
Teaching Theoretical Computer Science using a
Cognitive Apprenticeship Approach

Maria Knobelsdorf
New York University

Computer Science Department
719 Broadway

New York, NY, 10003, USA
(+1) 212 998 3497

maria.knobelsdorf@cs.nyu.edu

Christoph Kreitz
University of Potsdam

Department of Computer Science
August-Bebel Str. 89

D-14482 Potsdam, Germany
(+49) 331 977 3060

kreitz@cs.uni-potsdam.de

Sebastian Böhne
University of Potsdam

Department of Computer Science
August-Bebel Str. 89

D-14482 Potsdam, Germany
(+49) 331 977 3014

boehne@uni-potsdam.de

ABSTRACT
High failure rates in introductory courses on theoretical computer
science are a common problem at universities in Germany,
Europe, and North America, as students often have difficulties
coping with the contents of such courses due to their abstract and
theoretical nature. This paper describes modifications to the
pedagogy of a theory course held at the University of Potsdam,
Germany that are motivated by a cognitive apprenticeship
approach and have led to a significant reduction of the course’s
failure rates. Since our approach is based on the typical
infrastructure for teaching introductory computer science courses
and does not require additional expenses or special resources, it
can be replicated by other institutions. We believe that it is a
serious contribution to better support teaching as well as student
learning success in this field.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computers and Education - Computer and Information Science
Education

General Terms
Human Factors

Keywords
Theoretical Computer Science, Theory of Computation, Cognitive
Apprenticeship, Pedagogy, High Failure Rates.

1. INTRODUCTION
At German universities, theoretical Computer Science (CS) is
considered one of the fundaments of undergraduate CS education.
Introductory courses cover the foundations of automata,
programming languages, computability, and computational
complexity. Introducing idealized mathematical models of the
computer and discussing methods for designing and analyzing
them, students are supposed to develop the ability of thinking
abstractly about computational processes. However, many
students have problems understanding and following the course
topics and failure rates in final exams are usually very high. This
was also the case at the department of CS at the University of
Potsdam, Germany. The introduction to theoretical CS is covered
by an undergraduate course (briefly “Theory I”) that initially had
very high failure rates (usually between 30-60%). Teaching
assistants who worked weekly with the students reported on their
difficulties in coping with the course material, observing a
learning edge momentum very early during the course, see [10].
High failure rates in theoretical CS at the University of Potsdam
are not a single phenomenon. Failure rates in other undergraduate
CS courses tend to be very high as well and dropout rates from the
CS major are not much lower than the national average, which is
about 40-50% with most students giving up during the first four
semesters, see [7].

Reasons for failing a final exam can be very different and change
over time. In addition, various factors can have different influence
on a student’s overall progress and final learning outcome. In the
past 30 years, a considerable number of studies investigated
possible influencing factors on student success in CS courses like
mathematical pre-knowledge, abstract thinking abilities, gender or
social aspects, see ([12], p. 224-228) and ([2], p. 30-32). These
and further recent studies indicate that there is no silver bullet to
explain student success just by specific factors. Instead, the whole
teaching and learning process needs to be focused on.

Standing in the tradition of constructivism and student-oriented
pedagogy, there is a variety of approaches to improving learning
success in courses on theoretical computer science. Chesñevar et
al. [3] focused on student engagement for deeper understanding
and introduced “the historical context in which the theory of
computing emerged as a new discipline” (p. 8). Hämäläinen [6]
used problem-based learning and Korte et al. [8] developed a
constructionist approach with game-building. In addition, Rodger
et al. [11] suggested the visualization tool JFLAP for formal
languages and automata theory, which shall enable students to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
SIGCSE’14, March 5–8, 2014, Atlanta, Georgia, USA.
Copyright © 2014 ACM 978-1-4503-2605-6/14/03…$15.00.
http://dx.doi.org/10.1145/2538862.2538944

67

interact more with the introduced theoretical concepts. All
approaches succeeded to engage students in more learning
activities resulting in lower dropout and failure rates. Since we did
not have access to additional resources, we focused on developing
new ways to engage students in more learning activities with the
resources we had.

