
Chapter 2

A Quick Overview

The Nuprl 5 system is organized as a collection of communicating processes that are centered
around a library , which contains definitions, theorems, inference rules, tactics, structure objects,
comments, etc. Inference engines (refiners), user interfaces (editors), rewrite engines (evaluators),
and translators are started as independent processes that can connect to the library at any time.

2.1 Preparation

We assume that the Nuprl 5 system has already been installed (see Section 3.2.1) and can
be found in the directory /home/nuprl/nuprl5. We also assume that the Nuprl 5 binaries
can be found in /home/nuprl/bin/ and that the Nuprl fonts are installed in the directory
/home/nuprl/fonts/bdf.

Make sure that your Unix path includes /home/nuprl/bin/ and that the X-server has Nuprl‘s
fonts loaded. Create a file .nuprl.config in your home directory with the following entries:

(libhost "hostname")

(dbpath "/home/nuprl/nuprl5/NuprlDB")

(libenv "standard")

The hostname for the libhost configuration should be the name of the host running the library
process. The values for dbpath and the libenv describe the physical and logical location of the
standard library. Optional settings like specific colors and fonts for the Nuprl windows may also
be given in that file.

Copy the file /home/nuprl/nuprl5/mykeys.macro to your home directory. Nuprl reads the
file ˜/mykeys.macro to determine the key bindings that will be used in various windows. You need
it to initialize the key combinations described in this manual and to customize them according to
your own preferences later.

2.2 Running Nuprl 5

For the basic Nuprl 5 configuration you need to run three processes: a library, an editor, and a
refiner. The library (nulib) should be started first. The editor (nuedd) and the refiner (nuref)
can then be started in any order. Generally it is a good idea to run these processes in separate
emacs frames: there will be interactive top loops, so editing capabilities are sometimes useful.

7

Figure 2.1: Initial Nuprl 5 screen

Once the processes have started, entering (top) at the Lisp prompt will start the ML system.

USER(1): (top)

Enter go. at the prompt to initialize the corresponding Nuprl process.

ML[(ORB)]> go.

It is important to initialize the library before the editor and the refiner. The editor process will
take few minutes and then pop up two windows: a navigator and a top loop.

Figure 2.1 shows a typical initial Nuprl 5 screen. The window on the left is the Nuprl 5

navigator. The three emacs windows on the upper right run interactive top loops for the library,
editor and the refiner. The Nuprl 5 top loop is shown in the window below. In contrast to the
corresponding emacs top loops, the Nuprl 5 top loop incorporates the Nuprl 5 term editor. It is
better suited for editing object-level terms but do not support the full editing capabilities of emacs.
Unless there is a need to interact with the top ML level, one usually iconifies these four windows
to create some space for the windows that will pop up while working with the system.

2.3 Using the Navigator

The navigator is the main user interface of Nuprl 5. It can be used to browse the library and
to create, delete, or edit objects by initiating the appropriate editors. Figure 2.2 shows navigator
window shown in its initial state. As in most Nuprl 5 windows, the upper part of the navigator
window contains several buttons, which are indicated by a * at the end of a word. Clicking a
button with the left mouse will trigger some action or pop up a template to be filled in. The lower
part of the navigator window shows the current directory (here ROOT) and a listing of the type,
status, and name of some of the objects in the directory. There is also a distinguished object, the
nav point), which is marked by an arrow (the navigation pointer). When the edit point is in the
Scroll position field (use the left mouse), the arrow keys on the keyboard can be used to move
the through the directory tree.

↑ up move navigation pointer one step up
↓ down move navigation pointer one step down
← left move navigation pointer to next higher directory
→ right open object at navigation pointer in a new window

(enter sub-directory if object is of type DIR)

8

- TERM: Navigator

Activate* deActivate* NameSearch* PathStack* Clone* RaiseTopLoops
Mill* SaveObj* commentObj* CountClosure* ObidCollector*
MkLink* MkObj* MkDir* mkTHM* CpObj* reNameObj* EditProperty*
RmLink* RmObj* RmDir* RmGroup*

↑↑↑↑ ↑↑↑ ↑↑ ↑ ← <>
↓↓↓↓ ↓↓↓ ↓↓ ↓ → ><

Navigator: [ROOT]

Scroll position : 0

List Scroll : Total 4, Point 0, Visible : 4
--
-> DIR TTF theories

DIR TTF system-aux
DIR TTF local
DIR TTF system

--

Figure 2.2: Nuprl 5 Navigator

The navigator window also contains arrow buttons for faster navigation through a directory.
↑↑ and ↓↓ scroll half a screen, ↑↑↑ and ↓↓↓ scroll a full screen, and ↑↑↑↑ and ↓↓↓↓ move to the
top and bottom of the directory. In addition to buttons and arrow keys, there are also a variety of
special key combinations that can be used to manipulate objects in the library. These are described
in Chapter 4.

