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– Was ist überhaupt Berechenbarkeit?

– Auf welche Arten kann man Berechnungen durchführen?

– Sind bestimmte Berechnungsmodelle besser als andere?



Theoretische Informatik II §6: Berechenbarkeitsmodelle 1 Berechenbarkeitsmodelle

Berechenbarkeitsmodelle – wozu?

• Es gibt mehr als nur die Standard PC Architektur

– Lisp Maschinen, Parallelrechner, Neuronale Netze

– Nichtdeterministische Maschinen (Quantencomputer)

• Abstrakte Modelle betrachten die wirklichen Fragen zuerst

– Was genau ist das Problem?

– Was charakterisiert eine Lösung des Problems?

– Wie kann man prinzipiell an das Problem herangehen?

– Wie kann man über den Stand der Technik hinausgehen?
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– Auf welche Arten kann man Berechnungen durchführen?

– Sind bestimmte Berechnungsmodelle besser als andere?

Berechenbarkeitsmodelle gab es lange vor dem ersten Computer
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Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst
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Der Begriff “berechenbar” muß mathematisch präzisiert werden
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• Logische Repräsentierbarkeit (Logikprogrammierung, PROLOG)

• Typ-0 Grammatiken /Markov-Algorithmen (Regelbasierte Sprachen)



Theoretische Informatik II §6: Berechenbarkeitsmodelle 3 Berechenbarkeitsmodelle

Die wichtigsten Berechenbarkeitsmodelle

• Turingmaschine (Rechnen mit Papier und Bleistift)
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⇓

Church’sche These:

Intuitive Berechenbarkeit wird durch diese Modelle exakt beschrieben
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Turingmaschinen

Programm δ Zustand s

Lese-Schreibkopf

Band

-
δ(s,a)=(s′,a′,P )

?

a′,P

�

s,a
6

a

. . . . b 1 1 0 a 1 b . . .

• Verallgemeinerung von Push-Down Automaten

– Stack mit LIFO Zugriff ersetzt durch potentiell unendliches Band

– Band fast überall unbeschrieben (Leersymbol b ≡ “Blank”)

– Lese-Schreibkopf kann Symbole lesen, schreiben und bewegt werden
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Turingmaschinen – mathematisch Definition A

Programm δ Zustand s

Lese-Schreibkopf

Band

-
δ(s,a)=(s′,a′,P )

?

a′,P

�

s,a
6

a

. . . . b 1 1 0 a 1 b . . .

Eine Turingmaschine ist ein 6-Tupel τ = (S, X , Γ, δ, s0, b)

• S nichtleere endliche Zustandsmenge

• s
0
∈S Anfangszustand

• Γ nichtleeres endliches Bandalphabet

• X⊆Γ Eingabealphabet

• b ∈Γ\X Blanksymbol

• δ:S×Γ → S×Γ×{r,l,h} (partielle) Zustandsüberführungsfunktion
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Beschreibung von Turingmaschinen

Übergangstabelle für δ

Zustand gelesen zu schreiben Folgezustand Kopfbewegung

s
0

0 s
0

0 r

s
0

1 s
0

1 r

s
0

b s
1

b l

s
1

1 s
1

0 l

s
1

0 s
2

1 l

s
1

b s
3

1 h

s
2

0 s
2

0 l

s
2

1 s
2

1 l

s
2

b s
3

b h
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s
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0 s
2

0 l

s
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1 s
2

1 l

s
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b h

Restliche Komponenten implizit bestimmt

Zustandsmenge S = {s
0
,s

1
,s

2
,s

3
}

Anfangszustand s
0

= s
0

Bandalphabet Γ = {0, 1, b}

Eingabealphabet X = {0, 1}

Blanksymbol b = b
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Arbeitsweise von Turingmaschinen

Programm δ Zustand s

Lese-Schreibkopf

Band

-
δ(s,a)=(s′,a′,P )

?

a′,P

�
s,a

6
a

. . . . b 1 1 0 a 1 b . . .

