Chapter 4

The Navigator and the Top Loops

The navigator and the interactive ML top loops provide interfaces to the library, the editor, and
the refiners. The main interface to the library is the NUPRL 5 navigator. It enables the user to

. browse and search through the library
. create, delete, and rename library objects of various

. arrange objects in folders and theories

1
2
3
4. edit library objects by invoking a term editor (Chapter 5) or a proof editor (Chapter 6)
5. check the validity of objects and theories

6

. export and import theories
7. print library objects and theories to text and TEX files

The same operations can also be initiated from NUPRL’s ML top loop, which provides an interactive
interface to the ML system of the editor process. The difference is that the navigator provides a
visual interface to the library, while the ML top loop requires a user to enter ML commands that
will be accepted by the NUPRL 5 editor and communicated to the library.

The ML top loop also provides additional functionality, such as experimenting with NUPRL
functions, loading ML files, and exploring the NUPRL state. These functions can also be executed
from the ML top loop that was initially started by the editor process. The difference between these
two top loops is that NUPRL’s ML top loop runs in a term editor window and thus supports most
of the editing commands described in Chapter 5 work in it. In contrast to that the process ML top
loop runs in a Unix shell that does not support editing NUPRL terms but may support text editing
features if run from within emacs. Furthermore, most library functions are not accessible from the
process top loop.

NUPRL’s ML top loop can also be run as refiner ML top loop or as library ML top loop. In
these cases the ML top loop interfaces with the refiner process or the library process instead of
the editor. This means that a different set of functions will be preloaded and that the commands
entered will affect a different process. For instance, all tactics (see Chapter 8) are accessible from the
refiner top loop, which enables a user to experiment with new tactics while having access to a term
editor. In the library top loop, functions for modifying the library itself (such as loading patches or
structural rearrangements) become available. The same functionality will also be provided by the
corresponding process ML top loops, yet without term editing support.

Most users will rarely use the ML top loops, because all standard tasks can be performed by
using the navigator. More experienced users will occasionally use the refiner or editor top loops.
The refiner top loop is usually only required for maintenance.

31

4.1 The Library

NUPRL’s library is a mathematical and logical database. All library contents are represented by a
common basic data structure called objects. There are objects for theorems, definitions, inference
rules, tactics and other algorithms, comments and articles, objects that control the visual appear-
ance of the mathematical notation, and objects that are used to organize other objects in theories
and directories. A [ibrary table binds objects to identifiers that are used when referring to them.

In contrast to previous releases of NUPRL, all library contents are kept in a persistent library
and are accessible (modulo permission restrictions) as soon as the NUPRL 5 system is started. The
library roughly operates like a data base: modifications to theories, such as creating, deleting, or
editing objects are immediately committed to the library. However, all changes may be undone if
necessary. A backup of all previous versions of an object is kept until is explicitly destroyed in a
garbage collection process, which enables a user to recover previous versions if needed.

The navigator shows information on a segment of the library, which is sometimes called the
user’s work space. The format of the navigator window is discussed in Section 4.2.1. Commands
for for browsing, searching, editing, and structuring library contents as well as for controlling the
navigator window and are discussed in Section 4.3. In the rest of this section we briefly explain the
internal structure of NUPRL’s library and its relation to the externally visible behavior of NUPRL.

4.1.1 Library Objects

Library objects the common representation of all the contents of NUPRL’s library. They are abstract
terms that are associated with a kind, a variety of properties, and possibly with extra data.

Abstract terms provide a uniform data structure for representing almost any kind of formal
content. They consist of an operator identifier, a list of parameters, and a list of bound subterms
(see Chapter 5 for a detailed description). The abstract term syntax makes sure that no predefined
structure is imposed on the contents of the library and makes parsing unnecessary. All visible
structure and notation is generated by the editor process, which consults display forms that describe
how to “read” an abstract term. The separation between internal representation and external
presentation makes formal notation extremely flexible and expressive, as it supports an almost
arbitrary syntax and allows information to be presented differently depending on context and the
preferences of the users of NUPRL.

The kind of an object is a description of the intended role of the abstract term. It allows mak-
ing a distinction between theorems, definitions, tactics, comments, etc., and identifying structure
information when assembling theories. Currently the following kinds are defined

statement objects contain a proposition and (reference to) a proof. If the proof is complete, the
proposition is considered a theorem (or a lemma). Otherwise it is a conjecture. A statement
object for a complete theorem also contains the extract term of the theorem

proof objects contain NUPRL proofs, i.e. directed acyclic graphs of (references to) inference steps,
where the conclusion of a child inference is a premise of its parent inference. A proof is
complete if all its leaves are closed by inferences.

inference objects contain records of actual inference steps. These may consists of instances of
primitive rules, of tactics executions, or more generally of applications of inference engines
that are connected to the NUPRL library.

abstraction objects introduce the abstract definition of a new term.

32

display objects define display forms for primitive terms and abstractions.

precedence / lattice objects assign precedences for terms. Precedences control the automatic
parenthesization of terms.

code objects contain the code of tactics and other ML code.
rule objects define primitive rules of the object logic.

directory objects define NUPRL theories. They contain lists of references to other objects and are
used to add structure to the library.

comment objects contain comments. Comments have no logical significance but can be used to
link formal material to informal text.

term objects are used to represent all library objects whose kind is not specified. Inactive (see
below) directories are considered term objects.

Statement objects, proofs, and inferences are discussed more in Chapter 6, abstractions in Chap-
ter 7.1, display forms and precedences in Chapter 7.2, rules and tactics in Chapter 8, and ML code
in Appendix B.

The properties contain status information that is helpful for maintaining the object, tracking
dependencies, building justifications etc. The most common properties are

e A liveness bit, indicating whether the object is active and may be referenced to by others.

e A sticky bit, indicating whether the object may be removed from the library table during
garbage collection. Most objects are not sticky.

A description of clients to which the object shall be made visible.

e A memnonic name which is commonly used for presenting the object identifier.

The language in which a code object is programmed.

e A reference environment (Section 4.3.3.1) describing the context of the object.

Ezxtra data are used to collect information that accounts for the validity of an object’s content.
Statements include a list of (links to) proof objects as extra data, proofs include a tree of inferences,
and inferences include primitive inference steps.

4.1.2 The Library Table

In the library table, objects are also associated with abstract identifiers that are bound to the
contents of the object. All references to objects have to use these abstract identifiers, which in turn
are linked to names for objects in a user’s work space.

Object contents are viewed as non-destructive. To change the content of an object, the library
creates a new object content and rebinds the abstract identifier of the object to the new content. To
remove the object from the library, it simply removes the binding between the abstract identifier and
the content. Object contents are usually not removed from the library except by garbage collection.

All library operations are built from a small collection of primitive operations on object contents
and library tables. These operations are performed by the library’s transaction manager, which
ensures that the library is always in a consistent state, and provides mechanisms that make it
possible to recover from failures and system crashes. Library transactions also provide a model for
controlling the outside access to the actual library contents, which enables the library to certify the
correctness of its formal theorems and proofs. The primitive library operations are

33

Binding an object identifier to an object and unbinding an object identifier.

Looking up object contents bound to an abstract identifier.

Generating new object identifiers.

(De)activating an object (changing the liveness bit).

(Dis)allowing garbage collection for the object (changing the sticky bit).

There are also primitives for creating new object contents from existing object contents and new
data. The most basic primitive creates a new abstract term for the object. Other primitives modify
extra data related to building proof structures by changing the list of proofs linked to a statement,
modifying the inference tree of a proof, or changing the inference step of an inference object.

4.1.3 User Interaction with the Library

NUPRL users do not directly interact with the library but through an editor process that communi-
cates with one of the library’s application interfaces. The application interface generates the user’s
work space from the actual library table and communicates the modifications initiated by the user
to the transaction manager, which in turn performs the actual modification to the library. This
makes it possible to restrict access to certain parts of the library, to hide the abstract representation
of data, and to present to the user a consistent view of the library to the user.

In the user’s work space, library objects grouped into directories, or theories. Every object has a
unique name and belongs to exactly one theory, although they may be linked to from other theories
or by a different name within the same theory. Theories can be nested like Unix directories and may
depend on each other. The dependencies of theories on one-another forms a partial order. Within
each theory, objects are ordered linearly.

The NUPRL editor enables users to walk through the directory tree in a visual fashion and to
initiate commands for browsing, searching, editing, and structuring library contents through menu
buttons. The editor does not execute these commands directly but sends requests to the library’s
application interface, which in turn will perform the appropriate actions and sends an updated view
of the client’s work space back to the editor.

For most practical purposes, the distinction between the apparent external behavior of NUPRL
and the internal operations that are performed to realize this effect is irrelevant. The subsequent
expositions will therefore consider the library to be identical to the directory structure of objects
that is presented on the screen.

4.2 Nuprl Windows

A complete NUPRL session (see Section 3.3) usually starts with five windows, shown in Figure 4.1: a
navigator, an ML top loop, and three windows for the library, refiner, and editor processes.’ Among
these, the navigator window is the most important one, as most user interaction goes through the
navigator. The ML top loop will only be needed for more advanced tasks that have not (yet) been
integrated into the navigator. The process windows receive all system output and error messages
and are usually only needed for maintenance and debugging purposes.

!Users may also connect to existing library and refiner processes and only see one Lisp process window.

34

| - TERM: eda krenz Cammred |9

Act ivatex defctivatex NameSearchx PathStackx Clonex RaiseToplLoopsx
Mill% SaveObjx commentObj% CountClosurex ObidCollector:k

MkLinks MkObjx MkDirs MkTHMz CpObjx reNameObjx EditPropertys
RmLinkx RmObjx RmDirx RmGroups

™M ™M T T ¢« o
B e S S A o

Navigator: [ROOT]

Scroll position : 3

= - TERM ML TopLeop Geda kioiz Guamied |

List Scroll : Total 4, Point 3, Visible : &
Previous: Nextx Evalx Resetx Removex SaveWOEval=x
DIR TTF local LIBx EDDx REFx ShowRefenv: RaiseHistoryx RaiseNavigators
DIR TTF system-aux
DIR TTF system MIEDDI> | 53

-> DIR TTF theories

Figure 4.1: Initial NUPRL 5 screen

4.2.1 The Navigator Window

The navigator window, shown on the left of the screen in Figure 4.1, is divided into three major
zones, a command zone, a library statistics zone, and a navigation zone.

The command zone can be found in the upper part of the navigator window, as in most
NUPRL 5 windows. It contains several buttons, which are are indicated by a * at the end of a piece
of text. Clicking these buttons with the left mouse button will trigger the action described by the
text and occasionally pop up a template that needs to be filled in. The arrows in the window (1117,
LLLL, ooy T, 1) also operate as buttons that can be clicked for faster scrolling. The commands linked
to the navigator buttons are described in detail Section 4.3 below.

Many commands require interaction with the user, for instance typing in the name of an object
to be created. The interaction takes place through templates and additional command buttons that
will appear on top of the command zone, as illustrated in Section 4.3.2.1. The additional button
and slots created depend on the individual command.

It should be noted that the buttons in the command zone may depend on the directory that is
currently shown by the navigator. Subsequent snapshots will show, for instance, that the buttons
for the standard theories include a variety of theory specific buttons that are not relevant for the
root directory. NUPRL allows users to customize the command zone by adding new buttons tailored
for specific modes of operation in certain theories.

The statistics zone immediately above the display of library contents shows directory statistics.

e The line beginning with Navigator describes the current directory path path, beginning with
the actual theory and going backward to the root of the directory tree.

e The Scroll position field shows the position of the navigation pointer within the current
directory. When the edit point, which is marked by a thin vertical line, is in this field the
arrow keys on the keyboard can be used to move the through the directory tree.

e The List Scroll field shows the total number of objects in objects in the current theory, the
position of the navigation pointer, and the number of visible objects. The latter us usually
10, or less if there are less than 10 objects in the directory, but can be modified using the <>
or >< buttons (Table 4.1).

35

The navigation zone in the lower part of the navigator window displays a linear segment of the
library, one object per line. From left to right each line contains:

The object kind is described by a string of three or four characters.