To begin working with the Nuprl system, one will usually move into the theories directory.
Leaving the initial state will cause additional buttons to become visible.

- TERM: Navigator

MkTHY* MkThyDir* ExportThy* OpenThy* CloseThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FindTheoriesMin*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenv* ProveRR* SetInOBJ*
Activate* DeActivate* MkObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [theories]

Scroll position : 0

List Scroll : Total 13, Point 0, Visible : 10
--
-> DIR TTF General

DIR TTF pre-utils
DIR TTF initial reference environment
DIR TTF standard
TERM TTF check theories control
DIR TTF Obvious
DIR TTF user
DIR TTF detritus
DIR TTF utils
DIR TTF .help

--

Usually, Nuprl users will work within their own sub-directory within the directory user and
occasionally browse the standard sub-directory, which contains the Nuprl type theory and a few
standard libraries of formalized mathematical knowledge.

9

A new user-directory can be created by clicking the MkThyDir* button. This will open a template
for entering the name of the new directory and move the edit point to the [name] slot.

- TERM: Navigator
OK* Cancel*

create new directory : [name]

--

MkTHY* MkThyDir* ExportThy* OpenThy* CloseThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FindTheoriesMin*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [user; theories]

Scroll position : 0

List Scroll : Total 1, Point 0, Visible : 1
--
-> CODE TTF RE init user
--

- TERM: Navigator
MkTHY* MkThyDir* ExportThy* OpenThy* CloseThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FindTheoriesMin*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [user; theories]

Scroll position : 1

List Scroll : Total 2, Point 1, Visible : 2
--

CODE TTF RE init user
-> DIR TTF kreitz
--

Enter the name of the directory and click OK* (or press � | twice). This will create the new
directory object, place it immediately below the previous nav point, and move the navigation
pointer to it, as shown in the right window.

2.4 Creating Theorem Objects

Before one can prove a theorem in Nuprl one has to create an object that contains it. Clicking the
MkTHM* button (after moving into the user directory) will open a template for entering the name
and kind of a new library object.1 The edit point will be in the [name] slot.

- TERM: Navigator
OK* Cancel*
ToggleRefenvRelationship* SetRelativeRefenv*

create new thm : [name]

(* creates a thm after current object *)

--

MkTHY* MkThyDir* ExportThy* OpenThy* CloseThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FindTheoriesMin*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [kreitz; user; theories]

Scroll position : 0

List Scroll : Total 0, Point 0, Visible : 0
--

--

- TERM: Navigator
MkTHY* MkThyDir* ExportThy* OpenThy* CloseThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FindTheoriesMin*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [kreitz; user; theories]

Scroll position : 0

List Scroll : Total 1, Point 0, Visible : 1
--
-> STM FFF not over and
--

As example theorem we take � ∀A,B:P. (¬A) ∨(¬B) ⇒ ¬(A ∧B)� , one of the DeMorgan laws
for propositional logic. Enter the name of the theorem not over and and click OK*, or press

� | twice. This will create a new statement object named not over and.

2.5 Proving Theorems

To state and prove a theorem, one has to open the corresponding object. Pressing the right arrow
key when the nav point is a statement object pops up a new window that shows the contents of
this object. If the theorem has not been stated yet, there will be a [goal] slot in the upper part
of the window and the rule slot next to the keyword BY below will be empty. The # in the upper
left corner means that the theorem is not complete yet, while the top next to it indicates that the
top node of the proof tree is being displayed.

1Right now, the creation of a theorem object requires the current directory to contain at least one object.