During the winter semesters 2011/20121 and 2012/2013 we
modified the setup of Theory I by consolidating experiences from
ad-hoc changes to the courses in the past eight years and taking
into account the pedagogical approach of cognitive
apprenticeship, a well known approach in education that has
already been applied to CS education; see for example [2]. In the
literature, however, there is no report that it has been used to
improve theoretical CS education at university level. The result of
our adjustments to the course was that less than 10% of all
students failed the final exam while the remaining students’ scores
were evenly distributed. Apart from a small amount of additional
contact time our approach does not require any extra resources
beyond the common infrastructure given at German universities
for an introductory CS course. Therefore, our approach can be
replicated by other institutions as well. In this paper, we will
introduce cognitive apprenticeship and describe the adjustments to
the setup of our course and discuss the final assessment that
indicates the credibility and impact of our approach.

2. THE THEORY I COURSE
In this section we will introduce the Theory I course, the students
who attend it, as well as the traditional pedagogy applied before
we introduced our first modifications.

2.1 Course Content and Learning Outcome
The Theory I course focuses on the theory of automata and formal
languages. It begins with an investigation of simple automata
models and increases the level of complexity until the models
reach the capabilities of modern computers. Specifically it covers
the following topics:

 Regular languages: finite automata, non-determinism, regular
expressions, type 3 grammars, closure properties, and
limitations.

 Context free languages and type 2 grammars, pushdown
automata, normal forms, parsing algorithms, closure
properties, and limitations.

 General and context sensitive languages and grammars,
Turing machines, linear-bounded automata, closure
properties.

In the course of the lectures, students are supposed to develop
specific skills that enable them to work with the models
introduced in the course. For this reason, the department of CS of
the University of Potsdam defined in 2010 normatively the
intended learning outcomes that are described by three fields of
specific skills ([9], p. 36-38):

 Domain specific skills, for example: students are able to
analyze deterministic and non-deterministic automata and

1 The German academic system has a winter and a summer

semester with teaching periods between mid October and mid
February (with a two weeks Christmas break) and between mid
April and mid July, respectively.

grammars with mathematical methods and to prove their
correctness; students know methods for translating between
different automata models, grammars, and regular expressions
and are able to justify the correctness of these conversions.

 Methods skills, for example: students can employ
mathematical proof techniques for the analysis of automata
and formal languages; they can transform grammars into
normal forms; they are able to prove whether a given formal
language is regular (context free) or not.

 Behavioral skills, for example: students are capable of
working in small teams when developing solutions for given
problems; they are able to give an oral presentation of their
solutions and they can write them down in a precise language.

Through the course, students are supposed to develop these skills
and the final exam is supposed to assess these.

2.2 The Theory I students
Before entering an undergraduate program at a university in
Germany, students are required to finish upper secondary
education, which, depending on the school type, takes two or
three years (grade 11-13 where students usually are 17-19 years
old). With specific mandatory basic and advanced courses, upper
secondary schooling can be roughly compared to the first one or
two years of attending a college in the US. In consequence,
entering a German university students immediately start with their
major. The predominant majority of German universities are
public and students do not pay tuition. Students are admitted to
university in Germany based on their final grades at upper
secondary school.

The number of students attending the Theory I course usually
varies between 150-300 (which is a rather small number for an
introductory course at a German university) and consists of 50-
150 students majoring in CS, about 60-100 students majoring in
Software-Engineering, 40-80 students majoring in business
informatics, 10-25 prospective teachers with one of their majors in
CS, and approximately ten students majoring in different fields
(like mathematics, linguistics or others). CS and business
informatics majors are supposed to attend the course in their first
semester and software engineering majors in their third. While at
many other German universities, CS majors attend an introductory
course in theoretical CS in their third or fourth semester, the CS
curriculum at the University of Potsdam places the course at the
beginning of undergraduate studies, since many subsequent
courses expect students to be familiar with automata theory and
Turing machines.

2.3 Traditional Course Setup and Problems
Until we modified the course setup and its pedagogical approach,
the course consisted of the following components, which are
typical for an introductory CS course of this size in Germany:

 135 minutes of lectures peer week given by a faculty member
who presents the course topics, central concepts, algorithms,
and their proofs and illustrates them with examples.

 Weekly homework assignments based on the current lecture
topics, which students are expected to solve individually and
submit in writing for reviewing and grading by tutors (usually
senior students). Handing in homework can but doesn’t need
to be mandatory.

