. Nowadays, smartphones are used for various activi-
ties such as capturing pictures, browsing the internet, and using online banking.
However, these great advantages come at a price. If the device gets in the wrong
hands, the device owner does not only lose the device but also a great amount of
personal data. A thief getting hold of personal data and trying to exploit it may
result in fraud or blackmailing. It is of utmost importance to provide some mech-
anism to protect the theft of smartphone devices and the personal data on them.

These device protection mechanisms are called anti-theft mechanisms.

At present, the smartphone market ranges from around 50 USD to 1000 USD.
Loss or theft of a phone does not only result in financial deprivation but also of the
personal data which is stored on the device. According to a study [67], the number
of stolen smartphones rose to 3.1 million in 2013. Another study [45] reveals that
victims are willing to pay 500 to 1000 USD to regain their personal data including

photos and videos.

The Android market share is continuously increasing [44] and it dominates the
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smartphone market with a share of 86.8%, by the end of Q3 2016. Taking this into
the consideration, we targeted the Android platform for the implementation of our

approach. At present, there are two possible anti-theft mechanisms:

1. Anti-theft applications: Most of the anti-theft applications provide the func-
tionality to lock the phone, erase it or triggering an alarm from remote. Un-
fortunately, anti-theft applications do not work if they do not have an active

network connection e.g., if the SIM card was removed from the device.

2. Google Device Protection: Starting from Android version 5.1, Google released a
new feature called “Device Protection” [68]. This anti-theft feature makes it
impossible for a thief to use a stolen phone after it was factory reset. However,
this feature is only available for a small number of devices, which are capable
of running Android version 5.1 or greater. More than 45% of the Android

phones use a lower Android version [32].

In the majority of these cases, device owners permanently lose their smartphone
together with their personal data, which is even worse. As a remedy, we propose
a mechanism where a device owner has the option to configure an anti-theft hon-
eypot account, which resembles the owner’s regular account except for some mod-
ifications. A person that is not the device owner can never distinguish interacting
with the anti-theft account or the real account. The anti-theft account hides the per-
sonal data of the device owner and performs hidden anti-theft functionality while
the thief uses the device. One important feature of this framework is that when the
thief performs a factory reset, our approach only gives the illusion that a factory
reset is being done, while in reality all of the owner’s data is preserved. After a
fake factory reset the device hides the owner’s account completely but still executes
the anti-theft functionality. The thief will then start using the smartphone as a new
device, unaware of anti-theft functionality executing in the background. It is likely
that after the fake factory reset a thief will establish an internet connection by insert-
ing a SIM card or establishing a WIFI connection. At this point of time the hidden
anti-theft functionality can for example send identifying information of the thief to
the device owner or start listening for remote commands from the device owner.
So the device owner likely will be able to recover the device and the personal data.
The key benefit of this approach is that it improves chances of identifying the thief

and regaining the stolen phone as well as the personal data.



3. ThiefTrap: An Anti-Theft Framework for Android 21

3.2 Owur Contributions

We propose ThiefTrap, an anti-theft framework that uses the Android account fea-
ture as a security measure to protect against device thieves. We are the first to use
this feature in that we set up a honeypot account simulating the device owner’s

account. Technically, we provide the following contributions:

1. ThiefIrap. We propose ThiefTrap, a novel concept, using a honeypot account
for the purpose of theft protection. This concept is the first anti-theft solution
that at the same time protects the confidentiality of the owner’s user data,
prevents loss of this data and provides the full functionality of every anti-
theft solution. An important benefit of the proposed approach compared to
existing anti-theft solutions is that a device instrumented with our approach
is indistinguishable from an ordinary device. Our approach ensures that the

device and the personal data on it can be regained with high probability.

2. Implementation. We implemented our concept in the latest version of Android
(7.1_r1 Nougat) of the Android Open Source Project.

3. Evaluation. We evaluated our approach in the form of an empirical user study:.
Our study with 35 participants, showed that in all cases our approach pre-
vented loss of owner’s personal data and performed the required anti-theft
functionality. In the very vast majority of cases the potential thief was com-

pletely oblivious to our approach.

3.3 Methodology

When a device is stolen there are two possibilities depending on whether the device
is protected by a locking mechanism or not. In case the device is not protected by a
locking mechanism, a thief immediately has unlimited access to the device owner’s
data and may result in abuse of the user data on the device (e.g. credentials) to
inflict further harm to the device owner. If the device is locked, it is of no use to the
thief as long as the locking mechanism is in place. For this reason it is likely that
the thief will factory reset the device, in which case all user data on the device is
ultimately lost. Modern smartphones store a lot of valuable private data. Addition-

ally, installed anti-theft applications will be removed from the device so chances are
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minimal that the device can be retrieved by the device owner. Both of these scenar-
ios are unsatisfying. Therefore, there exists a need for a solution that protects the
confidentiality of the user data, while it prevents the device from being factory reset
illegitimately. In this work we propose the first approach that can protect the con-
tidentiality of the device owner’s user data, while preventing a thief from factory

resetting the device and thus removing installed anti-theft applications.

We propose the concept of a honeypot account for theft protection. We leverage
the Android guest account feature to implement the honeypot account. Android’s
multi-account feature was introduced in Android version 4.2. According to statis-
tics provided by Google [33], this feature is supported by 95.8% of devices. The idea
of this concept is that it pretends to be the account of the device owner, while it ac-
tually is an isolated honeypot account and prevents any access to the user data of
the device owner. A thief logging into the device using the home button or power
on button, is logged into the honeypot account, which pretends to be the device
owner’s account. Therefore the honeypot account tricks a thief into believing that
he/she is interacting with an unprotected device in an ordinary way, while actually
interacting with the honeypot account. The device owner can log into the real ac-
count using a hidden mechanism e.g., using fingerprint lock. This mechanism can

be configured by the device owner.

Using the proposed concept of a honeypot account, the privacy of the user data
is protected. At the same time, in our approach a factory reset initiated from the
honeypot account is simulated s.t. the thief believes that the factory reset is being
performed, while in reality the owner’s data is preserved. After this simulated fac-
tory reset, the thief is presented a new account as expected. However, this new
account is a customized honeypot account, which runs an anti-theft mechanism in
the background hidden from the thief. The great strength of this concept becomes
notable when it is combined with existing anti-theft solutions. As the device owner
knows that a honeypot account is installed on the phone, he/she will not log into
the honeypot account of that device. For this reason it is likely that a user interact-
ing with the honeypot account for some time is not authorised to do so. Therefore,
in our approach an anti-theft solution is installed and will be triggered whenever an
user interacts with the honeypot account for some time. This anti-theft solution can
then for example collect data of the thief and send them to the device owner, who

can use them for regaining the device. Figure 5.1|shows the described workflow.
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Figure 3.1: Workflow of a device instrumented by ThiefTrap

We would like to stress that there exist numerous ways to implement the concept
of an anti-theft honeypot-account on various platforms. We choose to implement
our approach on the Android operating system. We use the uncustomized ver-
sion 7.1_r1 from the Android Open Source Project [31]. At the time of this writing,
Android is the most used mobile operating system with over 1.4 billion devices in

usage and version 7.1_r1 is the latest version of Android.

3.3.1 HoneyPot Account, A Simulation of the Owner’s Account

The honeypot account is an Android’s empty guest account with some modifica-
tions. The idea of the honeypot account is to deceive the thief into the belief that
he/she is interacting on the real account. Therefore, it is important to provide the il-
lusion of user data in the honeypot account. In principle any concept for simulating

user data can be used. In our approach, the applications in the honeypot account
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Figure 3.2: AppLock protection

are protected by an application called AppLock[] AppLock is an ordinary Android
application that protects other Android applications by a locking pattern. So, every
access to an app is protected by a locking pattern. The thief is under the illusion
that there is some data on the device, and it is protected. This step is necessary to
convince the thief that the owner’s account is being used with some defense mech-
anism installed. Figure 3.2 shows the AppLock functionality. This simulates the
owner’s account, while it frustrates the thief and tricks him/her into performing a

factory reset.

It should be mentioned that the mechanism of simulating the owner’s user data is
independent of the concept of a honeypot anti-theft account. An alternative would
be to define some plausible but fake data that is presented whenever applications

are opened in the honeypot account.

In the case of a theft, all interactions will inevitably be performed in the honeypot
account. In this case, the device should be modified in a way such that it executes
anti-theft functionality in the background. It is open to the users and deployers of
our techniques to customize the functionality of the anti-theft application. Possible
functionalities for an anti-theft application here would be the collection of infor-
mation of the device and the thief, remote backup functionalities as well as other
remote administration functionalities that can be performed hidden from the thief.

In our scenario, we implemented the anti-theft application as an Android applica-

Thttps:/ /play.google.com/store/apps/details?id=com.domobile.applock
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tion that silently tracks and logs the device location.

3.3.2 Instrumentations

When a device is stolen, chances are high that a factory reset is performed. This
is usually done to make the device more usable, and to destroy any evidence of
theft. A device can either be factory reset via the Android menu or by pressing a
special key combination during the boot procedure. In order to save the owner’s
data and keep track of the thief, the factory reset is faked in both cases. This means
that the device shows a realistic simulation of a factory reset and presents an empty
account after the fake factory reset. The thief is in the illusion that all potential
tracking mechanisms are removed and the device can now be use in an ordinary
manner. Use of the device now inevitably stores the thief’s personal information,

which will be forwarded by the installed anti-theft application to the device owner.

We implemented the simulation of a factory reset for both mechanisms by in-
strumenting the Android source code. For preventing the factory reset from the
Android settings menu, we instrumented the RecoverySystemf|and
RecoverySystemServicef|classes in such a way that when a user triggers the factory
reset, the device shows the default factory reset animation for a realistic amount of
time. We instrument the reboot WipeUserData function in RecoverySystem javaZ file.
In this function, a call to the bootCommand function is made. One of the arguments
of the bootCommand function, specifies the intent of operation e.g., —wipe_data is used
to wipe the data partition. Technically, when a factory reset is triggered from the
honeypot account, we substitute the argument —wipe_data by —wipe_cache. This pre-
vents the removal of the user data. Wiping the cache only removes the temporary
saved files, e.g., temporary browser files. Thus, it does not affect the device owner
in a negative way. Additionally for preventing data loss in case of a factory reset

that was triggered during the boot process, we instrumented the recovery systemf|

During the reset, we programmatically remove the AppLock application. We
instrument the setupOrClearBcb function in the RecoverySystemService.java file to
achieve this. Since the honeypot account does not have any data, an empty account

is presented to the user, that is functionally equal to a factory reset phone.

2 /frameworks/base/ core/java/android / 0s/RecoverySystem java
3 /frameworks /base/services/core /java/com/android /server/RecoverySystemService.java
4 /bootable/recovery/device.cpp, /bootable/recovery /recovery.cpp
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When a thief has logged into the honeypot account and potentially "factory re-
set" the device (which was simulated by our instrumentation), tracking information
should be collected and forwarded to the device owner. In our approach, this is
done by an anti-theft application. It is obvious that a thief should not notice that
an anti-theft application is gathering information or even notice that it is installed.
For this reason, in the honeypot account, the used anti-theft application is hidden
from the list of installed applications in the settings menu as well as in the Android
launcher. In Android there exist places where users can list the installed applica-
tions e.g., the Android Launcher and the settings menu in the category "Apps". We
have instrumented these| such that the installed anti-theft application is hidden
from a potential thief, and there are no possible traces of any installed anti-theft
application anymore. For example, in the ManageApplications.java® file, we instru-
ment the onRebuildComplete function such that the anti-theft application is removed

from the list of displayed applications.

3.4 Evaluation

3.4.1 Evaluation Criteria

For evaluating our approach we determined a set of evaluation criteria that each
determines the quality of one central aspect of our approach. We identified the

following set of evaluation criteria (EvCrit) that together verify our approach:

EvCrit 1 - Simulating Factory Reset The first advantage of our approach is that
it prevents a thief from performing a factory reset on the stolen device. This has
two major benefits: First, it prevents the highly valuable personal user data from
being deleted. Second, it prevents an installed anti-theft application from being
uninstalled. During the evaluation we encouraged the participants to factory reset
the device by every way they know. Each time after a participant finished the study,
we checked whether any of the device owner’s data had been deleted (e.g. by the

factory reset).

EvCrit 2 - Successfully Executing the Anti-theft Application The second advan-

tage of our approach over every other approach is that it enables the device owner

5/ packages/apps/Launcher2/src/com/android/launcher2 /AllAppsList.java, /pack-
ages/apps/Settings/src/com/android/settings/applications/ManageApplications.java
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to execute an anti-theft application while the device is used by the thief. For each
participant we checked whether an installed anti-theft solution was successfully
executed while the participant interacted with the device and even after a "fake"

factory reset.

EvCrit 3 - Indistinguishability from an Uninstrumented Device A central prop-
erty of our approach is that a thief should never notice that he/she is interacting
with an instrumented device. More precise: our device should be indistinguishable
from a regular stock device. For this reason we checked for both of our instrumen-
tations whether any of them was detected by the participants. This implies the

following sub-evaluation criteria:

EvCrit 3a - Hiding the Faking of the Factory Reset As mentioned, during the
study we motivated the participants to perform a factory reset. For every par-
ticipant that performed the factory reset, we checked whether he/she was con-
vinced that the factory reset was actually performed or experienced any irregu-

larities (hints on the faking of factory reset).

EvCrit 3b - Hiding the Anti-theft Application, Running in the Background
While a potential thief interacts with the device it is crucial that there are no traces
of running anti-theft applications. For this reason we motivated the participants to
note every protection mechanism installed on the device. We asked them whether
the device can be used by a thief after a factory reset (implicitly asking for the pres-
ence of an installed anti-theft application) and motivated every participant to note
every observed irregularity. As an evaluation for this subcriteria we inspect the
number of participants that expressed by any means the presence of an installed

anti-theft application.

3.4.2 Evaluation Procedure

We performed the evaluation in the form of an empirical user study. In this user
study we gave each participant a Nexus 6P device that was instrumented by the
implementation of ThiefTrap. As in production, our approach would be combined
with any authentication mechanism for account switching, we could evaluate our
approach on the main account of the device without loss of validity. Addition-
ally, an anti-theft tracking application was installed on the device that continuously

tracked the device location. Together with this smartphone, we handed out a ques-
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tionnaire that asked several questions about the user’s opinion of the phone. The

participants were given 60 minutes time to complete the questionnaire.

In total we evaluated the answers of 35 participants. All of the participants were
either students or university graduates. The majority of the participants were Mas-
ter students, while also some PhD students and Bachelor students participated.
While the participants studied various disciplines, the biggest group studied com-
puter science or some computer science related studies (12 participants). One of
the requirement to participate in the study was to have precise knowledge of the
Android OS. We verified this via oral inquiry. The survey participant’s knowledge

ranged from average to expert.

