
Chapter 8

Rules and Tactics

Logically, all formal reasoning in Nuprl is based on the basic inference rules of intuitionistic type
theory [ML84, CAB+86]. In practice, however, reasoning with basic inference rules can become
very tedious. Therefore Nuprl provides the concepts of proof tactics, i.e. programmed applications
of inference rules. Proof tactics range from straightforward applications of inference rules to fully
automated proof search mechanisms for certain domains. Most tactics are deal with intellectually
trivial, but formally lengthy proof details, enabling the user to concentrate on the more interesting
aspects of a proof. Others mimic the particular style of reasoning in a certain application domain
and can only be applied in this context. Technically, all refinement steps in Nuprl are executions
of tactics. Basic inference rules, although explicitly present in the Nuprl library, cannot be invoked
directly but only through conversion into tactics.

In the rest of this chapter we will describe the structure of basic inference rules and tactics as
well as the most important groups of tactics that are currently implemented. Nuprl’s type theory,
its semantics, and the guiding principles for its development is explained in [CAB+86]. It should
be noted, however, that Nuprl’s type theory is open-ended and that fundamentally new concepts
and their inference rules are added whenever this is turns out to be necessary.

A complete list of the current set of inference rules can be found in Appendix A.3.

8.1 Rules

Inference rules characterize the semantics of all formal expressions in Nuprl. For each type con-
struct they describe how to form types and the conditions for two types to be equal, how to form
members of types and the prerequisites for two members of a type to be equal in that type.

Nuprl’s proof calculus is based on the notion of sequents. These are objects of the form
x

1
:T

1
,...,xn:T n ` C, which should be read as “Under the hypotheses that the xi are variables

of type Ti a member of the conclusion C can be constructed” (see Section 6.1.1 for details).

In Nuprl a proof for such a sequent is developed in a top-down fashion. Proof rules refine a goal
sequent obtaining subgoal sequents whose proofs would suffice to validate the original goal. They
are described by rule schemata with placeholders for lists of hypotheses and conclusions. A rule

Γ ` C bext mc
by rule-name (& optional arguments)

Γ
1
` C

1 bext m
1c

...

Γ
n
` C

n bext m
nc

111

expresses the fact that the goal sequent Γ ` C is provable if all the subgoals Γ
i
` C

i
are. Fur-

thermore, it also describes how to construct an (implicitly present) member m of C from members
m

i
of the subgoal conclusions C

i
.

Rules may operate both on the conclusion or the hypotheses of a proof goal. In most cases
they simply decompose a type or a member of a type into smaller components. The rule for the
formation of pairs, for instance, states that in order to form a member 〈s,t〉 of a product type S×T
it suffices to form a member s of the type S and a member t of T .

Γ ` S×T bext 〈s,t〉c
by independent pairFormation

Γ ` S bext sc
Γ ` T bext tc

This rule can be applied to any goal whose conclusion is a product type. In this case S is
matched against the left, and T against the right component of that product, while Γ is matched
against the complete list of hypotheses. As a result, Nuprl generates two new proof goals, the first
with the left component as proof goal and the second one with the right component. The list of
hypotheses remains unchanged in both cases.

8.1.1 Representation of Inference Rules

Nuprl’s inference rules are not hard-wired into the code of the system but explicitly represented in
the library as objects of kind rule. Rule definitions are ‘terms’ in the sense described in Chapter 5
and they can be edited like any other term. The rule for the formation of pairs, for instance, is
represented by an object called independent pairFormation.

- RULE: independent pairFormation

H ` A × B ext <a, b>
BY independent pairFormation ()

H ` A ext a
H ` B ext b

The fact that the rule object is almost identical to the rule described on paper, makes it very
easy to verify the implementation of intuitionistic type theory in Nuprl. The explicit representation
of inference rules in Nuprl also allows a user to modify the logic represented in system by adding
new rules or deactivating existing ones. Thus Nuprl supports any logic that can be represented as
a top-down sequent calculus.

Nuprl provides the basic mechanisms for applying rule objects to proofs. In most cases this
means matching the rule’s top goal against the current proof goal and extending the proof tree by
the instantiated sub-goals of the rule. Some rules, such as the decision procedure arith provide
explicit calls to special purpose algorithms that will be executed when Nuprl applies the rules.

- RULE: arith

H ` C ext t
BY arith U

Let SubGoals t = CallLisp(ARITH)
SubGoals

8.1.2 Rule Arguments

In most cases, the application of an inference rule to a proof goal requires more information than
just the name of the rule. For instance, if a rule shall be applied to one of the hypotheses, it is

112

necessary to identify this hypothesis; or if a rule creates new variables in the subgoals, it is necessary
to give names to these variables. Because inference rules are supposed to be applied schematically,
this information will not be determined automatically but has to provided as additional arguments.
Inference rules may require the following arguments.

Hypothesis index. If a rule shall be applied to a particular hypothesis of the proof goal, the
corresponding index i of that hypothesis in the hypotheses list of the goal must be provided. The
rule hypothesis, for instance, can be used to prove a goal if the conclusion is identical (α-equal)
to one of the assumptions, but the index of that assumption must be given.

Γ,x:T,∆ ` T bext xc

by hypothesis i

- RULE: hypothesis

H x:A, J ` A ext x
BY hypothesis #$i

No Subgoals

Variable names. Many inferences require the creation of new variables when refining a proof
goal. The corresponding proof rules do not choose the names for these variables automatically
but expect them to be provided explicitly. The rule functionEquality, for instance, is used to
prove two dependent function types x

1
:S

1
→T

1
and x

2
:S

2
→T

2
equal. It creates two subgoals: the two

domains S
1
and S

2
must be equal, and the two ranges T

1
[x/x

1
] and T

2
[x/x

2
] must be equal for each

argument x ∈S
1
. The second subgoal contains a new variable, whose name must be given.

Γ ` x
1
:S

1
→T

1
=x

2
:S

2
→T

2
∈ Uj bAxc

by functionEquality x

Γ ` S
1
=S

2
∈ Uj bAxc

Γ,x:S
1
` T

1
[x/x

1
] = T

2
[x/x

2
] ∈ Uj bAxc

- RULE: functionEquality

H ` (x1:a1 → b1) = (x2:a2 → b2)
BY functionEquality y

H ` a1 = a2
H y:a1 ` !subst(b1; x1.y) = !subst(b2; x2.y)

Universe level. Because of the expressiveness of type theory, the well-formedness of a type
expression cannot be decided automatically, but must be established in the course of a proof devel-
opment. Whenever a rule creates a new declaration in one of the its subgoals, the well-formedness
of the corresponding type must be established. If this cannot not guaranteed by the proof of the
other subgoals (as in the case of functionEquality it must be proven as a separate subgoal. The
rule lambdaEquality, for instance, proves the equality of two λ-terms in a function type x:S→T .
For this purpose, it declares a new variable X ′ of type S and adds a subgoal stating that S belongs
to some universe Uj . The level j of that universe must be given.

Γ ` λx
1
.t

1
=λx

2
.t

2
∈ x:S→T bAxc

by lambdaEquality j x′

Γ,x′:S ` t
1
[x′/x

1
] = t

2
[x′/x

2
] ∈ T [x′/x] bAxc

Γ ` S ∈ Uj bAxc

- RULE: lambdaEquality

H ` (λx1.b1) = (λx2.b2)
BY lambdaEquality !parameter{i:l} z ()

H z:A ` !subst(b1; x1.z) = !subst(b2; x2.z)
H ` A = A

Values for variables. Some proof goals can only be decomposed if it is known how to instantiate
a certain variable. To prove ∃x:S.T [x] – which is the same as the dependent product x:S×T [x]),
for instance, one has to provide a value s for the existentially quantified variable x and can then
go on to prove T [s]. The corresponding rule dependent pairFormation requires this term as one
of its arguments.

Γ ` x:S×T bext 〈s,t〉c
by dependent pairFormation j s x′

Γ ` s ∈S bAxc

Γ ` T [s/x] bext tc
Γ,x′:S ` T [x′/x] ∈ Uj bAxc

- RULE: dependent pairFormation

H ` x:A × B ext <a, b>
BY dependent pairFormation !parameter{i:l} a y ()

H ` a = a
H ` !subst(B; x.a) ext b
H y:A ` !subst(B; x.y) = !subst(B; x.y)

113

Type of a subterm. Sometimes decomposing a proof goal into smaller components involves
proving that certain subterms belong to a type that cannot immediately constructed from the
types mentioned in the goal. Proving the equality of two function applications f

1
t
1
and f

2
t
2
in a

type T , for instance, requires proving f
1
and f

2
equal in some type x:S→T . As this type cannot

be derived from T it must be given explicitly.

Γ ` f
1
t
1
= f

2
t
2
∈ T [t

1
/x] bAxc

by applyEquality x:S→T

Γ ` f
1
= f

2
∈ x:S→T bAxc

Γ ` t
1
= t

2
∈ S bAxc

- RULE: applyEquality

H ` (f1 a1) = (f2 a2)
BY applyEquality x:A → B

H ` f1 = f2
H ` a1 = a2

Term dependency. Applying a proof rule may sometimes involve replacing an sub-expression
e in the goal by some other expression. If e occurs several times in the goal, one must indicate
which of the occurrences of e shall be replaced and which one shall not. Technically, this is done
by providing a term substitution: all occurrences of e in the term C that shall be affect by the
rule application are replaced by a new variable z. The rule will then substitute every occurrence of
z by the new expression. Both z and the modified term C[z] must be given as arguments. As an
example, consider the rule decideEquality for proving two case analyses equal.

Γ ` case e
1

of inl(x
1
) 7→u

1
| inr(y

1
) 7→ v

1
= case e

2
of inl(x

2
) 7→ u

2
| inr(y

2
) 7→ v

2
∈ C[e

1
/z] bAxc

by decideEquality z C S+T s t y

Γ ` e
1
= e

2
∈ S+T bAxc

Γ, s:S, y: e
1
=inl(s) ∈ S+T ` u

1
[s/x

1
] = u

2
[s/x

2
] ∈ C[inl(s)/z] bAxc

Γ, t:T, y: e
1
=inr(t) ∈ S+T ` v

1
[t/y

1
] = v

2
[t/y

2
] ∈ C[inr(t)/z] bAxc

- RULE: decideEquality

H ` case e1 of inl(x1) => l1 | inr(y1) => r1 = case e2 of inl(x2) => l2 | inr(y2) => r2
BY decideEquality z T (A + B) u v w

H ` e1 = e2
H u:A, w:(e1 = (inl u)) ` !subst(l1; x1.u) = !subst(l2; x2.u)
H v:B, w:(e1 = (inr v)) ` !subst(r1; y1.v) = !subst(r2; y2.v)

In most cases, the arguments of an inference rule can easily be determined from the proof goal.
Nuprl’s tactic collection therefore provides a set of single-step inference tactics that try to compute
the arguments required by the corresponding inference rule from the actual proof context before
executing the rule (see Section 8.1.3 below). In some situations, however, the relation between the
proof goal and the arguments of inference rule is not so obvious and it is necessary that the user
provides the rule arguments explicitly in order to be able to complete the proof.

8.1.3 Converting rules into tactics

Nuprl’s basic mechanism for creating and modifying proofs is the application of proof tactics.
These are functions that take a sequent (i.e. the goal) and generate a list of sequents (i.e. the
subgoals) as well as a validation, which shows that a proof for the main goal can be constructed
from proofs for all the subgoals.