68

 90 minutes student session every other week attended by
approx. 25-30 students and chaired by tutors, during which
attending students are expected to present their solutions to
last weeks’ homework assignment. This shall give them an
opportunity to check the correctness of their solutions and
discuss them with the group.

 One final written exam during the assessment period after the
end of the lectures, which in the winter takes place at the end
of February, determines the grade students receive for the
course.

The pedagogical approach behind these course components
assumes that students understand the presented concepts,
theorems, and proofs during the lectures and are able to deal with
the homework assignments by themselves. There are students who
respond positively to this approach. However, our tutors reported
that most students remained very passive during the student
sessions and did not participate in discussions even when their
own solutions contained mistakes. Taking the high failure rate in
the finals into account, we concluded that based on the course’s
pedagogical approach most of our students are not able to build
understanding and become well prepared for the finals. This
forced us to reconsider all elements of the course and seek for
improvement.

3. FIRST COURSE ADJUSTEMENTS
Starting in 2003, we began introducing a variety of modifications
to the traditional setup of the course. We converted the bi-weekly
student sessions to weekly sessions that focused on student
activities instead of the presentation of solutions. We reduced the
time for lectures to 90 minutes per week, made homework
submissions mandatory, and offered an additional weekly
“tutorial”. We hoped that these modifications would help reducing
the failure rates without reducing the requirements for passing the
final exams.

3.1 Tutorial and Exercise Sessions
As described in Sec. 2.3, the goal of the Theory I lecture is to
present new topics, central concepts, algorithms, and their proofs
and to illustrate them by examples. We noticed that, due to the
number of attendees, the lecture lacks interaction between
students and the instructor. Also, there was only little time for
individual questions and discussions.. Therefore, one of our first
changes was to install an additional weekly 90 minutes session
that we named tutorial. In the tutorial, held by the instructor,
students are encouraged to ask questions and discuss issues that
were still unclear after lecture and student sessions. The topics
discussed in the tutorial are not prepared in advance but suggested
by the attending students, as the main objective is not the solution
to a problem but the process of producing it.

We also believe that student interaction is much easier to
accomplish during student sessions attended by approx. 25
students than during a lecture. Therefore, we also shortened the
lecture to 90 minutes and expanded the exercise session to 90
minutes per week. In order to enable the teacher to present the
same amount of topics in less time, lecture topics started to be
presented on slides that are prepared in advance instead of being
written onto the blackboard. In addition, the use of a tablet PC
enabled the lecturer to add details and illustrations to the slides
during the lecture and thus preserve the advantages of a
“blackboard lecture”. In order to offer students the possibility to
prepare before and after the lecture, the slides were made

available at the beginning of the entire course. Furthermore, in
2006/07 and again in 2011/2012 the lectures were recorded on
video and made available on the course webpage.

3.2 Weekly Exercises for Student Sessions
In the traditional approach, the student session was focused on
discussing students’ solutions to homework assignments.
However, we were (and still are) convinced that students need to
engage more in joint work in order to be better prepared for the
actual homework assignments. In order to accomplish this, we
began offering additional exercises that were meant to be solved
jointly during the student session. The tutors responsible for these
weekly exercise sessions encourage the attending students to
participate actively in ongoing discussions and ask questions. To
support the latter, we also offered quiz questions. Quizzes contain
approximately five right-or-wrong statements related to the topics
of the previous week’s lecture. Answers are discussed in the first
15 minutes of the exercises session. This is supposed to help
students to check their understanding and serve as a warm-up and
first discussion before working with exercises.

3.3 Homework assignments
Experience with teaching introductory CS courses has shown that
it is very important to make homework submissions mandatory.
Otherwise students do not work regularly enough to succeed in
the final exam. To encourage teamwork and reduce the student’s
workload homework assignments are to be solved by teams of 2-
4 students without support from tutors or instructors and to be
submitted for grading in written form. Each submission is checked
and commented by the tutors and students receive points for each
homework assignment. Students must obtain at least 50% of the
possible points to be admitted to final exam.

Since the final exam is a situated activity, students must
experience and learn how to deal with this as well, especially
when this is their very first university exam. For this reason, we
also started to offer a pre-exam shortly before the two weeks of
Christmas break. The pre-exam has the same form and amount of
assignments as the final exam, counts as one submitted
homework, but does not count to the course grade. It gives the
students an opportunity to practice the assessment situation and
explicates what will be expected from them during the finals. The
pre-exam is reviewed the same way as the finals and gives
students direct feedback about their current effort and
achievements.

