
Chapter 7

Definition and Presentation of Terms

Nuprl offers users an opportunity to extend the basic language of type theory by introducing new,
abstract terms whose meaning is defined in terms of existing language constructs. In addition to
that users may also modify the visual appearance of abstract terms1 and adjust the presentation of
formal material without changing the formal content itself, which makes it possible to use familiar
notation or to present the same material differently to different target groups.

Users can create several kinds of library objects for this purpose. Abstractions are used to intro-
duce the abstract definition of a new term, display forms define the textual presentation of abstract
terms, and precedence objects assign precedences for terms to control automatic parenthesization.
In Section 4.3.2.2 we briefly described how to create abstractions and display forms using the nav-
igator’s AddDef* button. In this chapter we will describe the contents and features of abstractions,
display forms, and precendences as well as editor support for defining them.

7.1 Abstractions

Abstractions are terms that are definitionally equal to other terms. In Nuprl they may be defined
in terms of language primitives and other abstractions, but the dependency graph for abstractions
should be acyclic. In particular, an abstraction not depend on itself. Recursive definitions can be
introduced using the AddRecDef button as described in Section 4.3.2.2.

Abstraction definitions have form

lhs == rhs

where lhs and rhs are pattern terms that may contain free variables. The latter are implicitly
universally quantified. When Nuprl unfolds some lhs-inst instance of lhs, it first matches this
instance against the pattern lhs and generates bindings for the free variables of lhs accordingly. It
then applies these bindings to the free variables in rhs to calculate the term rhs-inst into which
lhs-inst unfolds. Therefore, all free variables of rhs must also occur free in since otherwise unfolding
a definition would yield a term with unbound variables. An example of an abstraction object is
given below.

- ABS: int seg

{i..j−} == { k:Z | i ≤ k < j }

1This includes user defined terms, primitive terms of Nuprl’s type theory, and even the terms used for describing
Nuprl editing features such as the navigator, proof terms, or the appearance of abstractions and display forms.

99

The abstraction defines a type of segments of integers. The abstraction object int seg already
consults a display form in the presentation of the left hand side of the definition. The structure
of the left hand side becomes more readily apparent if we write it in uniform syntax (which can
be made visible by exploding the term as described in Section 5.4.5). � {i..j−}� is � int seg(i;j)� ,
a term with opid int seg, no parameters, and two subterms. An instance of the left hand side is

� {0..10−}� , which would unfold to � { k:Z | 0 ≤ k < 10 }� .

Just as abstractions can be unfolded by applying their definition left-to-right, so instances of
their right hand sides can be folded up to be instances of their left hand sides. Folding, however does
not always work, as information can be lost in the unfolding process. For instance, an abstraction
can have variables and parameters that are not used in its definition but are only used for “book-
keeping purposes”. In this case the variables and parameters only occur on the left hand side of the
definition and would have to be inferred when folding up a specific instance of the right hand side.

7.1.1 Bindings in Abstractions

In additions to ordinary variables, abstractions can have binding structure. Consider, for instance,
the definition of the unique existence quantifier below.

- ABS: exists uni

∃!x:T. P[x] == ∃x:T. P[x] ∧ (∀y:T. P[y] ⇒ y=x ∈T)

Here x represents a variable that becomes bound in the term P[x] and this binding structure
must be mapped from the abstract term � exists uni(T; x.P[x])� to its definition

First-order matching and substitution are inadequate for handling terms with binding struc-
ture, since they consider variables to be independent from each other and thus cannot express the
dependency between x and P[x]. Nuprl’s therefore uses second-order matching and substitution
functions to handle abstractions with binding variables in a systematic way.

A second-order binding is a binding v 7→ x1, . . . , xan .t of a second-order variable v to a
second-order term x1, . . . , xan .t. A second-order variable is essentially an identifier as with normal
variables, but it also has an associated arity n≥0. Second-order terms are a generalization of terms
that can be thought of as ‘terms with holes’, i.e. as terms with missing subtrees.2 They can be
represented by bound-terms such as x1, . . . , xan .t, where the binding variables are place-holders for
the missing subtrees. In a second-order binding v 7→ x1, . . . , xan .t, the arity of v must be equal to n.