3.4.3 Results

For each participant, we performed the described evaluation procedure and eval-
uated the answers for the mentioned questions. We inspected the device state as
additional evaluation results. In the following we will discuss each of the men-

tioned evaluation criteria:

EvCrit 1 - Simulating Factory Reset We checked for every participant that per-
formed the factory reset (21 out of 35) that the factory reset did not lead to a loss
of any user data. The participants triggered the factory reset via the settings menu
from within the operating system, as well as during the boot process via a special
key combination. In all inspected cases the deletion of user data had been pre-

vented.

EvCrit 2 - Successfully Executing the Anti-theft Application To evaluate whether
the installed anti-theft application was successfully executed in the background,
we implemented an anti-theft tracking application that tracked the location of the
device. For every participant we checked whether the anti-theft application was
executed and whether it successfully tracked the device during the study. The in-
stalled anti-theft application was successfully executed in every case independent
of the user interaction. This result proves the robustness of our approach. It should
be stressed that our approach is independent from the used anti-theft application.
Instead of the used tracking anti-theft application every possible anti-theft applica-

tion can be silently executed using our approach.

EvCrit 3 - Indistinguishability from an Uninstrumented Device As described,
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we enquired for the both places where participants could potentially detect the in-

strumentation, whether we successfully hide the instrumentation from the users.

EvCrit 3a - Hiding the Faking of the Factory Reset For evaluating whether we
could convince the participants that a factory reset was actually performed (while
in reality it is just faked) we asked the following question to the participants: “Do
you think, it is possible for this person [a malicious person e.g. a thief] to completely reset

the phone, in order to wipe all the owner’s data, e.g. to sell the phone?”

20 of the participants answered that they were able to perform a regular factory
reset and so the device can be used by a thief. 11 participants answered that they
were not able to factory reset the device as they did not know how to do it, but
persons with more technical knowledge can (or could potentially) reset the device.
3 participants answered that it would not be possible to factory reset the device.
When orally asked about their answers after the study, all of the participants an-

swered that they did not know that the possibility of a factory reset exists.

One participant was not convinced of the factory reset. Due to limitations of the
used AppLock application, this participant managed to access the apps before the
factory reset. Thus he detected the inconsistency after the factory reset and was not
convinced of the factory reset. This problem was not caused by our factory reset
instrumentation but, by an implementation flaw of the used locking application.
We would like to stress that the locking application is not part of our scientific con-
tribution, but a tool we used in order to deceive a thief to believe that he/she is
interacting with the real user account of the device owner. This mechanism can
be replaced by every other mechanism or application that fulfills this requirement

(e.g. simply filling the honeypot account with fake information).

EvCrit 3b - Hiding the Anti-theft Application, Running in the Background A
core feature of our approach is to hide the existence of an installed anti-theft solu-
tion. It is necessary that a thief is not aware that an anti-theft application is running
on the device (even after triggering the factory reset). For this reason, we directly
asked in the questionnaire whether the study participants were able to detect any
protection mechanism in the device ("Do you think that there is a protection mechanism
installed to protect the user’s data? Please explain.”) In their responses to this question
the 33 out of 35 asked participants answered that the only protection mechanism
that is used in the device is the locking application. One participant answered that

there is no protection mechanism used. Due to the mentioned limitations of the
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AppLock app, it was possible for one participant to disable the AppLock app, and
enter the protected applications. This participant found these applications empty
and implied that there is a second protection mechanism present. First, it should be
stressed that he did not imply that there is an anti-theft solution running. Second,
the mechanism that simulates the owner’s account is not part of our contribution
and can be substituted by any other mechanism (e.g. another locking application,
operating system instrumentations or simply filling the honeypot account with fake
data).

Lastly, we provided space in the questionnaire to the participants where they
could provide additional comments. We encouraged the participants to note every
unusual observation. None of the participants noted that they observed an anti-
theft application, tracking application or similar application running in the back-

ground.

To summarize the evaluation results, we found every evaluation criteria very sat-
isfactory fulfilled. Evaluation criteria 1 and 2 were fulfilled in every case. For eval-
uation criteria 3a just one participant out of 35 did recognized the fake factory reset.
For evaluation criteria 3b only one out of 35 participants implied that another pro-
tection mechanism is in use while he did not detected the anti-theft application.
Both of these cases were caused by an implementation flaw of the used locking ap-
plication. As mentioned, this locking application is not part of our contribution and

can be substituted by any other protection mechanism.

3.5 Discussion

The proposed concept of an anti-theft honeypot account is novel. It provides a com-
bination of valuable security properties that are not given by any existing approach.
These security properties are the maintenance of user data (preventing user data
from being deleted), the confidentiality of user data (preventing a thief with phys-
ical access to the device from reading out user data) and the accessibility of the
device (enabling any remote access mechanism for the owner while the device is
physically under the control of the thief). While there exist various anti-theft solu-

tions, none of them can fulfill all of these properties.

An important benefit of the proposed approach compared to existing anti-theft

solutions is that a device instrumented with our approach is indistinguishable from an
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ordinary device. A thief can never tell whether he/she has stolen an ordinary de-
vice or a device instrumented with the anti-theft honeypot account. Studies [19]
have shown that 34 % of Android devices are not protected by a locking mecha-
nism, so there is no way for a thief to determine whether our mechanism is used
or not. Also a noticeable proportion of devices are protected by the app locking
mechanism that we use to protect user app data initially. So from the existence of a
locking app, a thief can never imply the existence of an anti-theft honeypot account.
Another aspect that plays a role in this matter is the flexibility of our approach. A
locking app is just one mechanism for faking the honeypot account. An alternative
for future work is the creation of fake user data. This data will then simulate the
user data of the owner, while protecting his privacy. This data can be created either
by the deployers of the anti-theft honeypot account, the users or both of them in

cooperation.

Device theft is a serious problem with a rapidly growing number of reported
cases. Studies [45] reported that in 2013 more than 3 million devices have been
stolen. For this reason Google has taken steps to mitigate damage in case of a de-
vice theft. The two most important measures to mention here are the Android De-
vice Protection mechanism [29] and anti-theft functionalities within the Android
Device Manager [28]. The Android Device Protection mechanism requires that af-
ter a factory reset, a user logs into the device with the credentials of his primary
Google Account. As a thief can not know these credentials, even after a factory re-
set, the stolen phone is of no use. The Android Device Manager can be used to track
a phone and to remotely wipe. Compared with the combined usage of these two
native Android tools, our approach has two advantages: First, it prevents the dele-
tion of user data. Nowadays, a plenitude of valuable user data is stored on modern
smartphones. In the vast majority of cases, the user data on such phones is hard to
recover or even irreplaceable. In contrast to the mentioned Android tools, our ap-
proach can prevent the loss of this data. The second advantage is that any anti-theft
application and functionality can be executed while the device is stolen. In contrast,

the Android Device Manager just supports tracking and wiping functionalities.

Physical access to a device enables a number of novel attacks, so called hardware
based attacks. In the context of Android smartphones prominent examples of these
attacks are that by Cannon and Bradford [12] and the work of Ossmann and Osborn
[63]. Cannon and Bradford used a so called white card, a special SIM card that au-
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thorizes flashing of a custom ROM on a device. Among others, from such a ROM
it is possible to read out user data. Also Ossmann and Osborn proposed a hard-
ware based attack with which it is possible to read out user data. By connecting to
the Micro USB connector via UART with TTL logic they could connect to an inte-
grated debugger, which enabled them to activate the Android Debugging Bridge
functionality and so gain access to the device. Relating to our work it should be
mentioned that in principle such hardware attacks might also be possible on de-
vices with our instrumentations in place. Still, it should be stressed that hardware
attacks like these require expert knowledge of the used hardware technologies and
an existing vulnerability in the smartphone device. It is unlikely that both of these
factors apply in the average case of a stolen device and so the impact of hardware

based attacks on our proposed approach is negligible.

Another factor that should be discussed in the context of hardware attacks is the
confidentiality of user data saved on a SD card in the device. While the AppLocking
mechanism protects the confidentiality of user data on the SD card from access
within the smartphone, the SD card can also be extracted from the device and read
within another device. To protect the confidentiality of user data in this scenario
it is necessary to encrypt the content of the SD card. Such an encryption of the SD
card is orthogonal to our approach and can be implemented as completion to this

approach.
We implemented our changes into the AOSP (Android Open Source Project). Ad-

ditionally, our changes are portable, generic and thus can be easily integrated with

every vendor specific build.

The usability of a device instrumented with our approach may differ from the
normal device in terms of logging into the real account. For devices with a finger-
print scanner, the usability is not affected because the login procedure to the real
account is equal to an ordinary login. Devices without a fingerprint scanner will
require users to enter a pattern in the Honeypot account. This pattern can be con-
tigured by users. It is similar to unlocking a device using a pattern or a PIN. Hence,

the usability impact is negligible.

Lastly, we would like to stress the flexibility of this approach. The concept of
an anti-theft honeypot account can be applied orthogonally to any existing anti-
theft mechanism. The honeypot account is responsible for protecting the user data

while simultaneously any anti-theft mechanism is implemented. The benefit of the
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proposed concept is that in contrast to other approaches where a thief will quickly
factory reset the device, in this approach it is likely that he/she will even establish
an internet connection and so enabling the remote access for the installed anti-theft

solution.
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Chapter 4

ITFA: Modular Inter-app Intent
Information Flow Analysis of

Android Applications

4.1 Overview

To protect sensitive information on Android, various information flow control (IFC)
analyses have been developed. These analyze the (potential) flow of information in
apps and report a warning if a flow from a sensitive data source to an untrust-
ed/public data sink (like sending sensitive information to the internet) is deter-
mined. Information flow is not restricted to a single component, but occurs fre-
quently between components of the same [53}136] and even different apps [84]. Our
study using the top 90 apps from the Google play store revealed more than 10,000
inter-component calls. Scrutinizing the flows between components therefore be-

comes imperative.

Android’s ICC mainly leverages so-called intents. The major challenge in identi-
tying IFC through intents is identifying which information flows from one compo-
nent to another. Leveraging static analysis is non-trivial because the receiver and
the intent data may be unknown at analysis time, being strings that might be com-

posed at runtime.
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Some tools consider intents during information flow analysis [53} 184] 9] 50] but
suffer from multiple shortcomings: These approaches basically inline a synthetic
“main” method that models the lifecycle of the receiving component/app into the
sender of the intent. Inlining several sender and receiver apps into one huge app
to analyze (e.g. 90 apps like in our evaluation study) would require a very precise
analysis in order to not magnify the imprecision described in the last paragraph
(e.g., context-sensitivity to match multiple senders to the same component lifecy-
cle, or even that one sender is only problematic if it has received sensitive intent
data from another app). Unfortunately, inlining several apps into one raises imme-
diate scalability issues as even single app ICC is challenging in terms of scalabil-
ity [53]. Therefore an alternative approach might be to eagerly analyze all pairs of
apps. Note that at least a quadratic number of app combinations would have to be
analyzed in such a scheme to include the effects of IAC to IFC. Realistically, intent
communication can involve more than two apps, further aggravating the combina-
torial explosion of merging-based approaches. Besides, merging itself is impractical
in two dimensions: Merging APKs or other internal data structures does not scale
to realistic apps in our experience, and even if it does, the complexity to analyze
the merged app inflates, but as most combinations of apps do not communicate via
intents the whole effort is mostly futile. Simultaneously the merging process itself

may introduce spurious data flow paths, increasing analysis imprecision.

However, in order to match senders and receivers these approaches merely verify
that the intent action (or similar receiver-identifying data) matches. Our evaluation
shows that none of the ICC-considering approaches actually determines whether
the receiver and the sender use the same type and key in the key-value communica-
tion scheme of extra data transmitted via intents (discussed in detail in section[4.4.T).
Thus, either some or even all receivers in the inlined lifecycle might not be eligible to
read the transmitted data, which can thus result in many spuriously reported data
leaks. A more accurate matching could probably be added to these approaches,
but only if there is merely one sender and one receiver statement in any given pair
of communicating components. In case of multiple sender and/or receiver state-
ments one matching pair might still induce a quadratic number of spurious flows

that would require more involved constraint solver technology to remove.

Finally, related work suffers from requiring access to source code (or even source

code annotations) [43] 42| 8} 161]], lacking support for string analysis [5,53], and lack-
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ing support for certain sink functions [5} 53] 43| 50]. All of these drawbacks lead
to insufficient precision and soundness issues when these analyses are applied to

real-world apps.

4.2 QOur Contributions

In this work we propose a novel information-flow analysis for IAC (and ICC) based
on an intent-flow pre-analysis that evades combinatorial explosion of analyzing
all potential communication partners, while precisely matching type and key in-
formation of intent data. Our approach can predict which combinations of apps
communicate by separating information flow analysis within app components and
matching of communication partners. In a first step we create a database of sum-
mary information about senders of intents, their characteristics including types and
keys, and outbound intent data, as well as apps registered to receive certain implicit
intents. This information can then be matched in a subsequent step to identify po-
tential communication partners. Further we propose a novel matching algorithm,
based on a baseline IFC analysis providing potential intra-component flows (includ-
ing a program slices of the receiver’s key value) for all potential intent receivers. We
leverage senders’ outbound intent data as input to the information flows identified
in respective receivers, which eliminates the need for inlining or merging apps and
thus combinatorial explosion, as only summaries of actual communication partners
are subsumed. In case multiple apps are involved in intent communication our ap-
proach performs a light-weight fixed point iteration through the DB information.
Remember that our tool is not a stand-alone IFC analysis tool. Rather, IIFA lever-
ages flows and slices generated by other IFC analyzers. As these tools are already
heavily engineered for the intra-app case, we concentrated on the peculiarities of

intent communication and evasion of inlining and combinatorial explosion.

As a noteworthy novelty, our approach is modular and thus compositional with
respect to app installation. Whenever a new (version of an) app is available for
analysis, the database is updated (in case of new version) or extended (new app) to
include the intents broadcast or received by this app. Only the new app has to be
(re-)analyzed, as well as combinations with flows identified in potential receivers.
We compute precise communication paths between components, handling complex
control flows such as in callback methods (see section [4.4.2). As intent targets are
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specified via a string parameter, our approach can resolve common string manip-
ulations, which improves our precision significantly for regular (non-obfuscated)
apps. As a minor contribution we took great effort to handle the full spectrum of
intent communication, supporting explicit and implicit intents as well as dynam-
ically created intent receivers. All previous approaches miss at least one of these
teatures, leading to unsoundness and imprecision. Our analysis is fully automated
and does not require the source code of the app under analysis. We aim to answer

the following research questions:

* Does our pre-analysis approach negatively impact the precision or soundness of the

results with respect to state-of-the-art analyses?
* Does our approach scale to a realistic corpus of real-world apps?

* How do common real-world apps communicate through IAC?

