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ABSTRACT 
High failure rates in introductory courses on theoretical computer 
science are a common problem at universities in Germany, 
Europe, and North America, as students often have difficulties 
coping with the contents of such courses due to their abstract and 
theoretical nature. This paper describes modifications to the 
pedagogy of a theory course held at the University of Potsdam, 
Germany that are motivated by a cognitive apprenticeship 
approach and have led to a significant reduction of the course’s 
failure rates. Since our approach is based on the typical 
infrastructure for teaching introductory computer science courses 
and does not require additional expenses or special resources, it 
can be replicated by other institutions. We believe that it is a 
serious contribution to better support teaching as well as student 
learning success in this field. 

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]: 
Computers and Education - Computer and Information Science 
Education  

General Terms 
Human Factors 
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1. INTRODUCTION 
At German universities, theoretical Computer Science (CS) is 
considered one of the fundaments of undergraduate CS education. 
Introductory courses cover the foundations of automata, 
programming languages, computability, and computational 
complexity. Introducing idealized mathematical models of the 
computer and discussing methods for designing and analyzing 
them, students are supposed to develop the ability of thinking 
abstractly about computational processes. However, many 
students have problems understanding and following the course 
topics and failure rates in final exams are usually very high. This 
was also the case at the department of CS at the University of 
Potsdam, Germany. The introduction to theoretical CS is covered 
by an undergraduate course (briefly “Theory I”) that initially had 
very high failure rates (usually between 30-60%). Teaching 
assistants who worked weekly with the students reported on their 
difficulties in coping with the course material, observing a 
learning edge momentum very early during the course, see [10]. 
High failure rates in theoretical CS at the University of Potsdam 
are not a single phenomenon. Failure rates in other undergraduate 
CS courses tend to be very high as well and dropout rates from the 
CS major are not much lower than the national average, which is 
about 40-50% with most students giving up during the first four 
semesters, see [7].  

Reasons for failing a final exam can be very different and change 
over time. In addition, various factors can have different influence 
on a student’s overall progress and final learning outcome. In the 
past 30 years, a considerable number of studies investigated 
possible influencing factors on student success in CS courses like 
mathematical pre-knowledge, abstract thinking abilities, gender or 
social aspects, see ([12], p. 224-228) and ([2], p. 30-32). These 
and further recent studies indicate that there is no silver bullet to 
explain student success just by specific factors. Instead, the whole 
teaching and learning process needs to be focused on.  

Standing in the tradition of constructivism and student-oriented 
pedagogy, there is a variety of approaches to improving learning 
success in courses on theoretical computer science. Chesñevar et 
al. [3] focused on student engagement for deeper understanding 
and introduced “the historical context in which the theory of 
computing emerged as a new discipline” (p. 8). Hämäläinen [6] 
used problem-based learning and Korte et al. [8] developed a 
constructionist approach with game-building. In addition, Rodger 
et al. [11] suggested the visualization tool JFLAP for formal 
languages and automata theory, which shall enable students to 
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interact more with the introduced theoretical concepts. All 
approaches succeeded to engage students in more learning 
activities resulting in lower dropout and failure rates. Since we did 
not have access to additional resources, we focused on developing 
new ways to engage students in more learning activities with the 
resources we had.  

During the winter semesters 2011/20121 and 2012/2013 we 
modified the setup of Theory I by consolidating experiences from 
ad-hoc changes to the courses in the past eight years and taking 
into account the pedagogical approach of cognitive 
apprenticeship, a well known approach in education that has 
already been applied to CS education; see for example [2]. In the 
literature, however, there is no report that it has been used to 
improve theoretical CS education at university level. The result of 
our adjustments to the course was that less than 10% of all 
students failed the final exam while the remaining students’ scores 
were evenly distributed. Apart from a small amount of additional 
contact time our approach does not require any extra resources 
beyond the common infrastructure given at German universities 
for an introductory CS course. Therefore, our approach can be 
replicated by other institutions as well. In this paper, we will 
introduce cognitive apprenticeship and describe the adjustments to 
the setup of our course and discuss the final assessment that 
indicates the credibility and impact of our approach.   