An instance of a second-order variable v with arity n is a term v[a1; . . . ; an], where a1, . . . , an

are terms, also called the arguments of v. A second-order substitution is a list of second-order
bindings. The result of applying the binding [v 7→ w1, . . . , wn.tw1,...,wn] to the variable instance
v[a1; . . . ; an], is the term ta1,...,an – the arguments of the instance of the second-order variable fill
the holes of the second-order term.

In our above example, P is a second order variable with arity 1, and the terms P[x] and P[y] are
second-order-variable instances. Consider unfolding an instance of the left-hand side, say the term

� ∃!i:Z. i=0 ∈Z� . The substitution generated by matching this against � ∃!x:T. P[x]� would be

[P 7→ i. i=0 ∈Z ; T 7→ Z]

and the result of applying this to the right hand side of the definition would be

∃x:T. x=0 ∈Z ∧ (∀y:Z. y=0 ∈Z ⇒ y=x ∈Z)

2Roughly, second-order terms are like functions on terms but there are subtle differences between the two concepts.

100

Actually, the matching and substitution functions used by Nuprl are a little smarter than
shown above, as they try to maintain names of binding variables. The result one would get in
Nuprl would be � ∃i:T. i=0 ∈Z ∧ (∀y:Z. y=0 ∈Z ⇒ y=i ∈Z)� .

Nuprl does not allow nested bindings on the left-hand side of abstraction definitions. All
variables must either be first-order or second-order variables with first-order variable arguments.

7.1.2 Parameters in Abstractions

Abstractions can also contain meta-parameters, i.e. placeholders for parameters that matching and
substitution treat as variables. We usually indicate that a parameter is meta by prefixing it with a
$ sign. For example, we might define an abstraction label{x:t,i:n} as shown below

- ABS: label

label{$tok:t,$nat:n}() == <"$tok",$nat>

Meta-parameters make it possible to map parameters in newly defined abstractions onto pa-
rameters of existing terms. In the above example labels are defined as pairs of tokens and natural
numbers and the parameter $tok is mapped onto the parameter of the term token while the pa-
rameter $nat is mapped onto the parameter of the term natural number, which is revealed when
the right hand side of the definition is exploded into � pair(token{$tok:t};natural{$nat:n})� .

Level-expression variables occurring in level-expression parameters of abstraction definitions
are always considered meta-parameters, so there is no need to designate them explicitly. However,
indicating meta-parameters explicitly makes it easier to identify them as such.

In general, the term on the left-hand side of an abstraction can have a mixture of normal and
meta-parameters. You can define a family of abstractions which differ only in the constant value
of some parameter. However, it is an error to make two abstraction definitions with left-hand sides
that have some common instance.

7.1.3 Attributed Abstractions

A recently added feature of abstraction definitions is an optional list of attributes or conditions. An
attribute is simply an alpha-numeric label associated with the abstraction and the general form of
an abstraction with conditions c1, . . . , cn is:

(c1,. . .,cn)::lhs == rhs

Abstraction conditions can be used to hold information about abstractions that may be useful
to tactics and other parts of the Nuprl system. They could, for instance, be used to group ab-
stractions into categories, and when doing a proof, one could ask for all abstractions in a given
category to be treated in a particular way, e.g. to unfold all abstractions of a category “notational
abbreviations”.

7.1.4 Editor Support

In this section, we describe the editor support for abstraction objects. An abstraction can be viewed
by opening it with the navigator (Section 4.3.1.1) or by using the view-abstraction command
(〈C-X〉ab) on a term containing an instance of it (Section 5.7). The following commands and key
sequences may be used for editing abstractions.

