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Einheit 6

Berechenbarkeitsmodelle
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3. p-rekursive Funktionen

4. Typ-0 Grammatiken
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BERECHENBARKEITSMODELLE — WOZU? I

e Es gibt mehr als nur die Standard PC Architektur
— Lisp Maschinen, Parallelrechner, Neuronale Netze
— Nichtdeterministische Maschinen (Quantencomputer)
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e Es gibt mehr als nur die Standard PC Architektur
— Lisp Maschinen, Parallelrechner, Neuronale Netze
— Nichtdeterministische Maschinen (Quantencomputer)

e Abstrakte Modelle betrachten die wirklichen Fragen zuerst
— Was genau ist das Problem?
— Was charakterisiert eine Losung des Problems?
— Wie kann man prinzipiell an das Problem herangehen?
— Wie kann man tiber den Stand der Technik hinausgehen?
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e Berechenbarkeitsmodelle klaren fundamentale Fragen
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— Auf welche Arten kann man Berechnungen durchfithren?
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THEORETISCHE INFORMATIK IT §6: BERECHENBARKEITSMODELLE 1 BERECHENBARKEITSMODELLE




BERECHENBARKEITSMODELLE — WOZU? I

e Es gibt mehr als nur die Standard PC Architektur
— Lisp Maschinen, Parallelrechner, Neuronale Netze
— Nichtdeterministische Maschinen (Quantencomputer)
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— Wie kann man prinzipiell an das Problem herangehen?
— Wie kann man tiber den Stand der Technik hinausgehen?

e Berechenbarkeitsmodelle klaren fundamentale Fragen
— Was ist iberhaupt Berechenbarkeit?
— Auf welche Arten kann man Berechnungen durchfithren?
— Sind bestimmte Berechnungsmodelle besser als andere?

Berechenbarkeitsmodelle gab es lange vor dem ersten Computer
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WAS IST UBERHAUPT BERECHENBARKEIT? I

m = 3.1415952653589789845199165029043797403573989368. . .

)
1 wenn ein Anfangssegment der Dezimalentwicklung von

f(x) =<  (unter Ignorierung des Punktes) identisch mit z ist,

0 sonst

\

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 2 BERECHENBARKEITSMODELLE




WAS IST UBERHAUPT BERECHENBARKEIT? I

m = 3.1415952653589789845199165029043797403573989368. . .

)
1 wenn ein Anfangssegment der Dezimalentwicklung von

f(x) =<  (unter Ignorierung des Punktes) identisch mit z ist,

0 sonst

\

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 2 BERECHENBARKEITSMODELLE




WAS IST UBERHAUPT BERECHENBARKEIT? I
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)
1 wenn ein Anfangssegment der Dezimalentwicklung von
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0 sonst

\
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Der Begriff “berechenbar” mufl mathematisch prazisiert werden
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DIE WICHTIGSTEN BERECHENBARKEITSMODELLE I

e Turingmaschine (Rechnen mit Papier und Bleistift
e Abakus (Das alteste mechanische Hilfsmittel
e Registermaschine (Assembler / Maschinenprogrammierung
e PASCAL-reduziert (Imperative hohere Sprachen

e /-rekursive Funktionen (Mathematisches Rechnen
e \-Kalkiil (Funktionale Sprachen, LISP

)
)
)
)
e Nichtdeterministische Turingmaschine (Parallelismus/Quantenrechner)
)
)
e Logische Reprasentierbarkeit (Logikprogrammierung, PROLOG)

)

e Typ-0 Grammatiken / Markov-Algorithmen (Regelbasierte Sprachen
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Alle Modelle filhren zu demselben Berechenbarkeitsbegriff
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U

Church’sche These:
Intuitive Berechenbarkeit wird durch diese Modelle exakt beschrieben
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Einheit 6.1

Turingmaschinen

1. Arbeitsweise
2. Formale Semantik
3. Turing-Berechenbarkeit

4. Varianten von Turingmaschinen
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TURINGMASCHINEN I

d(s,a)=(s",a’,P)
Programm ¢ Zustand s
S,a
a a' P
Band C b 1 1 0 a 1 b

Lese-Schreibkopf

e Verallgemeinerung von Push-Down Automaten
— Stack mit LIFO Zugrift ersetzt durch potentiell unendliches Band
— Band fast tiberall unbeschrieben (Leersymbol b = “Blank™)

— Lese-Schreibkopf kann Symbole lesen, schreiben und bewegt werden
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TURINGMASCHINEN — MATHEMATISCH Definition A

d(s,a)=(s",a’,P)
Programm o Zustand s
S,a
a a', P
Band C b 1 1 0 a 1 b

Lese-Schreibkopf

Fine Turingmaschine ist ein 6-Tupel 7 = (S, X, I', 4, sq, b)
e S nichtleere endliche Zustandsmenge
e 5,5 Anfangszustand
e [' nichtleeres endliches Bandalphabet
e XcI' Eingabealphabet
e b\ X Blanksymbol
e 0:SxI' = SxI'x{r,l,h} (partielle) Zustandsiiberfiihrungsfunktion
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BESCHREIBUNG VON TURINGMASCHINEN I

Ubergangstabelle fiir §

Zustand gelesen | zu schreiben Folgezustand Kopfbewegung
S, 0 S, 0 r
S, 1 SH r
S, b SH b 1
S, 1 S, 0 1
S, 0 S, 1 1
S, b S, 1 h
S, 0 S, 0 1
S, 1 S, 1 1
S, b S, b h
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BESCHREIBUNG VON TURINGMASCHINEN I

ﬁbergangstabelle fur ¢

Zustand gelesen | zu schreiben Folgezustand Kopfbewegung
S, 0 SH 0 r
S, 1 S, r
S, b S, b 1
S, 1 S, 0 1
S, 0 S, 1 1
S, b S 1 h
S, 0 S, 0 1
S, 1 S, 1 1
S, b S b h