2. THE THEORY I COURSE 
In this section we will introduce the Theory I course, the students 
who attend it, as well as the traditional pedagogy applied before 
we introduced our first modifications. 

2.1 Course Content and Learning Outcome 
The Theory I course focuses on the theory of automata and formal 
languages. It begins with an investigation of simple automata 
models and increases the level of complexity until the models 
reach the capabilities of modern computers. Specifically it covers 
the following topics: 

 Regular languages: finite automata, non-determinism, regular 
expressions, type 3 grammars, closure properties, and 
limitations. 

 Context free languages and type 2 grammars, pushdown 
automata, normal forms, parsing algorithms, closure 
properties, and limitations. 

 General and context sensitive languages and grammars, 
Turing machines, linear-bounded automata, closure 
properties. 

In the course of the lectures, students are supposed to develop 
specific skills that enable them to work with the models 
introduced in the course. For this reason, the department of CS of 
the University of Potsdam defined in 2010 normatively the 
intended learning outcomes that are described by three fields of 
specific skills ([9], p. 36-38): 

 Domain specific skills, for example: students are able to 
analyze deterministic and non-deterministic automata and 

                                                                 
1  The German academic system has a winter and a summer 

semester with teaching periods between mid October and mid 
February (with a two weeks Christmas break) and between mid 
April and mid July, respectively. 

grammars with mathematical methods and to prove their 
correctness; students know methods for translating between 
different automata models, grammars, and regular expressions 
and are able to justify the correctness of these conversions.  

 Methods skills, for example: students can employ 
mathematical proof techniques for the analysis of automata 
and formal languages; they can transform grammars into 
normal forms; they are able to prove whether a given formal 
language is regular (context free) or not.  

 Behavioral skills, for example: students are capable of 
working in small teams when developing solutions for given 
problems; they are able to give an oral presentation of their 
solutions and they can write them down in a precise language. 

Through the course, students are supposed to develop these skills 
and the final exam is supposed to assess these. 

2.2 The Theory I students 
Before entering an undergraduate program at a university in 
Germany, students are required to finish upper secondary 
education, which, depending on the school type, takes two or 
three years (grade 11-13 where students usually are 17-19 years 
old). With specific mandatory basic and advanced courses, upper 
secondary schooling can be roughly compared to the first one or 
two years of attending a college in the US. In consequence, 
entering a German university students immediately start with their 
major. The predominant majority of German universities are 
public and students do not pay tuition. Students are admitted to 
university in Germany based on their final grades at upper 
secondary school.  

The number of students attending the Theory I course usually 
varies between 150-300 (which is a rather small number for an 
introductory course at a German university) and consists of 50-
150 students majoring in CS, about 60-100 students majoring in 
Software-Engineering, 40-80 students majoring in business 
informatics, 10-25 prospective teachers with one of their majors in 
CS, and approximately ten students majoring in different fields 
(like mathematics, linguistics or others). CS and business 
informatics majors are supposed to attend the course in their first 
semester and software engineering majors in their third. While at 
many other German universities, CS majors attend an introductory 
course in theoretical CS in their third or fourth semester, the CS 
curriculum at the University of Potsdam places the course at the 
beginning of undergraduate studies, since many subsequent 
courses expect students to be familiar with automata theory and 
Turing machines. 

2.3 Traditional Course Setup and Problems 
Until we modified the course setup and its pedagogical approach, 
the course consisted of the following components, which are 
typical for an introductory CS course of this size in Germany: 

 135 minutes of lectures peer week given by a faculty member 
who presents the course topics, central concepts, algorithms, 
and their proofs and illustrates them with examples. 