101

〈C-M-I〉 initialize initialize object / condition
so varn insert-termso varn insert second order var with n args
〈C-M〉 cycle-meta-status make parameter meta / normal
〈C-M-S〉 select-term-option open condition sequence
〈C-O〉 open-seq-to-left open slot in cond seq to left
〈M-O〉 open-seq-to-right open slot in cond seq to right

Since most abstraction objects are created using the AddDef* mechanism described in Sec-
tion 4.3.2.2, the left and right hand side of the abstraction is already present when the object is
opened. In the rare case that the abstraction object was created with the MkObj* command button
(Section 4.3.2.1) it will contain an empty term slot when it is first visited, which must be initialized
before a definition can be entered.

The initialize command will create an uninstantiated abstraction definition term, which looks like:

[ab lhs] == [ab rhs]

To enter the abstract term on the left hand side of the definition, one has to provide its object
identifier , its parameters, and a list of its subterms together with the variables to be bound
in these subterms. Ways to create new terms with the term-editor are described in Sections
5.4.4 and 5.4.5. The term for the right hand side of the definition is entered in the usual
structural top-down fashion of the term-editor as explained in Section 5.4.

so varn has to be used to enter second order variable instances on the left and right hand sides
of the definition. This will insert a term of the form � variable{x:v}(a1;. . .;an)� where x is
the variable’s name, and n > 0 is a natural number. The library display form object for this
term is named so varn so this family of names can be used to reference them.

Note that abstraction objects are the only places where these second-order variable instances
are used. When writing propositions, second-order variable instances are simulated using the
so applyn abstraction.

cycle-meta-status converts a parameter into a meta-parameter if the text cursor is in the pa-
rameter’s text slot. If the parameter is already meta, using this twice will cycle its status back
to being a normal parameter.

select-term-option enables a user to add conditions to an abstraction. By default, an abstrac-
tion definition term has an empty condition sequence as a subterm, which is hidden by the
display form for abstractions. Moving the term cursor over the whole abstraction term and
using select-term-option will add an empty term slot for a condition. The condition term
is much like the term for variables; it has a single text slot, and otherwise no other dis-
play characters. To get additional slots for condition terms one may use open-seq-to-left

or open-seq-to-right.

7.2 Term Display

Display form objects are used to control the visual presentation of formal mathematical concepts.
They define how a term shall appear when it is being displayed on the screen or printed on paper.
This enables users to present formal content within a variety of notations without having to change
the internal logical representation of these terms. Display forms are commonly created whenever
a definition is introduced using the AddDef* mechanisms (Section 4.3.2.2), but they may also be
added for existing abstractions as well as for the primitive terms of the library.

102

def-seq ::= definition ;;

| definition ;; def-seq
definition ::= format-seq == term

| attr-seq :: format-seq== term
format-seq ::= format

| format format-seq
attr-seq ::= attribute

| attribute :: attr-seq

Figure 7.1: Display Object Structure

In Nuprl the presentation of all formal content, including the appearance of the navigator, the
editor, sequents, and proofs is controlled by display forms and may be adjusted according to the
preferences of a user. Even the mechanisms for editing and presenting display forms themselves may
be modified. The display forms for the quantifiers (all df, exists df) and the logical connectives
(and df, or df, . . .), for instance, appear as “display form generators”.

The top level structure of a display form object is summarized by the grammar shown in
Figure 7.1. An object contains one or more display form definitions. Each definition has a right-
hand-side term to which the display form applies, and a sequence of formats that specify how
to display the term. A definition also has an optional sequence of attributes that specify extra
information about the definition.

Usually, all the definitions in one object refer to a closely related set of terms. When choosing
a display form to use for a term, the layout algorithm tries definitions in a backward order, so
definitions are usually ordered from more general to more specific.

7.2.1 Editing Display Form Objects

Since most display forms are created using the AddDef* mechanism described in Section 4.3.2.2,
a right-hand-side term, a standard sequence of formats, and an alias attribute (see Section 7.2.4
below) are already present when the object is opened. If the object was created with the MkObj*

command (Section 4.3.2.1) it will contain an empty term slot, which must be initialized before a
display form definition can be entered.
The command 〈C-M-I〉 will create an initial display form definition, which looks like:

== [rhs]

To get additional slots for display form definitions one may use the commands 〈C-O〉 and 〈M-O〉.
An initial display form definition has an empty attribute sequence as a subterm, which is hidden

by the display form for display form definitions. Moving the term cursor over the whole term and
using 〈C-M-S〉 will add an empty term slot for an attribute.

