
Derivation of a Fast Integer Square Root Algorithm

Christoph Kreitz
Department of Computer Science, Cornell-University, Ithaca, NY 14853-7501

kreitz@cs.cornell.edu

Abstract

In a constructive setting, the formula ∀n ∃r r2≤n ∧ n<(r+1)2 specifies an algorithm for
computing the integer square root r of a natural number x. A proof for this formula implicitly
contains an integer square root algorithm that mirrors the way in which the formula was proven
correct. In this note we describe the formal derivation of several integer square root algorithms
within the Nuprl proof development system and show how efficient algorithms can be derived
using advanced induction schemes.

1 Deriving a Linear Algorithm

The standard approach to proving ∀n ∃r r2≤n ∧ n<(r+1)2 is induction on n, which will lead to
the following two proof goals

Base Case: prove ∃r r2≤0 ∧ 0<(r+1)2

Induction Step: prove ∃r r2≤n+1 ∧ n+1<(r+1)2 assuming ∃rn r2≤n ∧ n<(rn+1)2.

The base case can be solved by choosing r = 0 and using standard arithmetical reasoning to
prove the resulting proof obligation 02≤0 ∧ 0<(0+1)2.

In the induction step, one has to analyze the root rn. If (rn+1)2≤n+1, then choosing r = rn+1
will solve the goal. Again, the proof obligation (rn+1)2≤n+1 ∧ n+1<((rn+1)+1)2 can be shown
by standard arithmetical reasoning. (rn+1)2 > n+1, then one has to choose r = rn and prove
r2
n≤n+1 ∧ n+1<(rn+1)2 using standard arithmetical reasoning.

Figure 1 shows the trace of a formal proof in the Nuprl system [CAB+86, ACE+00] that uses
exactly this line of argument. It initiates the induction by applying the library theorem

NatInd ∀P:N→P. (P(0) ∧ (∀i:N+. P(i-1) ⇒ P(i))) ⇒ (∀i:N. P(i))

The base case is solved by assigning 0 to the existentially quantified variable and using Nuprl’s
autotactic (trivial standard reasoning) to deal with the remaining proof obligation. In the step
case (from i−1 to i) it analyzes the root r for i−1, introduces a case distinction on (r+1)2≤i and
then assigns either r or r+1, again using Nuprl’s autotactic on the rest of the proof.

Nuprl is capable of extracting an algorithm from the formal proof, which then may be run within
Nuprl’s computation environment or be exported to other programming systems. The algorithm is
represented in Nuprl’s extended lambda calculus.

Depending on the formalization of the existential quantifier there are two kinds of algorithms
that may be extracted. In the standard formalization, where ∃ is represented as a (dependent)

1

mailto:kreitz@cs.cornell.edu?subject=Integer-Square-Root�
http://www.nuprl.org�
http://www.nuprl.org�
http://www.nuprl.org�
http://www.nuprl.org�
http://www.nuprl.org�
http://www.nuprl.org�
http://www.nuprl.org�

∀n:N. ∃r:N. r2≤ n < (r+1)2

BY allR

n:N
` ∃r:N. r2≤ n < (r+1)2

BY NatInd 1

.....basecase.....
` ∃r:N. r2≤ 0 < (r+1)2

√ BY existsR d0e THEN Auto

.....upcase.....
i:N+, r:N, r2≤ i-1 < (r+1)2

` ∃r:N. r2≤ i < (r+1)2

BY Decide d(r+1)2≤ ie THEN Auto

.....Case 1.....
i:N+, r:N, r2≤ i-1 < (r+1)2, (r+1)2≤ i
` ∃r:N. r2≤ i < (r+1)2

√ BY existsR dr+1e THEN Auto’

.....Case 2.....
i:N+, r:N, r2≤ i-1 < (r+1)2, ¬((r+1)2≤ i)
` ∃r:N. r2≤ i < (r+1)2

√ BY existsR dre THEN Auto

Figure 1: Proof of the Specification Theorem using Standard Induction.

product type, the algorithm – shown on the left1 – computes both the integer square root r of a
given natural number n and a proof term, which verifies that r is in fact the integer square root
of n. If ∃ is represented as a set type, this verification information is dropped during extraction
and the algorithm – shown on the right – only performs the computation of the integer square root.

let rec sqrt n
= if n=0 then <0,pf 0>
else let <r,pfi−1> = sqrt (n-1)

in
if (r+1)2≤n then <r+1,pfn>
else <r,pfn’>

let rec sqrt n
= if n=0 then 0
else let r = sqrt (n-1)

in
if (r+1)2≤n then r+1
else r

Using standard conversion mechanisms, Nuprl can then transform the algorithm into any pro-
gramming language that supports recursive definition and export it to the corresponding program-
ming environment. As this makes little sense for algorithms containing proof terms, we only convert
the algorithm on the right. A conversion into SML, for instance, yields the following program.

fun sqrt n = if n=0 then 0
else let val r = sqrt (n-1)

in
if n < (r+1)ˆ2 then r
else r+1

end

1The place holders pfk represent the actual proof terms that are irrelevant for the computation.