Basic inference rules cannot be applied directly to a proof goal, but first have to be converted
into a tactic. Technically, this is done by calling a meta-level function refine that takes a primitive
rule, that is the name of a rule object and the corresponding rule arguments, and generates a tactic
that executes the rule. The function refine encodes Nuprl’s mechanism for applying rule objects
to proofs (c.f. Section 8.1.1 above) and is the only method for creating proof tactics from scratch.

114

This guarantees that all proof steps are eventually based on primitive inference rules and thus
correct with respect to the implemented proof calculus.

In most cases, the applicable inference rule and its arguments can easily be determined from the
proof context. Nuprl’s library therefore contains a small collection of single-step inference tactics
that subsumes the complete set of elementary inference rules. Almost all primitive inferences can be
expressed the single-step decomposition tactics D, MemCD, EqCD, MemHD, EqHD, MemTypeCD, EqTypeCD,
MemTypeHD, EqTypeHD, and NthHyp. These tactics, which are described in detail in Section 8.3.1,
uniformly apply to both the hypotheses and the conclusion of a proof goal. Often a user only has
to give the index of the goal clause to which they shall be applied. The tactic then analyzes the
syntactical structure of the indicated clause, identifies the applicable rule, and tries to determine
its arguments from the proof context.

For the sake of efficient interaction, the heuristics built into these tactics only determine variable
names, universe levels, types of subterms, and term dependencies, while the user always has to
provide the clause index and values to be substituted for variables.1 A user may also want to
override the choices made by the single-step decomposition tactics. For this purpose Nuprl provides
a collection of tacticals (i.e. functions that take tactics as arguments and generate tactics) that
enable a user to supply rule arguments explicitly (see Section 8.2.2 for details). Arguments may be
supplied to tactics as follows.

Clause index. Most single-step tactics require a clause index to be given as explicit argument.
By convention (see Section 8.2.1.1 for a discussion) the index 0 stands for the conclusion of the
proof goal, while positive numbers indicate hypotheses. As a convenience, negative indices can be
used to count backwards from the end of the hypothesis list. The index (-1) indicates the last
hypothesis in the goal, (-2) the second to last, etc.

The rule independent pairFormation, for instance, operates on the conclusion and is repre-
sented by the single-step tactic D 0. The rule hypothesis i is represented by NthHyp i.

Variable names. All tactics in Nuprl’s library automatically assign names to new variables.
In rare cases a user may want to select different names. The tactical New takes as an input a list
of variables and a tactic and generates a tactic that uses the provided variables instead of the
automatically chosen ones.

The the tactic D 0, which usually suffices to represent the rule functionEquality x, can be
forced to choose the name x for the new variable by writing New [x] (D 0).

Universe level. Universe levels can usually be determined from the immediate proof context
and the well-formedness theorems of user-defined concepts. In some cases, the heuristics choose a
rather arbitrary, high universe level. To enforce a particular level, one may use the tactical At.

The the tactic D 0, which usually suffices to represent the rule lambdaEquality j x ′, can be
forced to choose the universe level j by writing At Uj (D 0). In addition, one could also enforce

the use of x′ as new variable name as in At Uj (New [x′](D 0))

Values for variables. The With tactical can be used to supply terms that are needed for the
instantiation of variables. The rule dependent pairFormation j s x′, for instance, requires the
term s to be provided explicitly. It is represented by the tactic With s (D 0). A universe level and
a variable name may also be provided by writing At Uj (With s (New [x′] (D 0))).

1Nuprl’s library contains proof tactics that attempt to determine clause index and values for variables automat-
ically. But since the underlying heuristics are often time consuming and sometimes choose values leading to subgoals
that cannot be proven, they are not suited for representing single-step inferences.

115

Type of a subterm Although type checking in general is undecidable for intuitionistic type the-
ory, the types of subterms occurring in a proof goal can almost always be determined automatically.
A user may override the heuristically chosen type if it is too coarse for completing the proof or
provide a type explicitly to improve the efficiency of proof checking. The tactical With can be used
for this purpose as well.

The tactic MemCD, which usually suffices to represent the rule applyEquality x:S→T , can
be forced to use a particular function type x:S→T by writing With x:S→T MemCD.

Term dependency. Term dependencies can be supplied to a tactic with the Using tactical. The
tactic D 0, which usually suffices to represent the rule decideEquality z C S+T s t y, can
be forced to use a particular dependency C[z] with a new variable z by writing Using [z,C]

(D 0). Note that a disjunctive type and up to three new variables could be provided as well, as in
Using [z,C] (With S+T (New [s;t;y] (D 0))).

Rule selection. In some rare cases it is impossible to determine the exact rule that shall be
applied to a particular proof clause. For instance, there are two different rules can be applied to a
disjoint union S+T in the conclusion of a goal.

Γ ` S+T bext inl(s)c
by inlFormation j

Γ ` S bext sc
Γ ` T ∈ Uj bAxc

Γ ` S+T bext inr(t)c
by inrFormation j

Γ ` T bext tc
Γ ` S ∈ Uj bAxc

There is no simple heuristic for determining from the proof context which of the two must
be applied (although this is possible in limited application domains). Instead, a user has to select
between the two rules, using the tactical Sel. The rule inlFormation j will be executed by writing
Sel 1 (D 0), while Sel 2 (D 0) leads to the execution of inrFormation j. In both cases a
universe level can also be supplied.

A complete description of all the inference rules currently present in the Nuprl system as well as
the corresponding single-step tactics can be found in Appendix A.3.

8.2 Introduction to Tactics

The creation and modification of proofs in Nuprl is based on the concept of tactics. Logically,
tactics are functions that represent valid refinements. They convert a proof goal into a list of
subgoals such that the validity of all the subgoals implies the validity of the initial proof goal.
They range from elementary inference steps to sophisticated proof strategies that can solve major
proof problems automatically.

Technically, tactics are functional programs written in the ML programming language (see
Appendix B). They take as input a proof goal and return a list of proof goals and a validation. The
validation is a function that constructs a proof for the initial goal from proofs for the subgoals and
thus validates the refinement step performed by the tactic.

Tactics are usually initiated from within the proof editor. After the user types in the tactic the
proof editor applies it to the current proof goal. The proof goals generated by the tactic will be
added to the proof tree as children of the current proof node and displayed as subgoal sequents
still to be proven. The validation is stored in the proof node as well but remains invisible. Upon
completion of the proof the validations of all proof nodes are composed into a proof for the initial
proof goal, which provides computational evidence for the validity of the initial theorem.

116

Tactics can either be built from elementary inference rules using the function refine (see
Section 8.1.3), or by composing existing tactics into new ones using tacticals (see Section 8.8)
or more sophisticated ML programs that analyze the proof context before initiating a refinement
step. This makes sure that all refinements performed by tactics are eventually based on elementary
inference rules and thus correct with respect to the underlying logic.2 Applying a tactic to a proof
goal may produce incomplete proofs or not terminate, but it always results in a valid proof .

Nuprl’s standard library contains a large collection of useful tactics that have been developed
over the past 15 years. Users may extend that collection by adding their own tactics as code-
objects to their personal directories. But in most cases it is sufficient to use the existing tactics and
to combine them through tacticals.

In the rest of this chapter we will describe the most important standard tactics contained in
the library. Further tactics may be found by inspecting Nuprl’s library of standard theories.

8.2.1 Tactic Arguments

Invoking a tactic often requires certain arguments to be supplied. These may be indices of hypothe-
ses to which the tactic shall be applied (type int), Nuprl terms that instantiate variables (type
term), new variables to be generated (type var), universes to be used in well-formedness goals
(type term), names of library objects to be consulted (type token), substitutions to be applied
(type (var # term) list), sub-tactics to be used during refinement (type tactic), and others.

The proof goal (type proof) to which the tactic shall be applied is always the last argument of
a tactic. If the tactic is invoked in the proof editor, the user does not have to supply this argument,
as the proof editor will automatically insert it.

Unless otherwise stated, we assume that arguments to tactics have the following types and uses:

T∗ : tactic
c∗ : int clause index.
i∗ : int hypothesis index.
t∗ : term term of Nuprl’s type theory
n∗ : tok name of lemma object in Nuprl’s library
a∗ : tok name of abstraction object in Nuprl’s library
v∗ : var variables in terms of Nuprl’s object language
l∗ : tok subgoal label
p∗ : proof current proof goal

A suffix s on the name of an argument indicates that it is a list. For example vs is considered to
have type var list.

8.2.1.1 Referring to hypotheses in a sequent

Hypotheses are conventionally numbered from left to right, starting from 1. These hypothesis num-
bers are displayed by the proof editor, and tactics usually refer to hypotheses by these numbers.
Sometimes, it is convenient to consider the hypotheses numbered from right to left, and for this rea-
son tactics consider a hypotheses list H

1
, . . . ,Hn to also be numbered H−n, . . . ,H−1. Occasionally,

the index n+1 or 0 is used to refer to the position to the right of the last hypothesis.

2An experienced Nuprl hacker will, of course, find ways to bypass these mechanisms and modify proofs without
using elementary inference rules. However, the dependency tracking mechanisms of Nuprl’s library are able to detect
theorems whose proofs were constructed that way and to identify all library objects that depend on such theorems.
Thus it is possible to account for the validity of theorems even in the presence of hacks.

117

There are tactics which work in similar ways on both hypotheses and the conclusion. In this
case, we call the hypothesis and conclusion collectively clauses, refer to the conclusion as clause 0 ,
and to hypothesis i (i6=0) as clause i.

As a convention in this manual, we prefix a hypothesis with a number followed by a period if
we want to indicate explicitly the number of a hypothesis in a schematic sequent. For example, if
hypothesis i is proposition P , we write the hypothesis as i. P .

8.2.1.2 Universes and Level Expressions

In Nuprl’s type theory, types are grouped together into universes. Types built from the base types
such as Z or Atom using the various type constructors are in universe U1. The subscript 1 is the
level of the universe. Types built from universe terms with level at most i are in universe Ui+1.
Universe membership is cumulative; each universe also includes all the types in lower universes.

Since propositions are encoded as types, propositions reside in universes too. In keeping with
the propositions-as-types encoding, we define a family of propositional universe abstractions P1, P2,
. . . , which unfold to the corresponding primitive type universe terms U1, U2,

If one is only allowed to use constant levels for universes, one often has to choose arbitrarily
levels for theorems. One would then find that one needed theorems that were stated at a higher
level, and would have to reprove those theorems. This was the case in Nuprl 3 and earlier releases.

Nuprl now allows one to prove theorems that are implicitly quantified over universe levels.
Quantification is achieved by parameterizing universe terms by level expressions rather than natural
number constants. The syntax of level expressions is given by the grammar:

L :: = v | k | L i | L′ | [L | · · · |L]

The v are level-expression variables, which can be arbitrary alphanumeric strings. They are implic-
itly quantified over all positive integer levels. The k are level expression constants, which can be
arbitrary positive integers. The i are level expression increments and must be non-negative integers.
The expression L i is interpreted as standing for levels L+i. L′ is an abbreviation for L 1. The
expression [L

1
| · · · |Ln] is interpreted as being the maximum of the expressions L

1
· · ·Ln.

Usually when stating theorems, only level expressions of the form v and v ′ need be used.
Other expressions get automatically created by tactics. Further, it is sufficient to use a single level-
expression variable throughout a theorem statement, as two occurrences of the same level-expression
variable will not be related. For example, we normally prove the theorem ∀A,B:Pi. A⇒ (B⇒A)
rather than ∀A:Pi.∀B:Pj . A⇒ (B⇒A).