STM stands for statement objects, PRF for proof objects, INF for inference objects, ABS for
abstractions, DISP for display forms, PRC for precedence objects, CODE for ML code, RULE for
inference rules, COM for comments, DIR for directories, and TERM for objects of unspecified kind.

Proof and inference objects are usually not listed in the directory but can be accessed only
through the proof editor (Chapter 6.2).

The object status is described by three characters, either T or F.
The first character describes whether the object has been activated and is T in most cases.

The second character is reserved for theorem objects and describes if the theorem has a
complete proof and an extract term. For all other objects it is T.

The third character describes the status of the sticky bit. It is F for most objects.

The object’s name can have arbitrarily many characters and may include blanks.

One of the displayed objects in the library is also marked by an arrow (->) to the left of its kind.
We call this distinguished object the navigation pointer (or nav point. All navigator commands will
be executed relatively to this object.

4.2.2 The ML Top Loop Window

The ML Top Loop window, shown on the right bottom of the screen in Figure 4.1, offers a command
interface to the editor, refiner, and library processes. It is divided into two major zones, a command
button zone and a command line zone.

The command button zone in the upper part of the ML Top Loop window is similar to the
command zone of the navigator. The command buttons, however, do not interact with the library
contents but affect the behavior of the editor itself. Most importantly, the buttons LIB*, EDD*, and
RED* switch between the processes that the ML Top Loop interacts with and change the command
prompt of the command line zone accordingly to M[LIB]>, M[EDD]>, or M[REF]>.

The command line zone between the command line prompt and the double semicolon provides
a term editor window for entering ML commands that may contain NUPRL terms as arguments.
The latter can be inserted by opening a term slot and entering terms as described in Chapter 5.

4.2.3 The Process Top Loop Windows

The Process Top Loop windows are the windows in which the library, refiner, and editor Lisp
processes were started. Usually they run as ML top loops for interacting with the corresponding
processes. However, it is also possible to switch into Lisp mode, if low-level operations have to be
performed. The process Top Loops support most of the commands of the corresponding NUPRL
ML top loop, but lack the features for editing NUPRL terms and most of the navigator commands.

These windows should only be used for maintenance and debugging purposes. It is recommended
to run them within an emacs shell to have some text editing support.

36

4.3 Library Commands

Most library commands are best executed from the navigator may also be invoked from the ML top
loop (see Section 4.4). In this section we will describe the usual navigator operation and mention
the corresponding commands.

Many commands are initiated by clicking the left mouse button on one of the predefined menu
buttons in the navigator’s command zone. Often this will pop up a template containing one or
several slots into which the user has to enter text or terms. When issuing commands, pressing
certain key sequences will have the following effects.

e The return key i closes a slot and moves to the next empty slot. If all slots have been filled,
it highlights the completed command. Pressing .1 again then executes the command.

e The tabulator key 'S usually cancels a command.

e The space key moves the cursor back into the navigation zone but leaves the template
open. This is helpful for moving objects or link objects in different theories.

o As is used for the above action, blanks are inserted into a text slot by pressing (S- EPCJ).
e (C-.) is used to undo an operation (on a fairly fine level)
(C-+) is used to redo an undone operation.
e Pressing the left mouse button usually sets the point to that location. Pressing
while over a menu command button executes the corresponding command.

e Pressing the middle mouse button usually raises the display form of a term or the
code object containing the definition of an ML function. Within the navigation zone, it opens
the corresponding object.

e Pressing the right mouse button raises the abstraction of an object, if there is one.

These bindings are also valid in many other editing contexts.

4.3.1 Browsing the Library

To browse the library, a user may move a navigation pointer through the current directory by using
arrow keys, the mouse, or clicking on one of the arrow buttons 7177, |1ll, ..., T, |. To move into
a directory or to open an object for editing, one uses the right arrow key (or middle-clicks on it
with the mouse), to move out of a directory, one moves the navigation pointer to the left. There
are also emacs like key bindings to substitute for the arrow keys and buttons for changing the
number of visible objects, or screen size. Table 4.1 lists all the key bindings and buttons for moving
through the navigator window and manipulating its size. Users may customize these bindings in
their mykeys.macro file (see Chapter 3.2.2).

4.3.1.1 Viewing and Editing Objects

In order to view or edit an object, one moves the navigation pointer to it and then opens it using
the right arrow (or MIDDLE). If the object is not already being viewed, this will pop up a new
window and open the appropriate editor: a proof editor (Chapter 6.2) is used on theorem objects,
while the term editor (Chapter 5) is used for all other objects.

Abstractions and display forms of an abstract term can also be opened when an instance of the
term is visible in a term editor. In this case one may click on the term with to view the
display form and to view the abstraction. Alternatively one may position the term cursor
at the term and type (C-X)df or (C-X)ab, respectively. Chapter 5.7 gives a detailed description of
these term editor utilities.

37

Key Button
l (C-n) move navigation pointer one step down
(C-1) move navigation pointer 5 steps down
(C-M-|) (C-v) move navigation pointer 10 steps down
11l move navigation pointer one screen down
1L move navigation pointer to bottom
T (C-p) move navigation pointer one step up
(C-1) move navigation pointer 5 steps up
(C-M-1) (M-v) move navigation pointer 10 steps up
T move navigation pointer one screen up
11T move navigation pointer to top
move navigation pointer to mouse point
— (C-1) open object at navigation pointer
open object at mouse point
— (C-b) move navigation pointer to next higher directory
<> increase screen size by 10
>< reduce screen size by 10

Table 4.1: Navigator Motion Commands

Objects can also be viewed by typing the command ,view name, into the editor ML top loop,
where name is a token indicating the name of the new object. The view command was the standard
method for viewing objects in the predecessors of NUPRL 5. Its use in NUPRL 5 is discouraged, as
the command is ambiguous if the same name use used for multiple objects.

4.3.1.2 Searching for Objects

The navigator provides a utility for a pattern-based search for object names in the library. Name
search is initiated by clicking the NameSearch* button in the navigator’s command zone, which will
create a search command zone on top of the current command zone and place the edit point into
a [pattern] slot.

After entering a text string into the pattern slot, a user types 1 start the search for the next
object whose name contains the entered string. By default, the search proceeds forward beginning
at root of the library directory tree. Typing 1 again will search for the next matching name, etc.

The search mechanism can be modified by using the additional buttons of the search command
zone. These buttons have the following effects.

e Hidex: Hide the search command zone by iconifying it to a button Search#.

e Backward*: Change the default direction to backward search and search for the next match.
e Forward#: Change the default direction to forward search and search for the next match.

e Global#*: Search within the entire library

e Treex: Restrict search to the subtree beginning in the current directory

e List*: Restrict search to the list of objects in the current directory

e PreviousPattern*: Replace the current search pattern by the one previously entered. This
pattern may be modified but the modified pattern will not be stored in the list of patterns

e NextPattern*: Replace the current search pattern by the one entered immediately after it,
if there is one.

e Reset*: Replace the pattern by an empty [pattern] slot.
e Cancelx: End the search and remove the search command zone.

38

- TERM: Navigator - TERM: Navigator

Hidex Backward* Forward* Global* Treex List* Hide* Backward* Forward* Global* Treex List*
PreviousPatterns NextPattern* Reset* Cancel* PreviousPattern* NextPattern* Reset* Cancel¥
(* jumps to next matching name in library *) (* jumps to next matching name in library *)
Search Forward : Pattern" [pattern] Search Forward : Pattern" divides$
Searching entire lib. Searching entire lib.
1Void() 4218 divides
MKTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy* MKTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY+ EphTHY* ExTHY* CheckMinTHY* MinTHY* EphTHY* ExTHY
Mill*x ObidCollector* NameSearch* PathStack* RaiseTopLoops* Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*
PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs || PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup* CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup
ShowRefenv# SetRefenvSibling* SetRefenvUsing* SetRefenvs ProveRR* SetInOBJ* ShowRefenv# SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetInOBJ*
MKTHM* MKML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp* MKTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir+ RmThyObj* MvThyObj* Act* DeAct* MkThyDir* RmThyObj* MvThyObj*
T T T = e T 11T 1T T = o
LWIL LI L L= s LWL LI L L= s
Navigator: [num-thy-1; standard; theories] Navigator: [num-thy.1; standard; theories]
Scroll position : 0 Scroll position : 5
List Scroll : Total 159, Point 0, Visible : 01 List Scroll : Total 159, Point 5, Visible : 10
-> CODE TTF RE.init.num_thy.1 CODE TTF RE.init.num_-thy.1
COM TIF num.thy-1.begin COM TIF num.thy.l.begin
COM TIF nunm.thy_l.summary COM TIF num.thy.l.summary
COM TTF num.thy-1.intro COM TTF num.thy.l.intro
DISP TIF divides.df DISP TIF divides.df
ABS TTF divides -> ABS TTF divides
STM TIF divides.wf STM TTF divides.wf
STM TIF comb_for.divides.uf STM TTF comb.for.divides.wf
STM TIF zero.divs.only.zero STM TTF zero.divs.only.zero
STM TIF one.divs.any STM TTF one.divs.any

Figure 4.2: Pattern-based name search

Currently, search patterns have to be text strings that can match either a substring of an
object’s name, its beginning, or its end. To search for the beginning of names, one simply adds a
caret (") before string, to search for the end of names one appends a dollar symbol ($) to its end.

For instance, entering divides, into the pattern slot on the left side of Figure 4.2 searches
for the object in the library whose name contains the string divides. This includes divides df,
divides, divides_wf, comb_for_divides_wf, etc. Entering ,~divides, searches only for objects,
whose name begins with divides, which excludes comb_for _divides wf. Entering divides$,, as
shown on the right side of Figure 4.2, searches only for objects, whose name ends with divides,
and entering ,“divides$, searches for all objects named divides.

4.3.1.3 Advanced Motion: Using Path Stacks

To enable users to jump between commonly used positions in the directory tree, the navigator
provides a path stack utility. Clicking the PathStack* button will which will create a path stack
command zone on top of the current command zone and store the current position of the navigation
pointer in the path stack. A user may add additional positions to the path stack and jump back
to any position stored in it using the additional buttons of the path stack command zone. These
buttons have the following effects.

e Hidex: Hide the path stack command zone by iconifying it to a button PathStack# (see the
right of Figure 4.3). This is usually a good idea if one works with several directories at the
same time but doesn’t jump very often.

e Yank*: Jump to the position on top of the path stack.

e Rot&Yank*: Rotate the positions in the path stack, moving the top position to the bottom,
and jump to the position that is now on top.

e Push*: Add the current position of the navigation pointer on top of the path stack.
e Pop*: Remove the position on top of the path stack.

e Swap&Yank*: Swap the two positions on top of the path stack and jump to the position that
is now on top.

39

- TERM: Navigator - TERM: Navigator

Hide* Yank* Rot&Yank* Push* Pop* Swap&Yank* Swapt Rot* RevRot* CpLink* Cancelx

divides; num_thy.1; standard; theories

MKTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThyx
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*
PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs*

PathStack#

MKTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy+*
CheckMinTHY* MinTHY* EphTHYx ExTHYx

Mill* ObidCollector* NameSearch+ PathStack* RaiseTopLoops*
PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs
CpObj* reNameObj* EditProperty* SaveObj* RuLink+ MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetIn0BJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReducex NavAtAp*

CpObj* reNameObj* EditProperty* SaveObj* RuLink+* MkLink* RmGroupx Act* DeAct* MkThyDirx RmThyObj* MvThyObjx
ShowRefenvx SetRefenvSibling* SetRefenvUsing* SetRefenvk ProveRR* SetInOBJ* T 117 1T 1T «— <
MKTHM* MkML* AddDef* AddRecDef* AddRecMod AddDefDisp# AbReducex NavAtApx LLLL LI 1L L — <

Act* DeAct* MKkThyDir* RmThyObj* MyThyObj*

oot
AR

Navigator: [num_thy.1; standard; theories]
— <O

— < Scroll position i 5

Navigator: [numthy1; standard; theories] List Scroll : Total 159, Point 5, Visible : 10
Scroll position : b CODE TTF RE_init.num_thy.1
COM TTF nun_thy-1begin
List Scroll : Total 169, Point 5, Visible : 10 COM TTF nunm_thy-1_summary
COM TTF num_thy.l_intro
CODE TIF RE_initnum_thy_1 DISP TIF divides.df
COM TIF num_thy 1 begin -> ABS TTF divides
COM TIF num thy1_summary STM TTF divides.uf
COM TIF numthy-i_intro STM TIF comb_for_divides.wf
DISP TIF divides.df STM TIF zero.divs_only_zero
-> ABS TIF divides STM TIF one_divs_any
STM TIF divides.wf
STM TIF comb_for divides_wf
STM TIF zero.divs_only_zero
STM TIF one.divs.any

Figure 4.3: Path stack command zone

e Swap*: Swap the two positions on top of the path stack.
e Rot*: Rotate the positions in the path stack, moving the top position to the bottom.
e RevRot*: Rotate the positions in the path stack, moving the bottom position to the top .

e CpLink*: Insert a link (Section 4.3.2.5) to the current position of the navigation pointer
immediately below the object that is currently on top of the path stack. Links cannot be
inserted into the same where the object resides.

e Cancel*: Close the path stack and remove the path stack command zone.