7.2.2 Right-hand-side Terms

The right-hand-side term is a pattern. A definition applies to some term t if t is an instance of
the right-hand-side term. The display definition matcher has a notion of meta-variable different
from that of Nuprl’s usual matching routines; it has 3 kinds of meta-variable: meta-parameters,
meta-bound-variables, and meta-terms.3 Meta-parameters and meta-bound-variables correspond to
text slots on the left-hand side of a definition, and meta-terms correspond to term slots.

3The meta-parameters are different from those used in abstraction definitions. To be clear, we sometimes call those
ones abstraction-meta-variables and the ones in display definitions, display-meta-variables.

103

The right-hand-side term is restricted to being a term whose subterms are either constant terms,
i.e. terms with no meta-variables, or meta-terms. To enter a meta-term into a term slot one has
to use the name mterm. To turn parameters and variable into meta-parameters or meta-bound-
variables, position a text cursor in the appropriate parameter or bound variable slot and give
the cycle-meta-status command 〈C-M〉 (twice). Display-meta-variables are readily recognized
because they have <> as delimiters.

The rhs right-hand-side term may also contain normal parameters, bound variables and variable
terms. These are treated like constants: for a definition to be applicable, they must match exactly.

7.2.3 Format Sequences

Format sequences are text sequences that may contain slots for meta-variables and commands for
controlling the layout of formal material through insertion of optional spaces, line breaking, and
indentation. Except for text strings, all formats must be entered into term slots, which may be
created as described in Section 5.4.2.

The various kinds of formats are summarized in the table below. The Name column gives the
name that has to be entered into a term slot to create the format, while the Display column
describes how the format will be presented within a display form definition.

Name Display Description

slot <id:ph> text slot format
lslot <id:ph:L> term slot format
eslot <id:ph:E> term slot format
sslot <id:ph:*> term slot format
pushm {→i} push margin
popm {←} pop margin
break {\\a} break
sbreak {\\?a} soft break
hzone {[HARD} start hard break zone
szone {[SOFT} start soft break zone
lzone {[LIN} start linear break zone
ezone {]} end break zone
space {Space} optional space

7.2.3.1 Slot Formats

Slot formats are placeholders for the children of a display form instance. Text slots are generally
used for meta-parameters and meta-bound-variables, while term slot formats contain meta-terms.

The id in a slot format is the name of the slot. The slot corresponds to the meta-variable of
the right-hand-side term with the same name. ph is place-holder text, which will appear (enclosed
within []’s) in the slot whenever it is uninstantiated in some instance of the display form. The L,E
and * options on the term slot formats control parenthesization of the slot and are discussed in
Section 7.2.4.2.

7.2.3.2 Margins

The margin control format {→i}, where i ≥ 0, pushes a new left margin i characters to the right of
the format position onto the margin stack. The layout algorithm uses the top of the margin stack

104

to decide the column to start laying out at after a line break. To create the format, enter pushm

into a term slot and edit the number 0 in the format {→0} accordingly.
The margin control format {←} (popm) pops the current margin off the top of the margin stack

and restores the left margin to a previous margin. Usually display forms should have matching
pushm’s and popm‘s.

7.2.3.3 Line Breaking

Line-breaking formats divide the display into nested break zones. There are 3 kinds of break zone:
hard , linear , and soft . The effect of the break format {\\a} depends on the break zone kind:

• In a hard zone, {\\a} always causes a line break.

• In a soft zone, either none or all of the {\\a} are taken.

• In a linear zone, {\\a} never causes a line break. Instead, its position is filled by the text
string a, which usually is a sequence of blank characters.

Break zones are started and ended by zone delimiters. Display form format sequences should usually
include matching start and end zone formats. There is one end delimiter {]} (ezone) for all kinds
of zones. Each kind of zone has its own start delimiter:

• {[HARD} (hzone) starts a hard zone.

• {[SOFT} (szone) starts a soft zone.