Restliche Komponenten implizit bestimmt
Zustandsmenge S = {5,5,5,5,}

Anfangszustand s, = s,

Bandalphabet ' = {0, 1, b}
Eingabealphabet X = {0, 1}
Blanksymbol b =D
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ARBEITSWEISE VON TURINGMASCHINEN I

d(s,a)=(s",a’,P)
Programm ¢ Zustand s
S.a
a a' P
Band ... bl 11Ol alll]|b

Lese-Schreibkopf
e Anfangssituation
— Eingabewort w steht auf dem Band, umgeben von Leerzeichen
— Kopf tber erstem Symbol, Zustand ist s,

e Arbeitschritt

— Zeichen a lesen, Zustand s und §(s,a)=(s",a’,P) bestimmen
— Neuer Zustand s’, Zeichen a’ schreiben, Kopf geméfl P bewegen
— Stop wenn P=h

e Eirgebnis

— Langstes Wort auf Band ohne Leerzeichen am Anfang und Ende

Achtung! Details in Literatur unterschiedlich
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ABARBEITUNG VON TURING-PROGRAMMEN I

5 Eingabewort 01001
s als a P
S, 0 S, O r
s, 1/s, 1 1
SH bis, b 1
S, 1 S, 0 1
s, 0ls, 1 1
s, b S, 1 h (4
Sols 01 d(s,a)=(s",a",P)
s, 1]s, 1 1 Zustand s,
S, b S, b h S,a
a s a
Band L b 0 1 0 0 1 b
LSK
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ABARBEITUNG VON TURING-PROGRAMMEN I
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ABARBEITUNG VON TURING-PROGRAMMEN I
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SH bis, b 1
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ABARBEITUNG VON TURING-PROGRAMMEN I

5 Ausgabewort 01010
s als d P
s, 0ls, O r
s, 1/s, 1 1
s, bls;, b 1
s, 1/s;, 0 1
s, 0ls, 1 1
s, bls, 1 h VAN
Sols 01 d(s,a)=(s",a",P)
s, 1]s, 1 1 Zustand s,
S b S, b h S,a
Band . b 0 1 0 1 0 b
LSK
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VERARBEITUNG VON TURING-PROGRAMMEN — PRAZISIERT I

e Definiere Konfiguration von 7 Definition B

— Schnapschufl der Turingmaschine 7 zu einem gegebenen Zeitpunkt
- aktueller Zustand 4+ Bandinhalt + Kopfposition

— K- Menge aller Konfigurationen von 7
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e Definiere Konfiguration von 7 Definition B

— Schnapschufl der Turingmaschine 7 zu einem gegebenen Zeitpunkt
- aktueller Zustand + Bandinhalt + Kopfposition

— K- Menge aller Konfigurationen von 7

e Definiere Arbeitswelse von 7 Definition C

— Anfangskonfiguration a(w) fiir Eingabeworte w e X*

— Nachfolgekonfiguration (Arbeitsschritt) : K, — K;
— Ausgabefunktion (Ergebnis) w:K,—I™
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VERARBEITUNG VON TURING-PROGRAMMEN — PRAZISIERT I

e Definiere Konfiguration von 7 Definition B

— Schnapschufl der Turingmaschine 7 zu einem gegebenen Zeitpunkt
- aktueller Zustand + Bandinhalt + Kopfposition

— K- Menge aller Konfigurationen von 7

e Definiere Arbeitswelse von 7 Definition C

— Anfangskonfiguration a(w) fiir Eingabeworte w e X*

AN

— Nachfolgekonfiguration (Arbeitsschritt) : K, — K;
— Ausgabefunktion (Ergebnis) w:K,—I™

e Definiere die von 7 berechnete Funktion /. [Definition D
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KONFIGURATION VON TURING-PROGRAMMEN Definition B I

e Eine Konfiguration ist ein Tripel k = (s,f,i) mit
—s5e.S aktueller Zustand
— f:.Z—TI" Bandinhaltsfunktion
f(n) = Inhalt der n-ten Bandzelle
(f(j) = b fiir fast alle 7)
— 1€/ Koptposition

Alternative Reprasentation: Tripel (s,u,v) mit

— s aktueller Zustand,

—u String links vom Kopf (von rechts nach links),
— v String rechts vom Kopt

e K : Menge aller Konfigurationen von 7
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ARBEITSWEISE VON TURINGMASCHINEN Definition C I

e Anfangskonfiguration a: X*— K-

— Fiir ein Eingabewort w = ww,..w _ist a(w) = (s, f,.0),
{ w; falls j€{0,..k},

mit fu(j) = b sonst
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ARBEITSWEISE VON TURINGMASCHINEN Definition C I

e Anfangskonfiguration a: X*— K-
— Fiir ein Eingabewort w = ww,..w _ist a(w) = (s, f,.0),

, , w; falls 7€{0,.. k},
mit f,(7) = { J { J

b sonst

e Nachfolgekonfiguration 6: K —K;
~ Fiir eine Konfiguration k=(s,f,i) mit 8(s,f(i))=(s",a/,P) ist 6(r)=(s',f"i')
f .
falls i 1+1 falls P=r,
wobei f/(j) = { ‘ . IR md = i1 falls P=l,
f(5) sonst i falls P=h

\
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ARBEITSWEISE VON TURINGMASCHINEN Definition C I

e Anfangskonfiguration a: X*— K-
— Fiir ein Eingabewort w = ww,..w, ist a(w) = (s, f,.0),

, , w; falls 7€{0,.. k},
mit f,(7) = { J { J

b sonst

e Nachfolgekonfiguration 6: K —K;
~ Fiir eine Konfiguration k=(s,f,i) mit 8(s,f(i))=(s",a/,P) ist 6(r)=(s',f"i')
f .
falls i 1+1 falls P=r,
wobei f/(j) = { ‘ . IR md = i1 falls P=l,
f(5) sonst i falls P=h