We implemented our approach as a tool called IIFA and evaluated it on Droid-
Bench, the IccTA extension of DroidBench, ICC Bench, our own benchmarks eval-
uating key and type matching of intent extra data, and a large set of apps from the
Google Playstore. We compared our results with multiple related analysis tools.
Our tool (combined with an external baseline intra-component IFC analysis) achieves
perfect precision and soundness on all benchmark sets, being more than on par with
related IFC tools that consider intent communication. Additionally, we demon-
strate that IIFA can improve the IAC precision of other base IFC analyses with ex-
periments, and assess the scalability of IIFA, applying it to the 90 most downloaded
Playstore apps. Our experiments demonstrate that due to its compositionality IIFA’s
execution time scales well even to a large corpus of real-world apps. In summary,

we provide the following contributions:

» Compositional DB-backed Analysis. We propose a modular pre-analysis approach
for intent communication, in particular for analyzing inter-app communica-
tion, based on summaries for all app components containing intent senders,
receivers, and the exact intent characteristics including types and keys of data
transmission. To that end, we model all publicly known intent-based commu-

nication schemes precisely.

* Novel Matching Algorithm. We present a novel algorithm which matches intent

senders with intent receivers based on these summaries and even detects flow



4. IIFA: Modular Inter-app Intent Information Flow Analysis of Android
Applications 41

through more than two components via a lightweight fixed-point iteration.
Our approach subsumes transmitted data into the receiver’s intra-component
information flows (provided by a baseline IFC analysis) to report potential
dangerous inter-component and -app information flows. This matching re-
quires no eager pairwise analysis but only investigates potential communica-
tion partners. Thus each app is only analyzed once by IIFA and potentially as

well by an intra-app baseline IFC analysis.

* Evaluation of IIFA. We implemented our analysis (IIFA) and evaluated it on
multiple large-scale datasets. The evaluation shows that our pre-analysis ap-
proach does not negatively impact precision and recall with respect to the
most relevant previous work on benchmarks, including a novel suite assessing
the correct matching of key and type of intent extra data. We demonstrate that
we can effectively evade combinatorial explosion, analyzing ICC/IAC infor-
mation flows of the top 90 real-world apps in approximately 2.2h (excluding
the baseline IFC analysis) and identifying 62 potentially dangerous informa-
tion flows through ICC. Finally we performed a study regarding the use of
ICC/IAC in Android and present our results outlining IAC patterns in realis-

tic applications.
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1 TelephonyManager tel = (TelephonyManager)
getSystemService (TELEPHONY_SERVICE) ;

2 String imei = tel.getDeviceld(); // source

s Intent i = new Intent("CUSTOM_INTENT.ACTION");

4 i.putExtra("data", imei);

5 startActivity(i); // sink

Listing 4.1: App A - Sender: OutFlowActivity

1 <intent-filter>

2> <action android:name="CUSTOM_INTENT.ACTION"/>

3 <category android:name = "android.intent.category.DEFAULT" />
4 </intent-filter>

Listing 4.2: App B - Receiver: AndroidManifest.xml

4.3 A Motivating Example

In this section we will describe an example workflow of intents. We will then dis-
cuss the inefficiency of the current state-of-the-art analysis tools. In Listing[4.1, App
A initiates IAC in the OutFlowActivity class. An implicit intent 7 is created (line
with the intent action “CUSTOM_INTENT.ACTION". The putExtra method (line
associates additional data from the variable imei with the key “data” in this intent.
The device id stored in variable imei (lines [1|and [2)) is sensitive data, as the device
can be uniquely identified by this number. The intent is finally triggered via a start-
Activity call such that it can be received by registered receivers. On the receiver
side the intent extra data can be extracted by the receiver and (ab-)used in any way

permissible to that app.

Listing [4.2| and [4.3| show the code snippets of an example receiver for the above
intent. In the manifest file (Listing the receiver declares its capability to support
intent filter (“CUSTOM_INTENT.ACTION"). Listing4.3|extracts the received intent

1 Intent i = getIntent();

» String imei = i.getStringExtra("data");

s smsManager.sendTextMessage ("1234567890", null, imei, null, null);
// sink

Listing 4.3: App B - Receiver: InFlow Activity
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data corresponding to the key “data" via a getStringExtra method call. This data
flows to a data sink (line[3) where it is being leaked off the device. Since the received
data is a sensitive information with respect to App A, analysis tools should report
this as a potential data leak. Observe that these two apps must be related by an
analysis in order to identify the leak and that the precision for determining intent
data crucially influences the precision to determine related apps and which data is

transmitted.

Current analysis tools for ICC [53] /IAC [84] only match the identifying string
(like the intent action in Listing and ignore the key “data” or the type (in
our case String, see line 2| of the receiver), which must also match for data to be
transmitted. If multiple receivers are present in one component then adding checks
for these conditions is non-trivial as these approaches basically inline the receiver
into the sender, thus the same intent would be used for all receivers even if the key
or type of the getExtra-method differs, resulting in spurious reported information
flows. Simply merging/inlining all apps installed on a device is prohibitively ex-
pensive, and may result in impossible flows created as a result of the merging pro-
cess, thus in practice these approaches may resort to eagerly inlining pairs, triples,
... of communicating apps, leading to combinatorial explosion of analysis targets.
Furthermore, in a realistic scenario apps may be installed on a device at any time.

Thus, whenever a new app (version) arrives, these tools need to join apps again.

To overcome these limitations, our analysis is designed in a modular way: It re-
members summaries of the intent characteristics (including key and type) of each
app in a database and applies this knowledge to (intra-app) information flows de-
termined in receiving apps. Due to the database our analysis can recursively resolve

dependences when more than two apps are involved in intent communication.

4.4 Methodology

The fundamental problem of intent analysis for static analysis is the dynamic nature
of intents. Static IFC analyses generally leverage dataflow analyses like backwards
slicing to determine whether sensitive information (e.g., a device id) may flow at a
sink (e.g., internet). However, if a slice contains statements where data is extracted
from a received intent, it cannot determine the data’s sensitivity without detailed

knowledge on possible senders and their semantics.
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Figure 4.1: Analysis Framework

Figure 4.1| presents the major building blocks of our analysis framework. In the
analysis phase a set of APKs under inspection (e.g., all apps installed on a device) is
processed and the extracted information stored into a SQL database named IntentDB.
We collect two sets of information, app-specific information, i.e., package and class
name, and registered intent filters to receive implicit intents, as well as intent sender-
specific information, i.e., information required to identify potential receiver(s), key,

type, and the actual data being sent.

The database is fed into the reporting phase together with the receiving app’s infor-
mation flows from a baseline (intra-component) IFC analyzer. If a flow originates
at a getXXXExtra method[| we consider the respective sender’s outbound data as
the actual data source to that flow. Remember that data can only successfully be
transmitted via put/getExtra methods if the key parameters of both methods match
and the signatures of the put and get methods correspond (e.g. the value’s type of
the put method equals the return type of the get method). Thus we determine all
potential senders of this intent based on matching the target component or intent
action. For each of these senders we extract the key, value, and put signature (see sec-
tion from database. If the key and the put signature match this getXXXExtra
method invocationf, we determine the sensitivity of the transmitted value based on
a categorization of sources. If the value is considered sensitive, we report a potential

information flow violation.

As an example, consider Listings .1 and {.3| again: The sendTextMessage (line
receives data from the getStringExtra method (line[2). Therefore we scan our database
for potential intent senders of App B’s received intent (line[I): App A sends an im-
plicit intent with matching intent action ("CUSTOM_INTENT.ACTION", line [3| of

loet XX XExtra methods retrieve type-specific data from a received intent that has been added
through the corresponding putXXXExtra method.
2The getXXXExtra's key is determined via backward slicing
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Table 4.1: Example database for a class that can receive as well as send intents

Target
Package Class , Com-| Intent Put Sig-
5 Intent Filter . Key | Value &
Name | Name po- Action nature
nent
Firebase UtExtra
org.telegram. | In- com.google.firebase.IN- 1 com.google.android.| ., leto” String url = PSt'
messenger stanceld STANCE_ID_EVENT nu gem.intent. SEND googie-to "google.com/iid" (Strlilngg),
Service

Listing 4.1). The signature of the putExtra method (line ) has a String parameter,
which matches the return type of the getStringExtra method of the receiver, and the
keys of the sender and receiver (“data”) match. Thus, the source of the transmit-
ted value (i.e. the IMEI of the device) is considered the information source of the
flow to the SMS transmission in App B. As the IMEI is sensitive information, an

information flow violation is reported.

Structure of IntentDB: Table[d.T|shows an example entry (from the Telegram mes-
senger app) of the database. As apps consist of several classes, this table has po-
tentially multiple entries for the same app. All entries belonging to one app can be
identified by the unique package name. Similarly, each class can send out several
intents and hence for each intent sent we will list a separate entry (package name &
class name are the same). The column “Put Signature" is considered for mapping
the put method to the corresponding getXXXExtra method at the time of intent res-
olution. Depending on the non-empty fields, an entry in the database represents
an intent receiver and/or sender. If the Intent Filter field is set, the app may receive
intents. If either the Target Component or the Intent Action field is set, it acts as an

intent sender.

4.4.1 Analysis Phase

Figure 4.2 depicts the workflow of the analysis phase. In the sequel, we describe

the details of each component:

Apktool

A set of APKSs is processed by Apktool [1]], which extracts and decodes the resources
of an APK (e.g., manifest.xml). It decodes the Dalvik bytecode file (classes.dex) of the
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Figure 4.2: Analysis Phase, FPI stands for fixed point iteration

APK to more comprehensible Smali class files [23].

Manifest Parser

Parsing the manifest file extracts various app details (first set of information), i.e.,
package and class name, as well as supported intent filters. This information is mapped
to the first three columns of the table and identifies potential receivers of an intent.
Even though intent receivers are typically registered in the manifest file, the register-
Receiver method can register an intent receiver at runtime. In our experiment with
90 apps, we find 433 dynamically registered receivers (=~ 5% of all intent receivers).

We scan class files for dynamically registered receivers and store them in IntentDB.

Dynamic Intent Data Extraction

In this module, we scan each class file for methods that initiate an intent (sender
methods), e.g., startActivity. The Android documentation [25] defines 25 such meth-
ods including 12 variants of startActivity, 11 variants of broadcast, startService and

bindService.

Identifying Target Component/Intent Action For every sender method we com-
pute its backward slice and trace until we find the corresponding intent initializa-
tion(s). The goal is to identify its target component (for an explicit intent) or intent
action (implicit intent). The intent type depends on the intent’s constructor but can
be altered using the explicit-transformation methods makeMainActivity, makeRestar-
tActivityTask, setClass, setClassName, setComponent, setPackage or setSelector, which
can also change the target component after the fact. We analyze these cases to ex-
tract the actual target: In the case of an explicit intent, we identify the name of the

target component. For an implicit intent, we extract the intent action. Any app
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defining this intent action as supported intent filter (dynamically or in its manifest
file) is a potential receiver of this intent. Unfortunately, one cannot always statically
determine intent details (e.g., intent action) as they may be influenced by runtime
information, which is a general limitation of static analysis. We conservatively ap-
proximate such situations, i.e., may include several potential intent actions into the
database. Future work may rule out non-matching substrings of potential target

name/action strings similar to reflection analyis [37].

Identifying Key-Value Pairs There are several methods to associate extra data
with an intent, generally leveraging key-value pair schemes. Senders register a value
specifying the key, e.g., Intent.putExtra(“Test-Key”, “Test-Value”) will register the string
“Test-Value” as data for the key “Test-Key”, which can be extracted by a correspond-
ing receiver using the Intent.getExtra(“Test-Key”) method. Trying to receive a key
with a non-matching data type results in no value being transmitted. Therefore
precise analysis mandates a correct matching of get and put methods. Unlike re-
lated work [53,184] we handle the respective put/get method pairs for all basic data
types and store the precise signature of any put method in IntentDB to consider
matching types and keys when resolving values received by getXXXExtra methods

at intent receivers.

Fixed Point Iteration

Intent communication may involve more than two apps/components. In our exper-
iments with 90 apps, we find 54 cases where more than two components were in-
volved in a transitive information flow. In such a case, IntentDB contains a get XXX-
Extra method in the column Value. For example, in Listings app A is sending
the device id (secret data) to app B. App B forwards this data to app C, and finally
app C leaks it via an SMS. The first 3 rows of Table 4.2 show the table IntentDB
prior to fixed point iteration. To resolve transitive flows through multiple compo-
nents we iterate in a fixed point iteration through the entries of IntentDB for which
Value contains a getXXXExtra method. The com.appB entry in Table |4.2]is such an
example where data from a received intent is being sent out via another intent. In
order to identify the received data, we determine all apps from which this com-
ponent could receive the intent on which getXXXExtra is invoked. In our exam-

ple com.appB receives from com.appA. Finally we match the corresponding key-value
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1 // APP A (OutFlowActivity)

> TelephonyManager tel = (TelephonyManager)
getSystemService (TELEPHONY_SERVICE) ;

5 String imei = tel.getDeviceId(); // source

4 Intent i = new Intent("action_test");

5 1i.putExtra("data", imei);

¢ startActivity(i); // sink

s // APP B (Intermediate Activity) -- Capable of receiving
"action_test"

o Intent i = getIntent();

10 String imei = i.getStringExtra("data");

11 Intent newIntent = new Intent("action_ test2");

12 newIntent.putExtra("secret", imei);

13 startActivity(newIntent) ;

14

15 //APP C (InFlow Activity) -- Capable of receiving "action_test2"

16 Intent i = getIntent();

17 String imei = i.getStringExtra("secret");

18 smsManager .sendTextMessage("1234567890", null, imei, null, null);
// sink

Listing 4.4: Sender: OutFlowActivity
Table 4.2: IntentDB for Listing Fixed point iteration adds the last row

Pckg. Name Class Name Intent Filter | Target Component | Intent Action | Key Value Put Signature
com.appA | OutFlow Activity null null action_test | "data" Device ID putExtra (String, String)
com.appB | Interm. Activity | action_test null action_test2 | "secret" | getStringExtra("data") | putExtra (String, String)
com.appC | InFlow Activity | action_test2 null null null null null
com.appB Interm. Activity | action_test null action_test2 | "secret" Device ID putExtra (String, String)

pair through their get-put signatures and create a new entry, replacing the original
source (getXXXExtra method) by the transmitted value. The created entry for our
example is shown in gray in Table To accommodate for modular analysis and
thus potential new compatible senders, we retain the old database entry (row 2).
The reporting phase described in the next section now matches the added row with
the intent received in App C to reveal the transitive information flow of sensitive
data to the SMS sink.