4.3.2 Operations on objects
4.3.2.1 Creating Objects

Objects are created by describing their name, their kind, and the position where they shall be
inserted into the library. Usually, this is done interactively by clicking the MkObj* command button,
which will open two templates on top of the current command zone, into which a user may enter
the name and kind of a new object, and place the edit point in the name slot, as shown on the left
of Figure 4.4.

After the name and the kind has been entered into the corresponding slots, a user has to
click the 0K* button (or type 1 twice), which will close the new_object templates and place
the corresponding object into the current directory immediately after the navigation pointer. The
object will have the status FFF and no content assigned to it yet.

The name of an object is case sensitive and may contain blanks (enter (S-BP0]) to create them)
and other special characters. The kind is not case sensitive but is usually displayed in capitals.
Typing not_over _and .1stm .1 1 after clicking MkObj* in the above context, for instance, leads to
the result shown on the right of Figure 4.4.

NUPRL also provides commands and buttons for creating objects of a particular kind. They can
be used instead of the more general command, whose button is not shown in most user theories.

Clicking the command button MkTHM* creates a statement object and places it into the current
directory immediately after the navigation pointer. In the interactive version, one only has to enter

40

- TERM: Navigator - TERM: Navigator

OK* Cancel MKTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkALlThys* ChkOpenThy
CheckMinTHY* MinTHY* EphTHY* ExTHY*

new object : |[name] [kind]
Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

(% creates an object in the current directory *) PrintObjTerm PrintObj* MkThyDocObj* ProofHelpk ProofStatst showRefEnvs FixRefEnvs
CpObj* reNameObj* EditProperty* Savelbj* RmLink* MkLink+ RmGroup

MKTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy* ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenvk ProveRR* SetInOBJ*
CheckMinTHY* MinTHY* EphTHY* ExTHY* MkTHM* MKML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDirx RmThyObj* MvThyObj*

Millx ObidCollector* NameSearch PathStack* RaiseTopLoops*
PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStatsx showRefEnvs* FixRefEnvsx || TTTT TT1T 1T T «— <
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup LD LIl 1L L = <

ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetInOBJ* Navigator: [kreitz; user; theories]
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReducex NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj* Scroll position : ‘o

T 11T 17T 17 «— < List Scroll : Total 1, Point 0, Visible : 1

L A e

Navigator: [kreitz; user; theories]

-> STM FFF not_over_and

Scroll position :

List Scroll : Total 0, Point 0, Visible : O

Figure 4.4: Creating Objects: Initial template and resulting update to the library

the name of the theorem. In a similar way MKML* creates a new code object, MkDir* creates a
directory object, and MkThyDir* creates a directory object within a theory (see Section 4.3.3.2).

The command button MkTHY* creates a new theory within the current directory. Theories are
similar to directories, but in addition contain code objects for initializing their reference environ-
ments. We will discuss them separately in Section 4.3.3.1.

AddDefDispx* creates a display form for a given abstraction. If the navigation pointer is at an
abstraction with name absname, then clicking the command button AddDefDisp#* will create a
display form object named absname _df and places it immediately after the the abstraction object.
No new object will be created if an object named absname df already exists. Clicking AddDefDisp*
while the nav point is not at an abstraction will result in an error.

Currently there are no special command buttons for creating comments, inference rules, or
precedence objects. The command for creating abstractions has been subsumed by the mechanism
for creating definitions, which is described in Section 4.3.2.2 below.

Objects can also be created by typing the command dyn mkobj kind position directory name,
into the editor ML top loop, where
e kind is a token indicating the object’s kind.

e position is a token indicating the object after which the new object shall be inserted. The
empty token, null_token, is used to describe a position in an empty directory.

e directory is an object identifier indicating the directory in which the new object shall be
placed. To create this identifiers, one has to mark the directory object by clicking on it, and
yank the corresponding term into the editor top loop by entering (C-y). The term will usually
be displayed as Obid: directory-name. To convert this term into an object identifier one
has to apply the ML function ioid.

e name is a token indicating the name of the new object.
Thus, to create the theorem not_over_and with an editor command instead of using the interactive
command initiated by MkObj* one could alternatively type

dyn_mkobj ‘stm¢ null token (ioid Obid: kreitz) ‘not_over_and‘,

However, it is recommended to use the interactive version of the command.

41

- TERM: Navigator - TERM: Navigator

0K+ Cancel* MKTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY+ ExTHY*
add def : =
[rhs] Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats# showRefEnvs* FixRefEnvs*
CpObj* ~reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

MKTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy* ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenvk ProveRR* SetInOBJ*
CheckMinTHY* MinTHY* EphTHY* ExTHY* MkTHM* MKML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MuThyObj*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*
PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStatsx showRefEnvs* FixRefEnvs* || TTTT TTT [l[l] [l]l < ><
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup
Navigator: [kreitz; user; theories]
ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MKML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReducex NavAtAp Scroll position : [0
Act* DeAct* MkThyDir*x RmThyObj* MyThyObjx

T 11T Ll LD o <
-> STM FFF not.over.and

Navigator: [kreitz; user; theories] DISP TTF exists.uni.df
ABS TTF exists._uni
Scroll position : 0 STM TFF exists.uni_wf

List Scroll : Total 4, Point 0, Visible : 4

List Scroll : Total 1, Point 0, Visible : 1

-> STM FFF not_over.and

Figure 4.5: Creating Definitions: Initial template and resulting update to the library

4.3.2.2 Creating Definitions

A formal definition adds a new abstract term to the formal language of NUPRL that is defined to
be equal to some already existing term. In NUPRL a formal definition requires the creation of two
new objects: an abstraction, which defines the meaning of the abstract term (see Chapters 7.1),
and a display form, which defines its syntactical appearance (see Chapter 7.2). In addition, most
definitions are accompanied by a well-formedness theorem, which proves that the newly introduced
term belongs to a certain type and is thus well-formed. The names of these objects follow a certain
convention: if the operator identifier of the abstract term is opid, then the abstraction object is
named opid, the display form opid_df, and the well-formedness theorem opid _wf.?

The AddDef* command button provides a convenient way to generate these three objects and a
part of their content. Clicking AddDef* button will open a template for defining the abstract term.

To enter the abstract term on the left hand side of the definition, one has to provide its object
identifier, its parameters, and a list of its subterms together with the variables to be bound in
these subterms. Ways to create new terms with the term-editor are described in Sections 5.4.4 and
5.4.5. The term for the right hand side of the definition is entered in the usual structural top-down
fashion of the term-editor as explained in Section 5.4.

Closing the add def templates, creates a display form object opid _df, an abstraction object
opid, and a statement object opid wf, where opid is the object identifier of the new abstract term.
The abstraction object contains exactly the left and right hand sides of the definition as entered
into the add_def templates. The display form object contains a display form for the abstract term
that makes the term look like the left hand side of the definition but can easily be modified. The
statement object is empty, as there are no defaults for initiating a well-formedness theorem. All
three objects will be placed immediately after the navigation pointer, which remains at its current
position, and are already activated.

Entering ,exists uni(T; x.P[x]), and Jx:T. P[x] A (Vy:T. Pyl = y=x€T), into the
add_def templates, for instance, creates the three objects shown on the right of Figure 4.5.

Definitions can also be created with the command 1ib_thy_add def [hs rhs directory position,,
where lhs is the left hand side of the definition, rhs its right hand side, directory the object identifier

2In NUPRL 4 this convention made it easier for tactics to access the well-formedness theorems corresponding to a
certain abstraction. Although NUPRL 5 offers a more general method for making objects depend on each other, we
preserve the convention for compatibility reasons.

42

- TERM: Navigator - TERM: Navigator

MKTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy* MKTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY+ ExTHY CheckMinTHY* MinTHY* EphTHY+ ExTHY+
Millx ObidCollector* NameSearch# PathStack* RaiseTopLoops* Mill* ObidCollector# NameSearchx PathStack* RaiseTopLoops*
PrintObjTerm* PrintObj* MkThyDocObj* ProofHelpk ProofStatsk showRefEnvs* FixRefEnvs* | | PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MKLink* RmGroup* CpObj* reNameObj* EditProperty* SaveObj* RuLink* MkLink* RmGroup*
ShowRefenv* SetRefenvSibling# SetRefenvUsing* SetRefenvk ProveRR* SetInOBJ* ShowRefenv SetRefenvSibling* SetRefenvUsing* SetRefenv ProveRR* SetInOBJ*
MKTHM* MKML* AddDef+ AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp* MKTHM* MiML* AddDef* AddRecDef* AddRecMods AddDefDisp* AbReduces NavAtAps
Act* DeAct* MkThyDir RuThyObj* MvyThyObj* Act* DeAct* MkThyDir* RmThyObj* MyThyObj+
TIIT 11T LU L o < T 1rr LUl L o <
Navigator: [kreitz; user; theories] Navigator: [kreitz; user; theories]
Scroll position : Scroll position : [
List Scroll : Total 5, Point 4, Visible : 5 List Scroll : Total 10, Point 6, Visible : 10
STM FFF not.over.and STM FFF not.over.and - ABS: listsel
DISP TTF existsuni.df DISP TIF exists.uni-df Listsel(li)ms
ABS TIF existsuni ABS TIF exists.uni 1?“59 ==
STM TFF exists_uni.wf T STM TFF exists.uni-uf))
-> CODE TIF listsel.create - ABS: listsel_create CODE TIF listsel.create (511;:521,1,1.
Listsel(1;1) DISP TTF listsel.df 10
=rifi<o -> ABS FFF listsel i ;
then hd(1) CODE FFF listsel RecUnfoldFold_conv else listsel t1(1) (i - 1)
else listsel(t1(1);i - 1) STM TFF listsel.uf)
i TERM FFF .recall listsel L

i

Figure 4.6: Creating Recursive Definitions: code object and created definition objects

of the directory in which the new object shall be placed, and position the name of the object after
which the definition shall be inserted. Thus, to create the above three objects within the ML top
loop one could type
lib_thy_add def 'existsuni(T; x.P[x])' '3x:T. P[x] A (¥y:T. Ply] = y=xeT)'
(ioid Obid: kreitz) ‘not_over_andf
The refiner’s def utility provides a more advanced method for creating definitions and their
well-formedness theorems. This method, however, is less easy to use.

The AddDef* mechanism is sufficient for creating non-recursive extensions of NUPRL’s object
language. For integers, lists, and recursive data types, NUPRL’s type theory also provides expres-
sions that describe primitive recursion over these types (see Appendix ch:app-type-theory). The
terms " ind(u,z. fy; 5; base ,y.fy)tj, "listLind (s; base; z,l, fx.t) |, and let* f(z) =t in f(e) ,
however, are insufficient for describing more general forms of recursion and most users find them
somewhat awkward to use.

The definition for selecting the i-th element of a list 1, for instance, would typically be expressed
as 1[i] = if i<0 then hd(1l) else t1(1)[i-1] £fi,. This definition, however, involves a si-
multaneous recursion over both the list 1 and the index i. Although it is possible to express this
in a primitive recursive fashion,® a direct representation of the above definition would certainly
be more natural. NUPRL therefore provides a mechanism for a controlled introduction of general
recursive definitions using the Y combinator. This mechanism proceeds in two separate phases.