\

e Ausgabefunktion w:K,—I™

— Fiir eine Konfiguration k=(s, f,i) ist

G falls f(7)=b fiir alle 7,
wir) = { F(R) f(k+1)... f(k+n) sonst
wobei k=max{i|Vj<i f(j)=b} und n=min{:|Vj>k-+i f(j)=b}
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SEMANTIK VON TURING-PROGRAMMEN Definition D I

e Intuitive Beschreibung
— Eingabe a(w)
— Wiederholte Anwendung von 0

— Ausgabe w(k), wenn Stop-Konfiguration x erreicht wird.
— Undefiniert (Endlosschleife), andernfalls
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e Intuitive Beschreibung
— Eingabe a(w)
— Wiederholte Anwendung von 0

— Ausgabe w(k), wenn Stop-Konfiguration x erreicht wird.
— Undefiniert (Endlosschleife), andernfalls

e Mathematische Semantik von 7 = (5, X, I', 4, sg, b)

— Die von 7 = berechnete Funktion h . X*—I" ist definiert durch

Cw(0" (a(w))) falls m=min{j |3s, f,i, 5" a’ & (a(w))=(s, f, )
) und (s, f(0))=(s', ', )}
he(w) = < existiert,
\ 1 sonst
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e Intuitive Beschreibung
— Eingabe a(w)
— Wiederholte Anwendung von 0

— Ausgabe w(k), wenn Stop-Konfiguration x erreicht wird.
— Undefiniert (Endlosschleife), andernfalls

e Mathematische Semantik von 7 = (5, X, I', 4, sg, b)

— Die von 7 = berechnete Funktion h . X*—I" ist definiert durch

(6™ (a(w))) falls m=min{j | 3s, f,i,s',a’ & (a(w))=(s, f,i)
) und 8(s, f(i)=(sa', 1)}
he(w) = < existiert,
\ 1 sonst
Definition E

— Definitionsbereich von 7: {weX*|h(w)#L}  (Haltebereich, domain)
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e Intuitive Beschreibung
— Eingabe a(w)
— Wiederholte Anwendung von 0

— Ausgabe w(k), wenn Stop-Konfiguration x erreicht wird.
— Undefiniert (Endlosschleife), andernfalls

e Mathematische Semantik von 7 = (5, X, I', 4, sg, b)
— Die von 7 = berechnete Funktion h . X*—I" ist definiert durch

(6™ (a(w))) falls m=min{j | 3s, f,i,s',a’ & (a(w))=(s, f,i)
) und 8(s, f(i)=(sa', 1)}
he(w) = < existiert,
\ 1 sonst
Definition E

— Definitionsbereich von 7: {weX*|h(w)#L}  (Haltebereich, domain)
— Wertebereich von 7: {vel™|Jwe X* h(w)=v} (Ergebnisbereich, range)
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BEISPIELE FUR TURING-MASCHINEN I

o, =({s,}, {1}, {b,1}.6,,5,.b) mit 5= s als o P
s, 1/s, 1 1
s, b|s, 1 h
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BEISPIELE FUR TURING-MASCHINEN I

o7 = ({s,}, {1}, {b,1},0,,8,,b) mit I, = s’ a

S
So
Sg

P
r
h

O

sol
sol

Fiigt am Ende eines Wortes w € 1* eine 1 an (“Bierdeckelmaschine”)
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BEISPIELE FUR TURING-MASCHINEN I

*T,= ({80}7 {1}7 {b, 1}, 51, Sy, b) mit 51: s’ a

S
So
Sg

P
r
h

O

sol
sol

Fiigt am Ende eines Wortes w € 1* eine 1 an (“Bierdeckelmaschine”)

e Mathematische Analyse:
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BEISPIELE FUR TURING-MASCHINEN I

*T,= ({80}7 {1}7 {b, 1}, 51, Sy, b) mit 51: s’ a

S
So
Sg

P
r
h

O

sol
sol

Fiigt am Ende eines Wortes w € 1* eine 1 an (“Bierdeckelmaschine”)

e Mathematische Analyse:
1 falls j €{0,...,n—1},
b sonst

— Anfangskonfiguration: a(1") = (s,.[,.0), wobei f,(7) = {
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BEISPIELE FUR TURING-MASCHINEN I

*T,= ({80}7 {1}7 {b, 1}, 51, Sy, b) mit 51: s’ a

S
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Sg

P
r
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sol
sol

Fiigt am Ende eines Wortes w € 1* eine 1 an (“Bierdeckelmaschine”)

e Mathematische Analyse:
1 falls j €{0,...,n—1},
b sonst

— Anfangskonfiguration: a(1") = (s,.[,.0), wobei f,(7) = {

S yJ N 41 falls 7 O)_.’ —1 :
— Nachfolgekonfigurationen: d(s.f,.j) = { (s,. fn.g+1) falls j€{0,..,n—1}

(s, [nr1.m) falls j=n
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BEISPIELE FUR TURING-MASCHINEN I

*T,= ({80}7 {1}7 {b, 1}, 51, Sy, b) mit 51: s’ a

S
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Sg

P
r
h

O

sol
sol

Fiigt am Ende eines Wortes w € 1* eine 1 an (“Bierdeckelmaschine”)

e Mathematische Analyse:
1 falls j€{0,..,n—1},
b sonst

— Anfangskonfiguration: a(1") = (s,.[,.0), wobei f,(7) = {

S y J +1) falls 07”’ —1 :
— Nachfolgekonfigurationen: d(s.f,.j) = { (s,. fn.g+1) falls j€{0,..,n—1}

(s, [nr1.m) falls j=n
— Terminierung; min{;j | 5j(so,fn,0):(so,fn,j) A (s, ful(d))=(s,,0h)} =n
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BEISPIELE FUR TURING-MASCHINEN I

*T,= ({80}7 {1}7 {b, 1}, 51, Sy, b) mit 51: s’ a
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sol
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Fiigt am Ende eines Wortes w € 1* eine 1 an (“Bierdeckelmaschine”)

e Mathematische Analyse:
1 falls j€{0,..,n—1},
b sonst

— Anfangskonfiguration: a(1") = (s,.[,.0), wobei f,(7) = {

S y J +1) falls 07”’ —1 :
— Nachfolgekonfigurationen: d(s.f,.j) = { (s,. fn.g+1) falls j€{0,..,n—1}

(s, [nr1.m) falls j=n
— Terminierung: min{;j | 5j(so,fn,0):(so,fn,j) A (s, ful(d))=(s,,0h)} =n
— Ergebnis: 5”’“(smfn,0) = (s,,fn+1.1)
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BEISPIELE FUR TURING-MASCHINEN I

*T,= ({80}7 {1}7 {b, 1}, 51, Sy, b) mit 51: s’ a
s, 1
S, 1

P
r
h

O

S
So
Sg

Fiigt am Ende eines Wortes w € 1* eine 1 an (“Bierdeckelmaschine”)

e Mathematische Analyse:
1 falls j€{0,..,n—1},
b sonst

— Anfangskonfiguration: a(1") = (s,.[,.0), wobei f,(7) = {
(s, [, j+1) falls j€{0,..n—1},

— Nachfolgekonfigurationen: o (80, fnd) =
(s, [nr1.m) falls j=n

— Terminierung: min{;j | 5j(so,fn,0):(so,fn,j) A (s, ful(d))=(s,,0h)} =n
— Ergebnis: 5”’“(smfn,0) = (s,,fn+1.1)
— Ausgabefunktion: w(s,, fur1,n) = 171

(max{7 | Vj<i f,o1(7)=b}=0, min{i|Vj>i f,1(j)=b}=n+1)
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BEISPIELE FUR TURING-MASCHINEN I

*T,= ({80}7 {1}7 {b, 1}, 51, Sy, b) mit 51: s’ a
s, 1
S, 1

P
r
h

O

S
So
Sg

Fiigt am Ende eines Wortes w € 1* eine 1 an (“Bierdeckelmaschine”)

e Mathematische Analyse:
1 falls j €{0,...,n—1},

— Anfangskonfiguration: a(1") = (s,.[,.0), wobei f,(7) = {
b sonst
<SO7 fn; ]+1> falls j S {O,..,n—l},

— Nachfolgekonfigurationen: o (80, fnd) =
(s, [nr1.m) falls j=n

— Terminierung: min{;j | 5j(so,fn,0):(so,fn,j) A O(sy,fn(f))=(s,0.h)} =n
— Ergebnis: 5”’“(30,fn,0) = (s,,fn+1.1)
— Ausgabefunktion: w(s,, fur1,n) = 171

(max{i|Vj<i foi1(j)=b}=0, min{i|Vj>i fn,1(j)=b}=n+1)
4

hr,(1") = 1" fir alle n, Definitionsbereich {1}*, Wertebereich {1}
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EXKURS: WIE GENAU MUSS MAN SEIN? I

Ein Beweis ist ein Argument, das den Leser tiberzeugt
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Ein Beweis ist ein Argument, das den Leser tiberzeugt

e Nicht notwendig formal oder mit allen Details
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EXKURS: WIE GENAU MUSS MAN SEIN? I

Ein Beweis ist ein Argument, das den Leser tiberzeugt

e Nicht notwendig formal oder mit allen Details
e Prazise genug. um Details rekonstruieren zu konnen
e Knapp genug, um ubersichtlich und merkbar zu sein

e Gedankenspriinge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daBl Sie nichts mehr falsch machen konnen

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 11 TURINGMASCHINEN



EXKURS: WIE GENAU MUSS MAN SEIN? I

Ein Beweis ist ein Argument, das den Leser tiberzeugt

e Nicht notwendig formal oder mit allen Details
e Prazise genug. um Details rekonstruieren zu konnen
e Knapp genug, um ubersichtlich und merkbar zu sein

e Gedankenspriinge sind erlaubt, wenn Sie die Materie gut genug verstehen,
daB Sie nichts mehr falsch machen konnen

... es reicht nicht, daB Sie es einmal richtig gemacht haben
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e Nicht notwendig formal oder mit allen Details
e Prazise genug. um Details rekonstruieren zu konnen
e Knapp genug, um ubersichtlich und merkbar zu sein

e Gedankenspriinge sind erlaubt, wenn Sie die Materie gut genug verstehen,
daB Sie nichts mehr falsch machen konnen

... es reicht nicht, daB Sie es einmal richtig gemacht haben

e Tip: ausfiihrliche Losungen entwickeln, bis Sie genug Erfahrung haben.

Fir Prasentation zentrale Gedanken aus Losung extrahieren
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EXKURS: WIE GENAU MUSS MAN SEIN? I

Ein Beweis ist ein Argument, das den Leser tiberzeugt

e Nicht notwendig formal oder mit allen Details
e Prazise genug. um Details rekonstruieren zu konnen
e Knapp genug, um ubersichtlich und merkbar zu sein

e Gedankenspriinge sind erlaubt, wenn Sie die Materie gut genug verstehen,
daB Sie nichts mehr falsch machen konnen

... es reicht nicht, daB Sie es einmal richtig gemacht haben

e Tip: ausfiihrliche Losungen entwickeln, bis Sie genug Erfahrung haben.

Fir Prasentation zentrale Gedanken aus Losung extrahieren

e Test: verstehen |hre Kommilitonen |hre Losung und warum sie funktioniert?
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BEISPIELE FUR TURING-MASCHINEN 11 I

o7,= ({s,}, {1}, {b,1},0,,8,,b) mit d,= s al|s o P
s, 1|s, b r
s, b|s, b h
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BEISPIELE FUR TURING-MASCHINEN 11 I

o7,= ({s,}, {1}, {b,1},0,,8,,b) mit d,= s al|s o P
s, 1|s, b r
s, b|s, b h

Loscht ein Wort w € 1*:
h-,(w) =€ fur alle w, Definitionsbereich {1}*, Wertebereich {e}
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o7,= ({s,}, {1}, {b,1},0,,8,,b) mit d,= s al|s o P
s, 1|s, b r
s, b|s, b h

Loscht ein Wort w € 1*:
h-,(w) =€ fur alle w, Definitionsbereich {1}*, Wertebereich {e}

o7.= ({s,s,}. {1}, {b,1},d,,8,,b) mit d,= s al|s a P
S 1/s;, 1 r
SH b| s, 1 h
s, 1 S, 1 r
s, bjs, b r

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 12 TURINGMASCHINEN




BEISPIELE FUR TURING-MASCHINEN 11 I

o7,= ({s,}, {1}, {b,1},0,,8,,b) mit d,= s al|s o P
s, 1|s, b r
s, b|s, b h

Loscht ein Wort w € 1*:
h-,(w) =€ fur alle w, Definitionsbereich {1}*, Wertebereich {e}

J— : _ / /
¢ T3_ ({SO’ 81}7 {1}7 {b’1}7 537 807 b) mlt 53_ s ajs a P
s, 1/s;, 1 1
s, b|s;, 1 h
s, 1/s, 1 1
s, bjs, b r
Testet Anzahl der Einsen in w e 1*:
b (17) = 17+ falls n gerade,
T —
’ 1 sonst
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BEISPIELE FUR TURING-MASCHINEN 11 I

o7,= ({s,}, {1}, {b,1},0,,8,,b) mit d,= s al|s o P
s, 1|s, b r
s, b|s, b h

Loscht ein Wort w € 1*:
h-,(w) =€ fur alle w, Definitionsbereich {1}*, Wertebereich {e}

o7.= ({s,s,}. {1}, {b,1},d,,8,,b) mit d,= s al|s a P
S 1/s;, 1 r
SH b| s, 1 h
s, 1 S, 1 r
s, bjs, b r

Testet Anzahl der Einsen in w e 1*;

, 17+ falls n gerade,
hT:s(l ) — { §

A1 sonst

Definitionsbereich {1%% | keN}, Wertebereich {1281 | k e N}
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BEISPIELE FUR TURING-MASCHINEN II1 I

o7y =({s.,s,s,s 1V db,1,¢ct, 64,8,.b) mit d,= s al|s a P

({88158, 8,5 {1}, { , 04, 8,
s, 1|s; b r
S, C|s, C h
sob sOb h
s, 1|s;, 1 r
s, c|s, Cc r
s, b|s, c r
s, 1/s, 1 h
S, C|s, C h
s, b S, C 1
831 S, 1 1
S, C|8; C 1
s3b sob T
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BEISPIELE FUR TURING-MASCHINEN II1 I

o7y =({s.,s,s,s 1V db,1,¢ct, 64,8,.b) mit d,= s al|s a P

({88158, 8,5 {1}, { , 04, 8,
s, 1|s; b r
S, C|s, C h
sob sOb h
s, 1|s;, 1 r
s, C|ls, ¢ r
s, b|s, c r
s, 1/s, 1 h
S, C|s, C h
s, b S, C 1
831 S, 1 1
S, C|8; C 1
s3b sob T

Verdoppelt Anzahl der Einsen
h,,(1") = c®", Definitionsbereich {1}*, Wertebereich {c** | keN}
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BEISPIELE FUR TURING-MASCHINEN II1 I

o7y =({s.,s,s,s 1V db,1,¢ct, 64,8,.b) mit d,= s al|s a P

({88158, 8,5 {1}, { , 04, 8,
s, 1|s; b r
S, C|s, C h
sob sOb h
s, 1|s;, 1 r
s, C|ls, ¢ r
s, b|s, c r
s, 1/s, 1 h
S, C|s, C h
s, b S, C 1
831 S, 1 1
S, C|8; C 1
s3b sob T

Verdoppelt Anzahl der Einsen
h,,(1") = c®", Definitionsbereich {1}*, Wertebereich {c** | keN}

2n+1

Kombinierbar mit isomorpher Variante von 7,: /s © h-,(1") =c

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 13 TURINGMASCHINEN




TURING-BERECHENBARKEIT Definition E I

e f:X*—=Y* Turing-berechenbar
— Es gibt eine Turingmaschine 7 = (S, X, I, §, s¢, b) mit Y<I" und h,=f

e 7: Menge der Turing-berechenbaren Funktionen
~Txy ={f:X*—=Y"| fist Turing-berechenbar}
-T = U{T xv | X, Y endliches Alphabet}
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UBERTRAGUNG DES BERECHENBARKEITBEGRIFFS |

e Berechenbarkeit von Mengen MCX*
— Semi-Entscheidbarkeit: Berechenbarkeit von ¢, :X*—{0,1}*,
— Entscheidbarkeit: Berechenbarkeit von x,,:X*—{0,1}*,

, 1 falls weM, 1 falls weM,
wobel ¢, (w) = { X (W) = {

L sonst 0 sonst
(partiell-)charakteristische Funktion Definition P
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UBERTRAGUNG DES BERECHENBARKEITBEGRIFFS |

e Berechenbarkeit von Mengen MCX*
— Semi-Entscheidbarkeit: Berechenbarkeit von ¢, :X*—{0,1}*,

— Entscheidbarkeit: Berechenbarkeit von x,,:X*—{0,1}*,
1 fallsweM 1 fallsweM
b I _— ? — Y
wobel 9y, (w) { 1 sonst Xar (W) { 0 sonst

(partiell-)charakteristische Funktion Definition P

e Berechenbarkeit auf Zahlen f:N—N
= Berechenbarkeit der Reprasentation f: X*— X*
wobei 7:N— X* bijektiv und f.(w) = r(f(r"}(w)))
Standardcodierungen von Zahlen
— unare Darstellung 7, N—{1}*  mit r,(n) = 1"
— bindre Darstellung 7,:N—{0,1}* (ohne fithrende Nullen)

TURINGMASCHINEN
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UBERTRAGUNG DES BERECHENBARKEITBEGRIFFS |

e Berechenbarkeit von Mengen MCX*
— Semi-Entscheidbarkeit: Berechenbarkeit von ¢, :X*—{0,1}*,

— Entscheidbarkeit: Berechenbarkeit von x,,:X*—{0,1}*,
1 fallsweM 1 fallsweM
b I _— ? — Y
wobel 9y, (w) { 1 sonst Xar (W) { 0 sonst

(partiell-)charakteristische Funktion Definition P

e Berechenbarkeit auf Zahlen f:N—N
= Berechenbarkeit der Reprasentation f..X*— X",

wobei 7:N— X* bijektiv und f.(w) = r(f(r"}(w)))
Standardcodierungen von Zahlen

— unare Darstellung 7, N—{1}*  mit r,(n) = 1"

— bindre Darstellung 7,:N—{0,1}* (ohne fithrende Nullen)

e Berechenbarkeit auf Tupeln f: X*xX*—-Y*
= Berechenbarkeit von f:(XU{#})*—=Y™ mit f'(v#w) = f(v,w)
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BERECHENBARKEIT DER NACHFOLGERFUNKTION I

Ist s:N—N mit s(n) = n+1 Turing-berechenbar?
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BERECHENBARKEIT DER NACHFOLGERFUNKTION I

Ist s:N—N mit s(n) = n+1 Turing-berechenbar?

e Bei unarer Codierung:
—Ist s, {1} —={1}* mit s,(1") = 1" Turing-berechenbar?
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BERECHENBARKEIT DER NACHFOLGERFUNKTION I

Ist s:N—N mit s(n) = n+1 Turing-berechenbar?

e Bei unarer Codierung:
—Ist s, {1} —={1}* mit s,(1") = 1" Turing-berechenbar?

— Turingmaschine muf} eine 1 anhangen: s, = /.,
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BERECHENBARKEIT DER NACHFOLGERFUNKTION I

Ist s:N—N mit s(n) = n+1 Turing-berechenbar?

e Bei unarer Codierung:
—Ist sy {1} —{1}* mit s,(1") = 1" Turing-berechenbar?

— Turingmaschine muf} eine 1 anhangen: s, = /i,

e Bei binarer Codierung
— Ist 53:{0,1}*—{0,1}* mit sp(ry(n)) = rp(n+1) Turing-berechenbar?
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BERECHENBARKEIT DER NACHFOLGERFUNKTION I

Ist s:N—N mit s(n) = n+1 Turing-berechenbar?

e Bei unarer Codierung:
—Ist sy {1} —{1}* mit s,(1") = 1" Turing-berechenbar?

— Turingmaschine muf3 eine 1 anhangen: s, = /i,

e Bei binarer Codierung
— Ist $3:{0,1}*—{0,1}" mit sp(ry(n)) = rp(n+1) Turing-berechenbar?

— 7, muB Ziffern von rechts beginnend umwandeln, ggf. mit Ubertrag
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BERECHENBARKEIT DER NACHFOLGERFUNKTION I

Ist s:N—N mit s(n) = n+1 Turing-berechenbar?

e Bei unarer Codierung:

—Ist sy {1} —{1}* mit s,(1") = 1" Turing-berechenbar?

— Turingmaschine muf3 eine 1 anhangen: s, = /i,

e Bei binarer Codierung

— Ist $3:{0,1}*—{0,1}" mit sp(ry(n)) = rp(n+1) Turing-berechenbar?

— 7, muB Ziffern von rechts beginnend umwandeln, ggf. mit Ubertrag

s als d P

s,0|s, O r rechtes Ende suchen
s, 1|/s, 1 r rechtes Ende suchen
s, b|s, b 1 rechtes Ende gefunden
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BERECHENBARKEIT DER NACHFOLGERFUNKTION I

Ist s:N—N mit s(n) = n+1 Turing-berechenbar?

e Bei unarer Codierung:
—Ist sy {1} —{1}* mit s,(1") = 1" Turing-berechenbar?

— Turingmaschine muf3 eine 1 anhangen: s, = /i,

e Bei binarer Codierung
— Ist $3:{0,1}*—{0,1}" mit sp(ry(n)) = rp(n+1) Turing-berechenbar?

— 7, muB Ziffern von rechts beginnend umwandeln, ggf. mit Ubertrag

s als d P

s,0|s, O r rechtes Ende suchen
s, 1|/s, 1 r rechtes Ende suchen
s, b|s, b 1 rechtes Ende gefunden
s, 1/s, 0 1 Addieren mit Ubertrag
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BERECHENBARKEIT DER NACHFOLGERFUNKTION I

Ist s:N—N mit s(n) = n+1 Turing-berechenbar?

e Bei unarer Codierung:
—Ist sy {1} —{1}* mit s,(1") = 1" Turing-berechenbar?

— Turingmaschine muf3 eine 1 anhangen: s, = /i,

e Bei binarer Codierung
— Ist $3:{0,1}*—{0,1}" mit sp(ry(n)) = rp(n+1) Turing-berechenbar?

— 7, muB Ziffern von rechts beginnend umwandeln, ggf. mit Ubertrag

s als d P

s,0|s, O r rechtes Ende suchen

s, 1|/s, 1 r rechtes Ende suchen

s, b|s, b 1 rechtes Ende gefunden
s, 1/s, 0 1 Addieren mit Ubertrag
s, O0/s, 1 h Addieren ohne Ubertrag
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BERECHENBARKEIT DER NACHFOLGERFUNKTION I

Ist s:N—N mit s(n) = n+1 Turing-berechenbar?

e Bei unarer Codierung:
—Ist sy {1} —{1}* mit s,(1") = 1" Turing-berechenbar?

— Turingmaschine muf3 eine 1 anhangen: s, = /i,

e Bei binarer Codierung
— Ist $3:{0,1}*—{0,1}" mit sp(ry(n)) = rp(n+1) Turing-berechenbar?

— 7, muB Ziffern von rechts beginnend umwandeln, ggf. mit Ubertrag

s als d P

s,0|s, O r rechtes Ende suchen

s, 1|/s, 1 r rechtes Ende suchen

s, b|s, b 1 rechtes Ende gefunden
s, 1/s, 0 1 Addieren mit Ubertrag
s, O0/s, 1 h Addieren ohne Ubertrag
s, bl/s, 1 h Ubertrag am linken Ende
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BERECHENBARKEIT DER DIVISION DURCH 2 I

Ist divo:N—N mit dive(n)=|n/2| Turing-berechenbar?
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BERECHENBARKEIT DER DIVISION DURCH 2 I

Ist divo:N—N mit dive(n)=|n/2| Turing-berechenbar?

e Bei unarer Codierung mufl 7 je zwei Einsen loschen
und eine neue hinter dem Ende des Wortes schreiben
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BERECHENBARKEIT DER DIVISION DURCH 2 I

Ist divo:N—N mit dive(n)=|n/2| Turing-berechenbar?

e Bei unarer Codierung mufl 7 je zwei Einsen loschen
und eine neue hinter dem Ende des Wortes schreiben

s als d P

s, 1|s, b r Erste 1

s, bj|sg b h keine erste 1

s, 1|s, b r Zweite 1

s, b|sg b h keine zweite 1

s, 1|s, 1 r Nach rechts zum Eingabeende
s, b|s, b r Ende der Eingabe

s, 1/s, 1 Nach rechts zum Ausgabeende
s, bjsg 1 1 Ende der Ausgabe, 1 schreiben
sy 1/s4 1 1 Nach links uber Ausgabe

S4 b S5 b 1

s; 1/s; 1 1 Nach links uber Eingabe

S5 bjs, b r
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BERECHENBARKEIT DER DIVISION DURCH 2 I

Ist dive:N—N mit dive(n)=|n/2| Turing-berechenbar?

e Bei unarer Codierung mufl 7 je zwei Einsen loschen
und eine neue hinter dem Ende des Wortes schreiben

s als a P

s, 1|s, b r Erste 1

s, bj|sg b h keine erste 1

s, 1|s, b r Zweite 1

s, b|sg b h keine zweite 1

s, 1|s, 1 r Nach rechts zum Eingabeende
s, b|s, b r Ende der Eingabe

s, 1/s, 1 Nach rechts zum Ausgabeende
s, bjsg 1 1 Ende der Ausgabe, 1 schreiben
sy 1/s4 1 1 Nach links uber Ausgabe

S4 b S5 b 1

s; 1/s; 1 1 Nach links uber Eingabe

S5 bjs, b r

e Bei binarer Codierung mufl 7 die letzte Ziffer 1oschen
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VARIANTEN VON TURINGMASCHINEN I

e Vereinfachung fiur theoretische Analysen
— Binédres Bandalphabet I' = {1, b}
— Halbseitig unendliches Band
— Restriktivere Ausgabekonvention
— Endzustand statt Halteinstruktion

e Erweiterung des Modells fiir Programmierzwecke
— Unvollstandige Tabellen fiir ¢
— Mehrspurmaschinen
— Mehrkopfmaschinen
— Mehrbandmaschinen
— Mehrdimensionale Maschinen

— Unterprogramme

Alle Varianten fiihren zum gleichen Berechenbarkeitsbegrift
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EINFACHERE TURINGMASCHINENMODELLE I

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen moglich

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 19 TURINGMASCHINEN




EINFACHERE TURINGMASCHINENMODELLE I

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen moglich

e Halbseitig unendliches Band
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EINFACHERE TURINGMASCHINENMODELLE I

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen moglich

e Halbseitig unendliches Band
— Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (a;, a;)

a; reprasentiert die linke, a, die rechte Bandhalfte
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EINFACHERE TURINGMASCHINENMODELLE I

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen moglich

e Halbseitig unendliches Band
— Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (a;, a;)

a; reprasentiert die linke, a, die rechte Bandhalfte

e Binires Bandalphabet ' = {1, b}
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EINFACHERE TURINGMASCHINENMODELLE I

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen moglich

e Halbseitig unendliches Band
— Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (a;, a;)

a; reprasentiert die linke, a, die rechte Bandhalfte

e Binires Bandalphabet ' = {1, b}
— Binarcodierung beliebiger Alphabete als Strings tiber {1b, 11}
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EINFACHERE TURINGMASCHINENMODELLE I

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen moglich

e Halbseitig unendliches Band
— Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (a;, a,)

a; reprasentiert die linke, a, die rechte Bandhalfte

e Binires Bandalphabet ' = {1, b}
— Binarcodierung beliebiger Alphabete als Strings tiber {1b, 11}

e Ausgabewort mufl unter dem Kopf beginnen

— Ausgabefunktion ist Bandinhalt vom Kopfsymbol bis zum ersten Blank.
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EINFACHERE TURINGMASCHINENMODELLE I

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen moglich

e Halbseitig unendliches Band
— Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (a;, a,)

a; reprasentiert die linke, a, die rechte Bandhalfte

e Binires Bandalphabet ' = {1, b}
— Binarcodierung beliebiger Alphabete als Strings tiber {1b, 11}

e Ausgabewort mufl unter dem Kopf beginnen
— Ausgabefunktion ist Bandinhalt vom Kopfsymbol bis zum ersten Blank.

— Erganze Programm fiir 0 um Kopfbewegung zum Wortanfang.
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EINFACHERE TURINGMASCHINENMODELLE I

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen moglich

e Halbseitig unendliches Band
— Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (a;, a,)

a; reprasentiert die linke, a, die rechte Bandhalfte

e Binires Bandalphabet ' = {1, b}
— Binarcodierung beliebiger Alphabete als Strings tiber {1b, 11}

e Ausgabewort mufl unter dem Kopf beginnen
— Ausgabefunktion ist Bandinhalt vom Kopfsymbol bis zum ersten Blank.

— Erganze Programm fiir 0 um Kopfbewegung zum Wortanfang.

e Fester Endzustand s, statt Halteinstruktion
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EINFACHERE TURINGMASCHINENMODELLE I

Kein Verlust der Ausdruckskraft

Simulation normaler Turingmaschinen moglich

e Halbseitig unendliches Band
— Simulation eines beidseitig unendlichen Bands durch Tupelalphabet (a;, a,)

a; reprasentiert die linke, a, die rechte Bandhalfte

e Binires Bandalphabet ' = {1, b}
— Binarcodierung beliebiger Alphabete als Strings tiber {1b, 11}

e Ausgabewort mufl unter dem Kopf beginnen
— Ausgabefunktion ist Bandinhalt vom Kopfsymbol bis zum ersten Blank.

— Erganze Programm fiir 0 um Kopfbewegung zum Wortanfang.

e Fester Endzustand s, statt Halteinstruktion
— Andere §(s,a) = (s',a’,h) in §(s,a) = (s..a’,])
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PROGRAMMIERTECHNIKEN FUR TURINGMASCHINEN I

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen moglich
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PROGRAMMIERTECHNIKEN FUR TURINGMASCHINEN I

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen moglich

e Unvollstandige Tabellen fiir o
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PROGRAMMIERTECHNIKEN FUR TURINGMASCHINEN

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen moglich

e Unvollstandige Tabellen fiir o

— Ergénze nichtgenannte Eintrage als d(s,a) = (s,a,h)
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PROGRAMMIERTECHNIKEN FUR TURINGMASCHINEN

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen moglich

e Unvollstandige Tabellen fiir o

— Ergénze nichtgenannte Eintrage als d(s,a) = (s,a,h)

e Mehrspurmaschinen
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PROGRAMMIERTECHNIKEN FUR TURINGMASCHINEN

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen moglich

e Unvollstandige Tabellen fiir o

— Ergénze nichtgenannte Eintrage als d(s,a) = (s,a,h)

e Mehrspurmaschinen

— Simulation von k Spuren durch Tupelalphabet (a4, ..., ax)
a; reprasentiert Spur ¢
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PROGRAMMIERTECHNIKEN FUR TURINGMASCHINEN

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen moglich

e Unvollstandige Tabellen fiir o

— Ergénze nichtgenannte Eintrage als d(s,a) = (s,a,h)

e Mehrspurmaschinen

— Simulation von k Spuren durch Tupelalphabet (a4, ..., ax)
a; reprasentiert Spur ¢

e Mehrbandmaschinen
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PROGRAMMIERTECHNIKEN FUR TURINGMASCHINEN

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen moglich

e Unvollstandige Tabellen fiir o

— Ergénze nichtgenannte Eintrage als d(s,a) = (s,a,h)

e Mehrspurmaschinen

— Simulation von k Spuren durch Tupelalphabet (a, ..., ax)
a; reprasentiert Spur ¢

e Mehrbandmaschinen

— Simulation durch Mehrspurmaschine und Marker fir Kopfpositionen
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PROGRAMMIERTECHNIKEN FUR TURINGMASCHINEN

Keine Erweiterung der Ausdruckskraft
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e Mehrkopfmaschinen
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PROGRAMMIERTECHNIKEN FUR TURINGMASCHINEN

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen moglich

e Unvollstandige Tabellen fiir o

— Ergénze nichtgenannte Eintrage als d(s,a) = (s,a,h)

e Mehrspurmaschinen

— Simulation von k Spuren durch Tupelalphabet (a, ..., ax)
a; reprasentiert Spur ¢

e Mehrbandmaschinen

— Simulation durch Mehrspurmaschine und Marker fir Kopfpositionen

e Mehrkopfmaschinen

— Speichere Kopfpositionen auf separatem Band and verarbeite sequentiell
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— Simulation durch Mehrspurmaschine und Marker fir Kopfpositionen

e Mehrkopfmaschinen

— Speichere Kopfpositionen auf separatem Band and verarbeite sequentiell

e Unterprogramme
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PROGRAMMIERTECHNIKEN FUR TURINGMASCHINEN

Keine Erweiterung der Ausdruckskraft

Simulation durch normale Turingmaschinen moglich

e Unvollstandige Tabellen fiir o

— Ergénze nichtgenannte Eintrage als d(s,a) = (s,a,h)

e Mehrspurmaschinen

— Simulation von k Spuren durch Tupelalphabet (a, ..., ax)
a; reprasentiert Spur ¢

e Mehrbandmaschinen

— Simulation durch Mehrspurmaschine und Marker fir Kopfpositionen

e Mehrkopfmaschinen

— Speichere Kopfpositionen auf separatem Band and verarbeite sequentiell

e Unterprogramme

— Speichere Argumente und Riickgabewerte auf separatem Band.
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MEHRBANDMASCHINE I

d(s,(ay,a9,a3)) =

(8/7(0/17&/27&%)7(P17P27P3))
Programm o Zustand s
5;<a17a27a3>
/CL1 \ a&Pl
Band 1 b 1 1 0 al\ \1 b
a2 CLIQ,PQ \\
Band 2 as 0 0 1 b \b\ b
as \v CL%,Pg
Band 3 . b b b b 1 as 1

Lese-Schreibkopf
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SIMULATION EINER MEHRBANDMASCHINE I

d(s,a)=(s",a’,P)
Programm 0 Zustand s
S,a

a a' P
Bandspur 1 . ... b 1 1 0 || a; 1 b
Kopfmarke 1 #
Bandspur 2. . .. ay | O 0 1 b b b
Kopfmarke 2 #
Bandspur 8 .. .. b b b b 1 |las | 1
Kopfmarke 3 #

Begrenzungsmarke #

Lese-Schreibkopf

e Verarbeite Bander sequentiell
— Lesen: Suche Begrenzungsmarke, laufe zurtick bis zu Koptfmarken
— Schreiben und Koptbewegung analog
— Codiere Symbole und Kopfinstruktionen im Zustand
— Simulation benotigt quadratische Zeit
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