8.2.2 Optional Arguments

Unlike Lisp functions, ML functions cannot take optional arguments, although it is natural to want
to write tactics which do take optional arguments. One approach is to provide a set of variants of
each tactic for the most common combinations of arguments. This can be confusing, and places an
extra burden on the user who has to keep track of these variants.

Nuprl allows optional arguments to be passed to tactics by providing tacticals (see Section
8.8 below) that attach these arguments to the proof argument (i.e. the last argument) of a tactic
(c.f. Section 8.2.1). Currently, this is supported for arguments of type int, tactic, term, tok, var
and (var#term) list. Each argument is also given a token label, and arguments are looked up by
these labels. Sets of arguments are maintained on a stack, which enables nesting of tactics that use
optional arguments. Tacticals for manipulating these arguments are:

New ([v
1
;...;vn] : var list) T

118

Runs tactic T with variables v
1
to vn as optional arguments, Typically, New is used to supply a

tactic with names for newly created variables. The argument labels of the v
i
are ‘v1‘ to ‘vn‘.

With (t : term) T

Runs tactic T with term t as optional argument, which may, for instance, be a term to be
instantiated for a variable or the type of some subgoal. The argument label of t will be ‘t1‘.

At (U : term) T

Runs tactic T with term U as a optional ‘universe‘ argument. U should either be either a
type universe or a propositional universe term.

Using (sub : (var#term) list) T

Runs tactic T with the substitution sub as optional ‘sub‘ argument. The substitution sub may
be applied to instantiate variables or to indicate dependencies in some term.

Sel (k : int) T

Runs tactic T with the integer k as optional argument. Sel is used for selecting a simple
component of a formula or a subterm of a term. The argument label of k will be ‘n‘

Thinning T

Runs tactic T with the token ‘yes‘ as optional ‘thinning‘ argument. Some tactics may
optionally remove (or thin) hypotheses that are considered superfluous after a refinement step.
Thinning causes T ’s default behavior to be to thin.

NotThinning T

Runs tactic T with the token ‘no‘ as optional ‘thinning‘ argument. This causes T ’s default
behavior to be to not thin.

WithArgs (args : (tok#arg) list) T

Run tactic T with the arguments in args on the top of the stack. arg is an ML abstract data
type, defined as the disjoint union of the types int, tactic, term, tok, var and (var#term)

list. There are injection and projection functions for each of these types, such as int to arg

and arg to int. All the above tacticals are special cases of WithArgs

Each tactic description in this chapter includes information on the optional arguments (if any) that
it takes. Note that some tactics do useful preprocessing on some of their arguments. In these cases
there would be a performance penalty if such arguments were supplied.

8.2.3 Proof Annotations

Nuprl proof terms can be annotated with extra information that is not relevant to the logical
correctness of a proof but may assist in structuring proofs and identifying applicable tactics.

Goal Labels. Nuprl tactics generate various kinds of subgoals. Some express the main proof
idea, while others are only auxiliary or well-formedness goals. In inductive proofs one distinguishes
the base case from the step cases. Usually, different kinds of goals have to be treated differently, so
one would like subsequent tactics to discriminate on subgoal kind. Sometimes a subgoal’s kind can

119

be deduced directly from its structure, but this can be a error-
prone process. Thus the tactics that generate the subgoals
often attach explicit labels to them indicating their kind.
Labels consist of an ML token and an optional number. Typ-
ical examples of labels are main, upcase, aux, and wf. Some-
times tactics generate a set of subgoals of the same kind,
where the order of the subgoals is important. The optional
numbers are used to discriminate between these subgoals.
Most descriptions of tactics include information on subgoal
labeling. It is also a simple matter to find out what labels are
generated by experimentation.

- PRF: int mul
top
∀x:

�
. x * x ≥ 0

BY D 0

1

1. x:
�

` x * x ≥ 0

BY

2
.....wf.....�
∈ �

1

BY

For historical reasons, goal labels are sometimes known as hidden labels.3 Labels may be added
explicitly using the following tactics.

AddHiddenLabel lab

Add label lab to the current goal.

AddHiddenLabelAndNumber lab i

Add label lab to the current goal along with the integer label i.

RemoveHiddenLabel

Remove the label from the current goal.

Note that the goal label created by AddHiddenLabelAndNumber ‘x‘ 1 is � x� and not � x 1� , although
it will be displayed as the latter. The number is considered as strictly separate from the label and
will only be considered by tactics that discriminate on the number as well. Removing a label is
equivalent to adding the label main. This label will not be displayed, since unlabeled goals are
usually considered main goals.

To make subsequent tactics discriminate on labels one usually applies the tacticals described
in Section 8.8.2 below. For convenience, labels are divided into the classes main and aux . The
discriminating tacticals allow one to select either subgoals with a particular label, or subgoals of
one of these two classes.

8.2.4 Soft Abstractions

In most proofs tactics do not deal with basic expressions of Nuprl’s logic but with user-defined con-
cepts. Before applying generic tactics to these, the corresponding abstractions need to be unfolded
first. To prevent unwanted unfolding of abstractions, tactics usually do not unfold abstractions
unless they are designated as soft .

Some tactics treat soft abstractions as being transparent, that is they behave as if all soft
abstractions had first been unfolded. In practice, those tactics only unfold soft abstractions when
they need to and for the most part are careful not to leave unfolded soft abstractions in the subgoals
that they generate.

Specific tactics that unfold soft abstractions are MemCD, EqCD, NthHyp, NthDecl (Section 8.3.1),
Eq (Section 8.3.3), Inclusion. (Section 8.7), the forward and backward chaining tactics (Sec-
tion 8.4), and the atomic rewrite conversions based on lemmata and hypotheses (Section 8.9.2).

Table 8.1 lists the most important soft abstractions in Nuprl’s standard libraries. The logic
abstractions (and, or, implies, exists, all) are made soft because the well formedness rule for
the underlying primitive term is simpler and more efficient than the well formedness lemma would

3In Nuprl 3 labels used not to be visible when editing proofs with the proof editor.

120

member t ∈T ≡ t = t ∈T
nequal x6=y ∈T ≡ ¬(x = y ∈T)
ge i≥j ≡ j≤i
gt i>j ≡ j<i
lelt i≤j<k ≡ (i≤j) ∧ (j<k)
lele i≤j≤k ≡ (i≤j) ∧ (j≤k)
prop P

i
≡ U

i

and A ∨B ≡ A×B
or A ∧B ≡ A + B
implies A⇒B ≡ A→B
rev implies A⇐B ≡ B⇒A
iff A⇔B ≡ (A⇒B) ∧ (A⇐B)
exists ∃x:A. Bx ≡ x:A×Bx

all ∀x:A. Bx ≡ x:A⇒Bx

Table 8.1: Soft abstractions in Nuprl’s basic libraries

be. The softness is also useful when one wishes to blur the distinction between propositions and
types, for example when reasoning explicitly about the inhabitants of propositions. member, nequal,
rev implies, ge and gt are soft principally because it can simplify matching.

Abstractions are not soft by default. They can be declared soft or hard by supplying their opids
to the functions

add soft abs abs

Declare the abstractions in the token list abs as soft.

remove soft abs abs

Declare the abstractions in the token list abs as hard.

Instances of these functions are usually kept in ML objects in close proximity to the abstrac-
tion definitions that they are declaring soft. For an example use of add soft abs, see the object
soft ab decls in the core 2 theory.

8.2.5 Universal Formulas

Many of Nuprl’s tactics work on a specific subclass of logical formulas generated by the grammar

P :: = ∀x:T. P | Pa⇒P | P ⇐Pa | P ∧P | P ⇔P | C

where T is a type, and C is a propositional term not of the above form. We call these universal
formulas, positive definite formulas, or Horn clauses. Formulas generates without the ∧ and ⇔
connectives are also called simple universal formulas. We call the proposition C a consequent and
each Pa an antecedent. Occasionally we refer to the types T as type antecedents.

We view a universal formula as being composed of several simple formulas, one for each conse-
quent. The simple components are numbered from 1 up, starting with the leftmost consequent.

Such formulas are the standard way of describing derived rules of inference, and are used as
such by the forward and backward chaining tactics (see Section 8.4). Often, a consequent C of a
formula will be an equivalence relation, in which case the formula can be used as a rewrite rule by
the rewrite package (see Section 8.6).

Occasionally, one has a universal formula where the outermost constructor of C is also one of
the constructors that make up the universal formula. In this case, one can surround C by a guard
abstraction to designate it as consequent of the formula. A guard abstraction takes a single subterm
as argument and unfolds to this subterm. The tactics that take apart universal formulas recognize
and automatically remove guard abstractions, so the user rarely has to explicitly unfold them.

121

8.3 Basic Tactics

8.3.1 Single-Step Decomposition

Single-step decomposition tactics invoke the primitive formation, equality , and elimination rules of
Nuprl’s logic described in Appendix A.3. These rules describe how types and their members can
be formed and when two types or members are equal by decomposing the corresponding terms in
the hypotheses or the conclusion of a goal into smaller fragments. Structurally the effect is always
the same, as the top-level terms are analyzed and their sub-terms will occur in the subgoals.

Each single-step decomposition tactic covers a large collection of primitive inference rules using a
single name. The tactic name indicates which part of a hypothesis or conclusion will be decomposed.

D c

Decompose the outermost connective of clause c. D can take several optional arguments:

• A ‘universe‘ argument, usually supplied using the At tactical.

• A ‘t1‘ argument for a term (using With). This argument is necessary when decomposing
a hypothesis with an outermost universal quantifier, or a conclusion with an outermost
existential quantifier.

• ‘v1‘ and ‘v2‘ arguments for new variable names (using New. These are useful if one is
not satisfied with the system supplied variable names.

• An ‘n‘ argument to select a subterm (using Sel). This is necessary when applying D to a
disjunct in the conclusion.

Usually D unfolds all top level abstractions and applies the appropriate primitive (formation or
elimination) rule. It is somewhat intelligent with instances of set and squash terms.

ID c

Intuitionistically decompose clause c. This behaves as D does, except that when decomposing
a function, a universal quantifier, or an implication, in a hypothesis, the original hypothesis is
left intact rather than thinned.

MemCD

Decompose the immediate subterm of a membership term in the conclusion.

For primitive terms MemCD uses the appropriate primitive
equality rule. For abstractions, it tries to use an appropri-
ate well-formedness lemma. Soft abstractions will be unfolded
if there is no appropriate well-formedness lemma. A subgoal
corresponding to the n-th subterm will be labeled with label
subterm and number n. Other subgoals are labeled wf.
An example application of MemCD is shown on the right.

Well-formedness lemmata for a term t with operator iden-
tifier opid should have the name opid wf and consist of a
simple universal formula with consequent � t ∈T � . Usually, the

- PRF: pairtest

top
<3, 4> ∈ � ×

�

BY MemCD

1
.....subterm..... T:t
` 3 ∈ �

BY

2
.....subterm..... T:t
` 4 ∈

�

BY

subterms of t should be all variables, but constants are acceptable too. If more than one lemma
is needed, the lemma names should be distinguished by suffices to the opid wf root.