10

- TERM: Navigator
MkTHY* MkThyDir* ExportThy* OpenThy* CloseThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FindTheoriesMin*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [kreitz; user; theories]

Scroll position : 0

List Scroll : Total 1, Point 0, Visible : 1
--
-> STM FFF not over and
--

- PRF: not over and
top
[goal]

BY

Move the mouse cursor into the new window and click left in the [goal] slot. This initializes
the Nuprl 5 term editor in this slot. The goal is now entered in a structural top-down fashion.
Entering � all � | � creates the template for the universal quantifier.

- PRF: not over and
top

∀[var]:[type]. [prop]

BY

The [var] slot of the all template is a text slot and will not be interpreted. Entering � A � | �

inserts the character ‘A’ in the variable slot and moves the edit point to the next slot.

The [type] and [prop] slots are term slots, which means that input will be interpreted and
may open new templates. Entering � prop � | i � | all � | � inserts the propositional universe term
(whose name prop has nothing to do with the prop in the [prop] place-holder) into the [type]

slot, and another template for the universal quantifier in the [prop] slot.

- PRF: not over and
top

∀A:� . ∀[var]:[type]. [prop]

BY

Entering � B � | prop � | i � | � fills the second quantifier. Notice that the two quantifiers get
contracted, as A and B have the same type P.

- PRF: not over and
top
∀A,B:� . [prop]

BY

Entering the rest of the theorem is straightforward. Typing � implies � | � creates the implication
template. Entering � or � | not � | A � | not � | B � | � generates (¬A) ∨(¬B) and ¬(A ∧B) is generated
by � not � | and � | A � | B � | � .

Before a statement can be used in a proof it must be committed to the permanent library . This
can be done by using the key combination 〈C-M-g〉.2

- PRF: not over and

top
∀A,B:� . (((¬A) ∨ (¬B)) ⇒ (¬(A ∧ B)))

BY

2Actually, pressing 〈C-M-g〉 is not necessary when entering a statement for the first time, since it will be committed
after the first execution of a proof tactic. However, subsequent modifications of the statement will not be committed
without pressing 〈C-M-g〉. Thus it is better to make using this key combination a habit.

11

To begin with the proof, press the down arrow key once or use the left mouse to move the edit
point into the empty rule slot next to the BY.

- PRF: not over and
top
∀A,B:� . (((¬A) ∨ (¬B)) ⇒ (¬(A ∧ B)))

BY

The most common proof tactic is the single step decomposition tactic D (see chapter 8 for
details). It requires as argument the index of the proof hypothesis to which it shall be applied or a
zero if it shall be applied to the conclusion. To enter this tactic, type � D 0 〈C- � | 〉� .

Pressing 〈C- � | 〉 when in a rule slot refines the goal at current node with the corresponding tac-
tic. In this (synchronous) mode you have to wait for the refinement process to be complete. Pressing
〈C-M- � | 〉 instead initializes asynchronous refinement , which allows you to continue working while
the proof goal is being refined. Once a refinement is completed the proof window gets updated and
shows the subgoals that were generated by applying the tactic.

- PRF: not over and
top
∀A,B:� . (((¬A) ∨ (¬B)) ⇒ (¬(A ∧ B)))

BY D 0

1

1. A: �
` ∀B:� . (((¬A) ∨ (¬B)) ⇒ (¬(A ∧ B)))

BY

2

.....wf.....
� ∈ � ’

BY

To prove the first subgoal, press the down arrow key. This will move into the first sub-node of
the theorem, indicated by a top 1.

- PRF: not over and
top 1

1. A: �
` ∀B:� . (((¬A) ∨ (¬B)) ⇒ (¬(A ∧ B)))

BY

To move into the second subgoal, press the right arrow key. As indicated by thewf.....

annotation, the second subgoal is a well-formedness goal , stating that P is a well-formed type theo-
retical expression. Most goals of this kind can be dealt with automatically. Typing � Auto 〈C- � | 〉�

will complete this subproof: no subgoals are generated and the status marker changes into a *.

- PRF: not over and
* top 2
.....wf.....
� ∈ � ’

BY Auto

Pressing the left arrow key will bring you back into the first subgoal. Alternatively you can
press 〈C-M-j〉, which causes the editor to jump to the next unproven subgoal.

Proving the first subgoal requires more efforts. Typing � Auto 〈C- � | 〉� will decompose the
universal quantifier, the implication, and deal with the corresponding well-formedness subgoals.
The result will be a subgoal with two additional hypotheses: a declaration of the variable B and the
assumption (¬A) ∨(¬B).