• {[LIN} (lzone) starts a linear zone.

A linear zone is special in that all zones nested inside are also forced to be linear. Therefore a linear
zone contains no line-breaks and always is laid out on a single line. If a linear zone doesn’t fit on a
single line, the layout algorithm chooses subterms to elide (see Section 5.3) to try and make it fit.

When laying out a soft zone, the layout algorithm first tries treating it as a linear zone. If that
would result in any elision, then it treats the zone as a hard zone.

The soft break format {\\?a} (sbreak) is similar to the break format but is not as sensitive
to the zone kind. Soft breaks in linear zones are never taken, but otherwise, the layout algorithm
uses a separate procedure to choose which soft breaks to take and which not. This procedure uses
various heuristics to try and layout a term sensibly in a given size window with at little elision of
subterms as possible.

7.2.3.4 Optional Spaces

The space format {Space} inserts a single blank character if the character before it isn’t already
a space. Otherwise it has no effect.

7.2.4 Attributes

Attributes specify extra information about display form definitions. By default, display form defi-
nitions are created with a right-hand-side term, a standard sequence of formats, and a single alias
attribute. Moving the cursor over the whole attribute term and using 〈C-O〉 or 〈M-O〉 will create
additional attribute slots to the left or right of this attribute.

Possible display form attributes are summarized in the table below. The Name column gives
the name that has to be entered into a term slot to create the attribute, while the Display column
describes how it will be presented within a display form definition.

105

Name Display Description

alias EdAlias a alias for definition input
ithd #Hd a head of iteration family
ittl #Tl a tail of iteration family
parens Parens parenthesis control
prec Prec a precedence
index Index a definition name
conds (c1,. . .,cn) conditions

The alias attribute provides an alternate name which the input editor recognizes as referring to
the definition. Alternate names are often convenient abbreviations for the full names of definitions.
The iteration attributes ithd and ittl control selection of a definition by the display layout
algorithm. They are used to come up with convenient notations for iterated structures, which are
discussed in Section 7.2.4.1. The parens and prec attributes affect automatic parenthesization,
described in Section 7.2.4.2. The index attribute together with the name of the object containing
a definition give a unique name for the definition. Conditions specify requirements for using a
display form definition. Each condition c1,. . .,cn in the conds term is a term with a alpha-numeric
label associated with the display form definition.

7.2.4.1 Iteration

The iteration attributes control choice of display form definition based on immediately-nested
occurrences of the same term. The idea is to group occurrences into iteration families. An iteration
family has a head display form definition and one or more tail definitions. A tail definition can only
be used as an immediate subterm of a head in the same family or another tail in the same family.
Choice of display form is also affected by the use of the iterate variable # as the id of a term slot
format (Section 7.2.3.1). If # is used in some term slot of a definition, then the definition is only
usable if the same term occurs in the subterm slot that uses the #.

The following set of display forms for λ abstraction terms, for instance, makes sure that the λ
character is suppressed on nested occurrences:

λ<x:var>.<t:term:E>== lambda(<x>.<t>)
#Hd A ::λ<x:var>,<#:term:E>== lambda(<x>.<#>)
#Tl A ::<x:var>.<t:term:E>== lambda(<x>.<t>)
#Tl A ::<x:var>,<#:term:E>== lambda(<x>.<#>)

Using these, the term lambda(x.lambda(y.lambda(z.x)))will be displayed as � λx,y,z.x� instead
of � λx.λy.λz.x� .

7.2.4.2 Parenthesization

Automatic parenthesization is controlled by certain display definition attributes, term slot options,
and by definition precedences. A precedence is an element in the precedence order , which is de-
termined by the precedence objects in the Nuprl library. A display form definition is assigned a
precedence by giving it a prec attribute which names some precedence element.

Precedence Objects collectively introduce a set of precedence elements, and define a partial
order on them. The components of a precedence object and the names used to enter them by are
summarized in the table below. The prser, preq, and prpar terms are sequence constructors that

106

may be nested. The standard editor commands described in Section 5.4.2 work on the sequences
built with these terms.