In the first phase, clicking the AddRecDef* command button will create a code object that
contains the ML function add_rec_def _at, which will later build the actual definition. For the sake
of comprehensibility, the function is encapsulated in a formal definition and initially appears as
template [1hs] ==r [rhs],. A user has to provide the left hand side and the right hand side of
the recursive definition as arguments to this function. A third argument two the function is the
location, where the definition is to be placed. To make sure that the function does not execute
every time the object is viewed and closed again, this third argument is initially set to inl1 ().

After the user has entered the left hand side and the right hand side of the recursive defi-
nition and closed the code object, clicking the NavAtAp* button (Section 4.3.4.3) will create the

30ne can bypass the simultaneous recursion by using the listind operator to define a function on indices, which then
is applied to i: 1[1] = (list.ind(1; Aj.0; hd,t1,jth-of-t1.Aj.if j<O then hd else jth-of-tl(i-1) £i))(i).

43

actual definition by executing the function add_rec_def_at with the third argument substituted
by the location of the code object. This results in 5 additional objects: an abstraction, a display
form, a statement object for the well-formedness theorem, a code object that updates the tac-
tics for unfolding and folding definitions, and a recall object, which allows removing all the newly
created objects with the RmGroup* button (Section 4.3.2.6). For example, entering listsel(1l;1i),
and if i<0 then hd(1l) else listsel(tl(1l);i-1,into the templates of the recursive definition
object 1istsel ml creates the objects shown on the right of Figure 4.6.

Recursive definitions can also be created with the command
.add_rec_def _at lhs rhs (inr (directory, position)).,
where lhs is the left hand side of the definition, rhs its right hand side, directory the object identifier
of the directory in which the new object shall be placed, and position the name of the object after
which the definition shall be inserted. Thus, to create the above five objects within the ML top
loop one could type
add_rec_def_at ' listsel(l;i) ' 'if i<O0 then hd(l) else listsel(tl(l);i-1'
(inr ((ioid Obid: kreitz), ‘exists_uni_wf®))
This command has to be run in refiner mode and will not create the initial code object 1istsel ml.
Again, there is a more advanced version of this command.

Besides creating abstractions, display forms, and well-formedness theorems, introducing a defi-
nition may also require updating the tactics that rely on folding and unfolding definitions. As only
the user can decide which abstractions should be unfolded automatically and which ones shouldn’t,
NUPRL provides a mechanism for updating the Reduce tactic (see Section 8.6.2) on demand.

Clicking the AbReduce* command button will open two templates on top of the command zone.
The first is a token template into which a user may enter the name of a new conversion to be added to
Reduce. The second is a term describing the left hand side of that conversion. Upon clicking OK* the
right hand side of the conversion will be computed by applying UnfoldsC opid ANDTHENC ReduceC,
(see Section 8.9.3) to this term and the resulting macro-conversion will be added to the list of
conversions used by the tactic Reduce.

4.3.2.3 Creating Modules

NUPRL provides support for defining module types, which are useful for defining abstract data types
and algebraic classes. Module types are essentially (dependent) record types, where the type of each
field can depend on the value of previous fields, and are allowed to have parameters. For instance,
an abstract data type for stacks may use the type of stack elements as a parameter. Module types
are currently implemented using NUPRL’s ¥ type.* A predefined mechanism helps with setting
up new module type definitions, adding projection functions as module component selectors, and
updating the AbReduce tactic (Section 8.6.2) to recognize applications of these functions. Like
adding recursive definitions it proceeds in two phases.

In the first phase, clicking the AddRecMod* command button will create a code object that con-
tains the ML function create_rec_module_at, which will later build the actual module. Currently,
the object contains the function call in its raw from, providing a few slots for the user to describe
the module.

4A more elegant approach is implementing record types as dependent function types on a type of labels. This
approach does not require creating definitions that map field selectors onto projection functions, but is somewhat
more complex theoretically and not yet supported by the existing tactics collection.

44

- TERM: Navigator - TERM: Navigator

MKTHY* OpenThy* CloseThy* ExportThy* ChkThyx ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*
PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp# ProofStats* showRefEnvs* FixRefEnvs*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenvx ProveRR* SetInOBJ*

MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MKkThyDir* RmThyObj* MyThyObj*

T 11T Ll L o <
Navigator: [kreitz; user; theories]
Scroll position : [10

List Scroll : Total 12,

Point 10, Visible : 12

STM
DISP
ABS
STM
CODE
DISP
ABS
CODE
STM
TERM
-> CODE
DIR

FFF not_over.and
exists_uni_df

exists_uni

exists_uniwf
listsel_create

listsel.df

listsel
listsel-RecUnfoldFold-conv
listsel.uf

.recall listsel
stack.create
mk_stack-object_directory

- ABS: stack_create

((create_rec_module_at
‘Stacks®

% Name of the module type %

‘mk_stack‘ % constructor for module elements %
‘st % prefix to disambiguate definition names}
[tok_tovar ‘T¢, U;

tok_tovar ‘default’, T] % module parameters %

[tok_tovar ‘STACK‘, U;

tok_tovar ‘empty‘, STACK;

tok-tovar ‘push‘, T — STACK — STACK;

toktovar ‘pop‘, STACK — (T X STACK) 1 % module fields %

% Universe of the module %

2
in1())-

MKTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*
PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats# showRefEnvs* FixRefEnvs*
CpObj* ~reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MKML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDirx RuThyObj* MvThyObj*

T 117 4Ll L o <

Navigator: [mk_stack.object.directory; kreitz; user; theories]

Scroll position : [0

List Scroll : Total 27,

Point |0, Visible : 27

-> COM FFF mk.stack_start
DISP TIF Stacks.df
ABS TIF Stacks
DISP TIF st_STACK.df
ABS TTF st_STACK
DISP TIF st_empty.df
ABS TTF st_empty
DISP TIF st_push.df
ABS TTF st_push
DISP TIF st_popdf
ABS TTF st_pop
CODE FFF Stacks.FoldUnfold update
CODE FFF mk_stack-AbReduce_conv_defs
CODE FFF mk_stack-AbReduce_conv_updates
STM TFF Stacks.uf
STM TFF st_STACK.wf
STM TFF st-empty.uf
STM TFF st_pushuf
STM TFF st_pop-wf
DISP TIF mk_stack.df
ABS TTF mk.stack
DISP TIF case.mk-stack.df
ABS TIF casemk.stack
CODE FFF mk_stack-install_pattern
STM TFF mk_stack.wf
TERM FFF .recall mk_stack
COM FFF mk.stack-finish

Figure 4.7: Creating Recursive Modules: code

object and created directory

e The first token slot contains the name of the module type, e.g. ‘Stacks®.

e The second token slot contains the name of the constructor that builds modules from their

individual components.

e The third token slot contains a short name of the module that is prefixed to the names
of the abstractions and display forms defining the module’s field selectors. This prefix was
necessary in previous releases of NUPRL to disambiguate the names of these definitions but
has become obsolete because of the directory structure introduced in NUPRL 5. It is retained

for compatibility purposes.

e The fourth slot contains the parameters of the module type and their types, which have to
be given as list of pairs of NUPRL variables and terms.

e The fifth slot contains the fields of the module type, again as a list of pairs of variables and
types. The type of a field may use the variables declared in the previous fields.

In addition to that, the last two function arguments are already filled in. The type of the module
is U and the the location, where the module is to be placed, is initially set to in1 ().

Clicking the NavAtAp* button (Section 4.3.4.3) will create the actual module by executing
the function create_rec_module_at with the last argument substituted by the location of the code
object. This results in the creation of an object directory for the module that contains definitions for
the module type, projection functions, the module constructor and uniform module decomposition
operator, (unproven) well-formedness theorems, code for updating the AbReduce tactic, a recall
object, and two comment objects that serve as delimiters for the module type definition. Figure 4.7
describes a code object for defining an abstract data type of stacks over a type T and the object

directory created by it.

45

4.3.2.4 Copying Objects

Copies of existing objects can be created using the the CpObj* command button. This will open a
template on top of the command zone into which the user may type the name of the object that
will contain the copy. The current name of the object already occurs in the template, with the edit
cursor at its beginning. To place a copy into a different directory, a user may leave the command
zone (by pressing SP(), move to the position where the object should be placed, and then click 0Kx*.

Objects may also be copied by typing .copy object_after directory position name obid, into
the editor ML top loop, where directory the object identifier of the directory and position the name
of the object after which the copy shall be placed, name the name of the copy, and obid the object
identifier of the object to be copied.

4.3.2.5 Links

Links are named references to objects in the library, similar to links or shortcuts in operating
systems. Unlike copies of objects, different links refer to the same object and changes to the object
will be visible from wherever it is referenced to. For consistency reasons, a directory may not contain
duplicate references to the same object.

To create a link, one has to click the MkLink* command button. This will open a template
on top of the command zone into which the user may type the name of the link to the object. If
the link is not placed in a different directory (by leaving the command zone and moving into that
directory), creating the link will rename the reference to the object but keep its internal name.

Links may also be created by typing ,dyn mklink directory position name obid rmdup?, into
the editor ML top loop, where rmdup? is a boolean flag indicating whether or not to remove
duplicate links to the same object from the directory. This flag should usually be set to true.

4.3.2.6 Removing Objects and Links

To remove an object in a theory, one simply moves the navigation pointer to it and clicks the
RmThy0bj* button. This will remove the object from the current directory, but preserve external
links to it. The same effect can be achieved by typing 1ib rm thy obj directory name, into the
library ML top loop, where directory object identifier of the directory in which the object to be
deleted resides and name a token describing its name.

Similarly clicking RmLink* will remove a reference to an object from the current directory. The
effect is almost the same as RmThyObj*, but the command will be executed by the editor instead
of the library and will not immediately affect proof tactics that refer to the object.

Some theories also provide a RmDir* button, which allows to remove a directory and all the
objects contained in it. Since this is a dangerous operation, the user is asked for confirmation
to avoid that a directory is wiped out accidentally. Directories can also be removed by typing
delete_tree directory name, into the editor ML top loop. In this case there the command is
executed without asking for confirmation.

Some editor commands such as AddRecDef* and AddRecModx* create groups of objects related to
each other. NUPRL offers a convenient method for removing all these objects by a single command.
For this purpose one has to position the navigation pointer at the recall object of the group (an
object of the form ‘.recall group-name’) and click the RmGroup* button. This will remove the
objects from the library and update the reference environment (see Section 4.3.3.1) accordingly.

46

4.3.2.7 Moving Objects

Objects may be moved to different locations within the same directory or to locations in other
directories. Clicking the MvThy0Obj* command button will open a template on top of the command
zone into which the user may type the name of the object to be moved. The name of the object
at the navigation pointer already occurs in the template, with the edit cursor at its beginning. To
move the object to a different location one has to leave the command zone, move to the position
where the object should be placed, and then click OK*.

The same effect can be achieved by typing [1ib mv_thy_obj src-dir name dest-dir position, into
the library ML top loop, where src-dir and dest-dir are the object identifier of the source and
destination directories, name the name of the object to be moved, and position the name of the
object after which the definition shall be inserted.

4.3.2.8 Renaming Objects

Renaming an object involves changing both the object’s internal name (see Section 4.1.1) and the
external reference to the object. Clicking the reNameObj* command button will open a template
on top of the command zone into which the user may type the new name of the object. Leaving
the command zone while renaming an object is not recommended, as renaming will be applied to
whatever object the navigation pointer points to at the time the 0K* button is clicked.

The same effect can also be achieved by using the EditProperty* button (Section 4.3.2.10) to
change the object’s name and MkLink* (Section 4.3.2.5) to change the external reference to it.

4.3.2.9 Activating and Deactivating Objects

Usually, a library object is active in the sense that it may be referenced by tactics and other objects.
Occasionally, users may want to experiment with alternate versions of a definition or theorem and
to prevent tactics from using a particular object without having to remove it from the library. This
can be done by changing the liveness bit of the object (see Section 4.1.1), indicated by the first
character of the object’s status information.