 Weekly homework assignments based on the current lecture 
topics, which students are expected to solve individually and 
submit in writing for reviewing and grading by tutors (usually 
senior students). Handing in homework can but doesn’t need 
to be mandatory. 
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 90 minutes student session every other week attended by 
approx. 25-30 students and chaired by tutors, during which 
attending students are expected to present their solutions to 
last weeks’ homework assignment. This shall give them an 
opportunity to check the correctness of their solutions and 
discuss them  with the group. 

 One final written exam during the assessment period after the 
end of the lectures, which in the winter takes place at the end 
of February, determines the grade students receive for the 
course. 

The pedagogical approach behind these course components 
assumes that students understand the presented concepts, 
theorems, and proofs during the lectures and are able to deal with 
the homework assignments by themselves. There are students who 
respond positively to this approach. However, our tutors reported 
that most students remained very passive during the student 
sessions and did not participate in discussions even when their 
own solutions contained mistakes. Taking the high failure rate in 
the finals into account, we concluded that based on the course’s 
pedagogical approach most of our students are not able to build 
understanding and become well prepared for the finals. This 
forced us to reconsider all elements of the course and seek for 
improvement. 

3. FIRST COURSE ADJUSTEMENTS  
Starting in 2003, we began introducing a variety of modifications 
to the traditional setup of the course. We converted the bi-weekly 
student sessions to weekly sessions that focused on student 
activities instead of the presentation of solutions. We reduced the 
time for lectures to 90 minutes per week, made homework 
submissions mandatory, and offered an additional weekly 
“tutorial”. We hoped that these modifications would help reducing 
the failure rates without reducing the requirements for passing the 
final exams.   

3.1 Tutorial and Exercise Sessions 
As described in Sec. 2.3, the goal of the Theory I lecture is to 
present new topics, central concepts, algorithms, and their proofs 
and to illustrate them by examples. We noticed that, due to the 
number of attendees, the lecture lacks interaction between 
students and the instructor. Also, there was only little time for 
individual questions and discussions.. Therefore, one of our first 
changes was to install an additional weekly 90 minutes session 
that we named tutorial. In the tutorial, held by the instructor, 
students are encouraged to ask questions and discuss issues that 
were still unclear after lecture and student sessions. The topics 
discussed in the tutorial are not prepared in advance but suggested 
by the attending students, as the main objective is not the solution 
to a problem but the process of producing it. 

We also believe that student interaction is much easier to 
accomplish during student sessions attended by approx. 25 
students than during a lecture. Therefore, we also shortened the 
lecture to 90 minutes and expanded the exercise session to 90 
minutes per week. In order to enable the teacher to present the 
same amount of topics in less time, lecture topics started to be 
presented on slides that are prepared in advance instead of being 
written onto the blackboard. In addition, the use of a tablet PC 
enabled the lecturer to add details and illustrations to the slides 
during the lecture and thus preserve the advantages of a 
“blackboard lecture”. In order to offer students the possibility to 
prepare before and after the lecture, the slides were made 

available at the beginning of the entire course. Furthermore, in 
2006/07 and again in 2011/2012 the lectures were recorded on 
video and made available on the course webpage.  

3.2 Weekly Exercises for Student Sessions 
In the traditional approach, the student session was focused on 
discussing students’ solutions to homework assignments. 
However, we were (and still are) convinced that students need to 
engage more in joint work in order to be better prepared for the 
actual homework assignments. In order to accomplish this, we 
began offering  additional exercises that were meant to be solved 
jointly during the student session. The tutors responsible for these 
weekly exercise sessions encourage the attending students to 
participate actively in ongoing discussions and ask questions. To 
support the latter, we also offered quiz questions. Quizzes contain 
approximately five right-or-wrong statements related to the topics 
of the previous week’s lecture. Answers are discussed in the first 
15 minutes of the exercises session. This is supposed to help 
students to check their understanding and serve as a warm-up and 
first discussion before working with exercises.  