12

To prove this goal both the conclusion (D 0) and the third hypothesis (D 3) need to be decom-
posed. Auto does neither of these two steps automatically but can deal with the resulting subgoals.
These steps can be combined into a single one by using the tactical THEN.

- PRF: not over and
top 1

1. A: �
` ∀B:� . (((¬A) ∨ (¬B)) ⇒ (¬(A ∧ B)))

BY Auto

* 1 1

2. B: �
3. (¬A) ∨ (¬B)
` ¬(A ∧ B)

BY

Clicking the left mouse next to the BY allows you to enter the tactic into an empty rule slot with-
out having to move into the corresponding sub-node. Typing � D 0 THEN D 3 THEN Auto 〈C- � | 〉�

results in a complete proof of the subgoal.

- PRF: not over and
* top 1

1. A: �
` ∀B:� . (((¬A) ∨ (¬B)) ⇒ (¬(A ∧ B)))

BY Auto

* 1 1

2. B: �
3. (¬A) ∨ (¬B)
` ¬(A ∧ B)

BY D 0 THEN D 3 THEN Auto

Using the up arrow key will get you back to the parent node, which now shows the complete proof.

- PRF: not over and
* top
∀A,B:� . (((¬A) ∨ (¬B)) ⇒ (¬(A ∧ B)))

BY D 0

* 1

1. A: �
` ∀B:� . (((¬A) ∨ (¬B)) ⇒ (¬(A ∧ B)))

BY Auto

* 1 1

2. B: �
3. (¬A) ∨ (¬B)
` ¬(A ∧ B)

BY D 0 THEN D 3 THEN Auto

* 2

.....wf.....
� ∈ � ’

BY Auto

The proof has already been saved in the library. To close the proof window press 〈C-Q〉. This
key combination will always close the current window.

If a theorem shall be used as lemma in other proofs, it has to be activated . Many tactics use a list
of active theorems which are searched through when attempting to prove a theorem automatically.
For this purpose you have to click the Act* button, which changes the object status of not over and

from FFF to TFF.

13

- TERM: Navigator

MkTHY* MkThyDir* ExportThy* OpenThy* CloseThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FindTheoriesMin*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [kreitz; user; theories]

Scroll position : 0

List Scroll : Total 1, Point 0, Visible : 1
--
-> STM TFF not over and
--

A theorem can also be activated by closing the proof window with 〈C-Z〉 instead of 〈C-Q〉. This
will cause Nuprl to create the extract term of the proof (a λ-term describing its computational
content) and to store it along with the theorem object. The status of that theorem will then be TTF.

2.6 Adding Definitions

Besides proving theorems, the most common activity in mathematics is introducing new concepts,
which are defined in terms of already existing ones. This makes the formulation of theorems crisper
and easier to comprehend. Nuprl supports such an enhancement of the formal language through a
definition mechanism. This mechanism allows a user to introduce new terms that are definitionally
equal to other terms.

As an example consider the ∃! quantifier, which states the existence of a unique element x ∈T

that satisfies a property P. A typical definition for this quantifier is the following:

∃!x:T. P[x] ≡ ∃x:T. P[x] ∧ (∀y:T. P[y] ⇒ y=x ∈T).

This definition actually presents two aspects of a newly defined term. It first states that a new
abstract term, say exists uni is to be introduced, which has two subterms (T and P) and binds
occurrences of x in P. Secondly, it states that the term is to be presented as ∃!x:T. P.

In Nuprl a formal definition requires the creation of two new objects: an abstraction, which
defines the abstract term, and a display form, which defines its syntactical appearance (see Chapters
7.1 and 7.2). In addition to that, it is advisable to prove a well-formedness theorem, which describes
the type of the newly introduced term. All three objects can be created with the AddDef mechanism.

To initialize this mechanism, click the AddDef* button with the left mouse. This will open a
template for defining the abstract term.

- TERM: Navigator
OK* Cancel*

add def : [lhs] ==
[rhs]

--

MkTHY* MkThyDir* ExportThy* OpenThy* CloseThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FindTheoriesMin*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [kreitz; user; theories]

Scroll position : 0

List Scroll : Total 1, Point 0, Visible : 0
--
-> STM TFF not over and
--

14

To enter the new term on the left hand side of the definition, you have to provide its name (or
object identifier) and a list of subterms. The ∃! has two subterms, T and P, and binds one variable
in the second. To create a template for entering the details, type � exists uni(0;1)� .

