
Formal Derivation of an Algorithm

for the Stamps Problem∗

Robert L. Constable Christoph Kreitz
Department of Computer Science, Cornell-University, Ithaca, NY 14853-7501

{rc,kreitz}@cs.cornell.edu

Abstract

We show how to formally derive algorithms for a simple class of arithmetic problems that we
call stamps problems. We specify them in a simple theory of numbers and prove constructively
that they have solutions. From these proofs our logical programming environment constructs
algorithms that are correct-by-construction.

1 Introduction

We found the first stamps problem in the book Elements of Discrete Mathematics, by C. L. Liu
from 1985. Here is how Liu casts the problem:

Suppose we have stamps of two different denominations, 3 cents and 5 cents. We want to
show that it is possible to make up exactly any postage of 8 cents or more using stamps
of these two denominations. Clearly, the approach of showing case by case how to make
up postage of 8 cents, 9 cents, 10 cents, and so on, using 3-cent and 5-cent stamps will
not be a fruitful one, because there is an infinite number of cases to be examined. Let
us consider an alternative approach. We want to show that if it is possible to make up
exactly a postage of n cents using 3-cent and 5-cent stamps, then it is also possible to
make up exactly a postage of n + 1 cents using 3-cent and 5-cent stamps.

Those who know a bit of number theory will recognize the Bezout identity that given two
relatively prime numbers (also called coprime numbers) a, b, then for any integer z there are integers
u, v such that z = u · a + v · b.

We now consider the restriction that u and v are positive and that for any n ≥ a + b there are
natural numbers u, v such that n = u · a + v · b. For which relatively prime a, b is this equation
solvable? We call these stamps pairs.

2 Deriving Algorithms for The Basic Stamps Problem

C. L. Liu provides a simple inductive solution for the original stamps problem, by showing how to
make up a postage of n+1 cents using 3-cent and 5-cent stamps once we know how to make up a
postage of n cents.

∗This work was supported in part by the DoD Multidisciplinary University Research Initiative (MURI) program
administered by the Office of Naval Research (ONR) under Grant N00014-01-1-0765 (Building Interactive Digital
Libraries of Formal Algorithmic Knowledge) and by NSF Grant CCR 0204193 (Proof Automation in Constructive
Type Theory).

1

mailto:kreitz@cs.cornell.edu?subject=Stamps-Problem�

` ∀n:N. n≥8 ⇒ ∃i,j:N. n = i*3 + j*5
BY NatIndStartingAt d8e

.....basecase.....
` ∃i,j:N. 8 = i*3 + j*5√ BY ExR [d1e;d1e] THEN Auto

.....upcase.....
n:N, n>8, i:N, j:N, n-1 = i*3 + j*5 ` ∃i,j:N. n = i*3 + j*5
BY Decide dj=0e THEN Auto

.....Case 1.....
n:N, n>8, i:N, j:N, n-1 = i*3 + j*5, j=0 ` ∃i,j:N. n = i*3 + j*5√ BY ExR [di-3e;d2e] THEN Auto’

.....Case 2.....
n:N, n>8, i:N, j:N, n-1 = i*3 + j*5, j 6=0 ` ∃i,j:N. n = i*3 + j*5√ BY ExR [di+2e;dj-1e] THEN Auto’

Figure 1: Inductive Proof of the Specification Theorem for the Basic Stamps Problem.

We examine two cases. Suppose we make up a postage of n cents using at least one
5-cent stamp. Replacing a 5-cent stamp by two 3-cent stamps will yield a way to make
up a postage of n+1 cents. On the other hand, suppose we make up a postage of n
cents using 3-cent stamps only. Since k≥8, there must be at least three 3-cent stamps.
Replacing three 3-cent stamps by two 5-cent stamps will yield a way to make up a
postage of n+1 cents.

Figure 1 shows the trace of a formal proof in the Nuprl system that uses exactly this line of
argument. The stamps problem is formalized as the theorem

∀n:N. n≥8 ⇒ ∃i,j:N. n = i*3 + j*5

and proven by induction starting at the value 8, for which we apply the library theorem

NatIndStartingAt ∀k:N. ∀P:N→P. (P(k) ∧ (∀i>k ⇒ P(i-1) ⇒ P(i))) ⇒ (∀i≥k. P(i))

The base case is solved by assigning 1 to both existentially quantified variables and using Nuprl’s
autotactic (trivial standard reasoning) to deal with the remaining proof obligation. In the step case
from n−1 to n it analyzes the assignments i and j for n−1, introduces a case distinction on j=0
and then assigns either i−3 and 2 or i+2 and j−1, again using the autotactic to complete the proof.

The above proof implicitly contains an algorithm for computing the number of 3-cent and 5-cent
stamps needed to make up a given postage n. Nuprl is capable of extracting this algorithm from
the formal proof, and to execute it within Nuprl’s computation environment or to export it to other
programming systems.

Depending on the formalization of the existential quantifier there are two kinds of algorithms
that may be extracted. If ∃ is represented as a (dependent) product type, the algorithm returns
both the solution and a that verifies it. If ∃ is represented as a set type, this verification information
is dropped during extraction and the algorithm – represented in Nuprl’s extended lambda calculus
and shown on the left – only performs the required computation. Using standard conversions,
Nuprl can then transform the algorithm into any programming language that supports recursive

2

http://www.nuprl.org�
http://www.nuprl.org�
http://www.nuprl.org�
http://www.nuprl.org�
http://www.nuprl.org�
http://www.nuprl.org�

` ∀n:N. n≥8 ⇒ ∃i,j:N. n = i*3 + j*5
BY NatIndThreeStepStartingAt d8e

.....basecase 1.....
` ∃i,j:N. 8 = i*3 + j*5√ BY ExR [d1e;d1e] THEN Auto

.....basecase 2.....
` ∃i,j:N. 9 = i*3 + j*5√ BY ExR [d3e;d0e] THEN Auto

.....basecase 3.....
` ∃i,j:N. 10 = i*3 + j*5√ BY ExR [d0e;d2e] THEN Auto

.....upcase.....
n:N, n≥8+3, i:N, j:N, n-3 = i*3 + j*5 ` ∃i,j:N. n = i*3 + j*5√ BY ExR [di+1e;dje] THEN Auto

Figure 2: Solution of the Basic Stamps using 3-Step Induction.

definition and export it to the corresponding programming environment. A conversion into SML,
for instance, yields the program shown on the right.

let rec stamps assign n
= if n=8 then <1,1>
else let <i, j> = stamps assign (n-1)

in
if j=0 then <i-3, 2>
else <i+2, j-1>

fun stamps assign n
= if n=8 then 1,1

else let val i,j = stamps assign (n-1)
in

if j=0 then i-3, 2
else i+2, j-1

end

Using stepwise induction is not the only way to solve the stamps problem. Instead of providing a
solution for n=8 and then showing how to make up a postage of n+1 cents once we know how to
do so for n cents, we could provide a solution for n = 8, 9, and 10, and then make up a postage
of n+3 cents by adding a 3-cent stamp to the solution for n cents. In the formal proof, shown in
Figure 2, we have to use 3-Step induction for this purpose, again applying a library theorem. The
resulting algorithm, shown in SML notation below, has the advantage that the loop computes much
faster, as it does not involve a test and reduces n by 3 instead of 1.

fun stamps assign n
= if n=8 then 1,1

if n=9 then 3,0
if n=10 then 0,2
else let val i,j = stamps assign (n-3)

in
i+1, j

end

Since Nuprl’s type theory comes with built-in division and quotient remainder functions, we can
provide an even faster, non-inductive solution for the stamps problem. As before, we reduce a
solution for n to the cases 8, 9, and 10, but we don’t reduce n recursively, but do it in one step by
computing r = 8+(n−8) rem 3. Given a solution i and j for r, the solution for n is then i+(n−8)÷3

3

http://www.nuprl.org�

` ∀n:N. n≥8 ⇒ ∃i,j:N. n = i*3 + j*5
BY Assert d∀n:N. 11>n≥8 ⇒ ∃i,j:N. n = i*3 + j*5e THEN Auto

.....Assertion.....
n:N, 11>n≥8 ` ∃i,j:N. n = i*3 + j*5
BY Choices [dn=8e; dn=9e;dn=10e]

.....Case n=8.....
` ∃i,j:N. 8 = i*3 + j*5√ BY ExR [d1e;d1e] THEN Auto

.....Case n=9.....
` ∃i,j:N. 9 = i*3 + j*5√ BY ExR [d3e;d0e] THEN Auto

.....Case n=10....
` ∃i,j:N. 10 = i*3 + j*5√ BY ExR [d0e;d2e] THEN Auto

.....Reduction.....
n:N, n≥8, ∀n:N. 11>n≥8 ⇒ ∃i,j:N. n = i*3 + j*5 ` ∃i,j:N. n = i*3 + j*5
BY allL (-1) d8 + (n-8) rem 3e THEN Repeat (exL (-1))

n:N, n≥8, i:N, j:N, 8 + (n-8) rem 3 = i*3 + j*5 ` ∃i,j:N. n = i*3 + j*5√ BY ExR [di+(n-8)÷3e;dje] THEN ILemma ‘div rem sum‘ [dn-8e; d3e

Figure 3: Solution of the Basic Stamps using Direct Reduction.

and j. A formal proof of this argument is given in Figure 3. We assert that the problem has a
solution over the limited range 8≤n < 11, provide a solution for each of these cases, and reduce the
general problem by instantiating it with r = 8+(n−8) rem 3 and then modify its solution by adding
(n− 8)÷3 to i. As checking the solution involves reasoning about division and quotient remainder
we supply a lemma to enable the autotactic to complete the proof. The resulting algorithm, shown
in SML notation below, provides the fastest possible solution for the stamps problem.

fun stamps assign n
= let q = (n-8)÷3

and r = (n-8) rem 3 + 8
in

if r=8 then 1+q, 1
if r=9 then 3+q, 0
if r=10 then 0+q, 2

3 An Informal Proof for the General Stamps Problem

In the previous section we have shown how to solve the stamps problem efficiently for the pair 3
and 5. Now the question is if there are other combinations of a and b that can be proven to be
stamps pairs. Obviously, a = 1 and any b will be stamps pairs and so will be a = 2 and any odd
number b. But are there others?

An informal solution for this problem was first presented at the International Summer School
at Marktoberdorf in July 1995. Using basic number theory it shows that there cannot be any other
stamps pairs. The statement and its proof are the following.

4

Let a, b ∈N and without loss of generality a < b. If for all n≥a+ b there are i, j ∈N such that
n = i·a + j·b then a=1 or a=2 and b is odd or a=3 and b=5.

Proof: If a = 1, we’re done, so assume 1 < a < b

Since a+b+1 = i·a+j·b for some i, j it must be that a | (b+1) or b=a+1 (1)

Since a+b+2 = i·a+j·b for some i, j it must be that a=2 or a | (b+2) or b=a+2 (2)

Case analysis

a = 2: by (1), b must be odd

a > 2: then b > 3. We use (1) to split into subcases

a | (b + 1): Then, because of a > 2, a cannot divide b+2 as well.
By (2), we thus have b = a+2.
Now, since a+b+3 = i·a+j·b for some i, j we know a=3 or a | (b+3) or b=a+3.
b = a+3 is impossible since b = a+2.
a | (b+3) is impossible since a | (b + 1) and a > 2.
Thus a = 3 and b = 5.

b | (a + 1): then by the same argument b = a + 1
But then by (2), a | (a + 3) or a + 1 | (a + 2), both of which are impossible.

4 A Formal Proof for the General Stamps Problem

Although the above solution for the stamps problem was generally accepted, an attempt to recast
this proof in a formal setting failed, since the argument for the case b | (a + 1) did not provide
sufficient detail to complete the formal proof. In fact, being forced to take a closer look at this
case revealed that the argument was wrong: the subcase a | (a + 3) is not impossible, but leads to
another stamps pair, namely a=3 and b=4. But the formal proof also showed that there were no
further stamps pairs.

Figure 4 describes the main part of the formal proof. The proof proceeds by decomposing the
proof goal using Nuprl’s autotactic. In the case where we want to prove that there are only four
combinations of stamps for which the stamps problem can be solved we consider three alternatives,
among which the first (a=1) trivially leads to a solution and the other two are solved by instantiating
separate lemmas with the tactic ILemma. In the other case, where we have to prove that the 4
combinations actually lead to a solution of the stamps problem, we do case analysis over the four
possibilities, perform backward reasoning over a lemma to reduce the problem to the base case of the
induction, and then provide explicit solutions for all possible values in the range {a+b...2·a+b−}.
In the case where b is odd, we make use of the fact that an odd number is equal to 2·c+1 for some c.

The proofs of the main theorem and the lemmas use notation that extends the basic type theory
of Nuprl to make the formal statements more comprehensible. For this purpose, the following
abstractions were added to the library of the Nuprl system.

ABS int upper {i..} ≡ {j:Z| i≤j}
ABS int seg {i..j−} ≡ {k:Z| i≤k<j}
ABS divides a | b ≡ ∃c:Z. a = b*c

ABS is odd a is odd ≡ 2 | a+1

ABS stampspairs a and b are stamps pairs ≡ ∀n:{a+b...}. ∃i,j:N. n = i*a + j*b

5

http://www.nuprl.org�
http://www.nuprl.org�
http://www.nuprl.org�

THM Stamps Theorem

∀a,b:N. (0<a ∧ a<b) ⇒
a and b are stamps pairs ⇔ a=1 ∨ (a=2 ∧ b is odd) ∨ (a=3 ∧ b=4) ∨ (a=3 ∧ b=5))
BY Auto

.....⇒
a:N, b:N, 0<a, a<b, a and b are stamps pairs
` a=1 ∨ (a=2 ∧ b is odd) ∨ (a=3 ∧ b=4) ∨ (a=3 ∧ b=5)
BY Alternatives [da=1e; da=2e; da>2e]

.....Case 2.....
a:N, b:N, 0<a, a<b, 2 and b are stamps pairs, a=2
` a=1 ∨ (a=2 ∧ b is odd) ∨ (a=3 ∧ b=4) ∨ (a=3 ∧ b=5)√ BY ILemma ‘stampspairs if two‘ [dbe] THEN prover

.....Case 3.....
a:N, b:N, 0<a, a<b, a and b are stamps pairs, a>2
` a=1 ∨ (a=2 ∧ b is odd) ∨ (a=3 ∧ b=4) ∨ (a=3 ∧ b=5)√ BY ILemma ‘stampspairs if greater two‘ [dae;dbe]

.....⇐
a:N, b:N, 0<a, a<b, a=1 ∨ (a=2 ∧ b is odd) ∨ (a=3 ∧ b=4) ∨ (a=3 ∧ b=5)
` a and b are stamps pairs
BY AnalyzeCasesInHypothesis 5 THEN BackLemma ‘stampspairs properties‘

.....Case 1.....
b:N, 1<b, n:{1+b..2*1+b−} ` ∃i,j:N. n = i*1 + j*b√ BY ExR [dne; d0e]

.....Case 2.....
b:N, b is odd, n:{2+b..2*2+b−} ` ∃i,j:N. n = i*2 + j*b√ BY Choices [dn=2+be ; dn=3+be]

THENL [ExR [d1e;d1e]; DVars [‘c’] 2 THEN ExR [d1 + ce;d0e]]

.....Case 3.....
n:{3+4..2*3+4−} ` ∃i,j:N. n = i*3 + j*4√ BY Choices [dn=7e ; dn=8e ;dn=9e]

THENL [ExR [d1e;d1e]; ExR [d0e;d2e]; ExR [d3e;d0e]]

.....Case 4.....
n:{3+5..2*3+5−} ` ∃i,j:N. n = i*3 + j*5√ BY Choices [dn=8e ; dn=9e ;dn=10e]

THENL [ExR [d1e;d1e]; ExR [d3e;d0e]; ExR [d0e;d2e]]

Figure 4: Proof of the Main Theorem.

6

THM stampspairs properties

∀a,b:N. 0<a ⇒ (∀n:{a+b..2*a+b−}. ∃i,j:N. n = i*a + j*b) ⇒ a and b are stamps pairs
BY Unfold ‘stampspairs‘ 0 THEN Auto

a:N, b:N, 0<a, ∀n:{a+b..2*a+b−}. ∃i,j:N. n = i*a + j*b, n:{a+b...}
` ∃i,j:N. n = i*a + j*b
BY allL 4 da + b + (n-(a+b) rem a)e THEN Repeat (exL (-1))

a:N, b:N, 0<a, n:{a+b...}, i:N, j:N, a + b + (n-(a+b) rem a) = i*a + j*b
` ∃i,j:N. n = i*a + j*b
BY ExR [d(n-(a+b))÷a + ie; dje]

a:N, b:N, 0<a, n:{a+b...}, i:N, j:N, a + b + (n-(a+b) rem a) = i*a + j*b
` n = (((n-(a+b))÷a + i) * a) + j*b√ BY ILemma ‘div rem sum‘ [dn-(a+b)e; dae]

Figure 5: Proofs of the Reduction Theorem (stampspairs properties)

Figure 5 describes the proof of the lemma stampspairs properties, which is used to reduce the
stamps property to a problem over the finite range {a+b...2·a+b−}. Usually, one would prove
this lemma by induction over the value n. However, since division (i÷j) and quotient remainder
(i rem j) are primitives of Nuprl’s type theory, we can provide a direct solution to the general
problem by instantiating the limited one with an appropriate value. This requires us to show that
(((n−(a+b))÷a+i)·a)+j·b is in fact the same as the value n. As reasoning about division and
quotient remainder is more complex than the autotactic can handle, we have to supply a lemma to
make it complete the proof.

Figure 6 shows the proof of lemma stampspairs if two, which is used to solve one of the cases
of the main theorem. It states that a number b must be odd if 2 and b are stamps pairs. We prove
it by instantiating the stamps property for the value 2·b+1 and then use arithmetical reasoning
with the help of a lemma about division.

The most demanding proof in our solution is the one of lemma stampspairs if greater two,
shown in Figures 7 and 8. It shows that if a > 2 and b > a are stamps pairs, then a must be 3 and
b must be either 4 or 5. Essentially we follow the informal argument and state that a divides b+1
or b=a+1 and that a divides b+2 or b=a+2.

THM stampspairs if two

∀b:N. 2 and b are stamps pairs ⇒ b is odd
BY Auto THEN StampsInstance 2 d2*b+1e

b:N, i:N, j:N, 2*b+1 = i*2 + j*b ` b is odd
BY ILemma ‘odd mul cancel‘ [dje;dbe]

b:N, i:N, j:N, 2*b+1 = i*2 + j*b ` j*b is odd√ BY RepUnfolds ‘‘is odd divides‘‘ 0 THEN ExR [db-i + 1e]

Figure 6: Proofs of the requirements for “good” stamps.

7

http://www.nuprl.org�

THM stampspairs if greater two

∀a,b:N. (2<a ∧ a<b) ⇒
a and b are stamps pairs ⇒ (a=3 ∧ b=4) ∨ (a=3 ∧ b=5))
BY Auto THEN AssertCases d(a | b+1 ∨ b=a+1) ∧ (a | b+2 ∨ b=a+2)e

.....Assertion 1.....
a:N, b:N, 2<a, a<b, a and b are stamps pairs ` a | b+1 ∨ b=a+1
BY StampsInstance 5 da+b+1e THEN EqChoices [dj=0e; dj=1e; dj=2e; dj>2e]

.....Case j=0.....
a:N, b:N, 2<a, a<b, i:N, j:N, a+b+1 = i*a + 0*b ` a | b+1 ∨ b=a+1√ BY orR1 THEN DividesWitness di - 1e

.....Case j=1.....
a:N, b:N, 2<a, a<b, i:N, j:N, a+b+1 = i*a + 1*b ` a | b+1 ∨ b=a+1√ BY Assert da | 1e THENL [DividesWitness di-1e; ILemma ‘divisor bound‘ [dae;d1e]]

.....Case j=2.....
a:N, b:N, 2<a, a<b, i:N, j:N, a+b+1 = i*a + 2*b ` a | b+1 ∨ b=a+1√ BY EqChoices [di=0e;di>0e] THENL [Auto’; ILemma ‘mul bounds 1b‘ [die;dae]]

% -- +
| The second case uses the inequality d0<i*ae to show a contradiction |
+ -- %

.....Case j>2.....
a:N, b:N, 2<a, a<b, i:N, j:N, a+b+1 = i*a + j*b, j>2 ` a | b+1 ∨ b=a+1√ BY % --- +

| Show by a chain of inequalities that there is a contradiction |
+ --- %

ILemma ‘mul bounds 1a‘ [die;dae] % 0 ≤ i*a %
THEN ILemma ‘mul preserves lt‘ [d2e;dje;dbe] % b*2 < b*j %

Figure 7: Proofs of the requirements for “good” stamps.

We prove the first claim by instantiating the stamps property for the value a+b+1 and then
analyze how often b may have been used to create this sum. If b is not used, a must divide b+1. If
b is used twice, b=a+1 must be the case. All other cases are impossible. For the second claim, we
use a similar argument, this time with the value a+b+2.