4.4.2 Reporting Phase

In the reporting phase, we process information flows obtained by a baseline IFC
analyzer together with the IntentDB from the analysis phase. For ICC/IAC we

are only interested in flows with sources that are potential intent receivers, i.e., a
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1 public class OutFlowActivity extends Activity{
> protected void onCreate(Bundle savedInstanceState) { // ...
3 TelephonyManager tel = (TelephonyManager)
getSystemService (TELEPHONY_SERVICE) ;
String imei = tel.getDeviceId(); // source
Intent i = new Intent(this, InFlowActivity.class);
i.putExtra("data", imei);
startActivityForResult(i, 1);

~ [} ul =

8 }

9 protected void onActivityResult(int requCd, int resCd, Intent
data) {

10 String imei = data.getStringExtra("data");

1 smsManager . sendTextMessage ("1234567890", null, imei, null,

null); // sink

Listing 4.5: Sender: OutFlowActivity

getXXXExtra method (together with its key and signature). For every getXXXExtra
method in a reported information flow, we extract all potential senders to this re-
ceiver from IntentDB, i.e., apps that use an intent with a matching target component
or a matching intent action. Finally, we match get-put method pairs and keys to de-
termine senders that actually send data to this receiver and report it as a (potential)

leak if the transmitted data stems from a sensitive source’l

For example, data flows from the getStringExtra method of the intent received on
line (16| to the data sink sendTextMessage in App C. Our analysis thus matches any
sender of the intent action action_test2 and finds two rows in IntentDB (Table [4.2).
We check whether any of those uses the key secret, which both of them do. Then
we match the signature of getStringExtra with the sender’s Put Signature, where
again both match. Finally, we verify if one of the potentially transmitted values
(Device ID, getStringExtra(”data”)) is sensitive, thus reporting the former as an illicit

information flow.

Handling of startActivityForResult and bindService

startActivityForResult is a special case of intent communication illustrated via a code
snippet of an activity in Listing [4.5| (adapted from [18]). OutFlowActivity (line

creates an explicit intent with InFlowActivity as the target component. This intent is

3We utilize the categorization of sources and sinks from R-Droid [7]
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1 public class InFlowActivity extends Activity {
> protected void onCreate(Bundle savedInstanceState) { // ...
3 Intent i = getIntent();
4 setResult(1l, i);
5 finish();
6 1}

Listing 4.6: Receiver: InFlowActivity

provided extra data imei (line[)), containing the actual IMEI of the device (lines[3} ).
startActivityForResult triggers this intent (line [7) with a second argument that is a
request code identifying this request. Listing 4.6 contains the code snippet for the
activity InFlowActivity, receiving this intent (line ). The sefResult method (line
returns the received intent with the same request code. Upon successful creation of
InFlowActivity control returns to the onActivityResult (line 9] of listing method
of OutFlowActivity. The third parameter (data) of this method corresponds to the
intent returned via the setResult method of InFlowActivity. This intent, originally
sent by OutFlowActivity, still contains the secret IMEI of the device. The IMEI is
extracted (line[10) and leaked (line[11)) via a text message. Thus data flows from the

sender to the receiver and back, as modeled in our information flow analysis.

Similarly, after a Service has been successfully bound via bindService, control will
return to an onServiceConnected method (of an object designated as the second pa-
rameter of the original bindService call.) This method is being passed an argument
from the service intent receiver, and thus data can be returned to the intent sender.
In order to identify such flows soundly and precisely our analysis models the data

tlow according to these patterns at both sides of the communication.

4.4.3 Domain Knowledge for Java String Class and List Analysis

As the ability to precisely determine intent senders and receivers depends signif-
icantly on the ability to identify the String values of target components or intent
actions, we enrich IIFA with domain knowledge on the Java String class. IIFA un-
derstands the Smali signature of String methods and applies partial evaluation in
order to recover strings created by concatenation, substring, and other String ma-
nipulation methods. Concretely, it extracts parameters, applies the respective func-

tionality and returns the resulting string. More contrived examples like converting
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a string to an array of chars (to be manipulated) are beyond the scope of our tool
as we are currently not targeting obfuscated code. Due to our modular design we
could also add more expensive analyses like SMT-solvers that handle more cases.
However, there are always undecidable cases like encrypted strings or dynamic in-

put.

Similarly, we encode domain knowledge on the API of LinkedList to be able to
extract list entries from a given index they were stored in. Again, a more precise
model of Lists improves analysis precision but in general this problem is undecid-
able. Other collections could be modeled analogously, which we are planning as

future work.

4.5 Evaluation
We empirically evaluated our tool, IIFA, in two steps:

o Comparative evaluation on benchmark sets. We applied IIFA to four standard
evaluation sets for intent communication comprising 48 test cases with ground
truth results for each test. We compared the precision and soundness of IIFA

to six state of the art tools that support intent analysis.

* Evaluation on real-world apps from the Google Playstore. We applied IIFA to the
90 most popular apps from the Google Playstore in order to evaluate its scal-

ability on real-world apps.

All experiments were performed on a MacBook Pro with a 2,9 GHz Intel Core
i7 processor and 16 GB DDR3 RAM and MacOS High Sierra 10.13.1 installed. We

used a version 1.8 JVM with 4 GB maximum heap size.

4.5.1 Precision and Soundness of IIFA

Benchmark evaluation datasets

Remember that IIFA is not a stand-alone tool. Therefore its intention cannot be to
replace any of the related works that analyze intra-component information flows.

Rather we are propagating the idea that ICC/IAC analysis needs to be done in a
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pre-analysis, and our experiments in this section are to show that this design deci-
sion does not negatively impact the precision or soundness of the analysis results.
In order to evaluate the precision and soundness we use four separate benchmark
sets and compare the results of IIFA (combined with a basic intra-component in-
formation flow analysis) to related approaches that aim at analyzing both intra-
component and ICC/IAC information flows simultaneously. As IIFA is not a stand-
alone IFC tool but a pre-analysis modeling the information flows through intents,
we restrict our experiments to the subset of the benchmarks that evaluate precision

and soundness of intent-based communication:

The intent-related cases of the original DroidBench test suite [18] (14 test cases)

The extension proposed by IccTA [53] (18 test cases)

ICC-Bench, proposed by Wei et al. [84] (9 test cases)

Our extensionf!, which evaluates correct matching of types and keys for data

exchanged via intent extra data (7 test cases)

Note that the mentioned benchmark sets include several advanced usage scenar-
ios of intents. An example of these scenarios is the usage of callback methods that
are triggered after an event has been delivered to its target, which requires informa-
tion tracking at both sender and receiver sides (see Section[4.4.2). Another challenge
is string manipulation, e.g., of keys for intent extra data. Finally one case passes an
intent with sensitive data through multiple components before finally leaking the
stored data. The authors of each benchmark set provide ground truth for each test
case, which we use to measure precision and soundness. In the following we will

give a short description of each of the used datasets.

Original, intent-related DroidBench test cases DroidBench is a set of Android
apps, proposed by Arzt et al. [18]. “[It] contains test cases for interesting static-
analysis problems (field sensitivity, object sensitivity, tradeoffs in access-path lengths
etc.) as well as for Android-specific challenges like correctly modeling an app’s life-
cycle, adequately handling asynchronous callbacks and interacting with the UI [[18].”
As our approach is focused on intents, we filtered out the test cases that do not in-

clude the usage of intents and applied IIFA on all of the remaining 14 test cases.

4h’c’cps: / / github.com/mig40000/ICC-Benchmark
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Table 4.3: Summary of Tool Results for Micro-Benchmarks

\ ICC Comparison \

IccTA Extension + ICC-Bench + Attribute-Mismatch-ICC-Benchmark (34 test cases)
Precision, Recall and F1-measure ‘ FlowDroid ‘ AppScan ‘ DidFail | DIALDroid ‘ Amandroid ‘ IccTA ‘ Our Tool
Precision p = v /(v + *) 25% 16.7% 75% 71% 62% 80% 100%
Recall r = v /(v + o) 80% 62.5% 24% 80% 60% 96% 100%
Fi-measure 2pr/(p + r) 0.41 0.26 0.36 0.75 0.61 0.87 1
\ TAC Comparison \
DroidBench IAC + Attribute-Mismatch-ICC-Benchmark (10 test cases)

Precisionp = v /(v + %) 0% 0% 63% 73% 52% 0% 100%
Recallr = v /(v +0) 0% 0% 21% 56% 76% 0% 100%
Fi-measure 2pr/(p + 1) 0 0 0.31 0.63 0.43 0 1

IccTA extension of DroidBench Li et al. [53] proposed IccTA, an extension of
DroidBench that includes further test cases for inter-component communication.
This set covers additional methods for inter-component communication. Four of
these test cases (startActivity 4 —7) do not include any actual leaks and are included
to detect false positives. Additionally, each test case includes an unreachable com-
ponent that contains a leak. These components are used to verify that the analysis
tools perform a proper reachability analysis. Four out of the 22 test cases in this
benchmark set include inter-component methods that are not intent-related. As

our tool is focused on intents we evaluated IIFA on the remaining 18 test cases.

ICC-Bench Wei et al. [84] developed ICC-Bench, a benchmark set for inter-component
communication. This benchmark set has nine test cases including six implicit intent
cases. In the remaining three cases, intents are either explicitly constructed or dy-
namically transformed to explicit intents by specifying a target component after

intent construction.

Our Extension We developed Attribute-Mismatch ICC-Bench, a benchmark to
test the key and/or type mismatch (see section in ICC/IAC. This benchmark
contains seven test cases, six ICC and one IAC. This benchmark focuses on validat-
ing the creation of invalid communication paths due to a mismatching key and/or
type of intent extra data during ICC/IAC resolution. This is a feature that was ne-
glected by previous benchmark suites but has great impact on the precision of the

communication results.
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Comparative evaluation

Based on true positives (tp), false positives (fp), and false negatives (fn) we use the

following metrics to compare the performance of IIFA with the related tools:

Precision Recall F;-measure

__ _tp _ _1p 2pr
P=%p "= ot p+r

We applied IIFA to the original DroidBench benchmark set, where 14 test cases
are relevant for intent communication. On these benchmarks IIFA achieved per-
fect precision and recall ratios. We further applied IIFA to the IccTA extension
of Droidbench [18], ICC-Bench [84], and Attribute-Mismatch-ICC-Benchmark, and
compared the results to the six most prominent tools for Android intent information
flow analysis: FlowDroid [5] and AppScan [43] are limited to ICC, IccTA [53] and
AmanDroid [84] require an additional tool to support IAC, DidFail [50] and DIAL-
Droid [9] come with their own inter-app analysis. Table[#.3|summarizes the metrics
for the results of the different tools on these benchmark set’| (results for related
work on previous benchmarks taken from Li et al. [53]]). In the sequel, we compare
the results of FlowDroid, AppScan, DidFail, DIALDroid, Amandroid, IccTa and
ITFA.

FlowDroid FlowDroid [5] was designed to analyze information flows in isolated
Android components. Li et al. [53] added an additional analysis step that combines
the paths between components. As a precise computation of inter-component paths
is not possible, these need to be overapproximated, which leads to spurious paths
and thus false positives. These circumstances lead to a low precision (25%) with a
medium recall (80.0%). As FlowDroid does not handle certain callback methods, it

returns false negatives in three of the bindService test cases.

AppScan AppScan only supports intra-app inter-component communication analy-
sis but does not natively support other inter-component flows. In order to over-
come these restrictions, its flows were combined by [53], resulting in a low preci-
sion (16.7%) and a medium recall (62.5%). Additionally, AppScan cannot handle
the startActivityForResult method, leading to false negatives in the test cases start-
ActivityForResult 2 to 4.

DidFail DidFail is only able to analyze Activities and thus cannot detect any

>A detailed comparison on each test case is present in Table[l|of Appendix
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leaks in the three other types of Android components (Services, Broadcast Receivers
and Content Providers). Additionally, it ignores leaks that include explicit intents.
These circumstances lead to a very low recall rate of 24%. Finally, DidFail includes
imprecision in that it does not consider mime types and data. This leads to false

positives in the test cases startActivity 4 and 5.

DIALDroid DIALDroid is designed specifically to detect ICC and IAC flows only
and it ignores pure intra-component flows. It could not resolve a mismatching key
and/or type as well as test cases involving non-trivial string manipulation. Addi-
tionally, it aborted several times analyzing implicit intents, especially if more than
two apps were involved in the information flow. This restricts the utility of this tool

as implicit intents are more prone to unintended information flows.

Amandroid Amandroid has a mediocre recall rate of 60% due to imprecision
in complex sender functions (section [4.4.2), imprecision in the lifecycle model of
Services (startService?) and string manipulation (DynRegister?) and lacking support
for Content Providers. In addition, Amandroid cannot handle implicit flows [65].
There are multiple reasons for the false negatives. First, Amandroid does not map
the arguments passed to the setResult method of the intent-receiving component
to the arguments of the callback method onActivityResult in the sender component.
The failure of the startService2 test case indicates some imprecision in the lifecycle
model of Services. Further, Amandroid cannot properly handle calls to the bind-
Service method. Finally, Amandroid fails to track string manipulation operations

that lead to a false negative in the DynRegister? test case.

IccTA IccTA displays above average precision (80%) and a very good recall ratio
(96%). It fails on test cases that include non-trivial string manipulations, e.g., Dyn-
Register? and startActivity7. IccTA is reported to suffer from scalability issues, the
experiments reported in Li et al. [53] and subsequent publications [9, 66, 64] are re-
stricted to ICC and to the previously known micro-benchmark suites; no evaluation

on real-world apps has been reported.

Matching the key and/or type of intent extra data is not reported in Li et al. [53],
DidFail [50], or AmanDroid [84]. They merely create a lifecycle method that con-
nects the sender of an intent with (the respective) receiver(s), thus creating a data
flow between these components. In our experiments both IccTA and Amandroid
failed to detect a key and/or type mismatch during ICC (see section due to

missing checks of these constraints, resulting in significant precision loss with re-
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spect to previous benchmark suites alone (details can be found in Appendix[A).

Our approach: IIFA To evaluate that IIFA’s pre-analysis approach does not nega-
tively impact the precision and soundness we applied it to the same benchmark sets.
We leveraged R-Droid [7], a static IFC tool that does not interfere with our IAC/ICC
model, to generate the intra-app flows?| and compared our analysis results with the
provided ground truth. We also verified the analysis results manually. As expected
ITFA resolved our own tests with key and type matching correctly (i.e. without false

positives).

Our design of 1IFA as a pre-analysis does not negatively impact precision and soundness
(even when factoring out precision gains due to R-Droid) but enables precise matching
not only of intent actions but also of the key and/or type of intent extra data without

additional constraint solving to exclude infeasible flows.

Clearly these benchmarks, three of which are gathered from related work, do not
involve typically ignored (as hard to analyze) language features like reflection, or
native code. However, they do cover a range of difficult features with respect to
intent analysis, like dynamically composed strings, arrays with both sensitive and
insensitive data, etc. The intention of this research question was to assert that the
scalability gains (see RQ2) do not negatively impact other essential properties of
our analysis, and to demonstrate the impact of precise matching of types and keys
for transmitted intent data. Even though small, this microbenchmark evaluation

demonstrates that our pre-analysis is an effective approach for ICC/IAC analysis.