Name Display Description

prser (p1>. . .>pn) serial precedence term
preq {p1=. . .=pn} equal precedence term
prpar [p1|. . .|pn] parallel precedence term
prel obname element of precedence order
prptr *obname* precedence object pointer

Object names and object pointers are the primitive elements in a precedence order. Serial
precedence terms impose a linear order on a set of precedences p1 . . . pn. Equal precedence term
declare all precedences pi to be equal in the precedence order. Parallel precedence terms declare all
precedences pi to have the same “rank” in the precedence order while being unrelated to each other.

Each display form not explicitly associated with any precedence element is implicitly associated
with a unique precedence element unrelated to all other precedence elements. The uniqueness
implies that two such display forms have unrelated precedence.

Examples of a base set of precedences set up for the current Nuprl theories can be found in
the standard theory core 1.

Automatic Parenthesis Selection. The parenthesization of a term slot of a display form is
controlled by the parenthesis slot-option, i.e. the third field of the term slot in the display form
definition (see Section 7.2.3.1), by the parens attribute of the display form filling that term slot,
and by the relative precedences of the term slot and the term filling it. The precedence of a term
slot is usually that of the display form containing it, although it is possible to assign precedences
to individual slots. The parenthesis control works as follows:

• Term slots are parenthesized only if the filling display form has a parens attribute. If this
attribute is absent, the slot is never parenthesized. The parens attribute must be explicitly
added to a display form definition for that definition to ever be parenthesized.

• Term slots are parenthesized unless parenthesization is suppressed by the parenthesis slot-
options. These options have the following meanings:

L : Suppress parentheses if the display-form precedence is less than the display-form prece-
dence of the term filling the slot.

E : Suppress parentheses if the display-form precedence is less than or equal to the display-
form precedence of the term filling the slot.

* : Always suppress parentheses.

The L and E options make it possible to represent the conventional precedences and associativity
laws of standard infix operators. If they are used in the definitions of display forms for the arithmetic
terms plus(a;b), and times(a;b), then the term plus(a;times(b;c)) is displayed as � a + b ∗ c� ,
but times(a;plus(b;c)) is displayed as � a ∗ (b + c)� . Similarly, function(A;function(B;C)) is
displayed as � A→B→C� , but function(function(A;B);C) is displayed as � (A→B)→C�

The L, E and * characters in the display of term slot formats are display forms for parenthe-
sization control terms. To change the parenthesis slot-options, one may delete the term and enter
the new option using the names shown in the table below.

107

Name Display Description

lparens L L option
eparens E E option
sparens * * option

The parenthesization control terms also allow the specification of the delimiter characters used
for parenthesization, and a precedence for the individual slot. No specific editor support has yet
been provided for these features.

7.2.5 Examples

As an example, we walk through the entry of a display form definition from scratch. We start by
creating a new display form object and viewing it. Click the MkObj* button, enter � tst df� as name
and � disp� as kind, and click the OK* button.4

Open the object by pressing the right arrow or clicking on it with the mouse. This will pop up a
window, containing a highlighted empty term slot. Initialize the display form definition by entering
〈C-M-I〉. The window now looks like:

- DISP:: tst df

== [rhs]

We begin by entering the right-hand side of the display form. Click left on the [rhs] placeholder,
and enter � exists unique(0;1)� to create a new term (see Section 5.4.4). Do not fill in the variable
slot or either of the subterm slots. The definition should now look like:

- DISP:: tst df

== exists unique([term];[binding].[term])

Enter � | or click left on the left-most term slot and enter <T>, <x>, and <P> as meta-terms and
meta-variable, respectively, by typing � mterm � | T � | x〈C-M〉 � | mterm � | P� . As a result you get:

- DISP:: tst df

== exists unique((<T>;<x>.<P>)

To create a display form for the term on the right hand side, click left on the first = to
get a text cursor in the empty format sequence on the left-hand side of the definition. Type

� 〈C-#〉163!〈C-O〉slot � | x � | var〈C-F〉� to generate an ∃ symbol and an exclamation mark as initial
text and a slot for the variable x. The definition should now look like:

- DISP:: tst df

∃!<x:var>== exists unique((<T>;<x>.<P>)

Enter a colon, the type slot, a period, a space, and the second term slot:

� :〈C-O〉sslot � | T � | type〈C-F〉〈C-F〉〈C-F〉. 〈C-O〉eslot � | P � | prop�

The definition should now look like:

4Note that the MkObj* button is not present in user theories. The only way to create display forms is through the
AddDef* and AddDefDisp* buttons, which already generate a right-hand-side term, a standard sequence of formats,
and an alias attribute.