Using these two assertions gives us 4 cases, among which the case b=a+1 ∧ b=a+2 is impossible.
In the other three cases we use the laws of divisibility to prove that a | b+1 ∧a | b+2 gives us a=1 (a
contradiction), a | b+1 ∧ b=a+2 gives us a=3 and b=5, and b=a+1 ∧ a | b+2 gives us a=3 and b=4.

The above proofs rely on a lemmas about multiplication, division, and orders, which can be found
in Nuprl’s standard library. The following lemmas were used.

THM mul bounds 1a ∀a,b:N. 0 ≤ a * b
THM mul bounds 1b ∀a,b:N+. 0 < a * b
THM mul preserves lt ∀a,b:Z.∀n:N+. a < b ⇒ n * a < n * b
THM mul preserves le ∀a,b:Z.∀n:N. a ≤ b ⇒ n * a ≤ n * b
THM multiply functionality wrt le ∀i1,i2,j1,j2:N. i1≤j1 ⇒ i2≤j2 ⇒ i1* i2 ≤ j1* j2

THM div rem sum ∀a:Z.∀n:Z−0. a = (a ÷ n) * n + a rem n
THM divisor of sub ∀a,b1,b2:Z. a | b1 ⇒ a | b2 ⇒ a | (b1-b2)
THM divisor bound ∀a:N.∀n:N+. a | b ⇒ a≤b
THM odd mul cancel ∀a,b:Z. a * b is odd ⇒ b is odd

8

http://www.nuprl.org�

.....Assertion 2.....
a:N, b:N, 2<a, a<b, a and b are stamps pairs ` a | b+2 ∨ b=a+2√ BY % -- +

| This is almost identical to Assertion 1, so we do everything at once |
+ -- %

StampsInstance 5 da+b+2e THEN EqChoices [dj=0e; dj=1e; dj=2e; dj>2e]

THENL [orR1 THEN DividesWitness di - 1e

; Assert da | 2e THENL [DividesWitness di-1e

; ILemma ‘divisor bound‘ [dae;d2e]]

; EqChoices [di=0e;di>0e]
THENL [Auto’; ILemma ‘multiply functionality wrt le‘ [d1e;d2e;die;dae]]

% -- +
| The second case uses 1*2<i*a to show a contradiction |
+ -- %

; ILemma ‘mul bounds 1a‘ [die;dae] % 0 ≤ i*a %
THEN ILemma ‘mul preserves le‘ [d3e;dje;dbe] % b*3 ≤ b*j %

]

.....Asserted Case 1.....
a:N, b:N, 2<a, a<b, a | b+1, a | b+2 ` (a=3 ∧ b=4) ∨ (a=3 ∧ b=5)√ BY % --- +

| Analyzing Hyps 5 and 6 gives us a=1, which contradicts hypothesis 6 |
+ --- %

FwdLemma ‘divisor of sub‘ [6;5]
THEN Subst d(b+2 - (b+1))=1e (-1) THENA Auto
THEN ILemma ‘divisor bound‘ [dae;d1e]

.....Asserted Case 2.....
a:N, b:N, 2<a, a<b, a | b+1, b=a+2 ` (a=3 ∧ b=4) ∨ (a=3 ∧ b=5)√ BY % --- +

| Analyzing Hyps 5 and 6 gives us a=3 ∧ b=5 |
+ --- %
Assert da | 3e THENL [DVars [‘c’] 5 THEN DividesWitness dc - 1e

; ILemma ‘divisor bound‘ [dae;d3e]]

.....Asserted Case 3.....
a:N, b:N, 2<a, a<b, b=a+1, a | b+2 ` (a=3 ∧ b=4) ∨ (a=3 ∧ b=5)√ BY % --- +

| Analyzing Hyps 5 and 6 gives us a=3 ∧ b=4 |
+ --- %
Assert da | 3e THENL [DVars [‘c’] 6 THEN DividesWitness dc - 1e

; ILemma ‘divisor bound‘ [dae;d3e]]

Figure 8: Proof of stampspairs if greater two (continued)

The proofs also employ a variety of reasoning tactics that were written to make the formal proof
comprehensible. Tactics are metalevel programs that control the application of reasoning rules of a
fundamental proof calculus. The tactics used in our proofs were written to mimic specific reasoning
steps that a human would use in an argument by expressing them in terms of elementary proof
rules. Because we chose memnonic names (and used comments in a the proofs), most of them
should be self-explanatory.

9