ITFA + FlowDroid, AmanDroid & IccTA As of now, IIFA’s resolution requires
intra-component information flows (program slices) in Smali format. To validate
the effectiveness of IIFA’s pre-analysis approach with other tools that support intent-
based information flow resolution (without requiring Smali slices), we created mu-
tated APKs where the API call to receive data via intents is replaced by the ac-
tual data transmitted by the intent sender based on resolving ICC/IAC paths using
ITIFA’s database. We attempted to analyze these APKs with FlowDroid (with added
ICC analysis), AmanDroid and IccTA. As these tools create their own data flow
paths for intent resolution, IIFA cannot improve the false positive scenarios. How-

ever, IIFA significantly improves the false negatives to true positives. It increases the

®Note that any other tool that resolves intra-component flows (in particular those of Table
except for DIALDroid) would also have been a possible base analysis, but may have interfered with
our ICC/TAC model (see section [4.5.4).
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Table 4.4: IAC analysis support vs Android API
|  Tool IAC support | API19 | >APL19 |
AmanDroid v - .

DidFail . — v supported, — fails, 4 crashes
ApPSC&in a - - supported, x not supported
DroidSafe v o Not supported by default,

DIALDroid v 7 additional configuration required
FlowDroid X - -
IccTA v -4

recall rate of FlowDroid from 80 to 91% and of AmanDroid from 60 to 85%. In few
cases (e.g., bindService2) FlowDroid and AmanDroid still report a false negative
because their analysis computes an incomplete call graph of the callback method
onServiceConnected. Unfortunately IccTA is unable to analyze our modified APKs/]|

These experiments demonstrate the high quality of our intent model.

4.5.2 Evaluating the scalability of IIFA

Evaluation on real-world apps

We applied IIFA to real-world apps to assess whether our analysis scales to a re-
alistic corpus of large real-world apps. To that end we downloaded the 90 most
popular apps from the Google playstore, which arguably contain some of the most
challenging apps for program analysis, e.g. due to their size. IIFA successfully an-
alyzes each of these apps. Table 4.4 (extended from [64)} 66]]) lists the related works
along with their IAC analysis capabilities in general and for API levels of Android.
It is important to observe that none of the tools (that support IAC analysis) is able to
analyze an app using API version greater than 19 (i.e. Android KitKat). As this An-
droid version was released in 2013, it is almost impossible to find APKs amenable
for analysis by these tools, rendering them obsolete for IAC analysis of realistic An-
droid apps. Even the authors of several related tools admit that “DroidSafe, IccTA
and ApkCombiner all crash while analyzing apps built for an API above 19, which
is supported by the majority (82.3%) of Android devices. A common cause is a tool-

dependency on [...] Apktool. Old versions of it fail to decompile newer Android

IccTA throws an invalid magic value error when analyzing any APK modified by our APKTool.
We assume version incompatibility between the IccTA’s dexlib (2-2.1.0) and APKtool’s dexlib (2-2.2.3).
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apps. The same happens to [...] ApkCombiner. [Therefore] Amandroid, Droid-
Safe, FlowDroid and IccTA lose their ability to analyze inter-app scenarios.” [64].
While these issues might be technically solvable with some engineering effort, we
will argue in the sequel, that only pre-analysis is scalable enough to analyze the

IAC information flows for all apps installed on a given device.

As 60% of all intents are implicit, analyzing IAC flows becomes paramount to de-
tect hidden or accidental leaks of sensitive data contrary to user expectations. Apk-
Combiner was proposed to merge APKs in order to extend standard ICC analysis
mechanisms (where all potential communicating components are in one APK) to
IAC. As mentioned in the previous paragraph, APKCombiner fails for practically
all relevant APKs. But even if merging was possible (some related work merges
directly in their tools) analyzing the resulting APK faces combinatorial explosion
of potential communication paths and would require additional constraint solving
technologies to prune unrealizible inter-component data flow paths due to mis-
matching communication partners (e.g. intent action) or keys/types of the data

exchanged via intend extra data.

In contrast IIFA propagates a divide-and-conquer approach where ICC/IAC com-
munication partners are determined and constraints solved in a pre-analysis based
on summary information extracted from each app in isolation. The base IFC analy-
ses then only need to provide intra-component information flows (program slices),
which is what most of these tools have originally been designed and leverage in-
tricate optimizations for. To demonstrate the advantage of the pre-analysis ap-
proach we created a potential IAC flow from a widely used real-world app Katwarn
to a synthetic app (written using target API level 19 to enable analysis by these
tools). One of Katwarn’s activities (GuardianAngelService) shares the last known lo-
cation via an implicit intent. An app that declares the corresponding intent fil-
ter (kwrn:ga:location:update) may receive this intent. Our synthetic app declares the
kwrn:ga:location:update intent filter to illicitly intercept this intent. Listing4.7|shows
a simplified version of the receiving activity in this test app. Analyzing this IAC
without IIFA failed as APKCombiner was incapable of merging these two apps,
and tools that create their own paths, e.g. DIALDroid, crashed. However, when
analyzing the test app in isolation, all of these tools produce the output slice for
the test app, which resembles the smali code in Listing Using IIFA’s analysis
DB and including that slice into the reporting module (cf. Section [4.4.2), detecting
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1

2 // (ReceivingActivity) -- Capable of receiving
"kwrn:ga:location:update"

5 Bundle bundle = getIntent().getExtras();

1 Location lastKnownLocation = (Location)bundle.get("location");

Log.d("Location", location.toString());

Listing 4.7: ReceivingActivity

1 invoke-virtual {pO},
Lcom/testapplication/ReceivingActivity;->getIntent ()
Landroid/content/Intent;

2 move-result-object vO

3 invoke-virtual {vO0},
Landroid/content/Intent;->getExtras()Landroid/os/Bundle;

4 move-result-object vO

5 .local vO, "b":Landroid/os/Bundle;

6 const-string v1, "location"

7 invoke-virtual {v0, v1},

Landroid/os/Bundle;->get (Ljava/lang/String;)Ljava/lang/0Object;

8 move-result-object vl

9 check-cast v1, Landroid/location/Location;

10 .local v1, "location":Landroid/location/Location;

11 const-string v2, "Location"

12 invoke-virtual {vi},
Landroid/location/Location;->toString()Ljava/lang/String;

13 move-result-object v3

14 invoke-static {v2, v3},

Landroid/util/Log;->d(Ljava/lang/String;Ljava/lang/String;)I

Listing 4.8: ReceivingActivityIRinSmali

the mentioned IAC flow is thus possible, rendering IIFA a practical, effective, and

scalable addition to the state-of-the-art tools.

ITFA’s scalability vs Merging-based analysis Every tool except DidFail and DIAL-
Droid requires merging of APKs to extend their ICC capabilities to IAC. To analyze
inter-app communication, ApkCombiner [52] was proposed [52] in order to merge
two or more apps into one. However, ApkCombiner supports only Android app ver-
sions published on or before 2014, and crashes with the recent apps, thus being
practically unusable. But even if the merging process itself was not problematic, it
would aggravate the scalability issues reported for related work [53]], and confirmed
in a independent recent comparative study [65]. Practically attempting to analyze a

huge APK with all of the top 90 apps from the Google Play Store would lead to a com-
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binatorial explosion of communication paths between potentially communicating
components to be analyzed, precluding any precise static analysis. In particular as
we found in our study with the top 90 apps from the Google Play Store that 60% of

intents are implicit and thus the receiver may not be unique.

Alternatively one would have to eagerly merge all combinations of (at least) two
complete apps. This is at least 8,100 combinations for our 90 apps already, most of
which are not communicating. However, this approach assumes that there is no
communication involving more apps than the maximum tuple size. Unfortunately
there is no guarantee for this assumption unless analyzing all tuples of larger size

(which does not scale any more).

In contrast, IIFA analyzes the communication compositionally based on small
summaries in a database and combines only the transmitted ICC/IAC data with
the intra-app flows of respective intent receivers. The average per app execution
time of IIFA over 90 apps is 87.91 seconds. On average, the analysis phase took
46.81 seconds (maximum 52.20, minimum 32.40 seconds) and the reporting phase
41.10 seconds (maximum 48.60, minimum 35.10 seconds). Considering that (intra-
app) static IFC analyses usually require a large amount of time to analyze real world
apps, [IFA’s additional cost is quite feasible for a realistic usage scenario. Let us take
30 minutes as the execution time [64] require by every tool to analyze a single real
world app. IIFA adds approximately 1.5 minute per app. We refer to this sum of
tirc and the time taken by IIFA as t,,. Thus, the total time taken by IIFA for 90
apps is 90 X tg, (= 2 days). Whereas, merging all pairs would take 90 x 90 x tp¢
(=~ half a year) to analyze ICC between any two apps, let alone tuples of greater
size. Clearly, the total time is dominated by the combinatorial explosion of merging
apps. Therefore, IIFA would take at most 1.2% of the time taken by idea to analyze

all merged pairs.

IIFA’s modular analysis avoids combinatorial explosion of the potential flow paths in a
single merged APK (containing all potential communication partners), or of analyzing
all tuples of a given size. IIFA’s resolution of intent actions, keys and types for intent
extra data additionally reduces the analysis complexity without requiring supplemen-
tary constraint solving technology during ICC information flow analysis. Therefore we
were able to analyze the ICC/IAC flows of the 90 most downloaded real-world apps in

approx. 2.2h (ignoring the time to compute intra-component slices).
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Figure 4.3: Intent Usage

4.5.3 Communication patterns in real-world apps

In total we identified 10,669 calls to start an intent (either as an Activity, Broadcast
or Service), 76% of these leverage startActivity/start ActivityForResult. Further, the
data in IntentDB show that (statically) 60% of the intents are implicit. The Android
documentation defines 42 different types of get XX XExtra methods. IIFA determines
that 54.6% of these methods retrieve String values, either via Bundle.getString(String)
(38.8%) or String.getStringExtra(String) (15.7%). For 2% of the sent intents IIFA was
unable resolve the target component or intent action and conservatively approxi-
mated it to either multiple actions (0.6%) or even a dummy action (1.4%), the latter
of which requires manual inspection to resolve the potential strings (e.g. due to

dynamic input from a file).

Figure|4.3| provides a categorization of the 90 apps along with their intent usage.
37% of the apps are Games, which contribute the most to intent communications
(31%). Interestingly, we find that 6% of the total intent communication is triggered
by a single a Communication app, whatsApp. It contributes to 35% of the intent com-

munication in the Communication category.

ITFA’s database contains senders with 380 distinct Intent actions, 100 out of them
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with corresponding receivers in our test set (excluding system apps and OS). Fig-
ure 4.4 displays the 20 most used intent actions and their numbers of senders and
receivers, the remaining intent actions had only one or tow senders and receivers.
Note that the numbers of actual intent receivers is lower as the type and key match-
ing of intent extra data must also match. android.intent.action. VIEW is most widely
used (73 senders and 52 receivers) followed by android.intent.action. SEND (50 senders
and 15 receivers). android.intent.action. VIEW is used to display the data to the user,
e.g., an activity that wants to open a webpage would create an intent with this tar-
get action and a browser activity would register this action as the supported intent
filter in its manifest file. Similarly, android.intent.action.SEND is used to send some
data from one activity to another, e.g., to send an email an activity would create an
intent with this target action and a receiving activity would define this intent filter
in its manifest file. android.intent.action.DIAL is an Intent action to invoke the OS
phone dialer. As Viber, a voip app, also registers to receives it, users will be asked
to select how to make a phone call. Other apps not providing voip ought not re-
ceive it. IIFA determines potential rogue apps via a simple database lookup. To the
best of our knowledge, we are the first to predict and analyze these communication

patterns.

ITFA detects 62 ICC-based information flows from sensitive sources among the 90
apps. Our results shows that even widely used apps share sensitive information via
implicit intents, which may lead to intent interception and intent hijacking attacks [58].
We manually validated these claims in the following apps: Katwarn provides hazard
and disaster warnings and has been downloaded over one million times. IIFA finds
that one of its activities (Guardian AngelService) shares the last known location via an
implicit intent. An app that registers the respective intent filter can try to intercept
this intent (intent interception) to obtain the device’s location without the respective
permission. Similarly, the shopping app ebay (via activity EventltemsFragment) and
the location & travel app Google Earth share internal device resources via an implicit
intent, which are thus also prone to intent interception. IIFA also determines that
ebay shares sensitive tags via both implicit (in CheckoutActivity activity) and explicit
intents (in PaypalCreditPromotionsActivity activity). We also identified some cases of
potential data integrity violations: For example, a tag can contain a (non-sensitive)
url, e.g., BankA.com, to be opened by an intent receiver. If this tag is shared via
an implicit intent, a malicious app that registers the respective intent filter may

manipulate this tag to open another url, e.g., BankB.com (intent hijacking as part of
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a phishing attack). While identifying potential security issues was not the main
intent of this work, we notified the corresponding developers and suggested the

required fix to make their app more security compliant.

IIFA analyzes the IAC patterns and may detect rogue apps registering for Intent actions
they are not supposed to handle. We detect a number of problematic information flows

that have not been reported previously and may be abused by malevolent apps.

4.5.4 Evaluation Summary and Discussion

We empirically evaluated IIFA in two steps. IIFA does not suffer from scalability
issues (RQ2) as it analyzes each app once (with potentially one additional intra-
app IFC analysis by an external tool), and its precision and recall are not negatively

impacted by this design.

Due to the nature of our analysis we rely on program slices generated from a
baseline (intra-component) IFC analyzer. Therefore our combined analysis as pre-
sented in the evaluation section inherits all advantages and disadvantages as well as
potential implementation bugs of the underlying analysis. In order to rule out any
potential interference of our analysis with the baseline analysis we chose R-Droid as
our baseline analysis as it is relatively precise but does not attempt to resolve intent
communication on its own. At the same time as hardly any analysis tool considers
the grand obstacles for static program analysis like native code and reflection, our
combined analysis also lacks these features, which we consider largely orthogonal
to this line of research. Further, we concentrate on intent-based communication in
this work and ignore other, more atypical forms of inter-component communica-
tion such as static (global) variables or content providers. Some baseline analyses

support those, in which case a combination of IIFA with such a tool would also do.
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Figure 4.4: Intent Actions (x-axis) per sender (blue) and receiver (orange, y-axis)



Chapter 5

PIAnalyzer: A precise approach for

PendingIntent vulnerability analysis

5.1 Overview

Android phones are used for a plenitude of highly security critical tasks, and a lot
of sensitive information—including session tokens of online services—are saved on
these devices. As the official Google Play Store and other alternative Android app
marketplaces are not strongly regulated, the main defense against malware that
aims to steal sensitive information is the Android sandbox and permission system.
In our study we discover that the Android permission system can be circumvented
in many cases in the form of denial-of-service, identity theft, and privilege escala-
tion attacks. By exploiting vulnerable but benign applications that are insecurely
using PendinglIntents, a malicious application without any permissions can perform
many critical operations, such as sending text messages (SMS) to a premium num-
ber. PendingIntents are a widespread Android callback mechanism and reference
token. While the concept of PendingIntents is flexible and powerful, insecure usage
can lead to severe vulnerabilities. Yu et al. [83] report a PendingIntent vulnerability
in Android’s official Settings app, which made a privilege escalation attack up to
SYSTEM privileges possible for every installed application. Thus, given the severe

security implications, the official Android documentation on PendingIntents [27]



66 5. PlAnalyzer: A precise approach for Pendinglntent vulnerability analysis

now warns against insecure usage. However, to the best of our knowledge, to-date
no analysis tool detects the described PendingIntent vulnerabilities. Thus, an auto-

mated analysis tool is envisioned that scales to a large number of applications.