3.4 Results of first Adjustments
All the adjustments to the course mentioned above were made
permanent by the end of 2007. However, the failure rate in the
final exams was still varying as table 1 shows.

Table 1: Distribution of student scores (in %) before 2012
(where 1.0 is the highest and 4.0 the lowest score

corresponding to A+ and D respectively)

Grade/
Year

1.0 1.3-1.7 2.0-2.3 2.7.-
3.3

3.7-
4.0

failed

2008 4.0% 8.1% 11.4% 36.2% 24.2% 16.1%

2009 4.9% 7.4% 18.9% 24.6% 21.3% 23.0%

2010 18.3% 13.6% 22.5% 28.2% 9.9% 7.5%

2011 0% 0% 3.4% 17.6% 19.6% 59.5%

69

At a first glance this variation in grades and failure rates seemed
hard to explain, since most parameters of the course were
identical in all these years. However, each year a different faculty
member was responsible for supervising the tutors and for
designing the exercises, homework, and exams. We observed that
in the years with low failure rates the problem sets in the
exercises, homework, and finals were similar in nature. In 2011,
the correspondence between these problem sets was a lot weaker
and it seemed that this was one of the reasons why the students
were less prepared for what was expected from them in the final
exam.

4. DEVELOPING A PEDAGOGY
Given our student-oriented approach in teaching and a strong
focus situated cognition theories, we approached the adjustments
done in Theory I from a perspective of learning sciences. Here, we
found the cognitive apprenticeship approach as the most helpful
theory to reflect on our adjustments and improve them.

4.1 Cognitive Apprenticeship
Collins et al. [5] argue that for the longest time in human history
the natural form of learning was apprenticeship: a master-students
relationship that focuses on practicing contextualized knowledge
and skills in authentic situations that provide meaning to the
activities involved. Learning was not only a form of “acquiring”
knowledge and developing skills to handle it but also a form of
enculturation into a certain community. Being set in a specific
workplace, tasks and problems arose not from pedagogical
concerns but from the demands of the authentic environment ([4],
p. 48ff). Of this master-student-relationship Collins et al. describe
the following techniques to be essential:

 Modeling, where the teacher demonstrates how to do
something and makes single steps of a process visible such
that students can observe and be than able to imitate it.

 Scaffolding & Fading is the framework or certain plan the
teacher provides students with in order to carry out specific
tasks. Once students are on their own, the scaffolding
framework is gradually removed in the process of fading.

 Coaching where the teacher guides or supervises students'
activities, efforts, and experiences evaluating them, offering
encouragement and feedback.

Nowadays, master-student-relationships can be found for example
in learning to play an instrument or to do research as well as
multiple forms of trades like plumbing or tailoring.

Collins et al. argue that typical forms of academic formal
schooling are the opposite of apprenticeship and reflect mostly a
view of learning that focuses on knowledge presentation ([5], p.
38-39), ([4], p. 47ff). In a lecture the teacher introduces and
demonstrates knowledge as a stand-alone generalized product,
which is decontextualized from the situated activities in which it
was once developed and in which it is supposed to be used by the
students in future. As a consequence, the expertise to create and
use the knowledge remains tacit since a specific context is not
emphasized. But for the members of the scientific research
community who created this knowledge, it is not a
decontextualized stand-alone product, but a cognitive tool they
use and apply in activities where it is meaningful and relevant to
them. Bereiter ([1], p. 295ff) argues that learning in formal
schooling is particularly difficult for two reasons. First, there is no
sufficient distinction between knowledge as the material or item
of inquiry and knowledge and skills that are needed to handle this

material; second, the latter remains mostly tacit since little
attention is paid “to the reasoning and strategies that experts
employ when they acquire knowledge or put it to work to solve
complex or real-life tasks. […] To make real differences in
students' skill, we need both to understand the nature of expert
practice and to devise methods that are appropriate to learning that
practice” ([5], p. 38-39).