Usually MemCD attempts to use lemmata in reverse dependency order (i.e. the later ones do not
refer to the former and are often more general) but different orders may be specified if needed.
If the conclusion is a ∈A where a is an instance of t and A does not match any of the T of the
lemmata, then MemCD tries matching a against the term t of the last lemma. If this succeeds and

122

Tactic In the hypotheses In the conclusion

UnivCD ∀ ⇒ →
GenUnivCD ∀ ⇒ ∧ ⇔ → ×
RepD ∧ ∀ ⇒ →
GenRepD ∧ ∀ ⇒ ∧ ⇔ → ×
ExRepD ∃ ∧ ∀ ⇒ →
GenExRepD ∃ ∧ ∨ ∀ ⇒ ∧ ⇔ → ×

Table 8.2: Iterated decomposition tactics and the connectives they decompose

generates some substitution σ, MemCD produces a subgoal σT ⊆A and tries to use the Inclusion
tactic (Section 8.7) to prove it.

MemHD i

Decompose the immediate subterm of a membership term in hypothesis i.

Since there are no primitive rules for decomposing equalities in hypotheses, MemHD only works on
hypotheses when the type of the membership term is a product or function type. For products,
the decomposition generates the first and second projection of the term. For functions, it creates
a function application. A ‘t1‘ argument is required in this case.

MemberEqD c

Decompose the immediate subterm of a membership term in clause c. Works like MemCD on the
conclusion and like MemHD on a hypothesis.4

EqD c

Decomposes terms which are the immediate subterms of an equality term in clause c.

EqD is like MemberEqD, except that it expects and generates equality terms rather than member-
ship terms. It is good for congruence reasoning and is used extensively by the rewrite package
(see Section 8.6).
Commonly used variants are the tactics EqCD and EqHD i, which work identical to EqD on the
conclusion and a hypothesis, respectively.

EqTypeD c

Decompose just the type subterm of an equality term in clause c. Only works when the type is
a set type or is an abstraction that eventually unfolds to a set type.
Commonly used variants are EqTypeCD and EqTypeHD i

MemTypeD c

Decompose just the type subterm of a membership term in clause c. Only works when the type
is a set type or is an abstraction that eventually unfolds to a set type.
Commonly used variants are MemTypeCD and MemTypeHD i

The above tactics cover almost all of the primitive inference rules of Nuprl’s logic. Appendix A.3
gives a complete description of all the inference rules and the corresponding tactics.

Several tactics perform iterated decomposition of clauses. Table 8.2 lists the most commonly
used ones, together with the logical connectives they decompose. These tactics do not decompose
guarded terms. If a guard is encountered in the process of decomposing the conclusion, the guard
is removed and decomposition of the conclusion stops.

4A better name would have been MemD

123

8.3.2 Structural

Structural tactics invoke inferences that depend only on the syntactical structure of the proof goal
but are independent of a particular logic.

Hypothesis

Prove goals of form . . . A . . . `A′ where the conclusion A′ is α-equal to A.

NthHyp i

Prove goals of form . . . A . . . `A′ where A is the i-th hypothesis and A′ is α-equal to A.

Declaration

Prove goals of form . . . x:T . . .`x ∈T ′ or . . . x:T . . .`x=x ∈T ′ where T ′ is α-equal to T .

NthDecl i

Prove goals of form . . . x:T . . .`x ∈T ′ or . . . x:T . . .`x=x ∈T ′ where x:T is the i-th declaration
and T ′ is α-equal to T .

Contradiction

Prove goals where both P and ¬P occur in the hypotheses list.

Assert t

Assert term t as last hypothesis. Generates a main subgoal with t asserted, and an assertion

subgoal to prove t. Logically this inference is often called a cut .
A more general variant is AssertAt i t, which asserts t before hypothesis i.

Thin i

Delete hypothesis i.

MoveToHyp i j

Move hypothesis i to before hypothesis j.

MoveToConcl i

Move hypothesis i into the conclusion. If the goal has the form . . . A . . .`C, where A is the i-th
hypothesis, then MoveToConcl generates the main subgoal . . .`A⇒C. If the i-th hypothesis
is a declaration x:T , it generates the main subgoal . . . `∀x:T.C.
MoveToConcl first invokes itself recursively on any hypothesis that might depend on hypothesis i.

MoveDepHypsToConcl i

Use MoveToConcl to move all hypotheses that use the variable declared by hyp i into the
conclusion. Hypothesis i itself will not be moved.

RenameVar v i

Rename the variable declared in hypothesis i to v.

RenameBVars (σ: (var#var)list) c

Rename all occurrences of bound variables in clause c using the substitution σ.

The following two tactics are usually used inside other tactics.

Id

The identity tactic, which does not change the proof goal

Fail

The tactic that always fails.

8.3.3 Decision procedures

Decision procedures use special-purpose reasoning to decide problems within a specific limited
application domain. In many cases, they analyze the problem by translating it into a different

124

problem domain (e.g. the problem of finding cycles in a directed graph) for which there are well-
known decision algorithms. To ensure consistency with type theory, some of these procedures have
to generate proof tactics that validate the result of the analysis and create appropriate subgoals if
necessary. For Arith and Eq, the consistency of the decision procedure has been proven externally
and the procedures are implemented as elementary inference rules.

Decision procedures require the well-formedness of the components used during the analysis to
be proven as separate subgoals, as this is a purely type-theoretical issue that cannot be addressed
by the decision algorithm.

8.3.3.1 Logical reasoning

ProveProp

Prove a goal that involves only simple propositional reasoning.
The proof strategy is basically a classical tableau prover for propositional logic, which exhaus-
tively decomposes propositions and seeks for applications of the Hypothesis tactic. Because
Nuprl sequents only allow one conclusion (rather than many as in tableau calculi) the tac-
tic has to do ‘or’ branching and backtracking when it tackles an ∨ conclusion or an ⇒ or ¬
hypothesis. It fails if not all main goals can be solved.

The tactic is not complete for intuitionistic propositional logic, because it always thins ⇒ and
¬ hypotheses that are decomposed. Common variants of ProveProp are

• ProvePropWith T , which tries running the tactic T before abandoning a search path in
an ‘or’ branch and continues the search on any main subgoal that T creates.

• ProveProp1, which leaves main subgoals at ‘or’ branching points of the search for a solution
when the search down every branch fails.

JProver

Prove a goal that involves only first-order reasoning.
JProver [SLKN01] is a complete theorem prover for first-order intuitionistic logic that is based
on a strategy called the connection method [KO99]. Upon success it generates a sequent proof for
the proof goal [KS00] that may be inspected by the user. Since first-order logic is undecidable,
JProver will not terminate if the goal cannot be proven and must be interrupted.
JProver is run as an external prover, which means that the MetaPRL proof engine must be
connected to Nuprl before invoking JProver.

8.3.3.2 Exploiting properties of relations

Eq

Prove goals of form H`s=t ∈T using hypotheses that are equalities over T and the laws of
reflexivity, commutativity and transitivity.
Eq also uses hypotheses that are equalities over a type T ′ when T = T ′ can be deduced from
other hypotheses using reflexivity, commutativity and transitivity.

RelRST

Prove goals by exploiting common properties of binary relations, including reflexivity, symmetry,
transitivity, irreflexivity, antisymmetry, and linearity.
The heart of RelRST is a routine that builds a directed graph based on the binary relations in
a sequent and finds shortest paths in the graph. It can also handle strict order relations and
relations with differing strengths.

125

RelRST uses the the same database on relations and some of the same lemmata as the rewrite
package (see Section 8.6). In addition, it relies on library lemmata of the following forms.

• Irreflexivity lemmata, which should be named opid-lt irreflexivity and have form

∀x
1
:T

1
. . . xm:T m.∀y:S.A

1
⇒ . . . ⇒An⇒¬(y < y)

• Antisymmetry lemmata, which should be named opid-le antisymmetry and have form

∀x
1
:T

1
. . . xm:T m.∀y, y′:S.A

1
⇒ . . . ⇒An⇒ y≤y′⇒ y′≤y⇒ y = y′ ∈S

• Complementing lemmata, which should be named opid-le complement and have form

∀x
1
:T

1
. . . xm:T m.∀y, y′:S.A

1
⇒ . . . ⇒An⇒ ⇒¬(y≤y′)⇒ y′ < y

or be named opid-lt complement and have form

∀x
1
:T

1
. . . xm:T m.∀y, y′:S.A

1
⇒ . . . ⇒An⇒ ⇒¬(y < y′)⇒ y′≤y

where opid-lt and opid-le are the operator identifiers of the relations < and ≤.

RelRST generalizes the equality decision procedure used in previous versions of Nuprl that
could only handle such reasoning with the equality relation. Examples of its use can be found
in the theory of integer divisibility within the theory num thy 1.

8.3.3.3 Integer arithmetic

Arith

Prove goals of the form H`C
1
∨ . . . ∨Cm by a restricted form of arithmetic reasoning. Each C

i

must be an arithmetic relation over the integers built from <, ≤, >, ≥, =, 6=, and negation.
Arith knows about the ring axioms for integer multiplication and addition, the total order
axioms of <, the reflexivity, symmetry and transitivity of equality, and a limited form of sub-
stitutivity of equality. As a convenience Arith will attempt to prove goals in which not all of
the C

i
are arithmetic relations; it simply ignores such disjuncts.

The heart of Arith is a procedure that translates the sequent into a directed graph whose egdes
are labelled with natural numbers and finds positive cycles in that graph [Cha82].

RepeatEqCDForArith

Apply arithmetic equality reasoning if the conclusion is a=b ∈T and a and b arithmetically
simplify to same expression.5 RepeatEqCDForArith first decomposes a and b using EqCD and
then applies Arith to subgoals containing integer equalities.

SupInf

Solve linear inequalities over integers and subtypes of integers.
The algorithm used in Arith cannot solve general sets of linear inequalities over the integers,
though such problems are abundant. SupInf uses an adaptation of Bledsoe’s Sup-Inf method
[Ble75] for solving integer inequalities. While this method is only complete for the rationals, it
is sound for the integers and does work well in practice.
SupInf converts the sequent into a conjunction of terms of the form 0≤e

i
where each e

i
is a

linear expression over the rationals in variables x
1
. . . xn and determines whether or not there

exists an assignment of values to the x
j
that satisfies the conjunction. The algorithm works by

determining upper and lower bounds for each of the variables in turn.

SupInf identifies counter-examples if it fails. These can be viewed by looking at value of the ML

variable supinf info. The value gives a list of bindings of variables in the goal for the counter-

5Arithmetic simplification applies only subterms that involve the basic arithmetic operators +, -, *, / and rem.
Currently simplification involving / and rem does not work and has been disabled.

126

example. If SupInf finds an integer counterexample, then the goal is definitely unprovable. If a
rational counter-example is given, then SupInf is unsure whether the goal is true or not.

SupInf’

Like SupInf, but tries inferring additional arithmetic information about the non-linear terms
in arithmetic expressions. The information on a non-linear term t is gathered in two ways:

1. If standard type-inference returns a subtype of Z for t, then the predicate information from
the subtype is added.

2. Information may be gathered from arithmetic property lemmata, i.e. lemmata of the form

∀x
1
:T

1
. . . xm:T m.A

1
⇒ . . . ⇒An⇒C

where C is constructed from ∧ , ∨ , and standard arithmetic relations over integer subtypes
built from <, ≤, >, ≥, =, 6=, and their negations. To apply the lemma, match handles
are selected from C, i.e. terms occuring in arithmetic relations in C that contain all the
free variables contained in C and the Ai. If, after matching a match handle with t, all the
instantiated Ai are equal to hypotheses of the sequent, then the instantiated clause C will
be added as information.6

Arithmetic property lemmata are identified by invoking the ML function

add arith lemma lemma-name.

SupInf’ is still under development and should be used with caution when combined with type-
checking tactics: it may get invoked unendingly on subgoals derived from ones that it created.

8.3.4 Autotactics

Autotactics are used primarily for typechecking and well-formedness goals. They should not be
used for other non-trivial proof goals, as their behavior on such goals is somewhat unpredictable.

Trivial

Completely prove a goal by applying various steps of trivial reasoning.
Trivial reasoning includes Hypothesis, Declaration, Contradiction, and Eq. Trivial also
proves goals of the form H ` True, H

1
. . . False . . . Hn ` C, and H

1
. . . Void . . . Hn ` C.

Auto

Repeatedly apply the following tactics until no further progress is made.

• Trivial

• GenExRepD

• MemCD for (non-recursive) member conclusions and EqCD on reflexive equality conclusions.
• Arith

• RepeatEqCDForArith

• EqTypeCD if the conclusion is a ∈T or a=b ∈T and T is a subset of Z.

Auto and its variants frequently encounter the same goals over and over again, so solved proof
goals will be cached. Common variants of Auto are

• StrongAuto, which also tries MemCD and EqCD on recursive primitive terms;

• SIAuto, which also tries using the SupInf tactic; and

• Auto’, which uses SupInf’ instead of Arith.

6The condition that Ai must be equal to some hypothesis is too strict and may be relaxed in the future.

127

8.4 Forward and Backward Chaining

Forward and backward chaining means treating a component of a universal formula (see Sec-
tion 8.2.5) as derived inference rule. Backward chaining involves matching the conclusion of the
goal against the consequent of a universal formula, which leaves the instantiated antecedents of
the universal formula as new subgoals. Forward chaining involves matching hypotheses of the goal
against antecedents of a universal formula and asserting the instantiated consequent of the universal
formula as a new hypothesis. A simplified version of forward chaining is instantiating the universal
formula by explicitly providing a list of terms to be substituted for the quantified variables.

Chaining tactics consult universal formulas can either be found in the hypotheses of the current
proof goal or as lemma in the library. Therefore each tactic comes in two versions.

InstHyp [t
1
;..;tn] i

InstLemma name [t
1
;..;tn]

Instantiate hypothesis i (or lemma name) with terms t
1
. . . tn. If the lemma has m distinct level

expressions, the first m terms should be level expressions to substitute for these.7

InstConcl [t
1
;..;tn]

Instantiate existential quantifiers in the conclusion with terms t
1
. . . tn.

FHyp i [h
1
;..;hn]

FLemma name [h
1
;..;hn]

Forward chain through hypothesis i (or lemma name) matching its antecedents against any of
the hypotheses h

1
. . . hn. The order of the h

j
is immaterial: the tactics try all possible pairings

of hypotheses with antecedents. If there are more antecedents that hypotheses listed, the an-
tecedents not matched will manifest themselves as new subgoals to be proved.
The main subgoal with the consequent asserted is labelled main. Unmatched antecedents are
labelled antecedent and the rest are labelled wf. Aliases are FwdThruLemma and FwdThruHyp.

Forward chaining can take an optional argument (c.f. Section 8.2.2), supplied by using the Sel

tactical, to select a specific component of a conjunction or equivalence in a universal formula.
An argument of -1 forces the tactic to treat the whole subformula as simple.

BHyp i
BLemma name

Backward chain through hypothesis i (or lemma name) matching its consequent against the
conclusion of the goal. Subgoals corresponding to antecents of the lemma (hyp) are labelled
with antecedent. The rest are labelled wf. Aliases are BackThruLemma and BackThruHyp.

An explicit list of variable bindings can be supplied to backward chaining as optional argument
by using the Using tactical. This argument is necessary if some of the variable bindings cannot
be inferred by matching. For instance

Using [‘n‘.’3’] (BackThruLemma ‘int upper induction‘)

would bind the variable n in the lemma int upper induction to the value 3.

BHypWithUnfolds i as
BLemmaWithUnfolds name as

Backward chain through hypothesis i (or lemma name) while unfolding the abstractions in as.

7To inject a level expression L into a term list one has to invoke the special term parameter in the term editor.

128

Backchain bc names
CompleteBackchain bc names

Repeatedly try backchaining using lemmata named in bc names in the order given.
Backchain leaves alone any subgoals which do not match the consequent of any of the lemmata
while CompleteBackchain backtracks in the event of any such subgoal coming up.

In addition to lemma names, bc names may contain a few special names:

• An positive integer i, indicating that hypothesis i shall be consulted.

• ‘hyps‘, indicating that all hypothesis should be consulted in the order in which they occur.
Hypotheses that declare variables will be ignored.

• ‘rev hyps‘, indicating that all hypothesis should be consulted in reverse order.

• ‘new hyps‘, indicating that all new hypotheses introduced by backchaining should be
consulted, beginning with the least recent.

• ‘rev new hyps‘, indicating that all new hypotheses introduced by backchaining should be
consulted, beginning with the most recent.

Common variants of backchaining are HypBackchain and CompleteHypBackchain which per-
form backchaining with the arguments [‘rev new hyps‘; ‘rev hyps‘].

8.5 Case Splits and Induction

Case split and induction tactics analyze conclusions that depend on finite or enumerable alter-
natives. The general way to do this is to backchain through an appropriate lemma (see e.g. the
lemmata int upper ind and int seg ind at the end of the int 2 theory). To use these lemmata,
one must ensure that the outermost universal quantifier in the conclusion corresponds to the type
of the induction.

The following tactics are good for a few common cases. They expect the variable the induction
/ case-split is being done over to be declared in some hypothesis.

BoolCases i

Do a case split over a boolean variable declared in hypothesis i . Generates two subgoals, labelled
truecase and falsecase, where the boolean variable is replaced by tt or ff.

Cases [t
1
;..;tn]

Perform an n-way case split over the terms t
i
as follows:

H ` C
by Cases [t

1
;..;t

n
]

...assertion... H ` t
1
∨.. ∨ t

n

H, t
1
` C

...
H, t

n
` C

Decide P

Perform a case split over a decidable proposition P and its negation.
Like Cases [P;¬P], but immediately runs the tactic ProveDecidable tactic on the first sub-
goal ` P ∨¬P , which may generate wellformedness subgoals with labels in the aux class. If
ProveDecidable fails then Decide fails too.

Because of the constructive nature of Nuprl’s type theory P ∨¬P is not true for every propo-
sition P .

129

IntInd i

Perform integer induction on hypothesis i , generating three subgoals labelled upcase, basecase
and downcase. IntInd is a little smarter than the primitive rule intElimination (see Appendix
A.3.8) in that it first moves any hypotheses that depend on the induction variable to the
conclusion and maintains the name of the induction variable.

NatInd i

Perform natural-number induction on hypothesis i , which must contain a declaration of type
N, generating two subgoals labelled upcase and basecase. NatInd first moves any depending
hypotheses to the conclusion and maintains the name of the induction variable.

NSubsetInd i
Perform induction on a subrange of the natural numbers. Hypothesis i must contain a decla-
ration of type N, N+, {i...}, or {i...j−}. NSubsetInd generates two main subgoals labelled
upcase and basecase an many aux subgoals which should always be easily solvable by Auto.

CompNatInd i

Perform complete induction on hypothesis i , which must contain a declaration of type N.

ListInd i

Perform list induction on hypothesis i , which must contain a declaration of type T list,
generating two subgoals labelled upcase and basecase. ListInd is a little smarter than the
primitive rule listElimination (see Appendix A.3.10) in that it first moves any depending
hypotheses to the conclusion and maintains the name of the induction variable.

The theory well fnd has some definitions for well-founded induction. In particular it defines
the tactic Ranknd. This is useful when you know how to do induction over some type A and you
want to perform induction over a type B using some rank function which maps elements of B to
elements of A. The tactic is described in the objects inv image ind tac and rank ind.

The theory bool 1 defines various tactics for case splitting on the value of boolean expressions
in the conclusion such as BoolCasesOnCExp and SplitOnConclITE. View the theory for details.

8.6 Simple Rewriting

Rewriting is the process of transforming goals and hypotheses into equivalent ones. In Nuprl,
rewrite tactics are based on unfolding and folding abstractions, applying primitive reductions, and
using equivalences in lemmata and hypotheses of the form ∀x

1
:T

1
. . . xi:Ti. a = b.

Nuprl’s rewrite package (see Section 8.9) provides a collection of ML functions for creating
rewrite rules and applying them in various fashions. The rewriting tactics in this section are sufficient
in many situations while hiding the complex conversion language of the rewrite package.

8.6.1 Folding and Unfolding Abstractions

Unfolds as c
Unfold a c ≡ Unfolds [a] c

Unfold all visible occurrences of abstractions listed in the token list as in clause c. Unfolds fails
if clause c contains none of the abstractions listed in as.

RepUnfolds as c
Repeatedly try unfolding any occurrences of abstractions listed in the token list as in clause c.

RecUnfold a c
Unfold all visible occurrences of the recursive definition of a in clause c.

130

Folds as c
Fold a c ≡ Folds [a] c

Fold all visible occurrences of abstractions listed in the token list as in clause c. Folds fails
none of the subterms of clause c matches the right hand side of an abstraction listed in as.

RecFold a c

Try to fold an instance of the recursively defined term a in clause c.

8.6.2 Evaluating Subexpressions

Reduce c ≡ AbReduce c

Repeatedly contract all primitive and abstract redices in clause c.

The Reduce tactic can take an optional force argument:

With force (Reduce c)

only reduces those redices with strength less than or equal to force. Details about defining
abstract redices and setting the strength of redices can be found in Section 34.

To reduce a specific subterm of a clause, one may apply the tactic ReduceAtAddr address c,
where address is a list of integers describing the exact address of the subterm in the term tree
of clause c. Applying this rule is only recommended for advanced users who are very familiar
with the term structure of Nuprl expressions.

ArithSimp c

Arithmetically simplify clause c.
This creates a main subgoal with clause c rewritten in arithmetical canonical form and an aux

subgoal stating the equivalence between the original clause and the rewritten one.

8.6.3 Substitution

Nuprl’s logic contains a few rules for carrying out simple kinds of substitutions. These rules often
generate fewer and easier-to-solve well-formedness goals than the rewrite package and are accessible
through the tactics described here.

Subst eq c

If the term eq has the form t
1
= t

2
∈ T then replace all occurrences of t

1
in clause c by t

2
.

Three subgoals are generated: an equality subgoal to prove that t
1
= t

2
∈ T , a main subgoal

with the substitution carried out, and a wf subgoal to prove functionality of the clause (see the
rule substitution in Section A.3.5).

HypSubst i c
RevHypSubst i c

Run the Subst tactic using the equality proposition in hypothesis i (in reversed order). This
generates only a main and a wf subgoal.

SubstClause t c

Replace clause c with term t . This generates a main subgoal and an equality subgoal (see the
rule hyp replacement in Section A.3.16).

131

Token Rule

i Use hypothesis i as an left-to-right rule
i< Use hypothesis i as an right-to-left rule
name Use lemma name as an left-to-right rule
name< Use lemma name as an right-to-left rule
r:id Reduce redex with operator identifier id
r* Reduce any redex
r*force Reduce any redex with force force
u:id Unfold abstraction with operator identifier id
f:id Fold abstraction with operator identifier id

Table 8.3: Format of Tokens in Rewrite Control Strings

8.6.4 Generic Rewrite Tactics

The tactics RWW and RWO subsume the above tactics by providing uniform access to all kinds of
rewrite rules. They take a control string to specify the rewrite rules to use. The control string
should be a whitespace-separated list of tokens as specified in Table 8.3.

RWW "ctl-str" c

Repeatedly apply rewrite rules specified by ctl-str to all subterms of clause c until no further
progress is made.

RWO "ctl-str" c

Apply rewrite rules specified by ctl-str in one top-down pass over clause c. RWO does not go into
subterms of terms that result from rewriting a subterm of c.

In some cases, RWW and RWO generate more subgoals than the more specific tactics, as they are
implemented in a different fashion.

8.7 Miscellaneous Tactics

Type Inclusion

Inclusion i

Prove goals of the form . . . , i . x:T, . . . `x ∈T ′ or . . . , i . t ∈T, . . .`t ∈T ′,
where either types T and T ′ are equivalent or T is a proper subtype of T ′. Inclusion also solves
similar goals where one or both of the membership terms are replaced by equality terms.

The specific kinds of relations between T and T ′ that Inclusion currently handles are roughly:

• T and T ′ are the same once all soft abstractions are unfolded.

• T and T ′ are both universe or prop terms and the level of T is no greater than the level of
T ′ for any instantiation of level variables.

• T and T ′ are each formed by using subset types, and both have some common superset
type. In this case Inclusion tries to show that the subset predicates of T ′ are implied by
the subset predicates of T together with other hypotheses.

• T and T ′ have the same outermost type constructor. In this case, the inclusion goal is
reduced to one or more inclusion goals involving the immediate subterms of T and T ′.
Currently works for function, product, union and list types.

• T is a subtype of T ′ according to a lemma in the library.

132

For the inclusion reasoning involving subset types to work, one has to supply information about
abstractions involving subset types using the function add set inclusion info. The theory
int 1 contains several examples of the use of this function.

Squash Stability and Hidden Hypotheses

The constructivity of Nuprl’s logic manifests itself in the fact that the decomposition of sets in
hypotheses (rule setElimination in Section A.3.12) results in a subgoal containing the predicate
part of the set term as a hidden hypothesis (the rule quotient equalityElimination in Section
A.3.14 has a similar effect). A hidden hypothesis does not contribute to the computational content
of a proof (i.e. the term inhabiting its conclusion) and is therefore not immediately usable. However,
there are ways in which it might become usable later.

A hidden hypothesis P in a proof goal can be unhidden if either P or the conclusion of the goal
is squash stable, which roughly means that it is possible to determine the computational content if
one knows that there is one (in the classical sense). Squash stability is defined in the theory core 2

as ↓P ⇒ P , where the proposition ↓P ≡ {x:Unit|P} (read ‘squash P ’) is true exactly when P is
true, but has no computational content.

Squash stability can be inferred for many predicates using the tactic ProveSqStable, which is
not called by the D tactic because it can be rather slow. Instead, hypothesis can be unhidden by
applying one of the following tactics.

Unhide

Try to unhide hidden hypotheses, first by checking whether the conclusion is squash stable and
then, if this fails, by checking each hidden hypothesis separately for squash stability.

Unhide applies the tactics UnhideAllHypsSinceSqStableConcl, which tries to prove the con-
clusion squash stable using ProveSqStable and unhides all hidden hypotheses if this succeeds,
and UnhideSqStableHyp i , which tries to prove the hidden hypothesis i squash stable.

AddProperties i

Add the predicate part of the set type underlying an abstraction A in hypothesis i as a new
hypothesis immediately after i .
Hypothesis i should be declaration of form A or a proposition of form t ∈A or t = t′ ∈A, where
A is an abstraction with an associated property lemma of the form ` ∀x:T. ∀y:A.P [x, y].

GenConcl � t=v ∈T �

Generalize occurrences of t as subterms of the conclusion to the variable v . This adds new
hypotheses declaring v to be of type T and stating t=v ∈T .

Fiat

If you about to give up hope on a theorem, this tactic is guaranteed to provide satisfaction.
Fiat uses Nuprl’s because rule, which should be used for experimental purposes only. Nuprl’s
library has a mechanism to detect uses of this rule while checking a theory for consistency.

8.8 Tacticals

Tacticals are functions for converting tactics into new one. Apart from injecting optional arguments
as described in Section 8.2.2, they are most commonly used for composing tactics. 2-ary tacticals
are often written in infix form and distinguished from others by having the first part of their name
in all capitals. Infix tacticals always associate to the left.

133

8.8.1 Basic Tacticals

T
1
THEN T

2

Apply T
1
and then run T

2
on all the subgoals generated by T

1
.

T THENL [T
1
;...;Tn]

Apply T and then run T
i
on the i-th subgoal generated by T . T must create exactly n subgoals.

T
1
ORELSE T

2

Apply T
1
. If it fails, run T

2
instead.

Try T ≡ T ORELSE Id

Apply T . If it fails, leave the proof unchanged.

Complete T

Apply T but fail if T generates subgoals (i.e. does not complete the proof).

Progress T
Apply T but fail if T does not change the goal (i.e. makes no progress).

Repeat T
Repeat running T on subgoals created by previous applications until no further progress is made.

RepeatFor n T

Repeat the application of T exactly n times.

If e T
1

T
2

Apply T
1
if e pf evaluates to true, where pf is the current proof goal. Otherwise, run T

2
.

8.8.2 Label Sensitive Tacticals

Label sensitive tacticals tacticals allow one to apply a tactic only to goals with a particular label,
or to goals of one of the classes main, aux , and predicate (c.f. Section 8.2.3). For the former, the
label associated with the tactic has to match exactly the label of the goal. For the latter, one may
use the class names main, aux, and predicate as wild cards.8

IfLab lab T
1

T
2

If lab matches the label of pf, run T
1
. Otherwise, run T

2
.

IfLabL [l
1
,T

1
; l

2
,T

2
; ...; ln,Tn]

Run the first tactic T
i
for which l

i
matches the label of pf. If none of the labels match, leave

the proof unchanged.

T
1
THENM T

2
≡ T

1
THEN IfLab ‘main‘ T

2
Id

T
1
THENA T

2
≡ T

1
THEN IfLab ‘aux‘ T

2
Id

T
1
THENW T

2
≡ T

1
THEN IfLab ‘wf‘ T

2
Id

Apply T
1
and then run T

2
on all main/aux/wf subgoals.

T THENLL [l
1
,Ts

1
; l

2
,Ts

2
;...; ln,Tsn]

Apply T and then do the following on each subgoal. Select the first list of tactics Ts
i
for which

l
i
matches the label of the subgoal. If the subgoal also has a number label j, run the jth tactic

from Ts
i
on it. If it has no number label, run the first tactic listed in Ts

i
.

THENLL fails if there are not sufficiently many tactics in Ts
i
. It runs the Id tactic if a subgoal

label does not match any of the l
i
.

SeqOnM [T
1
;...;Tn]

Run the tactics T
1
to Tn on successive main subgoals.

8Unfortunately main is currently used as both a class name and a particular label name, which means there is no
way to select only subgoals in with the particular label main.

134

RepeatM T
RepeatMFor n T

Repeat the tactic T on main subgoals (exactly n times).

8.8.3 Multiple Clause Tacticals

Multiple clause tacticals allow to apply a tactic T : int -> tactic to several clauses of a goal
with n hypotheses.

On [c
1
;...;cn] T ≡ T c

1
THENM ... THENM T c

n

Run T on the clauses c
1
. . . cn. If T succeeds on some clause, then On only continues on subgoals

created by T that are labelled main.

AllHyps T ≡ On [n;n-1;...;1] (ı. Try (T i))

Try running T on all hypotheses starting with the end of the hypothesis list and working
backwards. If T succeeds on some hypothesis, then AllHyps only continues on subgoals created
by T that are labelled main.

All T ≡ On [n;n-1;...;1;0] (ı. Try (T i))

Try running T on all hypotheses and then on the conclusion.

OnSomeHyp T ≡ T n ORELSE ... ORELSE T 1

Try running T on one of the hypotheses of the goal, starting with the end of the hypothesis list
and working backwards.

The library contains a few abstractions that provide a more elegant notation for the most common
combinations of tactics and tacticals.

auto T ... ≡ T THEN Auto

aux auto T ...a ≡ T THENA Auto

siauto T ... ≡ T THEN SIAuto

autop T ...’ ≡ T THEN Auto’

aux autop T ...a’ ≡ T THENA Auto’

aux siauto T ...as ≡ T THENA SIAuto

8.9 The Rewrite Package

Nuprl’s rewrite package is a collection of ML functions for creating rules for rewriting terms
into equivalent ones and applying them in various fashions to clauses of a sequent. The package
supports rewrite rules involving various equivalence relations – such as the 3-place equality-in-a-type
relation, logical bi-implication, the permutation relation on lists, abstractions, and computational
equivalence – and takes care of automating proofs that these equivalence relations are respected
by rewriting. It also supports rewriting rules involving arbitrary transitive relations such as logical
implication and takes care of checking that relevant terms are appropriately monotonic.

The package is based around ML objects called conversions, similar to those found in other
tactic-based theorem provers such as LCF, HOL, and Isabelle, provide a language for systematically
building up rewrite rules in a fashion similar to the way tactics are assembled using tacticals.

135

8.9.1 Introduction to Conversions

A conversion is a function that transforms a term t into a new term t′ that is equivalent to t
with respect to some relation r. The conversion also produces a justification j that describes how
to prove that t r t′ holds. The transformation takes place in an environment e, which specifies
amongst other things the types of the variables that might be free in t. Conversions fail if they are
not appropriate for the term they are applied to.

In Nuprl, the type convn of conversions is an ML concrete type abbreviation for the type

env -> term -> (term # reln # just),

where env, reln and just are abstract types for environments (Section 8.9.1.1), relations (Sec-
tion 8.9.1.2), and justifications (Section 8.9.1.3). The language of conversions provides a small set
of atomic conversions that may be assembled into more advanced conversions using higher order
functions called conversionals.

Atomic conversions (Section 8.9.2) are either based on direct computation rules (which includes
folding and unfolding abstractions) or can be created from lemmata and hypotheses that contain
universally quantified formulas with consequent of the form a r b, where the free variables of b are
a subset of those in a. Applying a conversion to a term t means either executing the corresponding
computation or matching the term t against a and replacing it by an appropriate instance of b.
That is, if σ is a substitution of the free variables in a such that σa = t, then t will be replaced
by t′ =σb. For instance, rewriting the term (2×3) + 0 with the relation x + 0 = x means matching
(2×3) + 0 against x + 0, which yields a substitution σ that binds x to 2×3. The result of rewriting
is the term σx = 2×3.

Atomic conversions cannot by themselves rewrite subterms of a given term. For instance, ap-
plying an atomic conversion to rewrite (1 + 0)×3 with the relation x + 0 = x fails. Conversionals
(Section 8.9.4) provide the means for applying conversions to subterms of a term and help control-
ling the sequence in which atomic conversions are applied to these subterms.

An example of a conversional is SweepUpC, which attempts to apply a conversion c to each
subterm of a term t, working from the leaves of term t up to its root. Another example is ORELSEC,
which first tries to apply a conversion c

1
to a term and, if that fails, applies a conversion c

2
.

Conversionals rely on a variety of lemmata, which we will describe in Section 8.9.1.4. These lem-
mata have to state reflexivity, transitivity and symmetry properties of the relation r and congruence
properties of the terms making up the clauses that are being rewritten.

A tactic Rewrite : convn -> int -> tactic is used for making a conversion applicable to
some clause of a proof goal. It takes care of executing the justifications generated by conversions.
Section 8.9.1.5 lists common variations on this tactic.

8.9.1.1 Environments

An environment is a list of propositions and declarations of variable types that are being assumed.
The environment of the conclusion of a sequent is the list of all the hypotheses. The environment of
a hypothesis is the list of hypotheses to the left of it. We can also talk about local environments of
subterms of sequent clauses. For example, in the sequent x

1
:H

1
, . . . , xn:Hn ` ∀y:T. B⇒C the local

environment for the subterm C in the conclusion is x
1
:H

1
, . . . , xn:Hn, y:T, B. The rewrite conver-

sionals keep track of the local environment each conversion is being applied in, and every conversion
takes as its first argument an expression e of type env which supplies this local information. The
environment information is used by lemma and hypothesis conversions in three ways.

136

• Declarations of variables in the environment are used to infer types that help to complete
matches.

• Propositions in the environment state the assumptions that are necessary for conditional
rewrites to go through. For example, if the subterm C in x

1
:H

1
, . . . , xn:Hn ` ∀y:T. B⇒C is

rewritten by a rewrite rule based on the lemma ∀z:T. A[z]⇒ t[z] = t′[z] and matching the
term C against t results in binding the variable z to a term s, then the subgoal that has to
be proven for the rewrite rule to be valid is x

1
:H

1
, . . . , xn:Hn, y:T,B,`A[s].

• The hypothesis conversions access the hypothesis list via environment terms.

Currently, Nuprl only knows how to extend the environment when descending to the subterms of
a ∀-, ∃-, and ⇒ -term. For other terms, it does not modify the environment, unless explicitly told
so by the user, who may extend the list of environment update functions by applying the function
add env update fun. Further details can be found in the system file env.ml.

8.9.1.2 Relations

The rewrite package supports rewriting with respect to both primitive and user-defined equivalence
relations. Some examples are:

• t ∼ t′, the computational equality relation,

• t = t′ ∈T , the primitive equality relation of Nuprl’s type theory,

• P ⇔Q, the logical bi-implication,

• i = j mod n, the equality on the integers modulo a positive natural,

• t =q t′, equality of rationals (represented as pairs of integers),

• l≡ l′, the permutation relation on lists.

The package also supports ‘rewriting’ with respect to any relation that is transitive but not
necessarily symmetric or reflexive, such as logical implication9 ⇒ and order relations, because
proofs involving transitive relations and monotonicity properties of terms can be made very similar
in structure to those involving equivalence relations and congruence properties.

For each user-defined relation, the user has to provide the rewrite package with lemmata about
transitivity, symmetry, reflexivity and strength, where a binary relation r over a type T is stronger
than a relation r′ a r b implies a r′ b for all a, b ∈T . These lemmata are used by the package for the
justification of rewrites (see Section 8.9.1.4). The user may also provide a declaration that identifies
relation families and extra properties of relations.

Rewrite relations should be defined as first-order terms with two principal arguments supplied
as subterms. Additional parameters should always be positioned before the principal argument
subterms. For example, the equality relation t = t′ ∈T has the type T as additional parameter
and the internal structure equal(T;t;t′). Relations are most commonly represented as logical
propositions (i.e. are of type P). Boolean-valued relations are also accepted, but they have to be
wrapped in the assert abstraction if used in a context where a logical proposition is expected.

Equivalence relations should be declared by an invocation of

declare equiv rel rnam stronger-rnam

This declares the term with operator identifier rnam to be an equivalence relation, and the term with
operator identifier stronger-rnam to be an immediately stronger equivalence relation. Commonly,
there will be only one such declaration for each rnam and stronger-rnam will be ‘equal‘. However,
multiple declarations for a single equivalence relation are sometimes needed.

9 Note that treating implication as a rewrite relation leads to a generalization of forward and backward chaining.

137

Order relations are grouped into relation families, i.e. lattices of order and equivalence relations of
the form:

< = >

≤ ≥

�
�

�� H
H

HH �
�

�� H
H

HH

where weaker relations are higher in the lattice, and relations within a family satisfy

a<b ⇔ b>a a=b ⇔ a≤b ∧ b≤a
a≤b ⇔ b≥a a<b ⇔ a≤b ∧ ¬(b≤a)

The converse of an order relation r should always be defined directly in terms of r. For example,
the definition of the abstraction rev implies is P ⇐Q ≡ Q⇒P . The rewrite package assumes
that order relations can be inverted by folding and unfolding such definitions. A relation family
should be declared using an invocation of

declare rel family lt le eq ge gt

where dummy terms (i.e. the abstraction dummy(), which displays as ?) should be used as place-
holders when a member of a family is missing. To simplify such invocations, a user may enter the
name relfam into a term slot, which will display the template:

Relation Family

< : [lt]

≤ : [le]

≡ : [eq]

≥ : [ge]

> : [gt]

Relation Family

< : i < j

≤ : i ≤ j

≡ : i = j

≥ : i ≥ j

> : i > j

As an example, the invocation to the right shows the declaration of the standard order relations on
the integers as relation family. Frequently several order relation families share the same equivalence
relation, but there may also be equivalence relations that are not be associated with any order
relation family.

The partial order of strengths of relations is the reflexive transitive closure of the strength
relation for each family and the equivalence relation declarations. Additional relations between
order relations can be declared using

declare order rel pair stronger-rtm weaker-rtm
For the sake of clarity, all relation declarations should be inserted in ML objects that are

positioned after the referred-to relations but before any lemmata that might be accessed by the
rewrite package.

8.9.1.3 Justifications

The justification produced by a rewrite rule describes how to prove that the origin and the result
of rewriting stand in the relation r. This information is used by the rewrite tactic to generate the
corresponding Nuprl proof. There are two types of justifications.

Computational Justifications are lists of precise applications of the forward and reverse direct
computation rules. As these are comparatively very fast and generate no well-formedness
subgoals, the rewrite package uses these whenever possible.

Tactic Justifications are more generally applicable, but make extensive use of lemmata (see
Section 8.9.1.4 below) and often generate many well-formedness subgoals.

Conversions generating both types of justification can be freely intermixed; the system takes
care of converting computational justifications to tactic justifications when necessary.

138

8.9.1.4 Lemma Support

The rewrite package must have access to several kinds of lemmata in order to construct justifications
for rewrites. This section describes those lemmata.

Functionality Lemmata give congruence and monotonicity properties of terms. They are re-
quired by conversionals like SubC to construct justifications for rewriting terms based on the
justifications for rewriting the immediate subterms of those terms. A functionality lemma for
a term with operator op should have the form

∀z
1
:S

1
..z

k
:S

k
.∀x

1
, y

1
:T

1
..xn, yn:T n. A

1
⇒ . . . ⇒Am

⇒x
1
r

1
y

1
⇒ . . . ⇒xnrnyn⇒ op(x

1
; ..;xn) r op(y

1
; ..; yn)

where k,m≥0. The universal quantifiers and A’s can be intermixed, but the antecedents
containing the r

i
must come afterward and be in the same order as the subterms of op.

If op binds variables in its subterms, then these variables should be bound by universal quanti-
fiers wrapped around the appropriate r

i
antecedents. For example, the lemma for functionality

of ∃ with respect to the ⇔ relation is:

∀A
1
, A

2
:U

i
.∀P

1
:A

1
⇒P

i
.∀P

2
:A

2
⇒P

i
.A

1
= A

2
∈U

i

⇒ (∀x:A
1
. P

1
[x]⇔P

2
[x]) ⇒ ∃x:A

1
.P

1
[x] ⇔ ∃x:A

2
.P

2
[x]

To allow conversionals to find functionality lemmata in the library, they should be named
opid functionality[index] where opid is the operator identifier of op and index is an
optional suffix. When more than one functionality lemma is created for a given operator, they
must be ordered with the most specific r

1
. . . rn first, as conversionals search for functionality

lemmata in the order in which they appear.

Functionality lemmata are not needed when all the r
i
and r are primitive equalities. In this

case functionality information can be derived from the well-formedness lemma for op.

Transitivity Lemmata give transitivity information for rewrite relations. They are used to con-
struct the justification in sequencing conversionals like ANDTHENC and should have the form:

∀z
1
:S

1
..z

k
:S

k
.∀x

1
, x

2
, x

3
:T. A

1
⇒ . . . ⇒Am ⇒ x

1
ra x

2
⇒x

2
rb x

3
⇒x

1
rc x

3

where k,m≥0 and rc should be the weaker of ra and rb. Transitivity lemmata should be
named opid-of-rc transitivity[index]. Transitivity lemmata are not needed for primi-
tive equality relations.

Weakening Lemmata extend the usefulness of the transitivity and functionality lemmata. They
should have the form

∀z
1
:S

1
..z

k
:S

k
.∀x

1
, x

2
:T. A

1
⇒ . . . ⇒Am ⇒x

1
ra x

2
⇒x

1
rb x

2
,

where k,m≥0 and rb is weaker than ra, and be named opid-of-rb weakening[index].
Weakening lemmata are required for all reflexive relations rb with ra being equality.

Inversion Lemmata are used by the Rev* atomic conversions and in conjunction with weaken-
ing, transitivity, and functionality lemmata when these mix order and equivalence relations.
They are required for equivalence relations, but not for equality or order relations. Inversion
lemmata should have the form

∀z
1
:S

1
..z

k
:S

k
.∀x

1
, x

2
:T. A

1
⇒ . . . ⇒Am ⇒x

1
r x

2
⇒x

2
r x

1

where k,m≥0 and should be named opid-of-r inversion.

139

Note that for order relations one only needs lemmata for one direction as the other can be
derived from them. For example, one does not require both the lemma ∀a, b, c. a≤b⇒ b≤c⇒ a≤c
and ∀a, b, c. a≥b⇒ b≥c⇒ a≥c.

If Nuprl finds a lemma missing in the course of constructing a rewrite justification it prints out
an error message suggesting the kind and structure of the missing lemma. After adding an appro-
priate lemma to the library, you need to evaluate the function initialize rw lemma caches ()

to make it accessible to the rewrite package.

8.9.1.5 Applying Conversions

The following tactics can be used to make conversions applicable to some clause of a proof goal.

Rewrite c i
Apply conversion c to clause i . The subgoal with the result of the conversion is labelled main

while the labels of the other subgoals fall into the aux class.

A shorthand notation for Rewrite is RW. The following variants of Rewrite provide a con-
trolled application of the conversion c to the subterms of clause i by combining Rewrite with
conversionals (see Section 8.9.4) in various fashions.

RWH c i ≡ RW (HigherC c) i :
Apply c to the first possible subterm of clause i , starting from the root.

RWU c i ≡ RW (SweepUpC c) i :
Apply c to all subterms of clause i , starting from the leaves.

RWD c i ≡ RW (SweepDnC c) i :
Apply c to all subterms of clause i , starting from the root.

RWN n c i ≡ RW (NthC n c) i :
Apply c to the n-th immediate subterm of clause i .

RWAddr addr c i ≡ RW (AddrC addr c) i :
Apply c to the subterm of clause i whose address in addr

RewriteType c i
Apply conversion c to the type of a member or equality term in clause i .
The advantage of this tactic over Rewrite is that this generates simpler well-formedness goals.
In particular, it generates no well-formedness goals involving the equands of the equality or the
element of the member term. A shorthand notation for RewriteType is RWT

For testing the effect of a conversion c on a term t with an empty environment one may evaluate
the expression apply conv c t in the refiner top loop.