3.3 Homework assignments 
Experience with teaching introductory CS courses has shown that 
it is very important to make homework submissions mandatory. 
Otherwise students do not work regularly enough to succeed in 
the final exam. To encourage teamwork and reduce the student’s 
workload  homework assignments are to be solved by teams of 2-
4 students without support from tutors or instructors and to be 
submitted for grading in written form. Each submission is checked 
and commented by the tutors and students receive points for each 
homework assignment. Students must obtain at least 50% of the 
possible points to be admitted to final exam. 

Since the final exam is a situated activity, students must 
experience and learn how to deal with this as well, especially 
when this is their very first university exam. For this reason, we 
also started to offer a pre-exam shortly before the two weeks of 
Christmas break. The pre-exam has the same form and amount of 
assignments as the final exam, counts as one submitted 
homework, but does not count to the course grade. It gives the 
students an opportunity to practice the assessment situation and 
explicates what will be expected from them during the finals. The 
pre-exam is reviewed the same way as the finals and gives 
students direct feedback about their current effort and 
achievements.   

3.4 Results of first Adjustments 
All the adjustments to the course mentioned above were made 
permanent by the end of 2007. However, the failure rate in the 
final exams was still varying as table 1 shows. 

Table 1: Distribution of student scores (in %) before 2012 
(where 1.0 is the highest and 4.0 the lowest score 

corresponding to A+ and D respectively) 

Grade/ 
Year 

1.0 1.3-1.7 2.0-2.3 2.7.-
3.3 

3.7-
4.0 

failed 

2008 4.0% 8.1% 11.4% 36.2% 24.2% 16.1% 

2009 4.9% 7.4% 18.9% 24.6% 21.3% 23.0% 

2010 18.3% 13.6% 22.5% 28.2% 9.9% 7.5% 
 

2011 0% 0% 3.4% 17.6% 19.6% 59.5% 
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At a first glance this variation in grades and failure rates seemed 
hard to explain, since most parameters of the course were 
identical in all these years. However, each year a different faculty 
member was responsible for supervising the tutors and for 
designing the exercises, homework, and exams. We observed that 
in the years with low failure rates the problem sets in the 
exercises, homework, and finals were similar in nature. In 2011, 
the correspondence between these problem sets was a lot weaker 
and it seemed that this was one of the reasons why the students 
were less prepared for what was expected from them in the final 
exam. 

4. DEVELOPING A PEDAGOGY 
Given our student-oriented approach in teaching and a strong 
focus situated cognition theories, we approached the adjustments 
done in Theory I from a perspective of learning sciences. Here, we 
found the cognitive apprenticeship approach as the most helpful 
theory to reflect on our adjustments and improve them. 

4.1 Cognitive Apprenticeship 
Collins et al. [5] argue that for the longest time in human history 
the natural form of learning was apprenticeship: a master-students 
relationship that focuses on practicing contextualized knowledge 
and skills in authentic situations that provide meaning to the 
activities involved. Learning was not only a form of “acquiring” 
knowledge and developing skills to handle it but also a form of 
enculturation into a certain community. Being set in a specific 
workplace, tasks and problems arose not from pedagogical 
concerns but from the demands of the authentic environment ([4], 
p. 48ff). Of this master-student-relationship Collins et al. describe 
the following techniques to be essential: 

 Modeling, where the teacher demonstrates how to do 
something and makes single steps of a process visible such 
that students can observe and be than able to imitate it. 

 Scaffolding & Fading is the framework or certain plan the 
teacher provides students with in order to carry out specific 
tasks. Once students are on their own, the scaffolding 
framework is gradually removed in the process of fading. 

 Coaching where the teacher guides or supervises students' 
activities, efforts, and experiences evaluating them, offering 
encouragement and feedback. 

Nowadays, master-student-relationships can be found for example 
in learning to play an instrument or to do research as well as 
multiple forms of trades like plumbing or tailoring.   

Collins et al. argue that typical forms of academic formal 
schooling are the opposite of apprenticeship and reflect mostly a 
view of learning that focuses on knowledge presentation ([5], p. 
38-39), ([4], p. 47ff). In a lecture the teacher introduces and 
demonstrates knowledge as a stand-alone generalized product, 
which is decontextualized from the situated activities in which it 
was once developed and in which it is supposed to be used by the 
students in future. As a consequence, the expertise to create and 
use the knowledge remains tacit since a specific context is not 
emphasized. But for the members of the scientific research 
community who created this knowledge, it is not a 
decontextualized stand-alone product, but a cognitive tool they 
use and apply in activities where it is meaningful and relevant to 
them. Bereiter ([1], p. 295ff) argues that learning in formal 
schooling is particularly difficult for two reasons. First, there is no 
sufficient distinction between knowledge as the material or item 
of inquiry and knowledge and skills that are needed to handle this 

material; second, the latter remains mostly tacit since little 
attention is paid “to the reasoning and strategies that experts 
employ when they acquire knowledge or put it to work to solve 
complex or real-life tasks. […] To make real differences in 
students' skill, we need both to understand the nature of expert 
practice and to devise methods that are appropriate to learning that 
practice” ([5], p. 38-39). 

Collins et al. argue that in contrast to craft, activities that handle 
“knowledge material” are in part invisible and that therefore it is 
almost impossible for students to observe and imitate them in the 
same way as in traditional apprenticeship. Still, students in higher 
education institutions are supposed to adopt the expertise of a 
particular scientific community and to be able to work with the 
domain knowledge introduced in a lecture. As a pedagogical 
approach that focuses on the gap between process and product 
Collins et al. suggest cognitive apprenticeship, [4], [5]. The idea 
of this approach is to focus not just on domain knowledge as a 
decontextualized product but to make the required skills and 
knowledge more explicit and the thought processes of teachers 
and students more visible ([5], p. 40). For this reason, they 
propose to use the key methods of traditional apprenticeship as 
well as additional methods specific to their approach ([4], p. 50ff): 
The teacher is supposed to explain and demonstrate knowledge 
and skills (modeling and articulation), which students can observe 
and then repeat under the guidance of the teacher (coaching). 
Different frameworks are proposed to the students that help them 
to orientate themselves and their learning activities (scaffolding). 
Since most of the activities are cognitive and not visible, it is 
important that teachers and students develop the ability to 
articulate and reflect their activities.  

Another important aspect of cognitive apprenticeship is providing 
the context in which domain knowledge is meaningful. In the 
workspace of traditional apprenticeship, reasons for specific 
activities are much better understood than in formal schooling: 
students “are motivated to work and to learn the subcomponents 
of the task, because […] they have seen the expert's model of the 
finished product, and so the subcomponents of the task make 
sense. But in school, teachers are working with a curriculum 
centered around reading, writing, science, math, history, etc. that 
is, in large part, separated from what students and most adults do 
in their lives. In cognitive apprenticeship, the challenge is to 
situate the abstract tasks of the school curriculum in contexts that 
make sense to students” ([4], p. 50). 

4.2 Improving the Adjustments 
The Cognitive Apprenticeship approach helped us better 
understand how our adjustments could support our students in 
their learning efforts and how we could improve them to create a 
pedagogical approach for the Theory I course.    

4.2.1 Modeling 
The Cognitive Apprenticeship approach helped us understand that 
with a course setup as described in section 2.3 the emphasis lies 
mostly on presenting theoretical CS domain knowledge (the 
concepts, definitions, algorithms, etc.) as stand-alone products and 
does not sufficiently explicate the methods, approaches, and 
strategies of  dealing with this knowledge as well as techniques 
how to learn them. Since all lecture topics are prepared in advance 
for a smooth presentation, students experience them as knowledge 
products without seeing the enormous effort it took to create 
them. Skills to handle and work with this knowledge that students 
are supposed to develop in the course are only implicitly 
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demonstrated during the lecture and are not addressed and 
exposed sufficiently. Therefore, we started to focus on theory 
practices and demonstrate them more explicitly with regard to 
modeling. While the lecture presents the ready-made “products” 
of theoretical CS, the tutorial is the natural place in the course 
where the process of creating them is shown. So, we understood 
that the tutorial is mostly helpful to students when it serves as a 
modeling session where students can experience that even a 
professor has to try different approaches and alternatives before 
accomplishing a solution.  