To deactivate an object, one moves the navigation pointer to it and clicks the DeAct* com-
mand button. To activate it again, one clicks the Act* command button. Notice that deactivating
directories converts them into TERM objects and makes their contents (temporarily) inaccessible.
Activating a code object will execute its content.

The same effects can be achieved by typing the commands

Llib_thy deactivate directory object, and 1ib_thy_activate directory object,
into the library ML top loop, where directory the object identifier of the directory of the object to
be (de)activated and object the object identifier of the object itself.

4.3.2.10 Editing Object Properties

In advanced applications, users may want to change some of the properties of an object (see
Section 4.1.1). For instance, when using abstraction objects to represent definitions of the PVS
system, it makes sense to make them visible to PVS clients but not to the NUPRL refiner. In
rare cases it may be necessary to adjust the reference environment (Section 4.3.3.1) of an object.
Therefore, NUPRL provides a simple method for editing the properties of an object directly.
Clicking the EditProperty* command button will open a property command zone for the object
at the navigation pointer on top of the current command zone. It contains a token slot for entering

47

- TERM: Navigator

OK* Cancelx*

reference_environment* NAMEx ttttx DESCRIPTION*
ReferenceEnvironment* ReadFromLib* RemoveProperty*

ledit_property_args{not_over_and:o, [token]:t}([term])

MkTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetInOBJ*

MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*

Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

TIrT 11T LU L o <

Navigator: [kreitz; user; theories]

Scroll position : O

List Scroll : Total 4, Point 0, Visible : 4

-> STM TTF not_over.and
CODE TTF 1listsel_create
CODE TTF stack.create
DIR TTF mk_stack_object_directory

Figure 4.8: Editing Object Properties

the name of the property (e.g. DESCRIPTION, NAME, or reference environment) and a term slot
for entering the value of that property.

It is not recommended to enter the value of a particular property directly. Instead, one should
make use of the command buttons for editing the important object properties that are immediately
above the two slots. Each of the buttons in the top row represents a particular property of the
current object, which will be inserted into the slots upon clicking the button. These buttons vary
depending on the kind of the object.

Clicking the NAME* button, for instance, will insert the token NAME into the token slot and
the term object-name:t, into the term slot, where object-name is a token describing the object’s
name. Clicking reference environment* will insert the token reference environment into the
token slot and the term 0Obid: object-identifier, into the term slot, where object-identifier is the
identifier of the object that is immediately before the current object in the ephemeral reference
environment chain. A user may now edit these properties by modifying the corresponding terms.

The buttons in the bottom row are the same for all objects. Clicking ReferenceEnvironments*
inserts the reference environment property into the two slots, ReadFromLib* inserts the stored
value of the current property back into the term slot, and RemoveProperty* removes that property
from the object. Properties, once removed, can only be re-inserted explicitly.

Editing object properties should only be done by advanced users. Most users will rarely find it
necessary to edit the properties of an object.

4.3.2.11 Saving Objects

During the development of formal theories, users may occasionally want to save the current version
of an object before modifying it. Clicking the SaveObj* command button will copy the object
at the navigation pointer to a subdirectory .save of the current directory. The internal name of
the object will be preserved, which makes it easier to move the saved version back into its old
location, and the reference to it will include a time stamp in its name. If the subdirectory .save
doesn’t exist yet, it will be created. The same effect can be achieved by typing the command
.copy_to_save directory name, into the library ML top loop.

48

4.3.2.12 Printing Objects

Often users like to create print representations of objects in order to document their formal theories
on paper or on the web. Clicking the PrintObj* command button will create a print representation
of the object at the navigation pointer and write it into a file ~/nuprlprint/name obj.prl. This
file can be inspected with any 8bit capable editor that has the NUPRL fonts loaded. It will also
create a INTEX-version and write it to ~/nuprlprint/name_obj.tex. The directory ~/nuprlprint
must already exist. Otherwise clicking the PrintObj* button will result in an error. The same effect
can be achieved by typing the command print_an object object, into the editor ML top loop.

In the conversion to IXTEX PrintObj* is capable of interpreting I/ TEX syntax that occurs in a
comment object and to re-interpret display forms as IXTEX macros, which allows for a more elegant
type setting. In contrast to that, clicking the Print0bjTerm* command button will print the object
contents as a single term without interpreting them further.

4.3.2.13 Commenting Objects

In addition to providing comment objects for an online
documentation of formal material, NUPRL offers users the op- Comments for ebject not-over-and:
portunity to produce formal articles that blend informal text Zrefl Zoments
with direct quotations of the formal material. For this purpose |-
it allows the user to create comment objects that are linked to Suffix Comments :

a specific object. |

Clicking the comment0Obj* button will create this object
for the object at the navigation pointer and place it in a sub- Figure 4.9: Commenting an object
directory .comments, which will be created, if it does not exist
yet. The object contains a template that allows the user to enter comments that will be printed
before (prefix comments) and after (suffiz comments) the object when the theory containing the
object is printed (Section 4.3.3.8).

4.3.2.14 Proof Help

NUPRL offers users a minimal form of online help for the development of proofs. Clicking the
ProofHelp* button will open a comment object that describes the most important (standard) key
bindings for the proof editor. Further online documentation will be added in the future.

Clicking the ProofStats* button while the navigator points to a statement object will pop up
a window displaying some statistics about the proof of that statement. This can also be achieved
by typing the command show_stm_stats object, into the editor ML top loop.

4.3.3 Theory Operations

Theories are groups of objects that describe the definitions, theorems, and specific methods of rea-
soning of a mathematical or computational discipline. Formally they are organized like directories,
but they contain objects describing their dependencies on other theories and they can also be as-
sociated with different sets of command buttons. For structuring purposes theories may be broken
into sub-theories. However, these have to be ordinary directories instead of theory objects, since
otherwise the dependency tracking mechanism may get confused when sub-theories are moved.

49

4.3.3.1 Object Dependencies and Reference Environments

While the notion of correctness of a formal proof is easy to define (see Chapter 6.1), the correctness
of a formal theory depends on the fact that there is no circular chain of lemma references in
its proofs. In principle, this could be guaranteed by requiring that a proof may only depend on
lemmata that in some linear ordering of the library occur before the proof that refers to them.
While keeping a certain discipline in the development of formal theories certainly helps avoiding
circular references, some dependencies are hidden in various reference variables and proof caches
employed by some of the tactics. In previous releases of NUPRL this fact often led to major problems
when theories were replayed. NUPRL now supports a dependency checking mechanism that adds a
layer of indirection between references and their values and allows greater control over these value
during the development of formal proofs.

A reference environment (often abbreviated as RefEnv or RE) is an index into a graph of pos-
sible values for a set of reference variables. All refinements are parameterized by a reference envi-
ronment. Reference environments are generally associated with statement and proof object via a
reference_environment property (see Sections 4.1.1 and 4.3.2.10). Code objects can also have a
reference environment property to parameterize reference variables during evaluation of the code.

The specification of a reference environment consists of:

e an object identifier describing the index being defined
e a list of reference environments to inherit from

e a list of abstractions to add

e a list of lemmas to add

e a list of updates consisting of snippets of code that update the value of a reference variable
for the current index. Update code should not itself lookup values of reference variables.

Currently reference environments also contain a list of additions to the code of a code object, a
method used in previous releases of NUPRL. Additions are preserved for compatibility reasons but
they will be phased out in the future.

To contain updates to a reference environment, NUPRL uses code objects that have a
Iproperty{reference environment additions:t}(update:t) property. There are three vari-
eties of reference environments.

e Static reference environments are ML code objects placed in theory directories that evaluate
to a reference environment specification.

e Ephemeral reference environments are computed at refine time by chaining backwards through
reference_environment properties of objects until a static reference environment is located.
The reference environment specification is then built in a linear depth-first order: it includes
the objects “above” it and all the objects in directories above it.

o Minimal reference environments are partial specifications of reference environments. Instead
of defining an index, they bind an arbitrary temporary index for the scope of some evaluation.
The intent is that only objects necessary for a successful evaluation will be listed. A minimal
reference environment may be relative to a static one. Thus there are flavors of minimal
reference environments. Currently, the following flavors are recognized.

minimal: minimal relative to the empty environment.
theories minimal: minimal relative to a set of theories, most commonly the standard theories.

relative minimal: minimal relative to a specific theory. This is commonly used while devel-
oping a set of theories.

50

- TERM: Navigator

OK* Cancelx*

!mkthy_args{ [token] :t} (Obid: kreitz

MkTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAl11Thys* ChkOpenThy*
CheckMinTHY* MinTHY#* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup#*

ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetInOBJ*

MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

T 117 Ll Ll <o ><
Navigator: [user; theories]

Scroll position : 7 - CODE: RE_init_new-theory

Make Reference Environment [RE.init.new-theory]
List Scroll : Total 2, Point 1, Visible : 2 Prerequisites : Obid: kreitz
Abstractions : loid.cons

P : loid-
CODE TTF RE_init_user Statements : loid.cons
Additions : loid_cons

-> DIR TTF kreitz Updates : loid-cons

Figure 4.10: Creating Theories: initial template and generated static reference environment

The presence of static reference environments puts certain restrictions on the nesting of theories.
Although in principle it would be possible to have theories be objects within other theories, there
is no reliable method for moving such a theory within a theory directory without making its static
reference environment inconsistent. Conceptually, most sub-theories are not autonomous theories
in themselves, but only means for structuring a theory into smaller fragments. Placing them in
sub-directories is more appropriate than opening a new theory. Therefore NUPRL does not allow
theories to contain other theory objects.

4.3.3.2 Creating Theories and Sub-Theories

Theories are created by clicking the MkTHY* command button. This will open a token slot on top of
the command zone into which a user may enter the name of the theory. Also visible is a reference to
the object after which the theory will be placed. This object will be used for building the reference
environment of the theory.

Upon closing the template (by clicking 0K* or typing 1) a new directory will be placed imme-
diately after the navigation pointer. This directory contains a code object named RE _init _theory-
name, the specification of the static reference environment of the new theory. An example of such
a static reference environment is shown in Figure 4.3.3.2.

Users should not move theory objects or create objects immediately before them, without fixing
the static reference environment, since otherwise the static reference environment of that theory
would be inconsistent with the visible presentation of the library.

To create sub-theories of a theory, one should use the MkThyDir* button instead of MkTHY*.
Like MkDir*, this will create an directory within the theory that does not contain a static reference
environment. In addition to that, it adds a theory property to the directory object, which will help
other commands maintain the reference environment chain within the theory.

Theories can also be created by typing 1ibmkthy preRFEs directory position name, into the
editor ML top loop, where preREs is a list of object identifiers describing the reference environ-
ments on which the theory depends, directory is an object identifier of the directory in which the
theory shall be placed, position a token describing the object after which it shall be positioned,
and name a token describing its name. Theories directories can be created with the command
Jlibmkthy dir directory position name,.

o1

4.3.3.3 Changing Theory Modes

Depending on the reference environments (Section 4.3.3.1) of its objects, a theory can be in one of
two modes.

e open & ephemeral, where all theory objects will have ephemeral reference environments, or

e closed & minimal, where all theory objects have some flavor of minimal reference environments
and ephemeral reference environments are removed. Instead, the theory has a final reference
environment object that summarizes the contents of the entire theory.

In addition to that, theories can also be static (or explicit), which means that all theory objects

have static reference environments. This mode, however, is only needed to maintain older theories
that have not yet migrated to be minimal or ephemeral. It will be phased out in the future.

When a theory is created with MkTHY*, an initial static reference environment is created and
theory will be open and ephemeral until it is explicitly closed. The following command buttons can
be used to change the mode of a theory.

e CloseThy* closes a theory by creating a finish reference environment named RE final theory-
name, which summarizes the contents of the theory.

e OpenThy* opens or re-opens a theory by rebuilding its initial reference environment and
resetting its ephemeral reference _environment property.

e MinTHY* will make a theory (relative) minimal and modify the available command buttons
for the theory.

e EphTHY* will make a theory ephemeral by rechaining ephemeral reference environments and
modify buttons for the theory.

e ExTHY* will make a theory explicit and modify the available command buttons for the theory.