8.9.1.6 Conversion Arguments

The descriptions of conversions in the sections below assume that the conversions have been applied
to an environment e and a term t. Types of arguments to conversions are:

c∗ : convn type of conversions
e∗ : env environment
i j : int hypothesis or clause indices
addr : int list subterm address
a : tok name of abstraction
name : tok name of lemma or cached conversion
t∗ : term

A suffix s on the name of an argument indicates that it is a list. For example cs is considered to
have type conv list.

140

8.9.2 Atomic Conversions

Atomic conversions are the basic building blocks for constructing conversions. They may rewrite
terms according to given lemmata and hypotheses, fold and unfold abstractions, or evaluate prim-
itive and abstract redices. For the sake of completeness, there are also two trivial conversions.

IdC

The identity conversion, which does not change a term

FailC

The conversion that always fails

8.9.2.1 Lemma and Hypothesis Conversions

Lemma and hypothesis conversions derive rewrite rules from lemmata and hypotheses that contain
either simple or general universal formulae (see Section 8.2.5). The consequents of these formulae
must be of form a r b, where r is a relation as described in Section 8.9.1.2.

Usually we describe these conversions as rewriting in a left-to-right direction: they replace
instances of a’s by instances of b’s. Each conversion also has a twin conversion that works right-to-
left, which is indicated by a prefix Rev to their names.

LemmaC name
RevLemmaC name

If lemma name contains a simple universal formula with consequent a r b, rewrite instances of
a to instances of b (or instances of b to instances of a, respectively).

HypC i
RevHypC i

If hypothesis i contains a simple universal formula with consequent a r b, rewrite instances of
a to instances of b (or instances of b to instances of a, respectively).

The above conversions are instances of two more general conversions

GenLemmaWithThenLC (n:int) (hints:(var#term)list) (Tacs:tactic list) (name:tok)

GenHypWithThenLC (n:int) (hints:(var#term)list) (Tacs:tactic list) (i:int)

which rewrite according to general universal formulae in lemmata and hypotheses. The meaning of
their arguments is as follows:

n indicates the n-th consequent of a general universal formula. If -1 is used then the formula
is always treated as simple. In particular a ⇔ relation will be considered the relation in the
consequent rather than a part of the structure of the general universal formula.

hints supply bindings for variables in the formula that Nuprl’s matching routines cannot guess.

Tacs is used for conditional rewriting, i.e. when the antecedents of a formula have to be checked
for validity before the rewrite rule is used.
The tactics in Tacs are paired up with the subgoals formed from instantiated antecedents.
The rewrite goes through only if each tactic completely proves its corresponding subgoal. If
there are fewer tactics than antecedents, an appropriate number of copies of the head of Tacs
will be added to left of Tacs. If Tacs is empty, then rewriting must go through unconditionally.

name is the name of the lemma.

i is the number of a hypothesis. Negative numbers are allowed (c.f. Section 8.2.1.1).

141

Other useful specializations of GenLemmaWithThenLC and GenHypWithThenLC are:

GenLemmaC n name ≡ GenLemmaWithThenLC n [] [] name

LemmaWithC hints name ≡ GenLemmaWithThenLC (-1) hints [] name

LemmaThenLC Tacs name ≡ GenLemmaWithThenLC (-1) [] Tacs name

GenHypC n i ≡ GenHypWithThenLC n [] [] i

HypWithC hints i ≡ GenHypWithThenLC (-1) hints [] i

HypThenLC Tacs i ≡ GenHypWithThenLC (-1) [] Tacs i

The hypothesis conversions described here derive their rewrite rules from local environments (Sec-
tion 8.9.1.1) that they are presented with on their first applications. If the conversions are applied
with conversionals such as HigherC or NthC that start applying a conversion at the top of a term,
then the environment is always the same as the environment of the clause being rewritten.

8.9.2.2 Atomic Direct-Computation Conversions

Low level direct-computation conversions are not usually invoked directly by the user, but useful for
controlling the evaluation of redices and the folding/unfolding of abstractions in advanced rewrite
strategies. Computation conversions for interactive invocation are described in Section 8.9.3.

UnfoldTopAbC

UnfoldsTopC as
UnfoldTopC a ≡ UnfoldsTopC [a]

Unfold t if it is an abstraction (with operator identifier listed in as).

AUnfoldsTopC attrs

Unfold t if it is an abstraction that has any of the attributes in attrs (see Section 7.1.3).

RecUnfoldTopC a

Unfold the recursive definition of a if it occurs on the top level of t.

FoldsTopC as
FoldTopC a ≡ FoldsTopC [a]

Try to fold an instance of an abstraction whose operator identifier is listed in as

RecFoldTopC a

Try to fold an instance of the recursively defined term a on the top level of t.

RecUnfoldTopC and RecFoldTopC work only with recursive definitions that have been introduced
with the AddRecDef* button (see Section 4.3.2.2).

TagC tagger

Do forward computations on the term t as indicated by the tags in (tagger t).

RedexC

Contract t if it is a primitive redex.

AbRedexC

ForceRedexC force

Contract t if it is a primitive or abstract redex (of strength less or equal to force).

AnyExtractC

ExtractC names

Expand t if it is an extract term (of a theorem listed in names).

142

Abstract redices. Primitive redices that are buried under abstractions are called abstract redices.
For example, the first and second projection functions for pairs are abstractions:

*A pi1 t.1 ≡ let <x,y> = t in x
*A pi2 t.2 ≡ let <x,y> = t in y

and the term � <a,b>.1� is an abstract redex, which contracts to the term � a� .
To contract abstract redices, the conversion AbRedexC consults an abstract redex table, whose

entries are created using the function

add AbReduce conv opid c

where opid is the operator identifier of the outermost term of the redex10 and c is a conversion
for contracting instances of the redex. Instances of add AbReduce conv are usually included in ML

objects positioned immediately after the definitions of non-canonical abstractions.
An alternative method for indicating an abstract redex is to associate a ‘reducible’ attribute

(see Section 7.1.3) with a non-canonical abstraction using the function

add reducible ab opid

The AbRedexC conversion first unfolds all reducible abstractions at the top level of the term before
further analyzing it to see if it is a redex. When this method is applicable, it is more concise than
using add AbReduce conv.

Reduction Strengths and Forces. In some situations it is desirable to have some redices
contracted but not others. To this end, one may specify the strength of a redex and provide an
optional force argument to tactics invoking direct computation conversions. Strengths and forces
are arranged in a partial order on ML tokens. A redex is contracted only if the reduction force
applied to it is greater or equal to its strength. A strength is associated with a redex in two ways.

• The strength is directly associated with the reduction rule for the redex.

• The strength is associated with the canonical term that is the principal argument of the redex.
Strengths can be associated with canonical terms using the function

note reduction strength opid strength

The currently supported strengths, in increasing order, are

‘1‘ beta redices

‘2‘ other primitive redices

‘3‘ abstract redices recursive

‘4‘ abstract redices non-recursive

‘6‘ module projection functions with coercion arguments

‘7‘ functions creating module elements from concrete parts.

‘8‘ quasi-canonical redices.

‘9‘ irreducible terms.

Contraction conversions that should be sensitive to the force of reduction can be added to the
abstract redex table using the function

add ForceReduce conv opid c

where opid is the operator identifier of the outermost term of the redex and c is a conversion that
takes a token argument for the force with which contraction of the redex is being attempted.

10If the outermost term is an (iterated) apply term, then opid refers to the operator identifier of the term at the
head of the application.

143

8.9.3 Composite Direct Computation Conversions

The following conversions are commonly used for folding and unfolding abstractions and for the
evaluation of primitive and abstract redices in a term.

UnfoldsC as
UnfoldC a

Unfold all occurrences of abstractions listed in as, starting at the leaves of t.

RecUnfoldC a
Unfold all occurrences of the recursive definition of a in t.

FoldsC as
FoldC a

Fold all instances of abstractions whose operator identifiers are listed in as.

RecFoldC a
Fold all instances of the recursively defined term a in t.

ReduceC ≡ AbReduceC ≡ PrimReduceC

ForceReduceC force
Repeatedly contract all redices in t (with maximal strength force) starting from the root.

EvalC as
Repeatedly unfold abstractions listed in as starting at the leaves, and then contract all redices.

NormalizeC

SemiNormC as
Repeatedly unfold abstractions (listed in as), starting at the root, and then contract redices.

IntSimpC

Rewrite t into arithmetical canonical form.

8.9.4 Conversionals

Conversionals provide the means for sequencing conversions in a way similar to the basic tacticals
described in Section 8.8.1 and to apply them to subterms in a controlled fashion.

c
1
ANDTHENC c

2

Apply c
2
to the result of c

1
. Fail if either c

1
or c

2
fails.

c
1
ORTHENC c

2

Apply c
2
to the result of c

1
, or to t if c

1
fails

c
1
ORELSEC c

2

Apply c
1
. If this fails, apply c

2
.

RepeatC c
RepeatForC n c

Repeat c until it fails (exactly n times).

ProgressC c
Apply c, but fail if c does not change the term.

TryC c
Apply c. If this fails, leave the term unchanged.

AllC cs
Iteratively apply all conversions from cs. Fail if one of them fails.

SomeC cs
Iteratively apply all applicable conversions from cs.

144

FirstC cs

Apply the first applicable conversion from cs.

SubC c

Apply c to all immediate subterms of t (in left-to-right order).

SubIfC p c
Apply c to all immediate subterms of t that satisfy the proposition p

NthSubC n c

Apply c to the n-th immediate subterm of t.

AddrC addr c
Apply c to the subterm of t with term address addr .

HigherC c
LowerC c

Apply c the first applicable subterm of t, starting from the root (leaves).

NthC n c
Execute the n-th successful application of c to the subterms of t, starting from the root.

SweepDnC c
SweepUpC c

Apply c to all subterms of t, starting from the root (leaves).

TopC c
DepthC c

Repeatedly apply c to the first applicable subterm of t, starting from the root (leaves).

8.9.5 Macro Conversions

Macro conversions allow to express rewrite rules via pattern terms that describe the left and the
right hand side of a transformation.

MacroC name c
1

t
1

c
2

t
2

Rewrite an instance of t
1
to the corresponding instance of t

2
using forward and reverse compu-

tation steps.
c

1
and c

2
must be direct computation conversions that rewrite the pattern terms t

1
and t

2
to

the same term. MacroC uses second-order matching when matching instance terms against t
1
.

name is a failure token, which will be returned if rewriting fails.

SimpleMacroC name t
1

t
2

as
Rewrite an instance of t

1
to an instance of t

2
by unfolding abstractions from as and contracting

redices.

FwdMacroC name c t
Rewrite an instance of t to an instance of the term resulting from applying c to t .

Using macro conversions enables a user to express rewrite steps in a user-defined theory in a way
that does not reveal the underlying type theory. An example for the use of MacroC is the conversion
for unrolling the Y combinator, defined in the theory core 2:

*A ycomb Y == λf.(λx.f (x x)) (λx.f (x x))
*M ycomb unroll let YUnrollC =

MacroC ‘YUnrollC‘
(AllC [UnfoldC ‘ycomb‘; RedexC; RedexC]) dY Fe

(AllC [UnfoldC ‘ycomb‘; AddrC [2] RedexC]) dF (Y F)e

;;

145

For another example, look at the length unroll object in the list 1 theory. SimpleMacroC
can be used if the rewrite steps involved in justifying the equivalence of t

1
and t

2
are simpler, as in

the case of the abstract redex for the projection functions on products

let pi1 evalC =
SimpleMacroC ‘pi1 evalC‘ d<a, b>.1e dae [‘pi1‘]

;;

146