4.2.2 Scaffolding & Fading 
Our main idea was to use the exercise sessions to enable students 
to solve their homework by themselves and to motivate them to 
become more actively involved in the exercise and tutorial 
sessions. Therefore, we redesigned the weekly exercise sessions 
and assignments entirely with regard to the scaffolding & fading 
method.  

We offered specific preparatory exercises that are to be solved 
jointly during the exercise session and serve as preparation for 
homework. After the exercise sessions we also posted detailed 
written solutions to the preparatory exercises on the web pages. 
These solutions demonstrate what a correct solution should look 
like in written form and what is expected from the students when 
they turn in their homework. Especially for the latter there is not 
enough time during the exercise session, since possible solutions 
to the exercises are developed together and only sketched on the 
blackboard. But students must also learn how to produce a 
complete and precisely formulated solution using mathematical 
formalisms. 

Redesigning the exercise sessions, the major change was to align 
the preparatory exercises with the homework with respect to 
structure and content. This means that in each session the same 
type and amount of problems is used for the exercises as well as 
for the homework assignments. This way, it makes sense for 
students to work with the preparatory exercises, to participate 
during tutorial and exercises sessions, since all these activities 
prepare them to do their homework assignments.  

In the traditional approach, it was assumed that students gain 
understanding from attending the lecture. The cognitive 
apprenticeship approach taught us that cognitive methods and 
strategies used in theoretical CS needs to be explicated. The 
alignment between exercises and homework together with the 
written solutions to the exercises is the scaffolding framework for 
students. However, this framework’s objective is to get students 
more self-reliant in working with the theory of computation. 
Therefore, in the second part of the course, we gradually removed 
the strong alignment between preparatory exercises and 
homework. In addition, we also started reducing detailed 
information in written solutions. 

4.2.3 Coaching 
The weekly homework grading as well as the tutors’ support 
during the exercise session is a form of coaching. In addition, it 
corresponds to students’ activities during final exam, where 
students have to formulate a written solution for an assignment, 
which then will be graded by tutors under supervision of the 
instructors. In order to understand the expectations, especially 
with respect to the very strict and formal character of solutions to 
assignments, students need to train this skill as well and to receive 
a weekly feedback about their efforts. 

4.3 The Final Exam 
In the Theory I course, the measure of students’ learning success 
is a student’s performance on homework, pre-exam, and final 
assessment. The points or grade students obtain are supposed to 
measure the learning outcome see sec. 2.1 and [9]. We are aware 
that a valid measurement can only be achieved by methods and 
tools that diagnose the defined competences in ([9], p. 35-38). 
However, these competences have been defined normatively by 
the Department of CS and lack a competences model as well as 
diagnostic methods. Therefore, we rely on assignments that we 
developed in the past years and that represent typical assignments 
for a Theory I course. 

The course staff recorded student performance on each individual 
question on the homework assignments as well as performance on 
each question on the practice and final exam. During the whole 
course 14 homework exercises (8 before and 6 after the Christmas 
break) were offered, each with 3 mandatory and one  more 
difficult optional assignment. For each assignment students could 
score 1-3 points and altogether they needed at least 50% of all 
points from obligatory assignments in order to attend finals. Most 
of the assignments have been used in similar form in the past five 
years and included only minor alterations, like exchanging a 
concrete language or Turing machine.  

The final exam contained 15 simple questions focusing on 
definitions and methods knowledge and 5 assignments with 3-7 
sub-assignments, which are aligned with the homework 
assignments students are already familiar with. Each sub-
assignment in the exam assesses one particular skill without 
relying on results from previous sub-assignments. In addition, we 
use typical automata, regular languages or Turing machines with a 
simple structure and without containing unusual cases. Each of the 
15 simple questions has been used for final exams in the last five 
years. Therefore the requirements of the final exam correspond to 
the requirements of the last five years.  