- TERM: Navigator

OK* Cancel*

add def : exists uni\(0;1
[rhs]

- TERM: Navigator

OK* Cancel*

add def : exists uni([term]; [binding].[term]) ==
[rhs]

This tells the system to create a term called exists uni, whose first term has no bound variables
and whose second term has one bound variable The template, shown on the right, appears as soon
as you have entered the right parenthesis that closes the subterm list. Pressing � | then moves the
edit point into the first term slot.

- TERM: Navigator

OK* Cancel*

add def : exists uni([term]; [binding].[term]) ==
[rhs]

Enter � T � | x � | so var1 � | � . This puts T into the first term slot, makes x the binding variable in the
second, and states that the second term will be a second order variable of arity 1 (see Chapter 7.1).

- TERM: Navigator

OK* Cancel*

add def : exists uni(T; x.[variable-id][[term]]) ==
[rhs]

Note that Nuprl’s term editor treats any unknown name as variable name, while names that can
be linked to (active) object identifiers (and display forms) will cause the corresponding template
to appear. Thus T will be inserted as variable name, while so var1 creates a new template. x had
been entered into a binding slot and is thus viewed as variable.

Should you mistype so var1 and actually enter an identifier that is unknown to Nuprl, say
sovar1, the identifier will appear as variable name in the term slot.

- TERM: Navigator

OK* Cancel*

add def : exists uni(T; x.sovar1) ==
[rhs]

There are two ways to correct that mistake. You may delete the term � sovar1� by clicking left over
it, pressing 〈M-P〉 to mark the full term and then 〈C-K〉 to cut it. Afterwards you enter so var1 � |

to get the correct template. Note that 〈C-k〉 saves the term in a cut buffer and that you can paste
this term with 〈C-Y〉. To delete a term without saving it, you need to press 〈C-C〉.

Alternatively, you may use Nuprl’s generic undo command 〈C- 〉, which will restore the empty
term slot. Move the edit cursor into that slot either by pressing � | or by clicking left over it and
then enter enter so var1 � | .

Entering � P � | x � | � next generates P[x] and moves the edit point into the right hand side of
the definition.

- TERM: Navigator

OK* Cancel*

add def : exists uni(T; x.P[x]) ==
[rhs]

15

To enter the right hand side of the definition, you have to proceed in a structural top-down fashion.
Type � exists � | x � | T � | and � | so var1 � | P � | x � | �

- TERM: Navigator

OK* Cancel*

add def : exists uni(T; x.P[x]) ==
∃x:T. (P[x] ∧ [prop]

and then � all � | y � | T � | implies � | so var1 � | P � | y � | equal � | x � | y � | T � | � .

- TERM: Navigator

OK* Cancel*

add def : exists uni(T; x.P[x]) ==
∃x:T. (P[x] ∧ ∧ (∀y:T. (P[y] ⇒ y=x ∈T)))

The definition is now complete. To save it to the library click OK* or press � | again. This closes
the AddDef template and creates a display form exists uni df of kind DISP, an abstraction object
exists uni of kind ABS, and a well-formedness theorem exists uni wf of kind STM. The navigation
pointer is still where it has been before.

- TERM: Navigator
MkTHY* MkThyDir* ExportThy* OpenThy* CloseThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FindTheoriesMin*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [kreitz; user; theories]

Scroll position : 0

List Scroll : Total 4, Point 0, Visible : 4
--
-> STM TFF not over and

DISP TTF exists uni df
ABS TTF exists uni
STM TFF exists uni wf

--

The abstraction object contains exactly what has been typed into the AddDef template and usually
does not have to be edited anymore. The display form has been generated from the left hand side of
the AddDef template and currently causes the term exists uni to be displayed in exactly this way.
The well-formedness theorem is empty but already activated, which enables the general tactics to
access it whenever they have to deal with exists uni.

To view the abstraction, move the navigation pointer down 2 steps then open the object
exists uni by pressing the right arrow key.