2

http://www.nuprl.org�

2 Deriving an Algorithm that runs in O(
√
n)

Due to the use of standard induction on the input variable, the algorithm derived in the previous
section is linear in the size of the input n, which is reduced by 1 in each step. Obviously, this is
not the most efficient way to compute an integer square root. In the following we will derive more
efficient algorithms by proving ∀n∃r r2≤n ∧ n<(r+1)2 in a different way. These proof, however,
will have to rely on more complex induction schemes to ensure a more efficient computation.

A more common method to compute the integer square root of a given number n is to start a
search for a possible result r. One starts with r=0 and then increases r until (r+1)2 > n. In the
context of a proof, this means that we need to introduce an auxiliary variable k for the search and
perform induction on this variable instead of n.

∀n:N. ∃r:N. r2≤ n < (r+1)2

BY allR THEN Assert d∀j:N. (n-j)2≤n ⇒ ∃r≥n-j. r2≤ n < (r+1)2e

.....Assertion.....
n:N, j:N, (n-j)2≤n
` ∃r≥n-j. r2≤ n < (r+1)2

BY NatInd 2
.....basecase.....

n:N, (n-0)2≤n
` ∃r≥n-0. r2≤ n < (r+1)2

√ BY existsR dne THEN Auto’
.....upcase.....

n:N, j:N+, (n-(j-1))2≤n ⇒ ∃r≥n-(j-1). r2≤ n < (r+1)2, (n-j)2≤n
` ∃r≥n-j. r2≤ n < (r+1)2

BY Decide dn < (n-j+1)2e THEN Auto
.....Case 1.....

n:N, j:N+, (n-(j-1))2≤n ⇒ ∃r≥n-(j-1). r2≤ n < (r+1)2, (n-j)2≤n,
n < (n-j+1)2

` ∃r≥n-j. r2≤ n < (r+1)2

√ BY existsR dn-je THEN Auto’
.....Case 2.....

n:N, j:N+, (n-(j-1))2≤n ⇒ ∃r≥n-(j-1). r2≤ n < (r+1)2, (n-j)2≤n
¬(n < (n-j+1)2)
` ∃r≥n-j. r2≤ n < (r+1)2

BY impL 3 THEN Auto

n:N, j:N+, (n-(j-1))2≤n ⇒ ∃r≥n-(j-1). r2≤ n < (r+1)2, (n-j)2≤n
¬(n < (n-j+1)2)
` ∃r≥n-j. r2≤ n < (r+1)2

√ BY existsR dre THEN Auto’

.....Main.....
n:N, ∀j:N. (n-j)2≤n ⇒ ∃r≥n-j. r2≤ n < (r+1)2

` ∃r:N. r2≤ n < (r+1)2

BY allL 2 dne THEN Auto

n:N, r:N, r≥n-n, r2≤ n < (r+1)2

` ∃r:N. r2≤ n < (r+1)2

√ BY existsR dre THEN Auto

Figure 2: Proof of the Specification Theorem using Search

3

A naive approach would be to prove the theorem ∀n∀k ∃r≥k r2≤n ∧ n<(r+1)2 using induction
on k and then to instantiate this theorem with k=0. This approach, however, has two major flaws.
First, the induction on k expresses a solution for k in terms of a solution for k−1, which is less
efficient than a forward search. Second, the search must begin at some k>

√
n but the theorem

obviously does not hold for k>
√
n.

To fix these problems, we need to change the direction of the search into one that starts at 0
and recursively solves the problem for k by consulting a solution for k+1 until the square root has
been found, which can be expressed by a standard induction over j = n−k. We also need to add a
limit to the search, i.e. (n−j)2=k2≤n.

The formal Nuprl proof begins by asserting ∀j (n−j)2≤n ⇒ ∃r≥(n−j) r2≤n ∧ n<(r+1)2,
proves this statement by induction, and then instantiates it with j=n. Extracting the algorithm
from this proof, depicted in Figure 2, and converting it into SML leads to the following program,
which now runs in O(

√
n).

fun sqrt n = let fun aux j =
if j=0 then n
if n < (n-j+1)ˆ2 then n-j
else aux (j-1)

in
aux n

end

Note that the case j=0 is never reached unless n is 0.