Collins et al. argue that in contrast to craft, activities that handle
“knowledge material” are in part invisible and that therefore it is
almost impossible for students to observe and imitate them in the
same way as in traditional apprenticeship. Still, students in higher
education institutions are supposed to adopt the expertise of a
particular scientific community and to be able to work with the
domain knowledge introduced in a lecture. As a pedagogical
approach that focuses on the gap between process and product
Collins et al. suggest cognitive apprenticeship, [4], [5]. The idea
of this approach is to focus not just on domain knowledge as a
decontextualized product but to make the required skills and
knowledge more explicit and the thought processes of teachers
and students more visible ([5], p. 40). For this reason, they
propose to use the key methods of traditional apprenticeship as
well as additional methods specific to their approach ([4], p. 50ff):
The teacher is supposed to explain and demonstrate knowledge
and skills (modeling and articulation), which students can observe
and then repeat under the guidance of the teacher (coaching).
Different frameworks are proposed to the students that help them
to orientate themselves and their learning activities (scaffolding).
Since most of the activities are cognitive and not visible, it is
important that teachers and students develop the ability to
articulate and reflect their activities.

Another important aspect of cognitive apprenticeship is providing
the context in which domain knowledge is meaningful. In the
workspace of traditional apprenticeship, reasons for specific
activities are much better understood than in formal schooling:
students “are motivated to work and to learn the subcomponents
of the task, because […] they have seen the expert's model of the
finished product, and so the subcomponents of the task make
sense. But in school, teachers are working with a curriculum
centered around reading, writing, science, math, history, etc. that
is, in large part, separated from what students and most adults do
in their lives. In cognitive apprenticeship, the challenge is to
situate the abstract tasks of the school curriculum in contexts that
make sense to students” ([4], p. 50).

4.2 Improving the Adjustments
The Cognitive Apprenticeship approach helped us better
understand how our adjustments could support our students in
their learning efforts and how we could improve them to create a
pedagogical approach for the Theory I course.

4.2.1 Modeling
The Cognitive Apprenticeship approach helped us understand that
with a course setup as described in section 2.3 the emphasis lies
mostly on presenting theoretical CS domain knowledge (the
concepts, definitions, algorithms, etc.) as stand-alone products and
does not sufficiently explicate the methods, approaches, and
strategies of dealing with this knowledge as well as techniques
how to learn them. Since all lecture topics are prepared in advance
for a smooth presentation, students experience them as knowledge
products without seeing the enormous effort it took to create
them. Skills to handle and work with this knowledge that students
are supposed to develop in the course are only implicitly

70

demonstrated during the lecture and are not addressed and
exposed sufficiently. Therefore, we started to focus on theory
practices and demonstrate them more explicitly with regard to
modeling. While the lecture presents the ready-made “products”
of theoretical CS, the tutorial is the natural place in the course
where the process of creating them is shown. So, we understood
that the tutorial is mostly helpful to students when it serves as a
modeling session where students can experience that even a
professor has to try different approaches and alternatives before
accomplishing a solution.

4.2.2 Scaffolding & Fading
Our main idea was to use the exercise sessions to enable students
to solve their homework by themselves and to motivate them to
become more actively involved in the exercise and tutorial
sessions. Therefore, we redesigned the weekly exercise sessions
and assignments entirely with regard to the scaffolding & fading
method.

We offered specific preparatory exercises that are to be solved
jointly during the exercise session and serve as preparation for
homework. After the exercise sessions we also posted detailed
written solutions to the preparatory exercises on the web pages.
These solutions demonstrate what a correct solution should look
like in written form and what is expected from the students when
they turn in their homework. Especially for the latter there is not
enough time during the exercise session, since possible solutions
to the exercises are developed together and only sketched on the
blackboard. But students must also learn how to produce a
complete and precisely formulated solution using mathematical
formalisms.

Redesigning the exercise sessions, the major change was to align
the preparatory exercises with the homework with respect to
structure and content. This means that in each session the same
type and amount of problems is used for the exercises as well as
for the homework assignments. This way, it makes sense for
students to work with the preparatory exercises, to participate
during tutorial and exercises sessions, since all these activities
prepare them to do their homework assignments.

In the traditional approach, it was assumed that students gain
understanding from attending the lecture. The cognitive
apprenticeship approach taught us that cognitive methods and
strategies used in theoretical CS needs to be explicated. The
alignment between exercises and homework together with the
written solutions to the exercises is the scaffolding framework for
students. However, this framework’s objective is to get students
more self-reliant in working with the theory of computation.
Therefore, in the second part of the course, we gradually removed
the strong alignment between preparatory exercises and
homework. In addition, we also started reducing detailed
information in written solutions.