- TERM: Navigator
MkTHY* MkThyDir* ExportThy* OpenThy* CloseThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FindTheoriesMin*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [kreitz; user; theories]

Scroll position : 2

List Scroll : Total 4, Point 2, Visible : 4
--

STM TFF not over and
DISP TTF exists uni df

-> ABS TTF exists uni
STM TFF exists uni wf

--

- ABS: exists uni

exists uni(T; x.P[x]) ==
∃x:T. (P[x] ∧ (∀y:T. (P[y] ⇒ y=x ∈T)))

The abstraction object shows on the right hand side the term that defines the meaning of
exists uni(T;x.P[x]) and on the left hand side the form in which exists uni(T;x.P[x]) is
currently displayed. Right now, this is identical to the abstract term form. To close the abstraction
object again press 〈C-q〉.

16

To change the appearance of the term exists uni(T;x.P[x]) to ∃!x:T. P[x] you have to edit
the accompanying display form. For this purpose, move the nav point one step up and open the
object exists uni df.

- TERM: Navigator
MkTHY* MkThyDir* ExportThy* OpenThy* CloseThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FindTheoriesMin*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [kreitz; user; theories]

Scroll position : 1

List Scroll : Total 4, Point 1, Visible : 4
--

STM TFF not over and
-> DISP TTF exists uni df

ABS TTF exists uni
STM TFF exists uni wf

--

- DISP: exists uni df
EdAlias exists uni ::
exists uni(<T:T:*>;<x:var>.<P:P:*>) ==

exists uni(<T>; <x>.<P>)

The display form consists of a list of attributes (in this case only the name that can be used to open
the template), a template that determines the outer appearance of a term, and the term that is to
be represented by that template. Both the template and the term contain slots that are marked
with <..> and describe the name of a placeholder, a description that will appear whenever the
template is initiated, and information about parenthesizing. Chapter 7.2 describes how to create
display forms from scratch, but usually copying and pasting is sufficient.

To edit the template click mouse over the exist uni in the second line and erase the text
exist uni(using backspace and delete keys. Notice that you can’t delete the slot <T:T:*> with
these keys. Type � 〈C-#〉163!� to generate the ∃ symbol (see table 5.1 on page 73 for a list of all
special characters) and the exclamation mark. Delete the semicolon and the dot between the term
slots and also the right parenthesis.

- DISP: exists uni df
EdAlias exists uni ::
∃!<T:T:*><x:var><P:P:*> ==

exists uni(<T>; <x>.<P>)

To rearrange the order of the slots click left over <T:T:*> press 〈M-p〉 to mark the full slot, and
〈C-k〉 to cut it. Then move the mouse to the immediate right of <x:var:*> and press 〈C-y〉. Add
a colon between <x:var:*> and <T:T:*>, a dot and a space between <T:T:*> and <P:P:*>.

- DISP: exists uni df
EdAlias exists uni ::
∃!<x:var>:<T:T:*>. <P:P:*> ==

exists uni(<T>; <x>.<P>)

In principle, the display form is now complete. However it is advisable to edit the slot description
of T and P. Click right of the second T in <T:T:*>, remove it and enter � type� instead. In the same
way change the second P in <P:P:*> to prop. This makes sure that meaningful descriptions for
theses slots will show up whenever the template for exists uni is opened.

- DISP: exists uni df
EdAlias exists uni ::
∃!<x:var>:<T:type:*>. <P:prop:*> ==

exists uni(<T>; <x>.<P>)

To commit the completed display form to the library, press 〈C-Z〉. This will also close the window
again. Do not use 〈C-Q〉 unless you want all your changes to be ignored. 〈C-Q〉 will always close a
window without saving its contents to the library.

17

To check the display form, open the abstraction exists uni again. You will notice that the
display of the abstract term exists uni(T;x.P[x]) has now been replaced by ∃!x:T. P[x].

- TERM: Navigator
MkTHY* MkThyDir* ExportThy* OpenThy* CloseThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FindTheoriesMin*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [kreitz; user; theories]

Scroll position : 2

List Scroll : Total 4, Point 2, Visible : 4
--

STM TFF not over and
DISP TTF exists uni df

-> ABS TTF exists uni
STM TFF exists uni wf

--

- ABS: exists uni

∃!x:T. P[x] ==
∃x:T. (P[x] ∧ (∀y:T. (P[y] ⇒ y=x ∈T)))

The abstraction and the display form are sufficient for using a newly defined term in formal the-
orems and other abstractions. However, many proofs involving an instance of exists uni will
involve checking the type of this term. This can be done automatically if well-formedness theorem
is provided describes the type of the newly defined term.