The above commands can also be executed by typing
close_theory theory,,
.open_theory theory,,
set_theory relative minimal theory,,
set_theory_ephemeral theory,, or
set_theory_explicit theory,
into the library ML top loop, where theory is the object identifier of the current theory.

4.3.3.4 Examining and Modifying Reference Environments

To examine the current set of reference environments, one has to click the showRefEnvs* command
button. This will pop up a new window containing a list if all existing static reference environments.
Clicking on one of the terms with (or moving the cursor to it and pressing the right arrow
key) will open the corresponding object, which shows the reference environment specification as an
association list of reference variables and indices. Clicking on the on a variable/index pair
will pop-up some indication of the data that is bound to that variable by that index.

Reference environments may also be examined by typing show_ref_environments (), into the
editor ML top loop.

The normal methods for creating and manipulating theory objects will maintain the chain of
ephemeral reference environments in a theory. Occasionally this chain may get corrupted when
objects are moved or deleted. To fix this problem, a user has to click the FixRefEnvs* button. This
will rechaining all the objects in a theory and thus update the ephemeral reference environment.

52

Reference environments may also be fixed by typing . reset_ephemeral refenvs directory, into
the library ML top loop, where directory the object identifier of the theory to be rechained.

In an open theory, users may insert static reference environments by clicking the mkRefEnv*
command button. This will create an object named RE_summary theory-name _inder that summa-
rizes all theory objects up to the current one and places it immediately after the current object.

Static reference environments are inserted into a theory mostly for debugging purposes. They
enable a user to set the reference environment register (see Section 4.3.3.5 below) to a specific
environment and to replay proofs in that environment to analyze dependencies in the proof.

Static reference environments may also be inserted by typing the command
.add_refenv_summary directory position, into the library ML top loop, where position is a token
describing the object up to which the theory should be summarized.

4.3.3.5 The Reference Environment Register

The reference environment register (briefly RR) is a global variable in the editor containing a
reference environment index. The it is used as an implicit parameter in the some of the navigator
commands and also when evaluating refiner top loop commands. The following command buttons
can be used to examine or change the contents of the reference environment register.
e ShowRefEnv* shows the contents of reference environment register. This will be the empty
term until one of the commands below has been applied.

e SetRefenvSiblingx* sets the reference environment register to the reference environment used
by the current object.

e SetRefenvUsing* sets the reference environment register to the least reference environment
that contains the current object. For ephemeral reference environments this command will be
phased out, since an object is the least reference environment containing itself.

e SetRefenv* sets the reference environment register to the current object.

e ProveRR* attempts to replay the proof of the statement at the navigation pointer using the
reference environment register instead of the object’s reference environment. It allows a user
to make a copy of a proof experiment without modifying the original proof. The proof will
be attempted asynchronously, so the command will return immediately. When it finishes it
will pop-up a window containing the object identifier of the proof generated. Clicking on the
object identifier with will pop up the proof.

Note that the new proof is not linked to the statement. It will remain unlinked if the proof
is closed with (C-q). If instead one uses (C-z) to exit, the proof will be prepended to the
statement’s proof list (see Chapter 6).

e SetInObj* sets the reference environment register to the reference environment property
of the first proof of the statement at the navigation pointer.

The above commands can also be executed by typing

show refenv register (),

set_refenv register_sibling term,,

set_refenv register_using term,,

set_refenv_register term,,

prove_using refenv register term,, or

set_re_in first_prf term,
into the editor ML top loop, where term is a term describing the directory and the position of the
current object.

93

4.3.3.6 Checking Theories

Although NUPRL proof environment guarantees that " TERM: check kreitz_control
proofs are correct wrt. the available set of rules, refiners, and | Stop* Starts Exitx Resetx NumRemainingx Abort
lemmata at the time the proof is being constructed, a stored | siatus : check xreitz
proof may become invalid if the rules and lemmata on which | active 7 ¢
it depends are removed or modified afterwards. The NUPRL | naena 1
library provides a certification mechanism that accounts for | ot Function: check theory bot_completion
the validity of its contents. However, it would be computa-
tionally infeasible to recheck these certificates whenever a
library object is modified. Instead, the system provides a utility that enables users to explicitly
check the consistency of their theories by replay the proofs in a controlled fashion.

To do so, one has to move the navigation pointer to the root of the theory and click the
ChkThy* command button. This will cause the system to accumulate the object identifiers of the
proofs of all the statements in the final reference environment of the theory and then pop up a
control window for initiating the checks (Figure 4.3.3.6). Since ChkThy* has to determine the final
reference environment, it will fail if the theory lacks an initial static reference environment. The
command buttons in the control window have the following effects.

Figure 4.11: Checking a theory

e Stop* completes the replay of the current proof and then stops the check.

e Start* starts the replay of the (remaining) proofs in the theory. (Intermediate) results will
be displayed in a separate window.

e Exit* close the command window. As proofs are replayed asynchronously this will not stop
the ongoing checks.

e Reset* resets the list of remaining proofs to be checked to the initial list of proofs.
e NumRemaining* displays the remaining number of proofs to be checked.

e Abort* aborts the ongoing check and resets the list of remaining proofs to be checked.

Users may also modify the parameters of the check mechanism. The number after MaxPend
indicates how many should maximally be used for checking proofs. Using more than one refiner is
helpful when checking large theories but it takes these refiners away from other tasks. The Save
status 7 bit determines whether to save the status of the checking mechanism when the command
window is saved. The Active ? bit and the check function after Bot Function: should not be
changed by a user.

Instead of clicking the ChkThy* command button, one may also type the command
Jbuild check theory bot directory, into the editor ML top loop. Although the individual check
commands could be issued from the top loop as well, it is not advisable to do so.

NUPRL provides a few variations of the ChkThy* command.
e ChkAl1lThysx* initiates a check for all the theories in the library. This is the same as clicking
ChkThy* with the navigation pointer at the root of the theories directory.

e ChkOpenThy* accumulates all the proofs in the theory instead of only proofs of statements in
the final reference environment. This command can also be used tom check sub theories, as
it does not attempt to build the final reference environment of a theory.

e ChkMinThy=* initiates a check with a minimal reference environment. Users have to enter one of
the flavors reference_environment minimal, reference environment theories minimal,
or reference_environment_relative minimal into a token slot that appears above the com-
mand zone.

54

4.3.3.7 Exporting and Importing Theories

A capability for exporting and importing theories is important for moving theories between different
libraries in a controlled fashion. NUPRL exports theories into files containing raw library data and
rebuilds objects from these files when importing theories.

To export a theory one has to click the ExportTHY* command button with the navigation
pointer at the theory object. This will collect all the objects in the theory and write them into a
file “/nuprlpatch/theory-name_theory.trm.

Alternatively, a user may type the command dump theory true (directory, theory-object),
into the editor ML top loop, where directory is the object identifier of the directory where the
theory resides and theory-object the object identifier of the theory itself.

To import a theory from a file, one has to enter the command replace objects path-name,
into the editor ML top loop, where path-name is the complete path name of the theory’s dump file.
This will create a directory containing all the objects of the dumped theory and place it at the same
location in the user’s work space. If the theory already exists, the objects of the dumped theory
will be added to the theory directory. Objects will not be overwritten: in case of name clashes, the
existing theory object will be renamed if its content is different from the new theory object. If the
two objects are identical, the new object will be ignored.

4.3.3.8 Printing Theories

To print the contents of an entire theory, a user may either click the PrintThyShort* or the
PrintThyLong* command buttons. This will create a print representation of the objects
in the theory at the navigation pointer and write it into a file ~/nuprlprint/name.prl (or
“/nuprlprint/name long.prl). It will also create a INTEX-presentation of the theory and write it
to "/nuprlprint/name.tex (or ~/nuprlprint/name_long.tex).

PrintThyShort* provides a less detailed presentation of the theory, which omits the proofs
of a theorem and only includes the extract term if a theorem is complete. In contrast to that
PrintThyLong* adds the complete proof to the presentation of a theorem. Users who are only
interested in a listing of all the object names in a theory may do so by clicking the PrintObj*
button (Section 4.3.2.12).

Theories can also be printed by typing the command short_print theory theory-object, or
Lor_print_theory theory-object, into the editor ML top loop, where theory-object is the object
identifier of the theory to be printed.

4.3.3.9 Creating Theory Documentation

The commands for printing theories only create listings of theory contents in linear order, possibly
augmented by comment objects as described in Section 4.3.2.13. In addition to these, NUPRL
provides a more flexible mechanism for creating formal documentation that enables a user to insert
(references to) formal objects into informal text.

Clicking the MkThyDocObj* command button creates a comment object thy doc-timestamp
that contains pointers to all the statement and abstraction objects in the current theory. Users
may then edit the object to write formal articles by adding text and rearranging and duplicating
the existing pointers. Printing the object with Print0bj* will then create a I#TEX article that
documents the formal theory. The advantage of this approach is that the formal article is always
up to date, even if a user chooses to change the formalization of a theorem or the display form of
an abstraction.

95

- TERM: Navigator - TERM: Navigator

JumpToLocalCollectors* (ObidCollector* TempObidCollector* NamedObidCollector* Cancelx Hide* ToggleObidList* Collect* FindNames* Reload* Savex Viewtx Finish* Clear*
DeleteDirFromCollector* InsertDirIntoCollector*
DeleteCollectorFromDir* InsertCollectorIntoDir* Undox

MKTHY* OpenThy* CloseThyx ExportThyx ChkThy* ChkAllThys* ChkOpenThy* Collecting into : kreitz Obid Collector 2002.07_17-PM-03.48_20.
CheckMinTHY* MinTHY* EphTHY* ExTHY*
toid_cons
Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops
PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs+ || MKkTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkA11Thys* ChkOpenThy*

CpObj* ~reNameObj* EditProperty* SaveObj* RuLinkx MkLink* RmGroupx CheckMinTHY* MinTHY* EphTHY* ExTHY*
ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetInOBJ* Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp* PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs*
Act* DeAct* MkThyDir* RmThyObj* MyThyObj* CpObj* reNameObj* EditProperty* SaveObj* RuLink+ MkLink* RmGroup*
TTTT 11T LLLL Ll < »>< ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetInOBJx

MKTHM* MKML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Navigator: [kreitz; user; theories] Act* DeAct* MkThyDirx RmThyObj* MvThyObjx

Scroll position : B

TITT 11T LLLL LI o <

List Scroll : Total 5, Point 3, Visible : §
Navigator: [kreitz; user; theories]

CODE TTF RE.init_kreitz

STM TIF not_over.and Scroll position : B
CODE TTF listsel.create N P
-> CODE TTF stack.create List Scroll : Total 5, Point 3, Visible : &5

DIR TTF mk.stack.object.directory CODE TTF RE.init.kreit.
_init kreitz

STM TTF not_over.and
CODE TTF listsel_create
-> CODE TTF stack_create
DIR TIF mk-stackobject.directory

Figure 4.12: Creating Object Collections

An example of an article automatically generated from such an object can be found at
http://www.cs.cornell.edu/home/kreitz/Abstracts/Olcucs-HybridProtocol-nuprl.html.

Theory documentation objects can also be created by typing .make_thy doc_object directory, into
the editor ML top loop, where directory is the object identifier of the directory to be documented.

4.3.4 Miscellaneous Operations
4.3.4.1 Creating Object Collections

An Obid Collector is a method of collecting a list of object identifiers to be used as an argument
to navigator commands. An Obid Collector persists as an object but the navigator also maintains
a cache of the collector’s list of object identifiers.

To build an obid collector, one has to click the ObidCollector* command button. This will
create a collector command zone on top of the current command zone, which requires the user to
choose between several options, shown on the left of Figure 4.12.

e JumpToLocalCollectors* jump the navigator to a directory containing the list of named
collectors.

e ObidCollector* use the object at the navigation pointer as obid collector. The object has
to be of kind TERM or COM.

e TempObidCollector* create an ephemeral collector.

e NamedObidCollector* create a new named collector.

Named collectors are stored in the library and will persist from session to session while ephemeral
collectors will be discarded at the end of a session.