Table 2: Distribution of student scores in 2012 and 2013  

grade 1.0 1.3-1.7 2.0-2.3 2.7.-
3.3 

3.7-4.0 failed 

2012 10.7% 20.5% 30.2% 22.9% 9.8% 6.3% 

2013 1.9% 8.3% 25.5% 34.4% 20.4% 9.6%

 

Among the 205 students attending the finals during winter 
semester 2011/2012 only 6% of the students failed to pass. 
Among the 157 students attending the finals one year later only 
9.6% failed to pass, see Table 2. Altogether, all student grades are 
evenly distributed. This finding strengthens the assertion that the 
course’s final exam assessed student performance in a similar way 
it did in the previous years. Note that in 2013 there is a reduction 
in better grade due to slightly increased requirements for receiving 
a straight 1.0 grade (i.e. A+) in the final exam. These 
requirements were based on our belief that top students should 
demonstrate the ability of “thinking out of the box”. The design of 
the final exam made sure that the requirements for passing 
remained unchanged.  

5. CONCLUSION 
In this paper we introduced a pedagogical approach for a theory of 
computation course at the University of Potsdam based on 
cognitive apprenticeship. Our goal was to make the practices of 
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theoretical CS more visible to the students and therefore easier to 
adopt. We reinforced modeling by introducing a tutorial session; 
we scaffold students’ activities through a strong alignment 
between exercises, homework, and the final exam; and we tried to 
coach students’ activities in the exercise sessions and by 
providing feedback for their homework submissions. At the same 
time, we kept the requirements for final exams comparable to 
those of the last 5 years and had a failure rate below 10% two 
years in a row. Therefore our approach demonstrates that it is 
possible to enhance students’ success and reduce failure rates in a 
theoretical CS course while keeping the requirements high. 

Most students who attended the course during the last two winter 
semesters appeared regularly during exercise sessions and 
participated actively during the quiz and working with the 
exercises. The tutorial was attended by more students than in the 
years before, when we did not align homework assignments with 
the exercises. During the tutorial, students asked very precise and 
concrete questions related to the contents of the lectures and the 
exercises. They also asked for solutions to the more difficult 
assignments already submitted. In the years before, students 
mostly asked questions about the current homework assignments, 
which were difficult to answer without providing solutions to 
tasks still ahead of them. With the alignment between homework 
and exercises, students seemed to be more successful in solving 
homework assignments by themselves once they had attended the 
exercise sessions, seen a written solution to the exercises, and 
discussed the more difficult aspects in the tutorial. Altogether, our 
impression was that our changes helped students to be more 
focused, to stay motivated, and to keep working on their weekly 
assignments.  

We were not yet able to accomplish all aspects of cognitive 
apprenticeship. For example, it is important that students 
articulate their activities and reflect on them ([4], p. 51). Since we 
cannot change the teacher-learner-ratio and introduce more study 
sessions, most of students’ activities can be only modeled and 
scaffold. The rest has to happen during their individual studies. 
We only have little influence on the latter and know that when 
students manage to find an adequate study group they perform 
very well. But a lot of students are not able to do this and besides 
encouraging them to look for a study group, we have not found a 
method how to support this better. Furthermore, it remains open if 
and how to situate ([4], p. 52ff) the course topics and abstract 
tasks of the weekly assignments in contexts that make sense to the 
students. In its role as a cognitive tool the domain knowledge of 
theoretical CS will become meaningful for them as they rely on it 
during their whole professional career.  But it remains open how 
this can be more explicitly highlighted during the course. 
Altogether, it is important for us to further elaborate on these 
issues in future.  

Since none of our modifications to the course were specific to the 
University of Potsdam or to the topic of the course we believe that 
our approach could be also applied in introductory courses to 
theory of computation at other departments of CS as well as be 

adapted to other introductory courses in CS in order to contribute 
to student learning success.  
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