5.2 Our Contributions

In this work we propose a novel approach to detect PendingIntent related vulner-
abilities in Android applications. We implemented our approach in a tool called
PIAnalyzer. In multiple analysis steps, PIAnalyzer computes the relevant informa-
tion of the potentially vulnerable code based a program slicing [85]. PIAnalyzer is
tully automated and does not require the source code of the application under in-
spection. PIAnalyzer assists human analysts by computing and presenting vulner-
ability details in easily understandable log files. We evaluated PIAnalyzer on 1000
randomly selected applications from the Google Play Store. We discover 435 appli-
cations that wrap at least one implicit base intent with a PendingIntent object, out
of which 1358 insecure usages of PendingIntents arise. These include 70 Pending-
Intent vulnerabilities leading up to the execution of critical operations from unpriv-
ileged applications. We manually investigate multiple findings and inspect reports
on examples known to be vulnerable. Our investigation show that PIAnalyzer is

highly precise and sound. Technically, we provide the following contributions:

Pendinglntent analysis. We propose a novel method based on program slicing

for the detection of PendingIntent related vulnerabilities.

* Implementation. We implemented a program slicer for SMALI intermediate

code and the proposed PendingIntent analysis in a tool called PIAnalyzer.

* Evaluation of PIAnalyzer. We empirically evaluate PIAnalyzer on a set of 1000
randomly selected applications from the Google Play Store and find 1358 in-
secure usages of PendingIntents. These include 70 severe vulnerabilities. We
find critical vulnerabilities in widely used libraries such as, TapJoy and Google
Cloud Messaging. PIAnalyzer is efficient and only takes 13 seconds per appli-

cation on average.

e Validation of PIAnalyzer. We manually validated multiple reports of PIAnalyzer.

Our validation confirms PIAnalyzer’s high precision and recall.
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1 protected void onCreate(Bundle savedInstanceState) {

2 super.onCreate(savedInstanceState) ;
3 setContentView(R.layout.activity_main_vuln);
4 Intent baseIntent = new Intent();

5 PendingIntent pendingIntent = PendingIntent.getActivity(this,
1, baseIntent, PendingIntent.FLAG_UPDATE_CURRENT) ;

6 Intent implicitWrappingIntent = new Intent(Intent.ACTION_SEND);

7 implicitWrappingIntent.putExtra("vulnPI", pendinglntent);

8 sendBroadcast (implicitWrappingIntent) ;

Listing 5.1: App A - Vulnerable Activity

1 public void onReceive(Context context, Intent intent) {

2 Bundle extras = intent.getExtras();

3 PendingIntent pendingIntent = (PendingIntent)
extras.get ("vulnPI");

4 Intent vunlnIntent = new Intent(Intent.ACTION_CALL,
Uri.parse("tel:" + "0900123456789")) ;

5 try {

6 pendingIntent.send(context, 2, vunlnIntent, null, null);

7 } catch (PendingIntent.CanceledException e) {
e.printStackTrace(); }

Listing 5.2: App B - Malicious Activity

5.3 A Motivating Example

5.3.1 A Potential Vulnerable Example

We demonstrate PendingIntent-related vulnerabilities and exploitation via a sim-
plified example (Listings 5.1 and [5.2). In this example, the vulnerable application
has the permission to perform phone calls, while the malicious application does
not. In listing the vulnerable application creates an empty base intent (line @),
wraps it into a PendingIntent (line[5)), and sends it as an extra of the broadcast intent
implicitWrappingIntent (line |6} [7}[8). Any application that defines a corresponding
intent filter in their manifest file can receive implicitWrappingIntent. In listing a
malicious application which is capable of receiving implicitWrappingIntent, extracts
the PendingIntent (line 3) and creates a new intent (with the motivation to manip-
ulate the base intent) (line ) such that it triggers a phone call to some arbitrary
number, e.g., to a premium number. On line p} an invocation of the send method of

this PendingIntent object causes the execution of the base intent but with all empty
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properties updated to the values specified in vulnlntent, which results in calling the

premium number.

While this example is simplified for better understanding, PendingIntent vulner-
abilities can occur in various forms and lead to different types of severe security
implications. In our study we find that at least 435 out of 1000 applications wrap
at least one implicit base intent into a PendingIntent object. The vulnerable appli-
cation can accidentally send the PendingIntent object in numerous ways. Instead
of broadcasting, it can also be sent out via an implicit wrapping intent. If more
than one application has a matching intent filter, the user will be asked to choose
a destination. This case can be abused by an intent phishing application. In the
majority of the cases the PendinglIntent is not sent out by wrapping it into another
intent, but by passing it to system components such as the AlarmManager or the
NotificationManager. These components will eventually call the send method of the
Pendinglntent object, which triggers the base intent. A malicious app can register a
component to retrieve the base intent to perform a denial of service attack, as these

intents are then not passed to the intended component.

This situation becomes even more critical when the described PendingIntent vul-
nerability occurs in system components. Tao et al. [83] found this type of vulnera-
bility in the Android Settings application. In the following subsection we elaborate

on the details of this vulnerability.

5.3.2 A Real-world PendingIntent Vulnerability

For all subversions of Android 4, the Settings application triggered a PendingIntent
with an empty base intent [83]. In February 2018, 17.4% of all Android devices still
run such an Android version [34], rendering them vulnerable to a privilege escala-
tion attack up to system privileges. This vulnerability occurred due to unawareness
of the PendingIntent security implications. The fix in Android version 5.0 makes the

base intent explicit.

Listing [5.3]shows the code snippet of the corresponding vulnerable method add-
Account. In this method a PendingIntent object, mPendingIntent, is created (line
with an empty base intent. Whenever an application requests to add an account
of the requested (custom) type, the addAccount method gets invoked and the vul-

nerable PendingIntent (mPendingIntent) is returned to this application if it registers
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1 private void addAccount(String accountType) {

2 Bundle addAccountOptions=new Bundle();

3 mPendingIntent=PendingIntent.getBroadcast (this, 0, new
Intent(), 0);

4 addAccountOptions.putParcelable (KEY_CALLER_IDENTITY,
mPendingIntent) ;

5 addAccountOptions.putBoolean (EXTRA_HAS_MULTIPLE_USERS,
Utils.hasMultipleUsers(this));

6 AccountManager.get (this) .addAccount ( accountType, null,

7 /* authTokenType */ null, /* requiredFeatures */
addAccountOptions,
8 null, mCallback, null /* handler */);

9 mAddAccountCalled = true;

Listing 5.3: Android Settings: Add AccountSettings.java

1 Intent intent = new Intent();

2 intent.setComponent (new ComponentName("com.android.settings",
"com.android.settings.accounts.AddAccountSettings"));

3 intent.setAction(Intent.ACTION_RUN) ;

s  intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

5 String authTypes[] = {AccountGeneral.ACCOUNT_TYPE};

6 intent.putExtra("account_types", authTypes);

startActivity(intent);

Listing 5.4: Malicious Application A: Activity 1

to receive android.accounts.AccountAuthenticator intents (see Listing[5.5). As this
application executes mPendingIntent in the context of the Settings application (with
SYSTEM level permissions), it can maliciously overwrite the (empty) action and

extra data in the base intent.

Listing[5.4/and [5.5/describe the code snippets of a malicious application A, target-
ing the vulnerability of the Settings application. In listing[5.4} A initiates an intent to
add an account type (line[7). Upon reception of this intent, the Settings application
invokes the add Account method (cf. Listing[5.3) and sends mPendingIntent out. As A
has registered as AccountAuthenticator, it receives this PendingIntent (line |2 of List-
ing[5.5). On line[3} it creates an intent vuninlntent to perform a Factory Resef] Later
it triggers the PendingIntent with vuninlntent as the updated base intent (line[5)). As
A executes the PendingIntent in the same context as the Settings application (with

SYSTEM level permissions), a Factory Reset is performed.

As previously described, the key cause of this type of vulnerability is the usage of

1A factory reset resets the device to its factory setting, i.e., deletes all data.
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1 public Bundle addAccount(AccountAuthenticatorResponse response,
String accountType, String authTokenType, String[]
requiredFeatures, Bundle options) throws NetworkErrorException
{

2 PendingIntent pi =
(PendingIntent)options.getParcelable("pendingIntent");

3 Intent vunlnIntent = new
Intent("android.intent.action.MASTER_CLEAR");

4 try {

5 pi.send(mContext, O, newlIntent2, null, null);

} catch (CanceledException e) { e.printStackTrace(); }

Listing 5.5: Malicious Application A: Activity 2

implicit base intents for PendingIntents. Therefore, in this work we provide a novel
analysis mechanism which detects implicit base intents in PendingIntents, analyzes

their usage and gives a security warning in case of an actual vulnerability.

54 Methodology

54.1 SMALI and SMALI Slicing

PIAnalyzer analyzes the SMALI intermediate representation (IR) of the Dex byte-
code extracted from an APK. SMALI is an intermediate representation of Dalvik
bytecode that improves readability and analyzability. As background information,
Listing|A| (in the appendix) shows a simplified example of the creation of an Intent
object in SMALI code. Similar to Dalvik bytecode, SMALI is register based. As
known from assembly languages, registers are universally used for holding values.
For example, on line 15| the register v3 is used to store a String variable, while on
line[18|an Intent object is saved in the register v0. Please consider the comments in

the listing for a more detailed explanation of the code.

PIAnalyzer transforms the bytecode of an APK to its SMALI IR using APKTool [1].
The core of the analysis of PIAnalyzer is performed through program slicing [85]
the SMALI representation. Conceptually, a slice is a list of statements that influence
a statement (backward slice), or get influenced by a statement (forward slice). For
this purpose we design a SMALI slicer. Our SMALI slicer can create both forward
and backward slices that are required for the analysis of PIAnalyzer. Asregisters are

SMALI'’s universal storage mechanism for holding any kind of values, our SMALI
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Pendinglintent Extraction Intent Analysis Reporting

Figure 5.1: The workflow of PIAnalyzer

slicer is register based. The SMALI slicer is initialized with an arbitrary start po-
sition in the code as well as with a set of relevant registers. After completion it
returns a set of influencing statements. For example, in Listing |A| the backward
slice of the registers v0 and v3, starting from line 21) will return the statements on
lines and21|as backward slice. We would like to stress that the PendingIntent
analysis described in the following is just one usage of our developed slicer. In fact,
our slicer is universal and can be used for various program analysis purposes. The
software architecture of PIAnalyzer is designed in a modular way that facilitates the
extension by further analysis approaches. Similar to the analysis of PendingIntents,

these approaches can easily make use of our generic SMALI slicer.

5.4.2 PendingIntent Analysis

PIAnalyzer is designed for the efficient analysis of a large number of APKs and
therefore accepts as input an arbitrarily large set of APKs. Figure |5.1| depicts the
workflow of PIAnalyzer per APK. The analysis of PIAnalyzer consists of the fol-

lowing steps.

PendingIntent extraction. PIAnalyzer decompiles the DEX bytecode of a given
APK to the SMALI IR using APKTool [1]. It then parses the content of each SMALI
file together with the application’s manifest. PendingIntents can only be created by
four methods: getActivity(), get Activities(), getBroadcast() and getService() [27]. PIAnalyzer
searches in the parsed SMALI files for calls to these methods, leading to a complete

list of all PendingIntent creations in the application.

Base Intent analysis. In the next step PIAnalyzer extracts the base Intent object
used for creating the PendingIntent. It builds the backward slice from the Pending-
Intent creation site to the creation site(s) of the base Intent leveraging our universal
SMALLI slicer. Based on this backward slice, PIAnalyzer determines whether the
base Intent is potentially implicit, meaning no target component was definitely set.

For determining whether an Intent may be implicit, PIAnalyzer first confirms that
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an implicit constructor, i.e., a constructor without a specified target component was
used to create the base Intent. It then examines whether an explicit transformation
method was invoked on the base Intent object. Explicit transformation methods set
the target component of an Intent object after it has been constructed, transforming
an implicit Intent into an explicit one. To the best of our knowledge only five explicit
transformation functions exist at the time of this writing: setClass(), setClassName(),
setComponent() setPackage() and setSelector(). If an Intent has been created by an im-
plicit constructor and no explicit transformation has definitely been invoked on the
Intent, it is considered implicit. In the following steps, PIAnalyzer only considers
occurrences of PendingIntents with implicit base Intents, as only these can lead to

the described security issues (see discussion in section 2.3.2).

PendingIntent analysis. The severity of the vulnerability depends on the usage
of the PendingIntent. Concretely, it depends on the sink functions to which the
PendingIntent object is passed. A PendingIntent can either be sent to a trusted sys-
tem component, e.g. Alarm manager, or wrapped into another Intent. PIAnalyzer
therefore computes the forward slice from the creation of the PendingIntent object

to either of the mentioned APIs, using our universal SMALI slicer.

WrappingIntent analysis. The most dangerous class of attacks can occur if the
PendingIntent object itself is intercepted by a malicious application. This can hap-
pen if the PendingIntent is wrapped in another intent (referred to in the sequel as
wrapping Intent) as Intent extra data. If the wrapping Intent is implicit it can be re-
ceived by a malicious application to extract its wrapped PendingIntent and manip-
ulate the base Intent. To detect this particularly dangerous class of vulnerabilities,
PIAnalyzer examines all wrapping Intents whether they are implicit, as only in this
case they can be received by a malicious application. To that end, PIAnalyzer cre-
ates the backward slice for all wrapping Intents using our universal SMALI slicer.
From the resulting slice it determines whether the wrapping Intent is implicit (in

analogy to the base Intent analysis phase), in which case it reports a vulnerability.

Call Graph generation. PIAnalyzer is designed to facilitate the analysis of human
security experts. PIAnalyzer assists human investigation of a reported vulnerabil-
ity via a generated the call graph, which leads to the the method in which it has
been detected. Thus human experts may determine the events that lead to the exe-
cution of the vulnerable code spot. The generated call graph can track control flow

between the main application and its used libraries. Additionally, it handles recur-
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sive functions.

Reporting. In the last phase, PIAnalyzer logs the results of the analysis. PIAnalyzer
creates two types of log files: For each detected vulnerability, it creates a vulner-
ability log file that reports details of that vulnerability. Additionally, it creates a
summary log file that summarizes the findings in the whole APK batch and gives

general statistics:

* Vulnerability Log File This file contains the slice from the creation of the base
intent, over the creation of the PendinglIntent object, to the final sink function.
Additionally, each vulnerability log file contains the slice from the base Intent
to the Pendinglntent, as well as the PendingIntent forward slice. Finally, the

call graph to the method containing the vulnerability is logged.

* Summary Log File For each batch of APKs one summary log file is created.
Apart from some hardware specifications, this summary log file contains the

total number of warnings and vulnerabilities, as well as their some statistics
over the batch of APKs.

5.4.3 Vulnerability severity levels

PIAnalyzer distinguishes the following levels of severity (in increasing order):

* Secure PendinglIntents with explicit base Intents are considered secure as a
known and apparently trusted component is invoked. We respect this trust

relation and create no report for these cases.

* Warning If a PendingIntent with an implicit base Intent is created, but this
PendingIntent is only passed to System managers that are supposed to be
benign, it is considered a Warning. As a System manager will not redefine
the base Intent of the PendingIntent, the only possible attack scenario in this
case is a denial of service attack if a malicious application catches the implicit
base Intent after the System manager has triggered the send() method of the
PendingIntent.

* Vulnerability PIAnalyzer reports a Vulnerability if a PendingIntent has been

created with an implicit base Intent and the PendingIntent has been wrapped



74 5. PlAnalyzer: A precise approach for Pendinglntent vulnerability analysis

Table 5.1: Distribution of vulnerabilities and warnings

# vuln. 0] 1| 2| 4
#apps | 938 |56 | 5| 1
# warn. 0 1 2| 3] 4| 5| 6| 7| 8] 9/10|13
#apps | 565|104 | 101 |9 |61 |33 |16 |16 | 2| 2| 3| 1

in an another implicit WrappingIntent. In this scenario a malicious applica-
tion can receive the PendingIntent, and redefine its base Intent resulting in a

privilege escalation attack.

5.5 Evaluation

We applied PIAnalyzer to 1000 randomly selected applications from the Google
Play Store. All experiments were performed on a MacBook Pro with MacOS High
Sierra 10.13.3 installed, a 2,9 GHz Intel Core i7 processor and 16 GB DDR3 RAM.

PIAnalyzer reports 70 PendingIntent vulnerabilities and 1288 PendingIntent warn-
ingd] We statistically analyzed the distribution of vulnerabilities and warnings
among the inspected applications. Table [1| depicts the distribution ratios. In the
vast majority of the cases a vulnerability does not occur more than once per appli-
cation. However, the situation is different for warnings. Our findings show that it
is likely for an application to include more than one warning. PendingIntents are

thus more likely to be delivered to system components (e.g., AlarmManager).

Additionally, we analyzed the proportion of vulnerabilities and warnings that
were contained in third party libraries. Remarkably, we find that 80% of the re-
ported vulnerabilities and 98% of the reported warnings occur in third party li-
braries. Third party libraries thereby act as a multiplier for vulnerabilities, as they
are used by a large number of applications. We therefore would like to stress the
importance of PIAnalyzer for library developers. Table 5.2| provides a list of these
libraries along with their contribution to the number of vulnerable apps. Libraries
are included as the dependencies in the build.gradle file[| As this file is not compiled
into the APKs, we could not find the exact version of the library. A tedious way to

find the exact version of the library is to match the app’s intermediate code with

2For explanations of the severity levels please refer to section
Bhttps: / /developer.android.com/studio/build /index.html
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Table 5.2: Libraries contribution to number of vulnerabilities

| Library | Description | app vuln. | Year |
Google Messaging Library | Cloud Messaging 39 | 2017
Cloud to Device Messaging | Cloud Messaging 8 | 2016
TapJoy Marketing and Automation 3 | 2016
MixPlane Push Notification & In App Messaging 4 | 2016
LeanPlum Messaging, Variable, Analytics & Testing 2| 2017

the intermediate code of the each version of library. We find that these versions
of libraries are still in use in the recent versions of applications. Thus, instead of
providing the exact version of libraries we provide their year of appearance in an

application (in 1000 applications from our experiment).

As mentioned, an attacker can escalate a PendingIntent vulnerability into a priv-
ilege escalation attack and leverage the permissions of the vulnerable applications.
We therefore analyzed the permissions of the applications for which PIAnalyzer re-
ported vulnerabilities. We find that 279 dangerous permissions [35] and 273 normal
permissions are used by these vulnerable applications. As dangerous permissions
are required for performing critical operations on the device, an attacker may act

maliciously in many of these instances, e.g., call a premium number.

Table[5.3|provides a list of ten vulnerable applications (randomly selected) along
with their category and used dangerous permission groupg’} The permission groups
contain permissions organized into a device’s capabilities or features, e.g., PHONE
group includes the CALL_PHONE permission. 35% of the vulnerable applications

belong to the Business, Entertainment, or Education category.

In our experiment with 1000 real-world applications, the average execution time
of PIAnalyzer is close to 13 seconds with a minimum of 10 seconds and the max-
imum time of 21 seconds. This time performance strongly demonstrates the effi-
ciency of PIAnalyzer and proves that it can easily be applied to a large number of

real-world applications.

To evaluate the precision and the soundness of PIAnalyzer, we manually inspected
the reported results of ten applications. Manual inspection is time consuming as
it requires analysis of many SMALI code files. Out of ten applications, we find

that nine times PIAnalyzer reports correct vulnerabilities/warnings, indicating a

*Due to the lack of space, we do not provide the full list of 1000 apps nor exact permissions here.
We will publish the full list after the publication of this paper together with the source code of our
analysis.
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Table 5.3: Vulnerable applications with dangerous permissions

H App Name \ App Category \ Dangerous Permission Group H
SandWipPlus Communication | Contacts, Phone, Sms, Storage
Reason News & Maga- Contacts, Location, Phone, Storage
zines
Santa Dance Man News & Maga- Phone, Storage
zines

SmartInput Keyboard | Personalization | Phone
Calendar, Contacts, Location, Phone,

drift15house Entertainment
Storage

Fishermens Entertainment Contacts, Camera, Location, Microphone,
Phone, Storage
Camera, Location, Microphone, Phone,

Derek Carroll Photography Photography, Sms, Storage

ElleClub Business Camera, Contacts, Location, Microphone,
Phone, Sms, Storage

Chat Locator Productivity Location, Storage

Deptford Mall Lifestyle Calendar, Contacts, Location, Micro-

phone, Phone, Sms, Storage

high precision. In one case, the base intent was manipulated dynamically and thus

PIAnalyzer conservatively overapproximated it as implicit intent.

In addition, we applied PIAnalyzer to the vulnerability in the Settings app (de-
scribed in the section that led to privilege escalation to SYSTEM privileges.
PIAnalyzer correctly reports the vulnerability and so PIAnalyzer could have pre-
vented the discussed vulnerability. Finally, we applied PIAnalyzer to multiple self-
written demo examples that included PendingIntent vulnerabilities. PIAnalyzer

correctly reports each of them, indicating high recall.

5.5.1 Case Study: Vulnerability in the Google Cloud Messaging
(GCM) Library

PIAnalyzer finds a vulnerability in an outdated version of the Google Cloud Mes-
saging (GCM) Library, which is part of the Google Messaging Library and still in
use by many applications, e.g., Table Tennis 3D [56] or the Android Device Man-
ager. Among 1000 analyzed applications, we find that 37 out of 39 (cf. Table
applications still use this version of GCM. The vulnerability exists in the file Google-
CloudMessaging.java of the GCM Library. Listing |5.6/shows the code snippet of the

vulnerable method send. On line 4, an implicit intent named locallntent is created.
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1 public void send(String paramStringl, String paramString?2,

2 long paramlLong, Bundle paramBundle) {

3 /] ...

4+ Intent locallntent = new
Intent("com.google.android.gcm.intent.SEND") ;

5 localIntent.putExtras(paramBundle);

¢ c(locallntent);

7 locallntent.putExtra("google.to", paramStringl);

s locallntent.putExtra("google.message_id", paramString?2);

9 locallntent.putExtra("google.ttl", Long.toString(paramLong));

10 this.eh.sendOrderedBroadcast(locallntent, null);

Listing 5.6: Vulnerable Method

1 void c(Intent paramIntent) {

2 try {

3 if (this.xg == null)

4 this.xg = PendingIntent.getBroadcast(this.eh, 0, new
Intent(), 0);

5 paramIntent.putExtra("app", this.xg);

6 } finally {}

Listing 5.7: PendingIntent with an empty base intent

On line |6 locallntent is passed to a method c. Listing [5.7] shows the code snippet
for the method c. In this method, a PendingIntent with an empty base intent is
created (line ). On line [5, this PendingIntent is stored as extra data to the in-
put parameter paramlIntent. Later in method send (listing [5.6), localIntent is broad-
cast to all registered receivers. Any Broadcast Receiver, declaring this intent filter
(com.google.android.gcm.intent. SEND) in its manifest file, can receive this Intent and
can easily extract the associated PendingIntent. In this case the permissions of the
attacker application are escalated to the permissions of applications that use GCM.
In our experiments, we are able to intercept locallntent and to extract the associated
PendingIntent. As the base intent in the associated PendingIntent is blank, we set
any arbitrary action/component and trigger it with the same identity as the vul-
nerable application. This enables us to perform arbitrary actions with the identity
of the vulnerable application, e.g., sending a malicious message to a different com-
ponent of the vulnerable application and making it believe it was sent from within
the application (i.e. identity theft). In the worst case scenario, if this GCM version
were used by a system application with system permissions (GCM is an official

Google library), a malicious application could for example factory reset the device
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(deleting all data). We tested several versions (4-7) of system APKs from Google
without such inclusions found. However, due to lacking availability we could not

check system APKs from other vendors.

5.6 Limitations

PIAnalyzer is a static analysis tool which shares common limitations with other
static analysis approaches. As the program behavior can depend on dynamic input,
every static analysis tool cannot be completely sound and precise. The slicing analy-
sis of PIAnalyzer is affected by these limitations. In theory, it is possible to make an
Intent implicit or explicit depending on external runtime input. This could happen
either by making the constructor used for intent creation or the usage of explicit
transformation methods depend on external input. When it is not clear at compile
time whether an Intent is implicit or explicit, PIAnalyzer conservatively assumes
that it is implicit. Analogously, the slices computed by PIAnalyzer are, by their na-
ture, conservative approximations of the actual control flow at runtime. In theory,
it is also possible to make use of Intents in Reflection or native code. PIAnalyzer
neither supports reflection, nor native code. We would like to stress that while the
above mentioned cases are possible in theory, they are rare in the real world and
we could not observe a single instance of these cases during inspection of many ap-
plications. Some of the operations that require permissions cannot be performed
directly via Intents to system interfaces, e.g., the retrieval of a precise location. Thus
an application with only these permissions may not be vulnerable to PendingIntent

related attacks.
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State-of-the-Art Anti-theft Solutions

While the idea of a honeypot account for theft protection is novel, there has been
extensive research in other theft protection mechanisms in Android. In case of a
theft it is likely that a potential thief will remove the SIM card from the device and
factory reset it. At the time of this writing, no existing anti-theft mechanism can
protect the user’s privacy, maintain his data and keep good chances that the device

will be found again at the same time.

Dhanu et al. [75] created a software for theft protection. After the theft protec-
tion software was installed and configured, it waited for a replacement of the SIM
card. Once the SIM card was replaced, it started collecting video material, location
information, and sent them via MMS to a phone number previously configured by

the device owner.

Also Ajay Shetty [74] proposed an anti theft software that was triggered by a
replacement of the SIM card. Whenever this event occurred, the software sent a
notification SMS to a preconfigured number. From that point of time, it was possible

for the device owner to retrieve the current location of the device via a SMS request.

Chouhan et al. [16] created a theft protection software in the form of a web based
remote administration tool. Over a web interface the device owner could request
the current location of the device. The software also enabled the device owner to
record voices of the thief, wipe his/her private data and read the web history from
the thief. In addition, the software notified the device owner about replacements
of the SIM card.

The work of Al Rassan and Al Sheikh [3] proposed an anti-theft system that was
supported by SMS. After being activated by a specially crafted SMS, an application,
that was previously installed on the stolen phone could either broadcast its location
or lock personal data that was stored on the phone. This data included media and
log files, as well as SMS and MMS records.

Kuppusamy et al. [51] proposed a system for theft protection that could also be
used as simple remote administration tool. Via SMS messages it was possible to
locate the device, erase critical data, trace calls, manage incoming SMS and system

access.

Yu et al. [89] proposed a system for remotely wiping stolen phones. This system
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worked in a way that a device owner could register his /her phone at the emergency
call service provider. He could now from any point of time report the phone as
stolen to the emergency call service provider. Additionally a background applica-
tion was installed on the phone. Whenever the SIM card of the phone was removed,
the application sent a wipe request to the emergency call service provider. If the
device was stolen, the emergency call service provider answers this request with a
modified call declined request, after which the phone would be wiped by the ap-
plication. This scheme had the benefit that it neither requires a WIFI connection,
nor an inserted SIM card to trigger the device wiping. However, the personal data

and device was lost.

In all of the mentioned work, the thief has initial access to the user data until the
anti-theft mechanism is triggered either automatically after a certain event occurs or
manually by the device owner. The even more severe limitation of the mentioned
approaches is that none of them prevents resetting the device. For this reason in
each of this work, after the thief has triggered a factory reset, the anti-theft mecha-
nisms are deleted and there are no chances that the device owner can regain his/her

device.

Apart from academic work, there exist commercial solutions for locating and se-
curing a lost or stolen device. Examples for these products are Apple’s "Find My
Device" [4], Avast’s "Free Mobile Security" [6] or Symantec’s "Norton Anti-Theft"
[78]. These solutions can lock the device, locate it and provide additional function-
ality for mitigating damage in case of loss or theft. Additionally to the limitations
mentioned previously, these solutions suffer from permission restrictions that are
imposed by the Android Security Model. These restrictions lead to severe flaws.
This insight is supported by the work of Simon and Anderson [76] that have ex-
amined various mobile anti-virus solutions for Android. They discovered failures
in the implementation of the remote lock and wipe functionalities of these applica-
tions. Beside the restrictions imposed by the Android Security Model, they see the

reasons for these flaws in certain vendor customizations.

Markus Schneider [72] developed a password manager that uses a similar ap-
proach for another domain. This password manager returns fake password infor-

mation when a wrong master password is used.