• Anfangssituation
– Eingabewort w steht auf dem Band, umgeben von Leerzeichen

– Kopf über erstem Symbol, Zustand ist s
0

• Arbeitschritt
– Zeichen a lesen, Zustand s und δ(s,a)=(s′,a′,P ) bestimmen

– Neuer Zustand s′, Zeichen a′ schreiben, Kopf gemäß P bewegen

– Stop wenn P=h

• Ergebnis
– Längstes Wort auf Band ohne Leerzeichen am Anfang und Ende

Achtung! Details in Literatur unterschiedlich
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Abarbeitung von Turing-Programmen

Eingabewort 01001δ
s a s′ a′ P

→ s
0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s0

LSK

Band

-
δ(s,a)=(s′,a′,P )

?

s′,a′

�

s,a
6

a

. . . . b 0 1 0 0 1 b . . .
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Konfiguration von Turing-Programmen Definition B

• Eine Konfiguration ist ein Tripel κ = (s,f ,i) mit

– s ∈S aktueller Zustand

– f :Z→Γ Bandinhaltsfunktion

f(n) ≡ Inhalt der n-ten Bandzelle

(f(j) = b für fast alle j)

– i ∈Z Kopfposition

Alternative Repräsentation: Tripel (s,u,v) mit
– s aktueller Zustand,
– u String links vom Kopf (von rechts nach links),
– v String rechts vom Kopf

•Kτ : Menge aller Konfigurationen von τ
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wj falls j ∈{0,..,k},

b sonst
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i falls P=h

• Ausgabefunktion ω:Kτ→Γ∗

– Für eine Konfiguration κ=(s,f ,i) ist

ω(κ) =

{

ε falls f(j)=b für alle j,

f(k)f(k+1)...f(k+n) sonst

wobei k=max{i|∀j<i f(j)=b} und n=min{i|∀j>k+i f(j)=b}
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und δ(s, f(i))=(s′, a′, h)}
existiert,

⊥ sonst

Definition E

– Definitionsbereich von τ : {w ∈X∗ |hτ(w)6=⊥} (Haltebereich, domain)

– Wertebereich von τ : {v ∈Γ∗ | ∃w ∈X∗ hτ(w)=v} (Ergebnisbereich, range)
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Fügt am Ende eines Wortes w ∈1∗ eine 1 an (“Bierdeckelmaschine”)

• Mathematische Analyse:

– Anfangskonfiguration: α(1n) = (s
0
,fn,0), wobei fn(j) =

{

1 falls j ∈{0,..,n−1},

b sonst

– Nachfolgekonfigurationen: δ̂(s
0
,fn,j) =

{

(s
0
, fn, j+1) falls j ∈{0,..,n−1},

(s
0
, fn+1, n) falls j=n

– Terminierung: min{j | δ̂j(s
0
,fn,0)=(s

0
,fn,j) ∧ δ(s

0
,fn(j))=(s

0
,b,h)} = n

– Ergebnis: δ̂n+1(s
0
,fn,0) = (s

0
,fn+1,n)

– Ausgabefunktion: ω(s
0
, fn+1,n) = 1n+1

(max{i | ∀j<i fn+1(j)=b}=0, min{i | ∀j>i fn+1(j)=b}=n+1)
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Beispiele für Turing-Maschinen

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

Fügt am Ende eines Wortes w ∈1∗ eine 1 an (“Bierdeckelmaschine”)

• Mathematische Analyse:

– Anfangskonfiguration: α(1n) = (s
0
,fn,0), wobei fn(j) =

{

1 falls j ∈{0,..,n−1},

b sonst

– Nachfolgekonfigurationen: δ̂(s
0
,fn,j) =

{

(s
0
, fn, j+1) falls j ∈{0,..,n−1},

(s
0
, fn+1, n) falls j=n

– Terminierung: min{j | δ̂j(s
0
,fn,0)=(s

0
,fn,j) ∧ δ(s

0
,fn(j))=(s

0
,b,h)} = n

– Ergebnis: δ̂n+1(s
0
,fn,0) = (s

0
,fn+1,n)

– Ausgabefunktion: ω(s
0
, fn+1,n) = 1n+1

(max{i | ∀j<i fn+1(j)=b}=0, min{i | ∀j>i fn+1(j)=b}=n+1)

⇓

hτ1(1
n) = 1n+1 für alle n, Definitionsbereich {1}∗, Wertebereich {1}+
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Exkurs: Wie genau muß man sein?

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

• Knapp genug, um übersichtlich und merkbar zu sein

• Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daß Sie nichts mehr falsch machen können

... es reicht nicht, daß Sie es einmal richtig gemacht haben

• Tip: ausführliche Lösungen entwickeln, bis Sie genug Erfahrung haben.

Für Präsentation zentrale Gedanken aus Lösung extrahieren

• Test: verstehen Ihre Kommilitonen Ihre Lösung und warum sie funktioniert?
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Beispiele für Turing-Maschinen II

• τ 2 = ({s
0
}, {1}, {b,1}, δ

2
, s

0
, b) mit δ

2
= s a s′ a′ P

s
0
1 s

0
b r

s
0
b s

0
b h
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Beispiele für Turing-Maschinen II

• τ 2 = ({s
0
}, {1}, {b,1}, δ

2
, s

0
, b) mit δ

2
= s a s′ a′ P

s
0
1 s

0
b r

s
0
b s

0
b h

Löscht ein Wort w ∈1∗:

hτ2(w) = ε für alle w, Definitionsbereich {1}∗, Wertebereich {ε}



Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Turingmaschinen

Beispiele für Turing-Maschinen II

• τ 2 = ({s
0
}, {1}, {b,1}, δ

2
, s

0
, b) mit δ

2
= s a s′ a′ P

s
0
1 s

0
b r

s
0
b s

0
b h
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0
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1
}, {1}, {b,1}, δ

3
, s

0
, b) mit δ

3
= s a s′ a′ P

s
0
1 s

1
1 r

s
0
b s

1
1 h

s
1
1 s

0
1 r

s
1
b s

1
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Beispiele für Turing-Maschinen II
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s
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1 s
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1 r
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1
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1
b r

Testet Anzahl der Einsen in w ∈1∗:

hτ3(1
n) =

{

1n+1 falls n gerade,
⊥ sonst
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Beispiele für Turing-Maschinen II

• τ 2 = ({s
0
}, {1}, {b,1}, δ

2
, s

0
, b) mit δ

2
= s a s′ a′ P

s
0
1 s

0
b r

s
0
b s

0
b h

Löscht ein Wort w ∈1∗:
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s
0
1 s

1
1 r
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0
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1
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0
1 r

s
1
b s
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Testet Anzahl der Einsen in w ∈1∗:

hτ3(1
n) =

{

1n+1 falls n gerade,
⊥ sonst

Definitionsbereich {12k | k ∈N}, Wertebereich {12k+1 | k ∈N}
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Beispiele für Turing-Maschinen III

• τ4 = ({s
0
,s

1
,s

2
,s

3
}, {1}, {b,1,c}, δ4 , s

0
, b) mit δ4 = s a s′ a′ P

s
0
1 s

1
b r

s
0
c s

0
c h

s
0
b s

0
b h

s
1
1 s

1
1 r

s
1
c s

1
c r

s
1
b s

2
c r

s
2
1 s

2
1 h

s
2
c s

2
c h

s
2
b s

3
c l

s
3
1 s

3
1 l

s
3
c s

3
c l

s
3
b s

0
b r



Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 Turingmaschinen

Beispiele für Turing-Maschinen III

• τ4 = ({s
0
,s

1
,s

2
,s

3
}, {1}, {b,1,c}, δ4 , s

0
, b) mit δ4 = s a s′ a′ P

s
0
1 s

1
b r

s
0
c s

0
c h

s
0
b s

0
b h

s
1
1 s

1
1 r

s
1
c s

1
c r

s
1
b s

2
c r

s
2
1 s

2
1 h

s
2
c s

2
c h

s
2
b s

3
c l

s
3
1 s

3
1 l

s
3
c s

3
c l

s
3
b s

0
b r

Verdoppelt Anzahl der Einsen

hτ4(1
n) = c2n, Definitionsbereich {1}∗, Wertebereich {c2k | k ∈N}
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Beispiele für Turing-Maschinen III

• τ4 = ({s
0
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1
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2
,s

3
}, {1}, {b,1,c}, δ4 , s

0
, b) mit δ4 = s a s′ a′ P
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0
1 s

1
b r

s
0
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0
c h

s
0
b s

0
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s
1
1 s

1
1 r

s
1
c s

1
c r

s
1
b s

2
c r

s
2
1 s

2
1 h

s
2
c s

2
c h

s
2
b s

3
c l

s
3
1 s

3
1 l

s
3
c s

3
c l

s
3
b s

0
b r

Verdoppelt Anzahl der Einsen

hτ4(1
n) = c2n, Definitionsbereich {1}∗, Wertebereich {c2k | k ∈N}

Kombinierbar mit isomorpher Variante von τ
3
: hτ ′

3
◦ hτ4(1

n) = c2n+1
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Turing-Berechenbarkeit Definition E

• f :X∗→Y ∗ Turing-berechenbar

– Es gibt eine Turingmaschine τ = (S, X , Γ, δ, s0, b) mit Y ⊆Γ und hτ=f

• T : Menge der Turing-berechenbaren Funktionen

– TX,Y = {f :X∗→Y ∗ | f ist Turing-berechenbar}

– T =
⋃

{TX,Y | X , Y endliches Alphabet}
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Übertragung des Berechenbarkeitbegriffs

• Berechenbarkeit von Mengen M⊆X∗

– Semi-Entscheidbarkeit: Berechenbarkeit von ψ
M

:X∗→{0,1}∗,

– Entscheidbarkeit: Berechenbarkeit von χ
M

:X∗→{0,1}∗,

wobei ψ
M

(w) =

{

1 falls w ∈M,

⊥ sonst
χ
M

(w) =

{

1 falls w ∈M,

0 sonst

(partiell-)charakteristische Funktion Definition P
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• Berechenbarkeit auf Zahlen f :N→N

≡ Berechenbarkeit der Repräsentation fr:X
∗→X∗,

wobei r:N→X∗ bijektiv und fr(w) = r(f(r−1(w)))

Standardcodierungen von Zahlen

– unäre Darstellung ru:N→{1}∗ mit ru(n) = 1n

– binäre Darstellung rb:N→{0,1}∗ (ohne führende Nullen)
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M
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– Entscheidbarkeit: Berechenbarkeit von χ
M

:X∗→{0,1}∗,

wobei ψ
M

(w) =

{

1 falls w ∈M,

⊥ sonst
χ
M

(w) =

{

1 falls w ∈M,

0 sonst

(partiell-)charakteristische Funktion Definition P

• Berechenbarkeit auf Zahlen f :N→N

≡ Berechenbarkeit der Repräsentation fr:X
∗→X∗,

wobei r:N→X∗ bijektiv und fr(w) = r(f(r−1(w)))

Standardcodierungen von Zahlen

– unäre Darstellung ru:N→{1}∗ mit ru(n) = 1n

– binäre Darstellung rb:N→{0,1}∗ (ohne führende Nullen)

• Berechenbarkeit auf Tupeln f :X∗×X∗→Y ∗

≡ Berechenbarkeit von f ′:(X∪{#})∗→Y ∗ mit f ′(v#w) = f(v,w)
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• Bei unärer Codierung:

– Ist su:{1}
∗→{1}∗ mit su(1

n) = 1n+1 Turing-berechenbar?

– Turingmaschine muß eine 1 anhängen: su = hτ1
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s a s′ a′ P
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0 s
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0 r rechtes Ende suchen

s
0
1 s

0
1 r rechtes Ende suchen

s
0
b s

1
b l rechtes Ende gefunden
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Berechenbarkeit der Nachfolgerfunktion
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0
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0
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0
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1
b l rechtes Ende gefunden

s
1
1 s

1
0 l Addieren mit Übertrag

s
1
0 s

2
1 h Addieren ohne Übertrag

s
1
b s

2
1 h Übertrag am linken Ende
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Berechenbarkeit der Division durch 2

Ist div2:N→N mit div2(n)=bn/2c Turing-berechenbar?
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und eine neue hinter dem Ende des Wortes schreiben



Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 Turingmaschinen

Berechenbarkeit der Division durch 2

Ist div2:N→N mit div2(n)=bn/2c Turing-berechenbar?
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s a s′ a′ P
s

0
1 s

1
b r Erste 1

s
0
b s6 b h keine erste 1
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1
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2
b r Zweite 1

s
1
b s6 b h keine zweite 1

s
2
1 s

2
1 r Nach rechts zum Eingabeende

s
2
b s

3
b r Ende der Eingabe

s
3
1 s

3
1 r Nach rechts zum Ausgabeende

s
3
b s4 1 l Ende der Ausgabe, 1 schreiben

s4 1 s4 1 l Nach links über Ausgabe
s4 b s5 b l

s5 1 s5 1 l Nach links über Eingabe
s5 b s

0
b r
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• Bei binärer Codierung muß τ die letzte Ziffer löschen
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Varianten von Turingmaschinen

• Vereinfachung für theoretische Analysen

– Binäres Bandalphabet Γ = {1, b}

– Halbseitig unendliches Band

– Restriktivere Ausgabekonvention

– Endzustand statt Halteinstruktion

• Erweiterung des Modells für Programmierzwecke

– Unvollständige Tabellen für δ

– Mehrspurmaschinen

– Mehrkopfmaschinen

– Mehrbandmaschinen

– Mehrdimensionale Maschinen

– Unterprogramme

Alle Varianten führen zum gleichen Berechenbarkeitsbegriff
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• Halbseitig unendliches Band



Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 Turingmaschinen

Einfachere Turingmaschinenmodelle

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen möglich
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Einfachere Turingmaschinenmodelle

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen möglich

• Halbseitig unendliches Band

– Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (al, ar)

al repräsentiert die linke, ar die rechte Bandhälfte

• Binäres Bandalphabet Γ = {1, b}

– Binärcodierung beliebiger Alphabete als Strings über {1b,11}

• Ausgabewort muß unter dem Kopf beginnen

– Ausgabefunktion ist Bandinhalt vom Kopfsymbol bis zum ersten Blank.

– Ergänze Programm für δ um Kopfbewegung zum Wortanfang.

• Fester Endzustand se statt Halteinstruktion

– Ändere δ(s,a) = (s′,a′,h) in δ(s,a) = (se,a
′,l)
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Programmiertechniken für Turingmaschinen

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen möglich

• Unvollständige Tabellen für δ

– Ergänze nichtgenannte Einträge als δ(s,a) = (s,a,h)

• Mehrspurmaschinen

– Simulation von k Spuren durch Tupelalphabet (a1, ..., ak)

ai repräsentiert Spur i

• Mehrbandmaschinen

– Simulation durch Mehrspurmaschine und Marker für Kopfpositionen

• Mehrkopfmaschinen

– Speichere Kopfpositionen auf separatem Band and verarbeite sequentiell

• Unterprogramme

– Speichere Argumente und Rückgabewerte auf separatem Band.
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Mehrbandmaschine

Band 1

Band 2

Lese-Schreibkopf

Band 3

Programm δ Zustand s
-

δ(s,(a1,a2,a3)) =

(s′,(a′1,a
′
2,a

′
3),(P1,P2,P3))

�

s,(a1,a2,a3)

?

a′1,P1

6

a1

+ a′2,P2

3

a2

W
a′3,P3

O

a3

. . . . b 1 1 0 a1 1 b . . .

. . . . a2 0 0 1 b b b . . .

. . . . b b b b 1 a3 1 . . .
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Simulation einer Mehrbandmaschine

Programm δ Zustand s

Lese-Schreibkopf

Bandspur 1

Kopfmarke 1

Bandspur 2

Kopfmarke 2

Bandspur 3

Kopfmarke 3

Begrenzungsmarke

-
δ(s,a)=(s′,a′,P )

?

a′,P

�

s,a
6

a

. . . . b 1 1 0 a1 1 b . . .

. . . . a2 0 0 1 b b b . . .

. . . . b b b b 1 a3 1 . . .

#

#

#

#

• Verarbeite Bänder sequentiell

– Lesen: Suche Begrenzungsmarke, laufe zurück bis zu Kopfmarken

– Schreiben und Kopfbewegung analog

– Codiere Symbole und Kopfinstruktionen im Zustand

– Simulation benötigt quadratische Zeit