4.2.3 Coaching
The weekly homework grading as well as the tutors’ support
during the exercise session is a form of coaching. In addition, it
corresponds to students’ activities during final exam, where
students have to formulate a written solution for an assignment,
which then will be graded by tutors under supervision of the
instructors. In order to understand the expectations, especially
with respect to the very strict and formal character of solutions to
assignments, students need to train this skill as well and to receive
a weekly feedback about their efforts.

4.3 The Final Exam
In the Theory I course, the measure of students’ learning success
is a student’s performance on homework, pre-exam, and final
assessment. The points or grade students obtain are supposed to
measure the learning outcome see sec. 2.1 and [9]. We are aware
that a valid measurement can only be achieved by methods and
tools that diagnose the defined competences in ([9], p. 35-38).
However, these competences have been defined normatively by
the Department of CS and lack a competences model as well as
diagnostic methods. Therefore, we rely on assignments that we
developed in the past years and that represent typical assignments
for a Theory I course.

The course staff recorded student performance on each individual
question on the homework assignments as well as performance on
each question on the practice and final exam. During the whole
course 14 homework exercises (8 before and 6 after the Christmas
break) were offered, each with 3 mandatory and one more
difficult optional assignment. For each assignment students could
score 1-3 points and altogether they needed at least 50% of all
points from obligatory assignments in order to attend finals. Most
of the assignments have been used in similar form in the past five
years and included only minor alterations, like exchanging a
concrete language or Turing machine.

The final exam contained 15 simple questions focusing on
definitions and methods knowledge and 5 assignments with 3-7
sub-assignments, which are aligned with the homework
assignments students are already familiar with. Each sub-
assignment in the exam assesses one particular skill without
relying on results from previous sub-assignments. In addition, we
use typical automata, regular languages or Turing machines with a
simple structure and without containing unusual cases. Each of the
15 simple questions has been used for final exams in the last five
years. Therefore the requirements of the final exam correspond to
the requirements of the last five years.

Table 2: Distribution of student scores in 2012 and 2013

grade 1.0 1.3-1.7 2.0-2.3 2.7.-
3.3

3.7-4.0 failed

2012 10.7% 20.5% 30.2% 22.9% 9.8% 6.3%

2013 1.9% 8.3% 25.5% 34.4% 20.4% 9.6%

Among the 205 students attending the finals during winter
semester 2011/2012 only 6% of the students failed to pass.
Among the 157 students attending the finals one year later only
9.6% failed to pass, see Table 2. Altogether, all student grades are
evenly distributed. This finding strengthens the assertion that the
course’s final exam assessed student performance in a similar way
it did in the previous years. Note that in 2013 there is a reduction
in better grade due to slightly increased requirements for receiving
a straight 1.0 grade (i.e. A+) in the final exam. These
requirements were based on our belief that top students should
demonstrate the ability of “thinking out of the box”. The design of
the final exam made sure that the requirements for passing
remained unchanged.

5. CONCLUSION
In this paper we introduced a pedagogical approach for a theory of
computation course at the University of Potsdam based on
cognitive apprenticeship. Our goal was to make the practices of

71

theoretical CS more visible to the students and therefore easier to
adopt. We reinforced modeling by introducing a tutorial session;
we scaffold students’ activities through a strong alignment
between exercises, homework, and the final exam; and we tried to
coach students’ activities in the exercise sessions and by
providing feedback for their homework submissions. At the same
time, we kept the requirements for final exams comparable to
those of the last 5 years and had a failure rate below 10% two
years in a row. Therefore our approach demonstrates that it is
possible to enhance students’ success and reduce failure rates in a
theoretical CS course while keeping the requirements high.