A unique existence quantifier ∃!x:T. P[x] is a proposition, provided that T is a type and P is
a predicate on T. In other words, the type of ∃!x:T. P[x] is P if T is an element of the universe U

of types and P ∈ T→P. Formally, you need to prove ∀T:U. ∀P:T→P. ∃!x:T.P[x] ∈ P.

To state this theorem, open the object exists uni wf and enter

� all � | T � | univ � | i � | all � | P � | fun � | T � | prop � | member � | �

into the goal template.

- PRF: exists uni wf
top
∀T:� . ∀P:T→ � . ([term] ∈ [type])

BY

Continue with � exists uni � | x � | T � | so apply1 � | P � | x � | prop � | 〈C-M-g〉� to complete the goal
and commit it to the library.

The proof of this theorem is fairly simple, since it can be handled almost completely by Nuprl’s
tactic Auto. However, since Auto does not unfold a definition unless it is explicitly declared as
automatically unfoldable, you need to unfold the definition of exists uni in the first step.

Typing � Unfold ‘exists uni‘ 0 THEN Auto� into the rule slot will result in a proof of the
well-formedness theorem for exists uni.

- TERM: Navigator
MkTHY* MkThyDir* ExportThy* OpenThy* CloseThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FindTheoriesMin*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [kreitz; user; theories]

Scroll position : 3

List Scroll : Total 4, Point 3, Visible : 4
--

STM TFF not over and
DISP TTF exists uni df
ABS TTF exists uni

-> STM TFF exists uni wf
--

- PRF: exists uni wf
top
∀T:� . ∀P:T→ � . (∃!x:T. P[x] ∈ �)
BY Unfold ‘exists uni‘ 0 THEN Auto

This completes all necessary steps for adding a unique existence quantifier to the formal language
of Nuprl. Close the well-formedness theorem with 〈C-Q〉.

18

2.7 Printing Snapshots

To print a snapshot of a particular object, simply click the PrintObj* button. This will create a
print representation of the object at the nav point and write it into a file ˜/nuprlprint/object-

name.prl. This file can be inspected with any 8bit capable editor that has the Nuprl fonts loaded.
It will also create a LATEX-version and write it to ˜/nuprlprint/object-name.tex. The directory
˜/nuprlprint must already exist. Otherwise clicking the PrintObj* button will result in an error.

The button PrintCollection will create a print representation of a whole range of objects,
while the buttons PrintThyLong and PrintThyShort will create a print representation of the
directory at the nav point. The long version shows the complete proofs of theorems while the short
version only prints the theorem statement and the extract of the proof, that is a term representing
its computational content.

2.8 Troubleshooting

Since the Nuprl library never destroys information, typos and almost all commands can be undone
by entering the key combination 〈C- 〉. The undo history, however, is limited and recovering from
an error that was made many steps ago is more difficult.

Should you accidentally close the navigator window you may open it again by typing the com-
mand win. into the editor process top loop. This will open all the windows of the initial screen.

If the editor hangs for an unusually long time, one of the three main processes (editor, refiner,
or library) may be broken. In this case there will be an error message in the corresponding (emacs)
top loop. Often, evaluating the expression (fooe) will recover the process. Sometimes, typing the
Lisp command :cont will help as well. In the worst case, kill the process and then restart it. The
library process will detect the link going dead and clean it up automatically.

2.9 Shutting Nuprl down

In principle, there is no need to shutdown Nuprl, as all data are saved immediately and updates
may be integrated by by loading patches into the running process. However the Nuprl 5 are quite
demanding as far as cpu and memory are concerned.

To shutdown gracefully you should first close the refiner and the editor and then the library.
Enter stop. at the corresponding ML prompt.

ML[(ORB)]> stop.

As a result, the editor and refiner will communicate to the library that they will disconnect now
and then stop the respective ML and Lisp processes. The library process will cleanly shut down the
knowledge base and then stop as well.

Instead of shutting down gracefully you may also simply kill all three processes to stop Nuprl 5,
although this is not recommended.

19