After the user has created or re-opened an obid collector the collector command zone contains
a variety of buttons that modify the collector, shown on the right of Figure 4.12.

e Hidex Hide the search collector command zone by iconifying it to a button ObidCollector#.
e ToggleObidList* hides or shows the list of object identifiers in the collector.

e Collect* adds the object at the navigation pointer to the collector.

o6

e FindNames* starts a dialog to search for objects in the library by name. If the string entered
by the user matches the name of an object exactly, then its object identifier will be added to
the collector. This is useful for finding objects not in directory tree and then adding them to
a directory with InsertCollectorIntoDirx*.

e Reload* loads the stored object identifiers list into the collector’s navigator cache.

e Savex dumps the object identifiers list from the collector’s navigator cache to the collector
object.

e View* opens the collector object for editing purposes.
e Finish* saves the object identifiers list and then removes the collector from the navigator.
e Clear* clears the collector’s navigator cache.

e DeleteDirFromCollector* subtracts the object identifiers of objects in the current navigator
directory from the collector.

e InsertDirIntoCollector* adds all object identifiers of objects in the current navigator
directory from the collector.

e DeleteCollectorFromDir* removes the object identifiers in the collector from the current
navigator directory.

e InsertCollectorIntoDir* adds the object identifiers in the collector from the current nav-
igator directory.

e Undo* undoes last Insert or Delete operation.

Although all obid collector commands could also be issued from the editor ML top loop, it is
not advisable to do so.

Printing Object Collections

Users may print the objects in a collection by clicking the PrintCollection* button when the
navigation pointer is at a collector object. This will create a print representation of the objects
listed in the collector and write it into a file ~/nuprlprint/collector-name.prl and a INTEX-
presentation, which will be written to the file ~/nuprlprint/collector-name.tex. The objects are
printed in the order in which they were added to the collector, i.e. in the reverse order of the object
identifier list in the collector object.

Collections may also be printed by typing the command print_collection object, into the
editor ML top loop, whereobject is the object identifier of the collector.

4.3.4.2 Milling

NUPRL provides a framework for developing tools for importing and migrating data from external
libraries into NUPRL’s data repository. This utility can be used for a wide variety of tasks such as
searching for objects that contain a specified combination of object identifiers or for objects that
have been modified within a given time specification. It is initiated by milling a theory.

Clicking Mill* while the navigation pointer is at a directory will open a tag slot above the
current command zone into which the user may enter a tag for the milling directory to be created.
The system will then create a sub-directory .tag-name mill at the beginning of the indicated
directory. This directory comes with a variety of new command buttons and examples of code
pieces that can be assembled for the tasks the user wants to perform.

o7

- TERM: Navigator

FilterSourcex AppendSource* TransformTargets* ViewTargets*
FilterTargets* CopyTargets* TargetsAp*x Rerun Botx*

MkTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThyx*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetInOBJ*

MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*

Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

TIIT 11 LU LIL o <

Navigator: [Examples; .TAG mill; kreitz; user; theories]

Scroll position : }4

List Scroll : Total 6, Point 4, Visible : 6 - CODE: FilterSource/By Kind and Name Search
let kind = ‘STM®
DIR FTF aux and namestring = "st."
DIR FTF packages in
-> DIR FTF FilterSource (oid k oc.
DIR FTF Target Aps ((kind = k)
DIR FIF Target Filters & (stringmatch_f false namestring (tok_to_string (name_of_oid 0id))))

DIR FIF Transforms , e

Figure 4.13: Standard Milling Directory

To perform a particular operation, users should copy the corresponding object from one of the
sub-directories of the directory Examples into the main milling directory, modify the “declaration”
part of the code and then click the command button that corresponds to the name sub-directory
from where the piece of code was copied.

The object By Kind and Name Search in the directory FilterSource shown in Figure 4.13,
for instance, contains the code for collecting all the objects of the milled directory that have a given
kind and name. Changing the let-binding of the variables kind and namestring to STM and st _
will cause the search to focus on statement object whose name contains the string st _ Clicking the
button FilterSource* will initiate the search and collect all the found objects in a sub-directory
Targets. If that directory already exists the user will be asked to confirm that its previous contents
can be removed. Code pieces are provided in the following categories.

e FilterSourcex* collects all objects of the milled directory that satisfy a given predicate and
places them in the sub-directory Targets. The search predicate may involve the kind, name,
status, or creation time of the object, strings and object identifiers occurring in it, and similar
criteria. Existing contents of the directory Targets will be overwritten.

e AppendSourcex filters the milled directory that satisfy a given predicate and adds the found
objects to the directory Targets.

e TransformTargets* applies a specific transformation to the contents of all objects in the
directory Targets.

e ViewTargets* opens a window displaying the object identifiers in the directory Targets.

e FilterTargets* pops up a list of objects in the directory Targets that satisfy a given pred-
icate from the directory Target Filters. The directory Targets itself will not be modified.

e CopyTargets* copies the contents of the directory Targets to a directory Copies.

e TargetsAp* applies a specific operation to all objects in the directory Targets. Current
operations include activating and deactivating, adding properties, and counting.

e Rerun Bot* creates two TERM objects in the milling directory that allow replaying proofs in
the directory Targets on a fine level of detail. The purpose of this operation is to safely rebuild
proofs that are imported from different (or older) proof environments and fail during replay.

o8

Milling directories can also be built by typing buildmill_dir directory tag-name, into the
editor ML top loop, where directory is the object identifier of the directory to be milled and
tag-name a token describing the the tag for the milling directory.

4.3.4.3 NavAtAp

Clicking the NavAtAp* command button when the navigation pointer is at a code object will replace
the final argument of the code in the object with the term inr (directory, position), where directory
the object identifier of the current directory and position the name of the object at the navigation
pointer, and then evaluate the code.

The main purpose of this command is compatibility of the methods for creating recursive
definitions (Section 4.3.2.2) and modules (Section 4.3.2.3) with the ones used in libraries developed
with NUPRL 4. The command is likely to be removed in the future.

4.3.4.4 Cloning the Navigator

Users who want to use multiple navigators simultaneously may do so by cloning the navigator.
Clicking the Clone* command button will open a new navigator window that is a clone of the
current one. Alternatively, a user may type the command ,dyn navigator clone term, into the
editor ML top loop, where term is the complete term contained in the current navigator window.

Note that navigator windows, like the ML top loop and the evaluator history window cannot
be closed with (C-q) again.

4.3.4.5 Raising the ML top loop window

If the ML top loop is buried under other windows, clicking the RaiseTopLoops* command button
will bring the ML top loop window to the foreground. This feature works currently only in the twm
window manager.

Table 4.2 summarizes all the navigator command buttons that are described in this manual.
The buttons in the upper part of the table occur in all standard user theories, while the other
buttons are only present in some of the standard theories.

4.4 The ML Top Loop

The ML Top Loop, shown in Figure 4.14 on the left, provides an interactive interface to NUPRL’s
editor, refiner, and library ML processes. It can be used to evaluate ML expressions and declarations
and to issue commands that change the state of the three processes. Commands have to be entered
into the command line zone between the command line prompt and the double semicolon, the
termination characters for ML expressions. Commands that have been evaluated are stored in a
command history, which makes it possible to recall and modify complex commands. The ML Top
Loop also contains a command zone with command buttons that affect the behavior of the editor
itself.

4.4.1 Top loop command buttons

The buttons in the top line of the Top Loop command zone interact with the contents of the
command line zone, the ones below have more global effects

99

Button Command Section
AbReducex* Update the Reduce tactic 4.3.2.2
Actx Activate an object 4.3.2.9
AddDef* Create a definition 4.3.2.2
AddDefDisp* Create a display form 4.3.2.1
AddRecDef* Create a recursive definition 4.3.2.2
AddRecMod* Create a (recursive) module 4.3.2.3
CheckMinTHY* Check with theory minimal RefEnv 4.3.3.6
ChkAllThys* Check all library theories 4.3.3.6
ChkOpenThy* Check all proofs in theory 4.3.3.6
ChkThy* Check a theory 4.3.3.6
CloseThy* Close/finalize a theory 4.3.3.3
CpObj* Copy an object 4.3.24
DeAct* Deactivate an object 4.3.29
EditProperty* Edit object properties 4.3.2.10
EphTHY* Make theory ephemeral 4.3.3.3
ExTHY* Make theory explicit 4.3.3.3
ExportThy* Export theory to file 4.3.3.7
FixRefEnvs* Update ephemeral RefEnv 4.3.34
Millx* Mill a theory 4.3.4.2
MinTHY* Make theory (relative) minimal 4.3.3.3
MkLink* Create a link 4.3.2.5
MKML* Create a code object 4.3.2.1
MkTHM=* Create a statement object 4.3.2.1
MkTHY* Create a theory 4.3.3.2
MkThyDir* Create sub-theory directory 4.3.3.2
MkThyDocObj* Create theory documentation object 4.3.3.9
MvThyObj** Move an object 4.3.2.7
NameSearch* Search for object names 4.3.1.2
NavAtAp* Apply code to current position 4.3.4.3
ObidCollector* Build Obid Collector 4.3.4.1
OpenThy* (Re-)open a theory 4.3.3.3
PathStackx* Advanced motion commands 4.3.1.3
PrintObj* Print an object 4.3.2.12
Print0bjTerm* Print an object as a term 4.3.2.12
ProofHelp* Pop up proof help window 4.3.2.14
ProofStatsx* Display proof statistics 4.3.2.14
ProveRR* Replay proof using RR 4.3.3.5
RaiseTopLoops* Raising ML top loop window 4.3.4.5
RmGroup* Remove a group of objects 4.3.2.6
RmLink* Remove a link 4.3.2.6
RmThyObj* Remove a library object 4.3.2.6
SaveObj* Save copy of an object 4.3.2.11
SetIn0BJ* Set RR to RefEnv of proof 4.3.3.5
SetRefenv* Set RR to object 4.3.3.5
SetRefenvSibling* Set RR to current RefEnv 4.3.3.5
SetRefenvUsing* Set RR to least RefEnv containing object 4.3.3.5
ShowRefenv* Show RR 4.3.3.5
reNameObj* Rename an object 4.3.2.8
showRefEnvs* Display existing RefEnvs 4.3.34
Clonex Clone the navigator 4.3.4.4
MkDir* Create a directory object 4.3.2.1
MkObj* Create a library object 4.3.2.1
PrintCollection* Print collection of objects 4.3.4.1
PrintThyLong* Print theory with proofs 4.3.3.8
PrintThyShort* Print theory contents 4.3.3.8
RmDir* Completely remove a directory 4.3.2.6
comment0Obj* Create comments for an object 4.3.2.13
mkRefEnv** Insert static RefEnv 4.3.34

Table 4.2: Navigator command buttons

60

TERM: ML TopLoop

TERM: EvaluatorHistory

Previous* Next* Eval* Reset* Remove* SaveWOEvalx Previous* Next* RaiseEvaluatorx
LIB* EDD* REF* ShowRefenv* RaiseHistory* RaiseNavigator*
M[REF]> FwdThruLemma ;;
M[REF]> FwdThruLemma| ;;
- : (tok -> int list -> tactic)

Figure 4.14: The ML Top Loop and the Evaluator History Window

Previous*: Insert the previous command from the command history into the command line zone.
Next*: Insert the next command from the command history into the command line zone.
Evalx: Evaluate the command that is currently in the command line zone.

Reset*: Reset the command line zone.

Remove*: Remove the current command from the history and reset the command line zone.
SaveWOEval*: Save the current command to the command history without evaluating it.

LIB*: switch to interaction with the library ML process.

EDD#*: switch to interaction with the editor ML process.

Ref*: switch to interaction with the refiner ML process.

ShowRefenv#*: show the contents of reference environment register (Section refsec:nav-RefEnvReg),
i.e. the reference environment of the ML expression in the command line (this makes sense
only in refiner mode).

RaiseHistory*: open an evaluator history window that shows the output from evaluating the
ML expression in the command line zone.

The window (shown on the right of Figure 4.14) shows the command prompt of the corre-
sponding process, the ML expression, its value, its type, and a time stamp. It also provides
three buttons. Previous* and Next* are used for going backward and forward in the evalu-
ator history. RaiseEvaluatorx* inserts the current history command back into the ML top
loop, provided the command and the ML top loop interact with the same process.

RaiseNavigator*: bring the navigator window to the foreground (works currently only for twm).