108

- DISP:: tst df

∃!<x:var>:<T:type:*>. <P:proP:E>== exists unique((<T>;<x>.<P>)

The display form definition is now complete and may be saved by closing the display form ob-
ject with 〈C-Z〉. However, the definition does not yet include line breaking or parenthesization
information. In particular, it does not contain any visible delimiter for the end of the prop slot.

We therefore want the layout algorithm to automatically parenthesize the display form. To add
parenthesizing attributes, click left on the second = character to get a term cursor over the whole
definition, and then enter � 〈C-M-S〉 � | 〈C-O〉� to get two empty attribute slots, with a term cursor
over the first:

- DISP:: tst df

[attr]::[attr]::∃!<x:var>:<T:type:*>. <P:prop:E>
== exists unique((<T>;<x>.<P>)

To instantiate the attribute slots enter � parens � | prec � | exists� To get:

- DISP:: tst df

Parens::Prec(exists)::∃!<x:var>:<T:type:*>. <P:prop:E>
== exists unique((<T>;<x>.<P>)

This means that we assign the same precedence to the term ∃!x:T.Px as is assigned to the term
∃x:T.Px in the standard libraries.

We may also add a soft-break format such that the period separating the type slot from the prop

slot does not appear if a break is taken. Click left on the � . � character and delete it using 〈C-D〉.
Enter � 〈C-O〉sbreak spc � , click left on the } after the ? character in the soft break display form,
and enter � .� .

- DISP:: tst df

Parens::Prec(exists)::∃!<x:var>:<T:type:*>{\?.} <P:prop:E>
== exists unique((<T>;<x>.<P>)

Finally, we add a second display form for the term ∃!x:T.Px, which drops the type information from
the display whenever the type is N.

Click left on the second = character to get a term cursor over the whole definition, and then
enter � 〈M-O〉� to get a second initial display form definition after it.

- DISP:: tst df

Parens::Prec(exists)::∃!<x:var>:<T:type:*>{\?.} <P:prop:E>
== exists unique((<T>;<x>.<P>)

== [rhs]

Copy the first definition into the second as follows: enter 〈C-K〉 to replace the initial display form
by an empty term slot, move the term cursor over the whole first definition, copy it with 〈M-K〉,
move the term cursor back over the empty term slot, and paste the first definition with 〈C-Y〉.

109

- DISP:: tst df

Parens::Prec(exists)::∃!<x:var>:<T:type:*>{\?.} <P:prop:E>
== exists unique((<T>;<x>.<P>)

Parens::Prec(exists)::∃!<x:var>:<T:type:*>{\?.} <P:prop:E>
== exists unique((<T>;<x>.<P>)

On the right hand side of the definition, replace the meta-term <T> by the type constant N.
Click left on the < character, enter 〈C-K〉 and then type � nat � | � to enter the type N.

On the left hand side, remove the term slot for T by clicking left on the > character (!) and
entering 〈C-K〉. Remove the colon with backspace .

- DISP:: tst df

Parens::Prec(exists)::∃!<x:var>:<T:type:*>{\?.} <P:prop:E>
== exists unique((<T>;<x>.<P>)

Parens::Prec(exists)::∃!<x:var>{\?.} <P:prop:E>
== exists unique((� ;<x>.<P>)

In a similar way, one may add further display form definitions with iteration families to suppress the
∃! string and duplicate type information in nested occurrences of the term ∃!x:T.Px. The display
form object exists df in the standard theory core 1 can be used as an example for doing that.

110