Most students who attended the course during the last two winter
semesters appeared regularly during exercise sessions and
participated actively during the quiz and working with the
exercises. The tutorial was attended by more students than in the
years before, when we did not align homework assignments with
the exercises. During the tutorial, students asked very precise and
concrete questions related to the contents of the lectures and the
exercises. They also asked for solutions to the more difficult
assignments already submitted. In the years before, students
mostly asked questions about the current homework assignments,
which were difficult to answer without providing solutions to
tasks still ahead of them. With the alignment between homework
and exercises, students seemed to be more successful in solving
homework assignments by themselves once they had attended the
exercise sessions, seen a written solution to the exercises, and
discussed the more difficult aspects in the tutorial. Altogether, our
impression was that our changes helped students to be more
focused, to stay motivated, and to keep working on their weekly
assignments.

We were not yet able to accomplish all aspects of cognitive
apprenticeship. For example, it is important that students
articulate their activities and reflect on them ([4], p. 51). Since we
cannot change the teacher-learner-ratio and introduce more study
sessions, most of students’ activities can be only modeled and
scaffold. The rest has to happen during their individual studies.
We only have little influence on the latter and know that when
students manage to find an adequate study group they perform
very well. But a lot of students are not able to do this and besides
encouraging them to look for a study group, we have not found a
method how to support this better. Furthermore, it remains open if
and how to situate ([4], p. 52ff) the course topics and abstract
tasks of the weekly assignments in contexts that make sense to the
students. In its role as a cognitive tool the domain knowledge of
theoretical CS will become meaningful for them as they rely on it
during their whole professional career. But it remains open how
this can be more explicitly highlighted during the course.
Altogether, it is important for us to further elaborate on these
issues in future.

Since none of our modifications to the course were specific to the
University of Potsdam or to the topic of the course we believe that
our approach could be also applied in introductory courses to
theory of computation at other departments of CS as well as be

adapted to other introductory courses in CS in order to contribute
to student learning success.

REFERENCES
[1] Bereiter, C. 1997. Situated cognition and how to overcome it.

In Situated cognition: Social, semiotic, and psychological
perspectives, Kirshner, D. and Whitson, J. A., Eds. NJ:
Erlbaum, Hillsdale, 281-300.

[2] Caspersen, M. and Bennedsen, J. 2007. Instructional design
of a programming course: a learning theoretic approach. In
Proceedings of the third international workshop on
Computing education research (ICER '07). ACM, New York,
NY, USA, 111-122

[3] Chesñevar, C. I., González, M. P., and Maguitman, A. G.
2004. Didactic strategies for promoting significant learning
in formal languages and automata theory. In Proceedings of
the 9th annual SIGCSE conference on Innovation and
technology in computer science education (ITiCSE '04).
ACM, 7-11.

[4] Collins, A. 2006. Cognitive apprenticeship. In Cambridge
Handbook of the Learning Sciences, Sawyer, R. K., Ed.
Cambridge University Press, 47-60.

[5] Collins, A., Brown, J. S., and Holum, A. 1991. Cognitive
apprenticeship: Making thinking visible. American Educator,
6(11), 38-46.

[6] Hämäläinen, W. 2004. Problem-based learning of theoretical
computer science. In Proceedings of the 34th ASEE/IEEE
Frontiers in Education Conference, S1H/1 -S1H/6 Vol. 3.

[7] Heublein, U., Richter, J., Schmelzer, R. and Sommer, D.
2012. Die Entwicklung der Schwund- und Studienabbruch-
quoten an den deutschen Hochschulen, HIS: Forum
Hochschule 3/2012.

[8] Korte, L., Anderson, S., Pain, H., and Good, J. 2007.
Learning by game-building: a novel approach to theoretical
computer science education. In Proceedings of the 12th
annual SIGCSE conference on Innovation and technology in
computer science education (ITiCSE '07). ACM, 53-57.

[9] Modulhandbuch für den Bachelor- und Masterstudiengang
Informatik an der Universität Potsdam. 2011. www.uni-
potsdam.de/fileadmin/projects/mnfakul/assets/Studium/
Modulhandbuch_Informatik.pdf

[10] Robins, A. 2010. Learning edge momentum: A new account
of outcomes in CS1. Computer Science Education, 20(1),
37–71.

[11] Rodger, S. H., Bressler, B., Finley, T., and Reading, S. 2006.
Turning automata theory into a hands-on course. In
Proceedings of the 37th SIGCSE technical symposium on
Computer science education (SIGCSE '06). ACM, 379-383.

[12] Ventura, P. R. 2005. Identifying predictors of success for an
objects-frst CS1. In: Computer Science Education 15, 3, 223-
243.

72