4.4.2 The command line zone editor

The command line zone provides a term editor. The editor is initially in text mode, indicated by the
text cursor L which allows the user to enter ML text. NUPRL terms may be inserted into this text
by opening a term slot and entering terms as described in Chapter 5. Most of the editor commands
described in Chapter 5 will work the same way in the command line zone. The only exception is
the return key 1, which sends the command to the ML evaluator instead of inserting a new line
as in the term editor. The commands and key bindings of the command line zone editor that differ
from those of the regular term editor are listed in Table 4.3.

o EVALUATOR_EVAL call ML evaluator
(S- 1) | INSERT-NEWLINE add line-break
(C-R) | EVALUATOR_PREVIOUS | scroll back through history

Table 4.3: Command line zone editor commands and bindings

61

To evaluate an expression, type it in at a text cursor after the command prompt and then use
either the Eval* button or the return key 1. You may edit the expression using the term-editor
commands described in Chapter 5. To break an expression into several lines, use (S- ~1). Output
from evaluating the ML expression in the command line zone is usually directed to the evaluator
history window (although it is possible to have it appear below the command line zone in the ML
top loop window as well).

NUPRL error messages appear in a separate window that describes the nature of the error and
some debugging information. The window can be closed by either clicking it’s Quit* button or by
typing (C-Q). Errors can come from various sources. In most cases the ML expression you typed
doesn’t parse or type-check properly or has been sent to the wrong process.

Occasionally you can get the ML top loop into an unexpected state. In this case undo the
previous steps using (C-_) until a stable state has been recovered. If that doesn’t work, the editor
process itself may have reached an unrecoverable state. It is best to close all other NUPRL windows,
saving their contents if needed, to kill the editor process, and to start it again.

4.4.3 Top Loop Commands

Depending on the command prompt at the beginning of the command line zone top loop commands
are sent by the editor to either the library, editor, or refiner processes. Refiner commands usually
involve evaluating existing or newly developed tactics (Chapter 8) and related ML functions, or
analyzing proof details that are not shown by the proof editor (Chapter 6). Library commands
affect the contents of the library as permitted by the corresponding library application interface.
Editor commands change the visible contents of the navigator (which my also affect the library),
modify the behavior of the editor itself, or open new windows that invoke specific applications such
as a proof editor or the NUPRL term evaluator.

Most of the editor and library top loop commands have been described in Section 4.3. In this
section we briefly summarize other commands that may be of interest for a user.

4.4.3.1 Invoking the NUPRL term evaluator

The ML top loop provides the means to evaluate expressions of NUPRL’s meta language ML.
NUPRL’s object language, however, comes with its own notion of evaluation (see Table A.2 in
Appendix A.2.1), which is supported by a separate term evaluator. To invoke this evaluator, a user
has to type the command ,view_showc name term, into the editor ML top loop, where the token
name will be a suffix to the name of a new window and term is a NUPRL term to be evaluated.
This will open a new window with the name ‘compute name‘ that contains the NUPRL term term
and four buttons that initiate the evaluation of the term.

compute addition

Computel* Computeb5* ComputelO* ComputeAllx*

((B*4)-5) +6

Clicking Computel* once will perform one top-level reduction step on the NUPRL term. Clicking
it again will perform the next step, and so on. For the term ' ((3%4)-5)+6 , for instance, this will
result in the reduction sequence ' ((3%4)-5)+6 —— ' (12-5)+6 —— 7+6 — 13,

The other three buttons proceed in larger steps. Compute5* and Computel0* perform 5, respec-
tively 10 computation steps at once. ComputeAll* continues with the evaluation until no further
reduction is possible. To undo a computation step, simply use the undo key combination (C-_).

62

Note that evaluation in NUPRL is lazy: evaluating the term "(((3x4)-5)+6)7 will leave it
unchanged. Using ComputeAll* on terms like 'Y (A\x.x) ', whose evaluation does not terminate
will cause the library and refiner processes to loop indefinitely. A user will have to interrupt these
processes and bring them back into a stable state (see Section 4.6 below).

With a similar command, a user may also invoke the NUPRL term evaluator on the extract
term of a theorem (see Section 6.3.3). Typing view_show_co obid, into the editor ML top loop
will open a NUPRL term evaluator window that contains as its term argument the extract term of
the theorem object denoted by the term obid. This, however, requires that the extract term of the
theorem has been made available to the editor. If this hasn’t been done already, one has to enter
the command require termof (ioid obid), before invoking the evaluator.

4.4.3.2 Loading and compiling ML code

NUPRL allows users to load files containing ML code into the library, editor, or refiner processes. To
do so, a user has to type the command loadt_system root-dir [path,, files, ; ...; path,, files],
into the respective ML top loop. root-dir is a string describing the root directory of the user’s NUPRL
files. path is a list of strings describing the sub-directory in which the specific files reside, and files
is a list of file names (without the .ml extension) in that directory. The command will compile all
the named files and load the compiled code into the current process. For instance,

loadt_system "/home/nuprl/lib/ml"
[[“Standard"] s [lla";llbll] ; [lltestingll;"newll] , [lldll;llell;"f”]]

will compile and load files in the following order

"/home/nuprl/lib/ml/standard/a.ml"
"/home/nuprl/lib/ml/standard/b.ml"
"/home/nuprl/lib/ml/testing/new/d.ml"
"/home/nuprl/lib/ml/testing/new/e.ml"
"/home/nuprl/lib/ml/testing/new/f .ml1"

Compiled files will be stored in a sub-directory mlbin/os/lisp-version of the directory in which
the ML files reside, where os is currently either linux or solaris, and lisp-version is the name
of the Lisp dialect that runs the process, e.g. allegro61 or cmucl. If these directories do not yet
exists, an error message will be created.

4.4.3.3 Importing Text

One of the advantages of having code reside within the NUPRL library instead of in external files is
that NUPRL links ML functions to the code object in which they are defined. Clicking the middle
mouse button on a piece of ML text will raise the code object where the corresponding
ML function is defined, provided its definition is stored within the library.

One way to migrate an ML file into the system is to import its text. Entering the command
Jmport_text filename, into the editor ML top loop will open a new window containing the
contents of the file described by the string filename. Users may then copy and paste pieces of the
text into any term editor that is in text mode such as the ML top loop or code and comment
objects. This feature also simplifies the on-line documentation of theories, as it allows importing
previously written text and turning it into comment objects.

63

4.5 Process Top Loops

The Process Top Loops are NUPRL’s interface to the system processes that run the editors, refiners,
or the library. They represent the top loops of the corresponding ML interpreters and do not provide
any editing features. Their main purpose is to display system output and error messages and to
execute maintenance and debugging commands. Usually, they are run within an emacs shell to have
some text editing support.

Most users will hardly ever use the process top loops except for monitoring the process in case
of long delays (see Section 4.6 below). There are, however, a few useful commands that advanced
users may want to take advantage of.

Most commands have to be entered as conventional ML expressions, which must be terminated
explicitly by a double semicolon. Users may also switch to Lisp mode and enter low-level system
commands in Lisp. These commands need to be terminated by a double semicolon as well, but will
be forwarded to the Lisp interpreter. For both ML and Lisp there are also a few dotted commands.
These are expressions without arguments that are terminated by a period. Below we list some of
the most commonly used commands.

e Editor Commands:

— nuprl_oed_suspend ();;, closes all NUPRL windows.

— nuprl_oed.resume ();;, reopens the NUPRL windows.

— muprl_oed reset (); ;. : kills all NUPRL windows.

— win., opens the navigator and ML top loop windows.

— .set_xhost "hostname" display_index ; ;, redirects all NUPRL windows to the specified
display after the next suspend/resume cycle. hostname must be a string describing the
display host and display_index a number (usually 0) specifying the display terminal on
that host.

— muprl_oed._rehash ();;, rehashes the macros and bindings in the user’s mykeys.macro
file (see Section 3.2.2).

e Commands for the Editor or Refiner:

— .setup_connect socket, socket, "hostname";;, sets up a connection to the library at
host hostname using the indicated socket numbers.

— dc Q;;, try to establish the connection that was set up.

— dd Q) ;;, disconnect the process.

— open_lib ‘lib-memnonic‘;;, opens the connection to the library environment called
lib-memmnonic.

— close lib ‘lib-memnonic®;;, closes the connection to the library environment [ib-
memmnonic.

The difference between the commands dc/dd and open_1ib/close 1ib is that the former
establish the low-level TCP/IP connection to the library’s object request broker, while the
latter link to a client work space provided by the library (see Section 4.1).

The above commands are implicitly executed when the editor and refiner processes are started,
using the data contained in the user’s .nuprl.config file (see Section 3.2.2).

e Library commands:

— mnosa socketl;;, Opens a connection to a client using the indicated socket number.

64

— library open ‘°‘lib-memnonic‘‘; ;. opens the library environments lib-memnonic for
external connections. Usually, one opens the library environment that was stored the
last time the library was closed, but there may be reasons to re-open older library
environments.

— library open_as ‘‘lib-memnonic‘‘ ‘new_memnonic‘;;, opens the library environ-
ments lib-memnonic under the alias new_memnonic.

— library._close ‘libenv‘; ;. closes the library environment libenv.

— library close gc ‘libenv‘; ;, closes the library environment libenv, performing garbage
collection first. Unlinked library objects will not be included in the stored environment.
However, they will not be removed from the data base and may be recovered by opening
an older environment.

— db_envs _print ‘‘memnonic-match‘‘;;, Print a list of all existing library environments
that match all the tokens in the list memnonic-match.

Library Lisp commands:

— _(stop-db-buffering);;, stops buffering data base information. This is useful when
one sees buffering messages like WBI 23, or LBI 25, building up to high numbers and
never decreasing.

e Commands for all processes:

— cenvs ();;, prints a list of the environments currently accessible by the process.
— 1., switches to Lisp mode.

— ml., switches to ML mode.

— .stop., terminates the process.

4.6 Recovering from Errors

Most NUPRL errors relate to commands that were entered into the navigator, the ML top loop, or
the proof editor. Quite often they have to do with misspelled tactics or ML functions, type errors,
or unsuccessful executions of the command. In these cases, error messages appear in a separate
window that describes the nature of the error and some debugging information. Usually, it suffices
to re-enter the command after correcting the mistake.

Many library commands that were executed erroneously, like removing an object or unlinking a
directory, can be undone by entering the key combination (C-_) (see Section 4.3). Since the library
never destroys information, it is possible to retrieve the contents of every object that was previously
accessible. The undo history is limited, though. Recovering from an error that was made many steps
ago is more difficult.

If a user enters text into the navigator while the cursor is at the “scroll position” the navigator
will show an error after the next operation. Using the undo operation until the entered text is
removed and moving the cursor to where it is supposed to be solves the problem.

Sometimes the contents of a window are not updated after resizing it. Scrolling down and up
with (C-v) and (M-v) usually forces the window to be updated.

If a user has messed up the contents of a window and cannot undo the error, closing the window
with (C-q) and opening it again will often solve the problem. (C-q) closes the window without
saving the modifications to the object, so reopening the object will show the state after the last
save operation (usually (C-z)). Note that the navigator, the ML top loop, and the evaluator history
cannot be closed without using the editor commands from Section 4.5.

65

If the system appears to be inexplicably stuck, check the ML process loops. It is possible that
one of them is garbage-collecting, which may take up to several minutes depending on processor
speed and available memory.

In rare cases, one of the three Lisp processes crashes and ends up in debug mode, which offers
several restart actions to the user. Entering the Lisp command _(fooe), after the prompt usually
brings the process back to a stable state.

If a user has initiated a non-terminating computation, for instance by entering a recursive ML
expression into the ML top loop or by applying the NUPRL term evaluator to a term containing the
Y combinator, the corresponding process must be interrupted explicitly. Typing (C-c) repeatedly
will eventually break the Lisp process, which then can be restarted with (fooe).

If everything else fails, one may have to restart the editor, the refiner, or even all three NUPRL
processes. Interrupt the Lisp process with (C-c), type _:exit, (or kill the process from Unix), and
then start it again as described in Chapter 3. If all three NUPRL processes have to be shut down, it
is best to stop those that are still alive using the stop., command, shutting down the library last.

66