By using different induction schemes it is possible to modify this algorithm into a more con-
ventional form that uses an auxiliary variable k that is increasing instead of the term n−j, where
j is decreasing. This induction scheme, however, needs to make explicit that choices for the auxil-
iary variable have an upper bound (i.e. n), whereas the lower bound zero is implicit in the other
induction schemes that quantify over natural numbers. The induction scheme

RevNatInd ∀P:N→P. (∀i:{...t}. (∀j:{i+1..t}. P(j)) ⇒ P(i)) ⇒ (∀i:{...t}. P(i))
which can easily be derived from the scheme NatInd, enables us to begin our proof by asserting
∀k k2≤n ⇒ ∃r≥k r2≤n ∧ n<(r+1)2 and then to proceed as in Figure 2, replacing every occurrence
of n−j by k. The extracted algorithm would now be

fun sqrt n = let fun aux k =
if k=n then n
if n < (k+1)ˆ2 then y
else aux (k+1)

in
aux 0

end

Actually, the search algorithm is an instance of a generic search method that is implicitly
contained in the following theorem

NatSearch ∀P:N→P. ∀n:N. P(n) ⇒ (∃k:{0..n}. P(k) ∧ (∀j:{0..k-1}. ¬P(j)))
which states the (bounded) existence of a minimal k with some property P . Instantiating this
theorem with P (k) replaced by (k + 1)2 > n immediately gives us the desired search algorithm.

4

http://www.nuprl.org�

∀n:N. ∃r:N. r2≤ n < (r+1)2

BY allR

n:N
` ∃r:N. r2≤ n < (r+1)2

BY NatInd4 1

.....basecase.....
` ∃r:N. r2≤ 0 < (r+1)2

√ BY existsR d0e THEN Auto

.....upcase.....
i:N, r:N, r2≤ i÷4 < (r+1)2

` ∃r:N. r2≤ i < (r+1)2

BY Decide d((2*r)+1)2≤ ie THEN Auto

.....Case 1.....
i:N, r:N, r2≤ i÷4 < (r+1)2, ((2*r)+1)2≤ i
` ∃r:N. r2≤ i < (r+1)2

√ BY existsR d(2*r)+1e THEN Auto’

.....Case 2.....
i:N, r:N, r2≤ i÷4 < (r+1)2, ¬(((2*r)+1)2≤ i)
` ∃r:N. r2≤ i < (r+1)2

√ BY existsR d2*re THEN Auto

Figure 3: Proof of the Specification Theorem using Binary Induction

3 Deriving a Logarithmic Algorithm

One of the most efficient forms of computation on numbers is to operate on their binary represen-
tation and to construct a value bit by bit. The corresponding induction scheme requires proving a
conclusion P (x) from an induction hypothesis P (x÷2), where ÷ denotes integer division. For the
integer square root problem, this induction scheme would have to be used on the output variable
similarly to the way linear induction was used in the previous section.

It is much easierr, however, to use 4-adic induction on the input variable instead, as this leads
to a simpler proof. In fact, it is possible to mirror the proof given in Section 1 by applying the
library theorem

NatInd4 ∀P:N→P. (P(0) ∧ (∀i:N. P(i÷4) ⇒ P(i))) ⇒ (∀i:N. P(i))

and then replacing every occurrence of r in the arguments of a proof tactic by 2*r. Apart
from these differences, which are emphasized in both proofs, the proof in Figure 3 is identical
to the one in Figure 1. Accordingly, the generated algorithms have exactly the same structure.
Extracting the algorithm from the proof in Figure 3 and converting it into SML leads to the
following program, which now runs in logarithmic time (assuming that division by 4 is implemented
as bit-shift operation).

fun sqrt n = if n=0 then 0
else let val r = sqrt (n/4)

in
if n < (2*r+1)ˆ2 then 2*r
else 2*r+1

end

5

Final Remarks

The algorithms and derivations presented in this note are contained in Nuprl’s formal digital library
that is now available online for interactive browsing at http://www.nuprl.org.

Using the proof strategies for inductive reasoning described in [KP01] it is possible to automat-
ically construct all the proofs presented here. The implementation of this method as well as the
proofs generated by it will be posted as part of the formal digital library in the future.

This work was supported in part by the DoD Multidisciplinary University Research Initiative
(MURI) program administered by the Office of Naval Research (ONR) under Grant N00014-01-1-
0765 (Building Interactive Digital Libraries of Formal Algorithmic Knowledge) and by NSF Grant
CCR 0204193 (Proof Automation in Constructive Type Theory).

References

[ACE+00] Stuart Allen, Robert Constable, Richard Eaton, Christoph Kreitz, and Lori Lorigo.
The Nuprl open logical environment. In D. McAllester, editor, 17th Conference on
Automated Deduction, volume 1831 of Lecture Notes in Artificial Intelligence, pages
170–176. Springer Verlag, 2000.

[CAB+86] Robert L. Constable, Stuart F. Allen, H. Mark Bromley, W. Rance Cleaveland, J. F.
Cremer, Robert W. Harper, Douglas J. Howe, Todd B. Knoblock, Nax Paul Mendler,
Prakash Panangaden, Jim T. Sasaki, and Scott F. Smith. Implementing Mathematics
with the Nuprl proof development system. Prentice Hall, 1986.

[KP01] Christoph Kreitz and Brigitte Pientka. Connection-driven inductive theorem proving.
Studia Logica, 69(2):293–326, 2001.

6

http://www.nuprl.org�
http://www.nuprl.org�

