
Theoretische Informatik II

Einheit 6

Berechenbarkeitsmodelle

1. Turingmaschinen

2. Registermaschinen

3. µ-rekursive Funktionen

4. Typ-0 Grammatiken

5. Weitere Berechenbarkeitsmodelle

6. Church’sche These

Theoretische Informatik II §6: Berechenbarkeitsmodelle 1 Berechenbarkeitsmodelle

Berechenbarkeitsmodelle – wozu?

• Es gibt mehr als nur die Standard PC Architektur

– Lisp Maschinen, Parallelrechner, Neuronale Netze

– Nichtdeterministische Maschinen (Quantencomputer)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 1 Berechenbarkeitsmodelle

Berechenbarkeitsmodelle – wozu?

• Es gibt mehr als nur die Standard PC Architektur

– Lisp Maschinen, Parallelrechner, Neuronale Netze

– Nichtdeterministische Maschinen (Quantencomputer)

• Abstrakte Modelle betrachten die wirklichen Fragen zuerst

– Was genau ist das Problem?

– Was charakterisiert eine Lösung des Problems?

– Wie kann man prinzipiell an das Problem herangehen?

– Wie kann man über den Stand der Technik hinausgehen?

Theoretische Informatik II §6: Berechenbarkeitsmodelle 1 Berechenbarkeitsmodelle

Berechenbarkeitsmodelle – wozu?

• Es gibt mehr als nur die Standard PC Architektur

– Lisp Maschinen, Parallelrechner, Neuronale Netze

– Nichtdeterministische Maschinen (Quantencomputer)

• Abstrakte Modelle betrachten die wirklichen Fragen zuerst

– Was genau ist das Problem?

– Was charakterisiert eine Lösung des Problems?

– Wie kann man prinzipiell an das Problem herangehen?

– Wie kann man über den Stand der Technik hinausgehen?

• Berechenbarkeitsmodelle klären fundamentale Fragen

– Was ist überhaupt Berechenbarkeit?

– Auf welche Arten kann man Berechnungen durchführen?

– Sind bestimmte Berechnungsmodelle besser als andere?

Theoretische Informatik II §6: Berechenbarkeitsmodelle 1 Berechenbarkeitsmodelle

Berechenbarkeitsmodelle – wozu?

• Es gibt mehr als nur die Standard PC Architektur

– Lisp Maschinen, Parallelrechner, Neuronale Netze

– Nichtdeterministische Maschinen (Quantencomputer)

• Abstrakte Modelle betrachten die wirklichen Fragen zuerst

– Was genau ist das Problem?

– Was charakterisiert eine Lösung des Problems?

– Wie kann man prinzipiell an das Problem herangehen?

– Wie kann man über den Stand der Technik hinausgehen?

• Berechenbarkeitsmodelle klären fundamentale Fragen

– Was ist überhaupt Berechenbarkeit?

– Auf welche Arten kann man Berechnungen durchführen?

– Sind bestimmte Berechnungsmodelle besser als andere?

Berechenbarkeitsmodelle gab es lange vor dem ersten Computer

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

g(x) =















1 wenn ein beliebiges Teilsegment der Dezimalentwicklung

von π identisch mit der Zahl x ist,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

g(x) =















1 wenn ein beliebiges Teilsegment der Dezimalentwicklung

von π identisch mit der Zahl x ist,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

g(x) =















1 wenn ein beliebiges Teilsegment der Dezimalentwicklung

von π identisch mit der Zahl x ist,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

g(x) =















1 wenn ein beliebiges Teilsegment der Dezimalentwicklung

von π identisch mit der Zahl x ist,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

g(x) =















1 wenn ein beliebiges Teilsegment der Dezimalentwicklung

von π identisch mit der Zahl x ist,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

g(x) =















1 wenn ein beliebiges Teilsegment der Dezimalentwicklung

von π identisch mit der Zahl x ist,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

g(x) =















1 wenn ein beliebiges Teilsegment der Dezimalentwicklung

von π identisch mit der Zahl x ist,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

g(x) =















1 wenn ein beliebiges Teilsegment der Dezimalentwicklung

von π identisch mit der Zahl x ist,

0 sonst

h(x) =















1 wenn in der Dezimalentwicklung von π mindestens

x aufeinanderfolgende Neunen vorkommen,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

g(x) =















1 wenn ein beliebiges Teilsegment der Dezimalentwicklung

von π identisch mit der Zahl x ist,

0 sonst

h(x) =















1 wenn in der Dezimalentwicklung von π mindestens

x aufeinanderfolgende Neunen vorkommen,

0 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

g(x) =















1 wenn ein beliebiges Teilsegment der Dezimalentwicklung

von π identisch mit der Zahl x ist,

0 sonst

h(x) =















1 wenn in der Dezimalentwicklung von π mindestens

x aufeinanderfolgende Neunen vorkommen,

0 sonst

Sind f , g und h berechenbar? Warum?

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Berechenbarkeitsmodelle

Was ist überhaupt Berechenbarkeit?

π = 3.1415952653589789845199165029043797403573989868. . .

f(x) =















1 wenn ein Anfangssegment der Dezimalentwicklung von π

(unter Ignorierung des Punktes) identisch mit x ist,

0 sonst

g(x) =















1 wenn ein beliebiges Teilsegment der Dezimalentwicklung

von π identisch mit der Zahl x ist,

0 sonst

h(x) =















1 wenn in der Dezimalentwicklung von π mindestens

x aufeinanderfolgende Neunen vorkommen,

0 sonst

Sind f , g und h berechenbar? Warum?

Der Begriff “berechenbar” muß mathematisch präzisiert werden

Theoretische Informatik II §6: Berechenbarkeitsmodelle 3 Berechenbarkeitsmodelle

Die wichtigsten Berechenbarkeitsmodelle

• Turingmaschine (Rechnen mit Papier und Bleistift)

• Abakus (Das älteste mechanische Hilfsmittel)

• Registermaschine (Assembler / Maschinenprogrammierung)

• PASCAL-reduziert (Imperative höhere Sprachen)

• Nichtdeterministische Turingmaschine (Parallelismus/Quantenrechner)

• µ-rekursive Funktionen (Mathematisches Rechnen)

• λ-Kalkül (Funktionale Sprachen, LISP)

• Logische Repräsentierbarkeit (Logikprogrammierung, PROLOG)

• Typ-0 Grammatiken /Markov-Algorithmen (Regelbasierte Sprachen)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 3 Berechenbarkeitsmodelle

Die wichtigsten Berechenbarkeitsmodelle

• Turingmaschine (Rechnen mit Papier und Bleistift)

• Abakus (Das älteste mechanische Hilfsmittel)

• Registermaschine (Assembler / Maschinenprogrammierung)

• PASCAL-reduziert (Imperative höhere Sprachen)

• Nichtdeterministische Turingmaschine (Parallelismus/Quantenrechner)

• µ-rekursive Funktionen (Mathematisches Rechnen)

• λ-Kalkül (Funktionale Sprachen, LISP)

• Logische Repräsentierbarkeit (Logikprogrammierung, PROLOG)

• Typ-0 Grammatiken /Markov-Algorithmen (Regelbasierte Sprachen)

Alle Modelle führen zu demselben Berechenbarkeitsbegriff

Theoretische Informatik II §6: Berechenbarkeitsmodelle 3 Berechenbarkeitsmodelle

Die wichtigsten Berechenbarkeitsmodelle

• Turingmaschine (Rechnen mit Papier und Bleistift)

• Abakus (Das älteste mechanische Hilfsmittel)

• Registermaschine (Assembler / Maschinenprogrammierung)

• PASCAL-reduziert (Imperative höhere Sprachen)

• Nichtdeterministische Turingmaschine (Parallelismus/Quantenrechner)

• µ-rekursive Funktionen (Mathematisches Rechnen)

• λ-Kalkül (Funktionale Sprachen, LISP)

• Logische Repräsentierbarkeit (Logikprogrammierung, PROLOG)

• Typ-0 Grammatiken /Markov-Algorithmen (Regelbasierte Sprachen)

Alle Modelle führen zu demselben Berechenbarkeitsbegriff

⇓

Church’sche These:

Intuitive Berechenbarkeit wird durch diese Modelle exakt beschrieben

Theoretische Informatik II

Einheit 6.1

Turingmaschinen

1. Arbeitsweise

2. Formale Semantik

3. Turing-Berechenbarkeit

4. Varianten von Turingmaschinen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 1 Turingmaschinen

Turingmaschinen

Programm δ Zustand s

Lese-Schreibkopf

Band

-
δ(s,a)=(s′,a′,P)

?

a′,P

�

s,a
6

a

. . . . b 1 1 0 a 1 b . . .

• Verallgemeinerung von Push-Down Automaten

– Stack mit LIFO Zugriff ersetzt durch potentiell unendliches Band

– Band fast überall unbeschrieben (Leersymbol b ≡ “Blank”)

– Lese-Schreibkopf kann Symbole lesen, schreiben und bewegt werden

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Turingmaschinen

Turingmaschinen – mathematisch Definition A

Programm δ Zustand s

Lese-Schreibkopf

Band

-
δ(s,a)=(s′,a′,P)

?

a′,P

�

s,a
6

a

. . . . b 1 1 0 a 1 b . . .

Eine Turingmaschine ist ein 6-Tupel τ = (S, X , Γ, δ, s0, b)

• S nichtleere endliche Zustandsmenge

• s
0
∈S Anfangszustand

• Γ nichtleeres endliches Bandalphabet

• X⊆Γ Eingabealphabet

• b ∈Γ\X Blanksymbol

• δ:S×Γ → S×Γ×{r,l,h} (partielle) Zustandsüberführungsfunktion

Theoretische Informatik II §6: Berechenbarkeitsmodelle 3 Turingmaschinen

Beschreibung von Turingmaschinen

Übergangstabelle für δ

Zustand gelesen zu schreiben Folgezustand Kopfbewegung

s
0

0 s
0

0 r

s
0

1 s
0

1 r

s
0

b s
1

b l

s
1

1 s
1

0 l

s
1

0 s
2

1 l

s
1

b s
3

1 h

s
2

0 s
2

0 l

s
2

1 s
2

1 l

s
2

b s
3

b h

Theoretische Informatik II §6: Berechenbarkeitsmodelle 3 Turingmaschinen

Beschreibung von Turingmaschinen

Übergangstabelle für δ

Zustand gelesen zu schreiben Folgezustand Kopfbewegung

s
0

0 s
0

0 r

s
0

1 s
0

1 r

s
0

b s
1

b l

s
1

1 s
1

0 l

s
1

0 s
2

1 l

s
1

b s
3

1 h

s
2

0 s
2

0 l

s
2

1 s
2

1 l

s
2

b s
3

b h

Restliche Komponenten implizit bestimmt

Zustandsmenge S = {s
0
,s

1
,s

2
,s

3
}

Anfangszustand s
0

= s
0

Bandalphabet Γ = {0, 1, b}

Eingabealphabet X = {0, 1}

Blanksymbol b = b

Theoretische Informatik II §6: Berechenbarkeitsmodelle 4 Turingmaschinen

Arbeitsweise von Turingmaschinen

Programm δ Zustand s

Lese-Schreibkopf

Band

-
δ(s,a)=(s′,a′,P)

?

a′,P

�
s,a

6
a

. . . . b 1 1 0 a 1 b . . .

• Anfangssituation
– Eingabewort w steht auf dem Band, umgeben von Leerzeichen

– Kopf über erstem Symbol, Zustand ist s
0

• Arbeitschritt
– Zeichen a lesen, Zustand s und δ(s,a)=(s′,a′,P) bestimmen

– Neuer Zustand s′, Zeichen a′ schreiben, Kopf gemäß P bewegen

– Stop wenn P=h

• Ergebnis
– Längstes Wort auf Band ohne Leerzeichen am Anfang und Ende

Achtung! Details in Literatur unterschiedlich

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

Eingabewort 01001δ
s a s′ a′ P

→ s
0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s0

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

s′,a′

�

s,a
6

a

. . . . b 0 1 0 0 1 b . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P

→ s
0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s0

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

s′,a′

�

s,a
6

0

. . . . b b0 1 0 0 1 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P

→ s
0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s0

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

s′,a′

�

s0,0
6

0

. . . . b b0 1 0 0 1 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P

→ s
0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s0

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

s′,a′

�

s0,0
6

0

. . . . b b0 1 0 0 1 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P

→ s
0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s0

LSK

Band

-
δ(s,a)=(s0,0,r)

?

s′,a′

�

s0,0
6

0

. . . . b b0 1 0 0 1 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P

→ s
0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s0

LSK

Band

-
δ(s,a)=(s0,0,r)

?

0,r

�

s0,0
6

0

. . . . b b0 1 0 0 1 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P

→ s
0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s0

LSK

Band

-
δ(s,a)=(s0,0,r)

?

0,r

�

s0,0
6

0

. . . . b b0 1 0 0 1 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P
s

0
0 s

0
0 r

→ s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s0

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

1,r

�

s,a
6

1

. . . . b b0 1 0 0 1 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P

→ s
0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s0

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

0,r

�

s,a
6

0

. . . . b b0 1 0 0 1 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P

→ s
0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s0

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

0,r

�

s,a
6

0

. . . . b b0 1 0 0 1 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P
s

0
0 s

0
0 r

→ s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s0

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

1,r

�

s,a
6

1

. . . . b b0 1 0 0 1 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P
s

0
0 s

0
0 r

s
0
1 s

0
1 r

→ s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s0

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

b,l

�

s,a
6

b

. . . . b b0 1 0 0 1 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P
s

0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

→ s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s1

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

0,l

�

s,a
6

1

. . . . b b0 1 0 0 1 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P
s

0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

→ s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s1

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

1,l

�

s,a
6

0

. . . . b b0 1 0 0 0 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P
s

0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

→ s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s2

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

0,l

�

s,a
6

0

. . . . b b0 1 0 1 0 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P
s

0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

→ s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s2

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

1,l

�

s,a
6

1

. . . . b b0 1 0 1 0 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P
s

0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

→ s
2
0 s

2
0 l

s
2
1 s

2
1 l

s
2
b s

3
b h

Zustand s2

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

0,l

�

s,a
6

0

. . . . b b0 1 0 1 0 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

δ
s a s′ a′ P
s

0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

→ s
2
b s

3
b h

Zustand s2

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

b,h

�

s,a
6

b

. . . . b b0 1 0 1 0 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Turingmaschinen

Abarbeitung von Turing-Programmen

Ausgabewort 01010δ
s a s′ a′ P
s

0
0 s

0
0 r

s
0
1 s

0
1 r

s
0
b s

1
b l

s
1
1 s

1
0 l

s
1
0 s

2
1 l

s
1
b s

3
1 h

s
2
0 s

2
0 l

s
2
1 s

2
1 l

→ s
2
b s

3
b h

Zustand s3

LSK

Band

-
δ(s,a)=(s′,a′,P)

?

�

s,a
6

. . . . b b0 1 0 1 0 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Turingmaschinen

Verarbeitung von Turing-Programmen – präzisiert

• Definiere Konfiguration von τ Definition B

– Schnapschuß der Turingmaschine τ zu einem gegebenen Zeitpunkt

· aktueller Zustand + Bandinhalt + Kopfposition

– Kτ : Menge aller Konfigurationen von τ

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Turingmaschinen

Verarbeitung von Turing-Programmen – präzisiert

• Definiere Konfiguration von τ Definition B

– Schnapschuß der Turingmaschine τ zu einem gegebenen Zeitpunkt

· aktueller Zustand + Bandinhalt + Kopfposition

– Kτ : Menge aller Konfigurationen von τ

• Definiere Arbeitsweise von τ Definition C

– Anfangskonfiguration α(w) für Eingabeworte w ∈X∗

– Nachfolgekonfiguration (Arbeitsschritt) δ̂:Kτ→Kτ

– Ausgabefunktion (Ergebnis) ω:Kτ→Γ∗

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Turingmaschinen

Verarbeitung von Turing-Programmen – präzisiert

• Definiere Konfiguration von τ Definition B

– Schnapschuß der Turingmaschine τ zu einem gegebenen Zeitpunkt

· aktueller Zustand + Bandinhalt + Kopfposition

– Kτ : Menge aller Konfigurationen von τ

• Definiere Arbeitsweise von τ Definition C

– Anfangskonfiguration α(w) für Eingabeworte w ∈X∗

– Nachfolgekonfiguration (Arbeitsschritt) δ̂:Kτ→Kτ

– Ausgabefunktion (Ergebnis) ω:Kτ→Γ∗

• Definiere die von τ berechnete Funktion hτ Definition D

Theoretische Informatik II §6: Berechenbarkeitsmodelle 7 Turingmaschinen

Konfiguration von Turing-Programmen Definition B

• Eine Konfiguration ist ein Tripel κ = (s,f ,i) mit

– s ∈S aktueller Zustand

– f :Z→Γ Bandinhaltsfunktion

f(n) ≡ Inhalt der n-ten Bandzelle

(f(j) = b für fast alle j)

– i ∈Z Kopfposition

Alternative Repräsentation: Tripel (s,u,v) mit
– s aktueller Zustand,
– u String links vom Kopf (von rechts nach links),
– v String rechts vom Kopf

•Kτ : Menge aller Konfigurationen von τ

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 Turingmaschinen

Arbeitsweise von Turingmaschinen Definition C

• Anfangskonfiguration α:X∗→Kτ

– Für ein Eingabewort w = w
0
w

1
...w

k
ist α(w) = (s

0
,fw,0),

mit fw(j) =

{

wj falls j ∈{0,..,k},

b sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 Turingmaschinen

Arbeitsweise von Turingmaschinen Definition C

• Anfangskonfiguration α:X∗→Kτ

– Für ein Eingabewort w = w
0
w

1
...w

k
ist α(w) = (s

0
,fw,0),

mit fw(j) =

{

wj falls j ∈{0,..,k},

b sonst

• Nachfolgekonfiguration δ̂:Kτ→Kτ

– Für eine Konfiguration κ=(s,f ,i) mit δ(s,f(i))=(s′,a′,P) ist δ̂(κ)=(s′,f ′,i′)

wobei f ′(j) =

{

a falls j=i,

f(j) sonst
und i′ =











i+1 falls P=r,
i−1 falls P=l,
i falls P=h

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 Turingmaschinen

Arbeitsweise von Turingmaschinen Definition C

• Anfangskonfiguration α:X∗→Kτ

– Für ein Eingabewort w = w
0
w

1
...w

k
ist α(w) = (s

0
,fw,0),

mit fw(j) =

{

wj falls j ∈{0,..,k},

b sonst

• Nachfolgekonfiguration δ̂:Kτ→Kτ

– Für eine Konfiguration κ=(s,f ,i) mit δ(s,f(i))=(s′,a′,P) ist δ̂(κ)=(s′,f ′,i′)

wobei f ′(j) =

{

a falls j=i,

f(j) sonst
und i′ =











i+1 falls P=r,
i−1 falls P=l,
i falls P=h

• Ausgabefunktion ω:Kτ→Γ∗

– Für eine Konfiguration κ=(s,f ,i) ist

ω(κ) =

{

ε falls f(j)=b für alle j,

f(k)f(k+1)...f(k+n) sonst

wobei k=max{i|∀j<i f(j)=b} und n=min{i|∀j>k+i f(j)=b}

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 Turingmaschinen

Semantik von Turing-Programmen Definition D

• Intuitive Beschreibung

– Eingabe α(w)

– Wiederholte Anwendung von δ̂

– Ausgabe ω(κ), wenn Stop-Konfiguration κ erreicht wird.

– Undefiniert (Endlosschleife), andernfalls

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 Turingmaschinen

Semantik von Turing-Programmen Definition D

• Intuitive Beschreibung

– Eingabe α(w)

– Wiederholte Anwendung von δ̂

– Ausgabe ω(κ), wenn Stop-Konfiguration κ erreicht wird.

– Undefiniert (Endlosschleife), andernfalls

• Mathematische Semantik von τ = (S, X, Γ, δ, s0, b)

– Die von τ = berechnete Funktion hτ :X
∗→Γ∗ ist definiert durch

hτ(w) =



















ω(δ̂m+1(α(w))) falls m=min{j | ∃s, f, i, s′, a′ δ̂j(α(w))=(s, f, i)

und δ(s, f(i))=(s′, a′, h)}
existiert,

⊥ sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 Turingmaschinen

Semantik von Turing-Programmen Definition D

• Intuitive Beschreibung

– Eingabe α(w)

– Wiederholte Anwendung von δ̂

– Ausgabe ω(κ), wenn Stop-Konfiguration κ erreicht wird.

– Undefiniert (Endlosschleife), andernfalls

• Mathematische Semantik von τ = (S, X, Γ, δ, s0, b)

– Die von τ = berechnete Funktion hτ :X
∗→Γ∗ ist definiert durch

hτ(w) =



















ω(δ̂m+1(α(w))) falls m=min{j | ∃s, f, i, s′, a′ δ̂j(α(w))=(s, f, i)

und δ(s, f(i))=(s′, a′, h)}
existiert,

⊥ sonst

Definition E

– Definitionsbereich von τ : {w ∈X∗ |hτ(w)6=⊥} (Haltebereich, domain)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 Turingmaschinen

Semantik von Turing-Programmen Definition D

• Intuitive Beschreibung

– Eingabe α(w)

– Wiederholte Anwendung von δ̂

– Ausgabe ω(κ), wenn Stop-Konfiguration κ erreicht wird.

– Undefiniert (Endlosschleife), andernfalls

• Mathematische Semantik von τ = (S, X, Γ, δ, s0, b)

– Die von τ = berechnete Funktion hτ :X
∗→Γ∗ ist definiert durch

hτ(w) =



















ω(δ̂m+1(α(w))) falls m=min{j | ∃s, f, i, s′, a′ δ̂j(α(w))=(s, f, i)

und δ(s, f(i))=(s′, a′, h)}
existiert,

⊥ sonst

Definition E

– Definitionsbereich von τ : {w ∈X∗ |hτ(w)6=⊥} (Haltebereich, domain)

– Wertebereich von τ : {v ∈Γ∗ | ∃w ∈X∗ hτ(w)=v} (Ergebnisbereich, range)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Turingmaschinen

Beispiele für Turing-Maschinen

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Turingmaschinen

Beispiele für Turing-Maschinen

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

Fügt am Ende eines Wortes w ∈1∗ eine 1 an (“Bierdeckelmaschine”)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Turingmaschinen

Beispiele für Turing-Maschinen

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

Fügt am Ende eines Wortes w ∈1∗ eine 1 an (“Bierdeckelmaschine”)

• Mathematische Analyse:

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Turingmaschinen

Beispiele für Turing-Maschinen

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

Fügt am Ende eines Wortes w ∈1∗ eine 1 an (“Bierdeckelmaschine”)

• Mathematische Analyse:

– Anfangskonfiguration: α(1n) = (s
0
,fn,0), wobei fn(j) =

{

1 falls j ∈{0,..,n−1},

b sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Turingmaschinen

Beispiele für Turing-Maschinen

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

Fügt am Ende eines Wortes w ∈1∗ eine 1 an (“Bierdeckelmaschine”)

• Mathematische Analyse:

– Anfangskonfiguration: α(1n) = (s
0
,fn,0), wobei fn(j) =

{

1 falls j ∈{0,..,n−1},

b sonst

– Nachfolgekonfigurationen: δ̂(s
0
,fn,j) =

{

(s
0
, fn, j+1) falls j ∈{0,..,n−1},

(s
0
, fn+1, n) falls j=n

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Turingmaschinen

Beispiele für Turing-Maschinen

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

Fügt am Ende eines Wortes w ∈1∗ eine 1 an (“Bierdeckelmaschine”)

• Mathematische Analyse:

– Anfangskonfiguration: α(1n) = (s
0
,fn,0), wobei fn(j) =

{

1 falls j ∈{0,..,n−1},

b sonst

– Nachfolgekonfigurationen: δ̂(s
0
,fn,j) =

{

(s
0
, fn, j+1) falls j ∈{0,..,n−1},

(s
0
, fn+1, n) falls j=n

– Terminierung: min{j | δ̂j(s
0
,fn,0)=(s

0
,fn,j) ∧ δ(s

0
,fn(j))=(s

0
,b,h)} = n

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Turingmaschinen

Beispiele für Turing-Maschinen

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

Fügt am Ende eines Wortes w ∈1∗ eine 1 an (“Bierdeckelmaschine”)

• Mathematische Analyse:

– Anfangskonfiguration: α(1n) = (s
0
,fn,0), wobei fn(j) =

{

1 falls j ∈{0,..,n−1},

b sonst

– Nachfolgekonfigurationen: δ̂(s
0
,fn,j) =

{

(s
0
, fn, j+1) falls j ∈{0,..,n−1},

(s
0
, fn+1, n) falls j=n

– Terminierung: min{j | δ̂j(s
0
,fn,0)=(s

0
,fn,j) ∧ δ(s

0
,fn(j))=(s

0
,b,h)} = n

– Ergebnis: δ̂n+1(s
0
,fn,0) = (s

0
,fn+1,n)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Turingmaschinen

Beispiele für Turing-Maschinen

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

Fügt am Ende eines Wortes w ∈1∗ eine 1 an (“Bierdeckelmaschine”)

• Mathematische Analyse:

– Anfangskonfiguration: α(1n) = (s
0
,fn,0), wobei fn(j) =

{

1 falls j ∈{0,..,n−1},

b sonst

– Nachfolgekonfigurationen: δ̂(s
0
,fn,j) =

{

(s
0
, fn, j+1) falls j ∈{0,..,n−1},

(s
0
, fn+1, n) falls j=n

– Terminierung: min{j | δ̂j(s
0
,fn,0)=(s

0
,fn,j) ∧ δ(s

0
,fn(j))=(s

0
,b,h)} = n

– Ergebnis: δ̂n+1(s
0
,fn,0) = (s

0
,fn+1,n)

– Ausgabefunktion: ω(s
0
, fn+1,n) = 1n+1

(max{i | ∀j<i fn+1(j)=b}=0, min{i | ∀j>i fn+1(j)=b}=n+1)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Turingmaschinen

Beispiele für Turing-Maschinen

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

Fügt am Ende eines Wortes w ∈1∗ eine 1 an (“Bierdeckelmaschine”)

• Mathematische Analyse:

– Anfangskonfiguration: α(1n) = (s
0
,fn,0), wobei fn(j) =

{

1 falls j ∈{0,..,n−1},

b sonst

– Nachfolgekonfigurationen: δ̂(s
0
,fn,j) =

{

(s
0
, fn, j+1) falls j ∈{0,..,n−1},

(s
0
, fn+1, n) falls j=n

– Terminierung: min{j | δ̂j(s
0
,fn,0)=(s

0
,fn,j) ∧ δ(s

0
,fn(j))=(s

0
,b,h)} = n

– Ergebnis: δ̂n+1(s
0
,fn,0) = (s

0
,fn+1,n)

– Ausgabefunktion: ω(s
0
, fn+1,n) = 1n+1

(max{i | ∀j<i fn+1(j)=b}=0, min{i | ∀j>i fn+1(j)=b}=n+1)

⇓

hτ1(1
n) = 1n+1 für alle n, Definitionsbereich {1}∗, Wertebereich {1}+

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Turingmaschinen

Exkurs: Wie genau muß man sein?

Ein Beweis ist ein Argument, das den Leser überzeugt

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Turingmaschinen

Exkurs: Wie genau muß man sein?

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Turingmaschinen

Exkurs: Wie genau muß man sein?

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Turingmaschinen

Exkurs: Wie genau muß man sein?

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

• Knapp genug, um übersichtlich und merkbar zu sein

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Turingmaschinen

Exkurs: Wie genau muß man sein?

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

• Knapp genug, um übersichtlich und merkbar zu sein

• Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daß Sie nichts mehr falsch machen können

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Turingmaschinen

Exkurs: Wie genau muß man sein?

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

• Knapp genug, um übersichtlich und merkbar zu sein

• Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daß Sie nichts mehr falsch machen können

... es reicht nicht, daß Sie es einmal richtig gemacht haben

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Turingmaschinen

Exkurs: Wie genau muß man sein?

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

• Knapp genug, um übersichtlich und merkbar zu sein

• Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daß Sie nichts mehr falsch machen können

... es reicht nicht, daß Sie es einmal richtig gemacht haben

• Tip: ausführliche Lösungen entwickeln, bis Sie genug Erfahrung haben.

Für Präsentation zentrale Gedanken aus Lösung extrahieren

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Turingmaschinen

Exkurs: Wie genau muß man sein?

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

• Knapp genug, um übersichtlich und merkbar zu sein

• Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daß Sie nichts mehr falsch machen können

... es reicht nicht, daß Sie es einmal richtig gemacht haben

• Tip: ausführliche Lösungen entwickeln, bis Sie genug Erfahrung haben.

Für Präsentation zentrale Gedanken aus Lösung extrahieren

• Test: verstehen Ihre Kommilitonen Ihre Lösung und warum sie funktioniert?

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Turingmaschinen

Beispiele für Turing-Maschinen II

• τ 2 = ({s
0
}, {1}, {b,1}, δ

2
, s

0
, b) mit δ

2
= s a s′ a′ P

s
0
1 s

0
b r

s
0
b s

0
b h

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Turingmaschinen

Beispiele für Turing-Maschinen II

• τ 2 = ({s
0
}, {1}, {b,1}, δ

2
, s

0
, b) mit δ

2
= s a s′ a′ P

s
0
1 s

0
b r

s
0
b s

0
b h

Löscht ein Wort w ∈1∗:

hτ2(w) = ε für alle w, Definitionsbereich {1}∗, Wertebereich {ε}

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Turingmaschinen

Beispiele für Turing-Maschinen II

• τ 2 = ({s
0
}, {1}, {b,1}, δ

2
, s

0
, b) mit δ

2
= s a s′ a′ P

s
0
1 s

0
b r

s
0
b s

0
b h

Löscht ein Wort w ∈1∗:

hτ2(w) = ε für alle w, Definitionsbereich {1}∗, Wertebereich {ε}

• τ 3 = ({s
0
,s

1
}, {1}, {b,1}, δ

3
, s

0
, b) mit δ

3
= s a s′ a′ P

s
0
1 s

1
1 r

s
0
b s

1
1 h

s
1
1 s

0
1 r

s
1
b s

1
b r

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Turingmaschinen

Beispiele für Turing-Maschinen II

• τ 2 = ({s
0
}, {1}, {b,1}, δ

2
, s

0
, b) mit δ

2
= s a s′ a′ P

s
0
1 s

0
b r

s
0
b s

0
b h

Löscht ein Wort w ∈1∗:

hτ2(w) = ε für alle w, Definitionsbereich {1}∗, Wertebereich {ε}

• τ 3 = ({s
0
,s

1
}, {1}, {b,1}, δ

3
, s

0
, b) mit δ

3
= s a s′ a′ P

s
0
1 s

1
1 r

s
0
b s

1
1 h

s
1
1 s

0
1 r

s
1
b s

1
b r

Testet Anzahl der Einsen in w ∈1∗:

hτ3(1
n) =

{

1n+1 falls n gerade,
⊥ sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Turingmaschinen

Beispiele für Turing-Maschinen II

• τ 2 = ({s
0
}, {1}, {b,1}, δ

2
, s

0
, b) mit δ

2
= s a s′ a′ P

s
0
1 s

0
b r

s
0
b s

0
b h

Löscht ein Wort w ∈1∗:

hτ2(w) = ε für alle w, Definitionsbereich {1}∗, Wertebereich {ε}

• τ 3 = ({s
0
,s

1
}, {1}, {b,1}, δ

3
, s

0
, b) mit δ

3
= s a s′ a′ P

s
0
1 s

1
1 r

s
0
b s

1
1 h

s
1
1 s

0
1 r

s
1
b s

1
b r

Testet Anzahl der Einsen in w ∈1∗:

hτ3(1
n) =

{

1n+1 falls n gerade,
⊥ sonst

Definitionsbereich {12k | k ∈N}, Wertebereich {12k+1 | k ∈N}

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 Turingmaschinen

Beispiele für Turing-Maschinen III

• τ4 = ({s
0
,s

1
,s

2
,s

3
}, {1}, {b,1,c}, δ4 , s

0
, b) mit δ4 = s a s′ a′ P

s
0
1 s

1
b r

s
0
c s

0
c h

s
0
b s

0
b h

s
1
1 s

1
1 r

s
1
c s

1
c r

s
1
b s

2
c r

s
2
1 s

2
1 h

s
2
c s

2
c h

s
2
b s

3
c l

s
3
1 s

3
1 l

s
3
c s

3
c l

s
3
b s

0
b r

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 Turingmaschinen

Beispiele für Turing-Maschinen III

• τ4 = ({s
0
,s

1
,s

2
,s

3
}, {1}, {b,1,c}, δ4 , s

0
, b) mit δ4 = s a s′ a′ P

s
0
1 s

1
b r

s
0
c s

0
c h

s
0
b s

0
b h

s
1
1 s

1
1 r

s
1
c s

1
c r

s
1
b s

2
c r

s
2
1 s

2
1 h

s
2
c s

2
c h

s
2
b s

3
c l

s
3
1 s

3
1 l

s
3
c s

3
c l

s
3
b s

0
b r

Verdoppelt Anzahl der Einsen

hτ4(1
n) = c2n, Definitionsbereich {1}∗, Wertebereich {c2k | k ∈N}

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 Turingmaschinen

Beispiele für Turing-Maschinen III

• τ4 = ({s
0
,s

1
,s

2
,s

3
}, {1}, {b,1,c}, δ4 , s

0
, b) mit δ4 = s a s′ a′ P

s
0
1 s

1
b r

s
0
c s

0
c h

s
0
b s

0
b h

s
1
1 s

1
1 r

s
1
c s

1
c r

s
1
b s

2
c r

s
2
1 s

2
1 h

s
2
c s

2
c h

s
2
b s

3
c l

s
3
1 s

3
1 l

s
3
c s

3
c l

s
3
b s

0
b r

Verdoppelt Anzahl der Einsen

hτ4(1
n) = c2n, Definitionsbereich {1}∗, Wertebereich {c2k | k ∈N}

Kombinierbar mit isomorpher Variante von τ
3
: hτ ′

3
◦ hτ4(1

n) = c2n+1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 Turingmaschinen

Turing-Berechenbarkeit Definition E

• f :X∗→Y ∗ Turing-berechenbar

– Es gibt eine Turingmaschine τ = (S, X , Γ, δ, s0, b) mit Y ⊆Γ und hτ=f

• T : Menge der Turing-berechenbaren Funktionen

– TX,Y = {f :X∗→Y ∗ | f ist Turing-berechenbar}

– T =
⋃

{TX,Y | X , Y endliches Alphabet}

Theoretische Informatik II §6: Berechenbarkeitsmodelle 15 Turingmaschinen

Übertragung des Berechenbarkeitbegriffs

• Berechenbarkeit von Mengen M⊆X∗

– Semi-Entscheidbarkeit: Berechenbarkeit von ψ
M

:X∗→{0,1}∗,

– Entscheidbarkeit: Berechenbarkeit von χ
M

:X∗→{0,1}∗,

wobei ψ
M

(w) =

{

1 falls w ∈M,

⊥ sonst
χ
M

(w) =

{

1 falls w ∈M,

0 sonst

(partiell-)charakteristische Funktion Definition P

Theoretische Informatik II §6: Berechenbarkeitsmodelle 15 Turingmaschinen

Übertragung des Berechenbarkeitbegriffs

• Berechenbarkeit von Mengen M⊆X∗

– Semi-Entscheidbarkeit: Berechenbarkeit von ψ
M

:X∗→{0,1}∗,

– Entscheidbarkeit: Berechenbarkeit von χ
M

:X∗→{0,1}∗,

wobei ψ
M

(w) =

{

1 falls w ∈M,

⊥ sonst
χ
M

(w) =

{

1 falls w ∈M,

0 sonst

(partiell-)charakteristische Funktion Definition P

• Berechenbarkeit auf Zahlen f :N→N

≡ Berechenbarkeit der Repräsentation fr:X
∗→X∗,

wobei r:N→X∗ bijektiv und fr(w) = r(f(r−1(w)))

Standardcodierungen von Zahlen

– unäre Darstellung ru:N→{1}∗ mit ru(n) = 1n

– binäre Darstellung rb:N→{0,1}∗ (ohne führende Nullen)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 15 Turingmaschinen

Übertragung des Berechenbarkeitbegriffs

• Berechenbarkeit von Mengen M⊆X∗

– Semi-Entscheidbarkeit: Berechenbarkeit von ψ
M

:X∗→{0,1}∗,

– Entscheidbarkeit: Berechenbarkeit von χ
M

:X∗→{0,1}∗,

wobei ψ
M

(w) =

{

1 falls w ∈M,

⊥ sonst
χ
M

(w) =

{

1 falls w ∈M,

0 sonst

(partiell-)charakteristische Funktion Definition P

• Berechenbarkeit auf Zahlen f :N→N

≡ Berechenbarkeit der Repräsentation fr:X
∗→X∗,

wobei r:N→X∗ bijektiv und fr(w) = r(f(r−1(w)))

Standardcodierungen von Zahlen

– unäre Darstellung ru:N→{1}∗ mit ru(n) = 1n

– binäre Darstellung rb:N→{0,1}∗ (ohne führende Nullen)

• Berechenbarkeit auf Tupeln f :X∗×X∗→Y ∗

≡ Berechenbarkeit von f ′:(X∪{#})∗→Y ∗ mit f ′(v#w) = f(v,w)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 Turingmaschinen

Berechenbarkeit der Nachfolgerfunktion

Ist s:N→N mit s(n) = n+1 Turing-berechenbar?

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 Turingmaschinen

Berechenbarkeit der Nachfolgerfunktion

Ist s:N→N mit s(n) = n+1 Turing-berechenbar?

• Bei unärer Codierung:

– Ist su:{1}
∗→{1}∗ mit su(1

n) = 1n+1 Turing-berechenbar?

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 Turingmaschinen

Berechenbarkeit der Nachfolgerfunktion

Ist s:N→N mit s(n) = n+1 Turing-berechenbar?

• Bei unärer Codierung:

– Ist su:{1}
∗→{1}∗ mit su(1

n) = 1n+1 Turing-berechenbar?

– Turingmaschine muß eine 1 anhängen: su = hτ1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 Turingmaschinen

Berechenbarkeit der Nachfolgerfunktion

Ist s:N→N mit s(n) = n+1 Turing-berechenbar?

• Bei unärer Codierung:

– Ist su:{1}
∗→{1}∗ mit su(1

n) = 1n+1 Turing-berechenbar?

– Turingmaschine muß eine 1 anhängen: su = hτ1

• Bei binärer Codierung

– Ist sb:{0,1}
∗→{0,1}∗ mit sb(rb(n)) = rb(n+1) Turing-berechenbar?

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 Turingmaschinen

Berechenbarkeit der Nachfolgerfunktion

Ist s:N→N mit s(n) = n+1 Turing-berechenbar?

• Bei unärer Codierung:

– Ist su:{1}
∗→{1}∗ mit su(1

n) = 1n+1 Turing-berechenbar?

– Turingmaschine muß eine 1 anhängen: su = hτ1

• Bei binärer Codierung

– Ist sb:{0,1}
∗→{0,1}∗ mit sb(rb(n)) = rb(n+1) Turing-berechenbar?

– τs muß Ziffern von rechts beginnend umwandeln, ggf. mit Übertrag

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 Turingmaschinen

Berechenbarkeit der Nachfolgerfunktion

Ist s:N→N mit s(n) = n+1 Turing-berechenbar?

• Bei unärer Codierung:

– Ist su:{1}
∗→{1}∗ mit su(1

n) = 1n+1 Turing-berechenbar?

– Turingmaschine muß eine 1 anhängen: su = hτ1

• Bei binärer Codierung

– Ist sb:{0,1}
∗→{0,1}∗ mit sb(rb(n)) = rb(n+1) Turing-berechenbar?

– τs muß Ziffern von rechts beginnend umwandeln, ggf. mit Übertrag

s a s′ a′ P
s

0
0 s

0
0 r rechtes Ende suchen

s
0
1 s

0
1 r rechtes Ende suchen

s
0
b s

1
b l rechtes Ende gefunden

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 Turingmaschinen

Berechenbarkeit der Nachfolgerfunktion

Ist s:N→N mit s(n) = n+1 Turing-berechenbar?

• Bei unärer Codierung:

– Ist su:{1}
∗→{1}∗ mit su(1

n) = 1n+1 Turing-berechenbar?

– Turingmaschine muß eine 1 anhängen: su = hτ1

• Bei binärer Codierung

– Ist sb:{0,1}
∗→{0,1}∗ mit sb(rb(n)) = rb(n+1) Turing-berechenbar?

– τs muß Ziffern von rechts beginnend umwandeln, ggf. mit Übertrag

s a s′ a′ P
s

0
0 s

0
0 r rechtes Ende suchen

s
0
1 s

0
1 r rechtes Ende suchen

s
0
b s

1
b l rechtes Ende gefunden

s
1
1 s

1
0 l Addieren mit Übertrag

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 Turingmaschinen

Berechenbarkeit der Nachfolgerfunktion

Ist s:N→N mit s(n) = n+1 Turing-berechenbar?

• Bei unärer Codierung:

– Ist su:{1}
∗→{1}∗ mit su(1

n) = 1n+1 Turing-berechenbar?

– Turingmaschine muß eine 1 anhängen: su = hτ1

• Bei binärer Codierung

– Ist sb:{0,1}
∗→{0,1}∗ mit sb(rb(n)) = rb(n+1) Turing-berechenbar?

– τs muß Ziffern von rechts beginnend umwandeln, ggf. mit Übertrag

s a s′ a′ P
s

0
0 s

0
0 r rechtes Ende suchen

s
0
1 s

0
1 r rechtes Ende suchen

s
0
b s

1
b l rechtes Ende gefunden

s
1
1 s

1
0 l Addieren mit Übertrag

s
1
0 s

2
1 h Addieren ohne Übertrag

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 Turingmaschinen

Berechenbarkeit der Nachfolgerfunktion

Ist s:N→N mit s(n) = n+1 Turing-berechenbar?

• Bei unärer Codierung:

– Ist su:{1}
∗→{1}∗ mit su(1

n) = 1n+1 Turing-berechenbar?

– Turingmaschine muß eine 1 anhängen: su = hτ1

• Bei binärer Codierung

– Ist sb:{0,1}
∗→{0,1}∗ mit sb(rb(n)) = rb(n+1) Turing-berechenbar?

– τs muß Ziffern von rechts beginnend umwandeln, ggf. mit Übertrag

s a s′ a′ P
s

0
0 s

0
0 r rechtes Ende suchen

s
0
1 s

0
1 r rechtes Ende suchen

s
0
b s

1
b l rechtes Ende gefunden

s
1
1 s

1
0 l Addieren mit Übertrag

s
1
0 s

2
1 h Addieren ohne Übertrag

s
1
b s

2
1 h Übertrag am linken Ende

Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 Turingmaschinen

Berechenbarkeit der Division durch 2

Ist div2:N→N mit div2(n)=bn/2c Turing-berechenbar?

Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 Turingmaschinen

Berechenbarkeit der Division durch 2

Ist div2:N→N mit div2(n)=bn/2c Turing-berechenbar?

• Bei unärer Codierung muß τ je zwei Einsen löschen
und eine neue hinter dem Ende des Wortes schreiben

Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 Turingmaschinen

Berechenbarkeit der Division durch 2

Ist div2:N→N mit div2(n)=bn/2c Turing-berechenbar?

• Bei unärer Codierung muß τ je zwei Einsen löschen
und eine neue hinter dem Ende des Wortes schreiben

s a s′ a′ P
s

0
1 s

1
b r Erste 1

s
0
b s6 b h keine erste 1

s
1
1 s

2
b r Zweite 1

s
1
b s6 b h keine zweite 1

s
2
1 s

2
1 r Nach rechts zum Eingabeende

s
2
b s

3
b r Ende der Eingabe

s
3
1 s

3
1 r Nach rechts zum Ausgabeende

s
3
b s4 1 l Ende der Ausgabe, 1 schreiben

s4 1 s4 1 l Nach links über Ausgabe
s4 b s5 b l

s5 1 s5 1 l Nach links über Eingabe
s5 b s

0
b r

Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 Turingmaschinen

Berechenbarkeit der Division durch 2

Ist div2:N→N mit div2(n)=bn/2c Turing-berechenbar?

• Bei unärer Codierung muß τ je zwei Einsen löschen
und eine neue hinter dem Ende des Wortes schreiben

s a s′ a′ P
s

0
1 s

1
b r Erste 1

s
0
b s6 b h keine erste 1

s
1
1 s

2
b r Zweite 1

s
1
b s6 b h keine zweite 1

s
2
1 s

2
1 r Nach rechts zum Eingabeende

s
2
b s

3
b r Ende der Eingabe

s
3
1 s

3
1 r Nach rechts zum Ausgabeende

s
3
b s4 1 l Ende der Ausgabe, 1 schreiben

s4 1 s4 1 l Nach links über Ausgabe
s4 b s5 b l

s5 1 s5 1 l Nach links über Eingabe
s5 b s

0
b r

• Bei binärer Codierung muß τ die letzte Ziffer löschen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 18 Turingmaschinen

Varianten von Turingmaschinen

• Vereinfachung für theoretische Analysen

– Binäres Bandalphabet Γ = {1, b}

– Halbseitig unendliches Band

– Restriktivere Ausgabekonvention

– Endzustand statt Halteinstruktion

• Erweiterung des Modells für Programmierzwecke

– Unvollständige Tabellen für δ

– Mehrspurmaschinen

– Mehrkopfmaschinen

– Mehrbandmaschinen

– Mehrdimensionale Maschinen

– Unterprogramme

Alle Varianten führen zum gleichen Berechenbarkeitsbegriff

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 Turingmaschinen

Einfachere Turingmaschinenmodelle

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen möglich

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 Turingmaschinen

Einfachere Turingmaschinenmodelle

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen möglich

• Halbseitig unendliches Band

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 Turingmaschinen

Einfachere Turingmaschinenmodelle

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen möglich

• Halbseitig unendliches Band

– Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (al, ar)

al repräsentiert die linke, ar die rechte Bandhälfte

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 Turingmaschinen

Einfachere Turingmaschinenmodelle

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen möglich

• Halbseitig unendliches Band

– Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (al, ar)

al repräsentiert die linke, ar die rechte Bandhälfte

• Binäres Bandalphabet Γ = {1, b}

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 Turingmaschinen

Einfachere Turingmaschinenmodelle

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen möglich

• Halbseitig unendliches Band

– Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (al, ar)

al repräsentiert die linke, ar die rechte Bandhälfte

• Binäres Bandalphabet Γ = {1, b}

– Binärcodierung beliebiger Alphabete als Strings über {1b,11}

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 Turingmaschinen

Einfachere Turingmaschinenmodelle

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen möglich

• Halbseitig unendliches Band

– Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (al, ar)

al repräsentiert die linke, ar die rechte Bandhälfte

• Binäres Bandalphabet Γ = {1, b}

– Binärcodierung beliebiger Alphabete als Strings über {1b,11}

• Ausgabewort muß unter dem Kopf beginnen

– Ausgabefunktion ist Bandinhalt vom Kopfsymbol bis zum ersten Blank.

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 Turingmaschinen

Einfachere Turingmaschinenmodelle

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen möglich

• Halbseitig unendliches Band

– Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (al, ar)

al repräsentiert die linke, ar die rechte Bandhälfte

• Binäres Bandalphabet Γ = {1, b}

– Binärcodierung beliebiger Alphabete als Strings über {1b,11}

• Ausgabewort muß unter dem Kopf beginnen

– Ausgabefunktion ist Bandinhalt vom Kopfsymbol bis zum ersten Blank.

– Ergänze Programm für δ um Kopfbewegung zum Wortanfang.

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 Turingmaschinen

Einfachere Turingmaschinenmodelle

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen möglich

• Halbseitig unendliches Band

– Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (al, ar)

al repräsentiert die linke, ar die rechte Bandhälfte

• Binäres Bandalphabet Γ = {1, b}

– Binärcodierung beliebiger Alphabete als Strings über {1b,11}

• Ausgabewort muß unter dem Kopf beginnen

– Ausgabefunktion ist Bandinhalt vom Kopfsymbol bis zum ersten Blank.

– Ergänze Programm für δ um Kopfbewegung zum Wortanfang.

• Fester Endzustand se statt Halteinstruktion

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 Turingmaschinen

Einfachere Turingmaschinenmodelle

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen möglich

• Halbseitig unendliches Band

– Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (al, ar)

al repräsentiert die linke, ar die rechte Bandhälfte

• Binäres Bandalphabet Γ = {1, b}

– Binärcodierung beliebiger Alphabete als Strings über {1b,11}

• Ausgabewort muß unter dem Kopf beginnen

– Ausgabefunktion ist Bandinhalt vom Kopfsymbol bis zum ersten Blank.

– Ergänze Programm für δ um Kopfbewegung zum Wortanfang.

• Fester Endzustand se statt Halteinstruktion

– Ändere δ(s,a) = (s′,a′,h) in δ(s,a) = (se,a
′,l)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Turingmaschinen

Programmiertechniken für Turingmaschinen

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen möglich

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Turingmaschinen

Programmiertechniken für Turingmaschinen

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen möglich

• Unvollständige Tabellen für δ

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Turingmaschinen

Programmiertechniken für Turingmaschinen

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen möglich

• Unvollständige Tabellen für δ

– Ergänze nichtgenannte Einträge als δ(s,a) = (s,a,h)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Turingmaschinen

Programmiertechniken für Turingmaschinen

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen möglich

• Unvollständige Tabellen für δ

– Ergänze nichtgenannte Einträge als δ(s,a) = (s,a,h)

• Mehrspurmaschinen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Turingmaschinen

Programmiertechniken für Turingmaschinen

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen möglich

• Unvollständige Tabellen für δ

– Ergänze nichtgenannte Einträge als δ(s,a) = (s,a,h)

• Mehrspurmaschinen

– Simulation von k Spuren durch Tupelalphabet (a1, ..., ak)

ai repräsentiert Spur i

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Turingmaschinen

Programmiertechniken für Turingmaschinen

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen möglich

• Unvollständige Tabellen für δ

– Ergänze nichtgenannte Einträge als δ(s,a) = (s,a,h)

• Mehrspurmaschinen

– Simulation von k Spuren durch Tupelalphabet (a1, ..., ak)

ai repräsentiert Spur i

• Mehrbandmaschinen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Turingmaschinen

Programmiertechniken für Turingmaschinen

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen möglich

• Unvollständige Tabellen für δ

– Ergänze nichtgenannte Einträge als δ(s,a) = (s,a,h)

• Mehrspurmaschinen

– Simulation von k Spuren durch Tupelalphabet (a1, ..., ak)

ai repräsentiert Spur i

• Mehrbandmaschinen

– Simulation durch Mehrspurmaschine und Marker für Kopfpositionen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Turingmaschinen

Programmiertechniken für Turingmaschinen

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen möglich

• Unvollständige Tabellen für δ

– Ergänze nichtgenannte Einträge als δ(s,a) = (s,a,h)

• Mehrspurmaschinen

– Simulation von k Spuren durch Tupelalphabet (a1, ..., ak)

ai repräsentiert Spur i

• Mehrbandmaschinen

– Simulation durch Mehrspurmaschine und Marker für Kopfpositionen

• Mehrkopfmaschinen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Turingmaschinen

Programmiertechniken für Turingmaschinen

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen möglich

• Unvollständige Tabellen für δ

– Ergänze nichtgenannte Einträge als δ(s,a) = (s,a,h)

• Mehrspurmaschinen

– Simulation von k Spuren durch Tupelalphabet (a1, ..., ak)

ai repräsentiert Spur i

• Mehrbandmaschinen

– Simulation durch Mehrspurmaschine und Marker für Kopfpositionen

• Mehrkopfmaschinen

– Speichere Kopfpositionen auf separatem Band and verarbeite sequentiell

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Turingmaschinen

Programmiertechniken für Turingmaschinen

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen möglich

• Unvollständige Tabellen für δ

– Ergänze nichtgenannte Einträge als δ(s,a) = (s,a,h)

• Mehrspurmaschinen

– Simulation von k Spuren durch Tupelalphabet (a1, ..., ak)

ai repräsentiert Spur i

• Mehrbandmaschinen

– Simulation durch Mehrspurmaschine und Marker für Kopfpositionen

• Mehrkopfmaschinen

– Speichere Kopfpositionen auf separatem Band and verarbeite sequentiell

• Unterprogramme

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Turingmaschinen

Programmiertechniken für Turingmaschinen

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen möglich

• Unvollständige Tabellen für δ

– Ergänze nichtgenannte Einträge als δ(s,a) = (s,a,h)

• Mehrspurmaschinen

– Simulation von k Spuren durch Tupelalphabet (a1, ..., ak)

ai repräsentiert Spur i

• Mehrbandmaschinen

– Simulation durch Mehrspurmaschine und Marker für Kopfpositionen

• Mehrkopfmaschinen

– Speichere Kopfpositionen auf separatem Band and verarbeite sequentiell

• Unterprogramme

– Speichere Argumente und Rückgabewerte auf separatem Band.

Theoretische Informatik II §6: Berechenbarkeitsmodelle 21 Turingmaschinen

Mehrbandmaschine

Band 1

Band 2

Lese-Schreibkopf

Band 3

Programm δ Zustand s
-

δ(s,(a1,a2,a3)) =

(s′,(a′1,a
′
2,a

′
3),(P1,P2,P3))

�

s,(a1,a2,a3)

?

a′1,P1

6

a1

+ a′2,P2

3

a2

W
a′3,P3

O

a3

. . . . b 1 1 0 a1 1 b . . .

. . . . a2 0 0 1 b b b . . .

. . . . b b b b 1 a3 1 . . .

Theoretische Informatik II §6: Berechenbarkeitsmodelle 22 Turingmaschinen

Simulation einer Mehrbandmaschine

Programm δ Zustand s

Lese-Schreibkopf

Bandspur 1

Kopfmarke 1

Bandspur 2

Kopfmarke 2

Bandspur 3

Kopfmarke 3

Begrenzungsmarke

-
δ(s,a)=(s′,a′,P)

?

a′,P

�

s,a
6

a

. . . . b 1 1 0 a1 1 b . . .

. . . . a2 0 0 1 b b b . . .

. . . . b b b b 1 a3 1 . . .

#

#

#

#

• Verarbeite Bänder sequentiell

– Lesen: Suche Begrenzungsmarke, laufe zurück bis zu Kopfmarken

– Schreiben und Kopfbewegung analog

– Codiere Symbole und Kopfinstruktionen im Zustand

– Simulation benötigt quadratische Zeit