Srinivasan and Wu [77] proposed a mechanism that primarily prevented the smart-

phone from being turned off or being silenced in case of a theft. This approach was
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implemented by protecting the called functionality with passwords. Additionally,
their proposed mechanism could wipe the device after a certain amount of failed
password guesses. They rely on a password for preventing the thief accessing sen-
sitive data. This measure is good for protecting the user’s privacy but will at the
same time trigger the thief to factory reset the device. After the factory reset, the
anti theft mechanism will be deleted and there will be no chances for the owner to

regain his/her device.

Another approach for protecting the privacy of user data in the case of a device
theft was proposed by Tang et al. [80]. In their approach sensitive user data was
encrypted and saved in the cloud. Their goal was to minimize the amount of sensi-
tive data that was stored on the phone. The access to this cloud storage could now
be restricted by any means, such as access rate limits, complete blocking as soon as
the device was reported stolen and logging access. This approach focuses on pro-
tecting sensitive data of the user. Unfortunately, it could not help the owner regain

his/her device.

State-of-the-Art ICC Analyzers

R-Droid [7] is an information flow analysis tool. It supports multi-threading and
AsyncTasks and focuses on the resolution of strings for information flow purposes.
As is, R-Droid does not support intents but conservatively reports every flow to an

intent sender function as a leak.

Arzt et al. proposed Flowdroid [5], a static taint analysis tool that includes an
extensive component lifecycle model. Flowdroid does not support certain callback
methods and cannot analyse string manipulations. For these reasons its results are

neither precise nor sound.

AppScan [43] is a commercial tool for detecting vulnerabilities in mobile and web
applications, including information leaks in Android applications. However, it only
supports intra-app inter-component communication analysis. Further, AppScan

requires source code of the inspected application.

IccTA, proposed by Li et al. [53], leverages static taint analysis to analyze inter-
component information flow leaks. However, IccTA neither handles multithread-

ing nor complex string analysis. Further, IccTA ignores some “rarely used ICC
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methods such as startActivities” [53]], which leads to missed information leaks. Fi-
nally, IccTA requires the usage of APKCombiner [52], which does not scale to larger

applications.

Klieber et al. proposed DidFail [50], a tool that analyzes information flow in An-
droid applications. However, DidFail is limited to the analysis of Android Activities

and implicit intents.

Wei et al. proposed Amandroid [84], which computes multiple graphs and uses
them for resolving intents similarly to ordinary function calls. However, Aman-

droid ignores several sink functions, such as startActivityForResult and bindService.

Epicc, proposed by Octeau et al. [62] is a tool for the analysis of Android inter-
component communication. Unlike IIFA, it focuses on ICC related vulnerabilities
and does not consider data flows within an application. Jiang and Xuxian [49] pro-
posed ContentScope, a dataflow analysis tool that detects integrity and confiden-
tiality vulnerabilities. However, ContentScope is limited to only Content Providers.
Gordon et al. [36] proposed DroidSafe, a tool for the detection of information flow
vulnerabilities. DroidSafe does not analyze the lifecycle of Android applications
leading to imprecision. DroidSafe’s precision is further reduced by its missing
flow-sensitivity. Li et al. [54] proposed PCLeaks, a data-flow analysis tool for the
detection of information leaks and component hijacking in Android applications.
PCLeaks cannot handle multithreaded programs and multiple ICC sink methods

such as startActivities.

Hunang et al. [42] proposed a type system for the prevention of data disclosure.
Unlike our approach, they require annotations in the source code, which puts an
extraburden on application developers. Barros et al. [8] developed a type system for
the resolution of intents and reflections. This resolution requires annotated source
code. Additionally, they inherit the imperfections of their underlying framework
Epicc [62]. ScanDroid is a tool proposed by Fuchs et al. [24] for the analysis of
Android intents via a constraint system. In this approach, the lack of distinction

between component contexts leads to imprecise analysis results.

DroidChecker, proposed by Chan et al. [13] is a taint analysis tool for data flows
within Android applications. Because of imprecise permission handling, Droid-
Checker is neither sound, nor complete. Further it cannot handle dynamic features
of Java, such as polymorphism. Enck et al. [21] proposed TaintDroid, a dynamic

taint-analysis tool that supports intents. TaintDroid is especially suited for finding
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leaks of sensitive data in vulnerable applications. As TaintDroid is a taint based

approach, it cannot differentiate between different sources of sensitive data.

Octeau et al. [61] implemented IC3, an analysis tool for Android intents. Their
approach requires a specification of the intended program behavior, written in a
declarative language COAL. However, the creation of the COAL specification re-
quires access to the source code and expert knowledge. Liu et al. [57] proposed
MR-Droid, which generates an information flow graph and computes risk scores
for various vulnerabilities. However, it does not natively support groups of more
than two applications and misses various details for creating ICC links. DroidDis-
integrator by Schuster et al. [73] applied dynamic analysis using a device emulator.
This emulator monitors app component communication, generates policies and en-
forces them directly in the application. However, it is limited to intra-application

information flow and is prone to false positives and false negatives.

State-of-the-Art PendingIntent Analyzers

To the best of our knowledge, there exists no approach that detects the described
PendingIntent vulnerabilities at the time of this writing. Bugiel et al. [11] proposed
XManDroid, a reference monitor to prevent privilege escalation attacks. Their ap-
proach is focused on application permissions and policies to model the desired ap-
plication privileges. In contrast to our approach, XManDroid only regards Pending-
Intents as vehicle for inter-component communication and does not consider the

peculiarities and vulnerabilities of PendingIntents.

SAAF [2], proposed by Hoffmann et al., is a tool to statically analyze SMALI code.
It recovers String constants from backward slices of method calls in order to detect
suspicious behavior. However, as it could not produce the expected results in our

experiments with current APKs we re-implemented a SMALI slicer.

Lietal. [55] analyzed vulnerabilities in Google’s GCM and Amazon’s ADM mobile-
cloud services. They discovered a critical logical flaws, concerning both of these
services. Additionally, they discovered a PendingIntent vulnerability in GCM. Un-
like our approach, they discovered this vulnerability by manual code analysis and
they do not provide an automated approach for discovering PendingIntent vulner-

abilities.
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Apart from work considering PendingIntents, there is an extensive body of work
on general Intent analysis. One line focuses on Intent fuzzers for finding Intent re-
lated vulnerabilities. For example, Yang et al. [87] developed an Intent fuzzer for the
detection of capability leaking vulnerabilities in Android applications. JarJarBinks,
proposed by Maji et al. [59], is a fuzzing tool for Android intents. By sending a
large number of requests, the authors found robustness vulnerabilities in the An-
droid runtime environment. Sasnauskas and Regher [71] created an Intent Fuzzer.
Their approach is based on static analysis and generates random test-cases based on
the analysis results. In contrast to our approach, their approaches do not consider

PendingIntent related vulnerabilities.

Other work focuses on Intent based test case generation. For example, Jha et
al. [48]] proposed a model that abstracts Android inter-component communication.
From this model the authors derived test cases that facilitates the software engineer-
ing process. Salva and Zafimiharisoa [70] proposed APSET, a tool that implements
a model-based testing approach for Android applications. The proposed approach
generates test cases that check for the leakage of sensitive information. In contrast,

our approach is focused on the security perspective of PendingIntents.

As Intents are extensively used by malware, some approaches use Intent analysis
as a feature for malware detection. Feizollah et al. [22] proposed AndroDialysis,
a tool that uses Intents as indicating feature for Android malware. Tam et al. [79]
proposed CopperDroid, a monitor system which tracks events via virtual machine
introspection. CopperDroid considers PendingIntent as vehicle for Inter Process
Communication. In contrast, our approach is intended for finding PendingIntent

related vulnerabilities in benign applications.

Several approaches use various static information flow techniques for Intent analy-
sis. Sadeghi et al. [69] proposed COVERT, a static analysis tool for the analysis of In-
tents. It computes information flows by static taint analysis. Using COVERT, the au-
thors discovered hundreds of vulnerabilities in applications from the Google Play
Store and other sources. Yang et al. [88] proposed Applntent, an analysis tool for
finding leakage of sensitive information via Intents. The key idea of their approach
is to distinguish intended information leakage from unintended leakage consider-
ing user interface actions. The authors leverage the Android execution model to
perform an efficient symbolic execution analysis. Unlike ours, both approaches do

not consider PendingIntent related vulnerabilities.



87

Chin et al. [15] proposed ComDroid, a tool for detecting inter-component related
vulnerabilities, e.g., Intent spoofing or Service Hijacking. Chan et al. [14] proposed
an approach to detect privilege escalation attacks in Android applications. As their
approach does not include any kind of information flow control, it overapprox-
imates possible attacks leading to reduced precision. Again, both do not detect

security vulnerabilities caused by PendingIntents.






Part V

Conclusion and Outlook






Chapter 6

Conclusion

The exponential growth in smartphones’ usage has lured several malicious entities
to hunt for users’ sensitive data. While Android is the most favorable smartphone
operating system, security measures to protect against dubious activities are lim-
ited. Modern state-of-the-art analyses took great effort to enhance these security
measures. Present anti-theft frameworks provide great features in case of loss of
the device , e.g, remote tracking of the device. Unfortunately, they do not work if
they do not have an active network connection, e.g., if the SIM card was removed
from the device. In addition, recent research considered static program analysis to
detect potentially dangerous data leaks. Yet, state-of-the-art information flow anal-
yses suffer from several shortcomings with respect to precision, soundness, and

scalability. This thesis addresses these problems by:

* Developing the framework to protect the users’ privacy/data against phys-
ical device theft/loss: In this work we propose ThiefTrap, a novel concept
using a honeypot account for the purpose of theft protection. Using this con-
cept it is possible to protect sensitive user data while retaining high chances
to regain the device. Our novel approach is the first that can achieve this com-
bination of desired properties. We implemented our approach as modifica-
tions on the latest version of the Android operating system, the most used
operating system in mobile devices at the time of this writing. Based on this

implementation we successfully evaluated our approach in an empirical user
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6. Conclusion

study including 35 participants. The results of our study show that it is not
possible for a user to distinguish the honeypot account from a regular un-
locked device. Additionally, we could retrieve information of the participants
that in a real world scenario could be used to regain the device. It should be
mentioned that the proposed concept is universal and can be customized for

various scenarios and platforms.

Developing the frameworks to protect the users’ privacy/data against (un)
intentional application leaks: In this work we propose two novel frame-
works, IIFA and PIAnalyzer, for the information flow analysis in Android ap-

plications.

ITFA focuses on the information flow analysis of intents. In this work we
developed a novel information-flow analysis for IAC (and ICC) based on an
intent-flow pre-analysis that evades combinatorial explosion of analyzing all
potential communication partners, while precisely matching type and key in-
formation of intent data as well as apps registered to receive certain implicit
intents. We compared IIFA with six related tools on four standard bench-
mark sets. IIFA achieves 100% precision and recall rates on both benchmark
sets and thereby significantly outperformed every previous tool. We finally
applied IIFA on the 90 most popular applications from the Google Playstore
and showed that in contrast to state-of-the-art tools the runtime performance

of IIFA scales to large real-world applications.

PIAnalyzer is the first approach to analyze and detect PendingIntent-related
vulnerabilities. PIAnalyzer is fully automated and does neither require the
source code of the applications under inspection, nor any effort by the analyst.
We evaluated PIAnalyzer on 1000 randomly selected applications from the
Google Play Store to assess the runtime performance, precision and sound-
ness of PIAnalyzer. PIAnalyzer takes on average only approximately 13 sec-
onds per application, which scaled up well to the large test sets. PIAnalyzer
discovers 1288 warnings and 70 PendingIntent vulnerabilities. We manually
investigated some of the reports and elaborated on a privilege escalation vul-

nerability caused by the usage of a prevalent Google library.



Chapter 7

Future Work

7.1 Protection for the Alternative Physical Storage
Medium

This thesis provides ThiefTrap, an anti-theft framework for the theft/loss protection
of an Android device. While ThiefTrap is an important step in the development of
anti-theft mechanisms, it can be further extended in the future. Potential extensions
include the protection of alternative storages of private user data, such as the SIM
card and the device settings. In our approach, these storages were excluded, as
the SIM card is rarely used today for storing personal information and the device
settings do not contain highly sensitive information. Still, there are some users who
would like also to protect these places. A further point of future work is the creation
of alternative mechanisms that simulate the owner’s account data from within the
honeypot account. These mechanisms can include the automatic or semi-automatic

generation of fake data.

7.2 Improving the String Analysis for ICC

ITFA models String and List APIs in order to recover strings created using concate-

nation, substring, etc. More contrived examples like converting a string to an array
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of chars (to be manipulated) can be further extended in the future. Due to our mod-
ular design we could also add more expensive analyses like SMT-solvers to handle

more cases.

7.3 Adding IFC for Android’s Hybrid-App

Communication

Hybrid mobile apps combine native app components with web app components
into a single mobile application. Intuitively, hybrid apps are native applications
combined with web technologies such as HTML, Javascript and CSS. In Android,
such a communication is achieved via a WebView, which is a chromeless browser ca-
pable of displaying webpages. The developer survey from App Trends [47] shows
the increasing prevalence of the hybrid applications: In the last two years (2015-17),
app development with native tools has decreased significantly (nearly 7x decrease).
Whereas, the number of hybrid-built apps is growing as a share of overall app de-
velopment. By the end of 2019, 32.7% of developers surveyed expect to completely

abandon native development in favor of hybrid.

Due to the fact that hybrid apps combine native and web technologies in a single
app, the attack surface for malicious activities increases significantly as potentially
untrusted code that is loaded at runtime can interfere with the trusted Android en-
vironment. In our study with 7,500 random applications from Google Play Store,
we find that 68% of these apps use at least one instance of the WebView and 87.9%
of these install an active communication channel between Android and JavaScript.
These communications include exchange of various pieces of sensitive information,
such as the user’s location information. To assess the impact on user privacy a stan-
dalone analysis of the Android or Javascript side is thus clearly insufficient. A com-
prehensive solution comprise of IFC on combination of JavaScript and Android can

be further extended in the future.
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A Smali Code for the Creation of a PendingIntent
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.method protected onCreate(Landroid/os/Bundle;)V

# 5 local registers are used in this method

.locals 5

# Declaration of a parameter register with a given name

.param pl, "savedInstanceState" # Landroid/os/Bundle;

# End of the method prologue. Start of the actual code.

.prologue

# A call to a super constructor
invoke-super {pO, pi},
Landroid/support/v7/app/AppCompatActivity;->
onCreate(Landroid/os/Bundle;)V

# Declaration of a String in register v3

const-string v3, "android.intent.action.CALL"

# Creation of an Intent object in register vO

new-instance v0, Landroid/content/Intent;

# Invocation of the constructor of the intent object
invoke-direct {vO0, v3},

Landroid/content/Intent;-><init>(Ljava/lang/String;)V

# Return of the method with no return value

return-void

.end method




102




103

A.1 Related works Comparison

Table 1: Comparison results.
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