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• Standardarchitektur von Einprozessorsystemen
– Direkter und simultaner Speicherzugriff

– Speicherzellen enthalten natürliche Zahlen

– Keine Ein/Ausgabe, sehr einfacher Befehlssatz

• Unterschiede zur Turingmaschine
– Endlicher Speicher, aber unendlicher Bereich für Werte von Zellen

Achtung! Modelle in Literatur oft flexibler
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Registermaschinen – mathematisch Definition F
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Eine Registermaschine ist ein 5-Tupel ρ = (S, k, δ, s0, F )

• S nichtleere endliche Zustandsmenge

• s0
∈S Anfangszustand

• k ∈N Anzahl der Register

• F⊆S Menge der Endzustände

• δ:(S\F )×{0,1}k → S×{-1,0,1}k Zustandsüberführungsfunktion

Eingabe: Zustand + Testergebnisse: tj = sign(ij) =

{

0 falls ij=0,

1 falls ij>0

Ausgabe: Zustand + Registeroperationen: opj (Subtraktion, Identität, Addition)
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• Anfangssituation
– Eingabezahl n steht im ersten Register
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• Anfangssituation
– Eingabezahl n steht im ersten Register

• Arbeitschritt
– Inhalte der Register i1,..,ik lesen und mit sign(ij) auf Null testen

– Zustand s und Testergebnisse t1,..,tk als Argumente an δ geben

– δ(s,(t1,..,tk))=(s′,(op1,..,opk)) bestimmen

– Neuer Zustand s′, Register j gemäß Operation opj modifizieren

– Stop wenn s′ Endzustand ist
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• Anfangssituation
– Eingabezahl n steht im ersten Register

• Arbeitschritt
– Inhalte der Register i1,..,ik lesen und mit sign(ij) auf Null testen

– Zustand s und Testergebnisse t1,..,tk als Argumente an δ geben

– δ(s,(t1,..,tk))=(s′,(op1,..,opk)) bestimmen

– Neuer Zustand s′, Register j gemäß Operation opj modifizieren

– Stop wenn s′ Endzustand ist

• Ergebnis
– Inhalt des ersten Registers
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Semantik von Registermaschinen Definition G

• Kρ ≡ Menge aller Konfigurationen κ =(s,(i1,..,ik)) von ρ mit

– s ∈S aktueller Zustand

– i
j
∈N Inhalt des Registers j
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• Anfangskonfiguration α:N→Kρ: α(n) = (s0,(n,0,...,0))
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• Kρ ≡ Menge aller Konfigurationen κ =(s,(i1,..,ik)) von ρ mit

– s ∈S aktueller Zustand

– i
j
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– Für κ=(s,(i1,..,ik)) mit δ(s,(sign(i1),..,sign(ik))) = (s′,(op1,..,opk)) ist

δ̂(κ)=(s′,(i′1,..,i
′
k)), wobei i′j =

{

0 falls ij=0 und opj=-1,

ij+opj sonst
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• Ausgabefunktion ω:Kρ→N: ω(s, (i1, .., ik)) = i1

• Die von ρ berechnete Funktion hρ:N→N ist definiert durch

hρ(n) =

{

ω(δ̂m(α(n))) falls m=min{j | ∃s ∈F . δ̂j(α(n))=(s, )} existiert
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• Kρ ≡ Menge aller Konfigurationen κ =(s,(i1,..,ik)) von ρ mit
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• Nachfolgekonfiguration: δ̂:Kρ→Kρ

– Für κ=(s,(i1,..,ik)) mit δ(s,(sign(i1),..,sign(ik))) = (s′,(op1,..,opk)) ist

δ̂(κ)=(s′,(i′1,..,i
′
k)), wobei i′j =

{

0 falls ij=0 und opj=-1,

ij+opj sonst

• Ausgabefunktion ω:Kρ→N: ω(s, (i1, .., ik)) = i1

• Die von ρ berechnete Funktion hρ:N→N ist definiert durch

hρ(n) =

{

ω(δ̂m(α(n))) falls m=min{j | ∃s ∈F . δ̂j(α(n))=(s, )} existiert
⊥ sonst

Definition HDefinitionsbereich von ρ ist {n ∈N |hρ(n)6=⊥},

Wertebereich von ρ ist {m ∈N | ∃n ∈N hρ(n)=m}
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Beispiele für Registermaschinen

• ρ1 = ({s0,s1}, 1, δ1, s0, {s1}) mit δ1 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1



Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Registermaschinen
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Zähle Eingabewert n auf Null herunter und addiere Eins
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– Ausgabefunktion: ω(s
1
, 1) = 1

⇓

hρ1(n)=1 für alle n, Definitionsbereich N, Wertebereich {1}
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Beispiele für Registermaschinen II

• ρ2 = ({s0,s1,s2,s3,s4 }, 2, δ2, s0, {s4 }) mit δ2 = s t1 t2 s′ op1 op2

s0 0 0 s4 0 0
s0 0 1 s2 0 0
s0 1 * s1 -1 +1
s1 * * s0 0 +1
s2 * 0 s4 0 0
s2 * 1 s3 +1 -1
s3 * * s2 +1 0
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Beispiele für Registermaschinen II

• ρ2 = ({s0,s1,s2,s3,s4 }, 2, δ2, s0, {s4 }) mit δ2 = s t1 t2 s′ op1 op2
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• Analyse
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Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Registermaschinen
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n
α

−→ (s0,n,0)
δ

−→ (s1,n−1,1)
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s0 0 1 s2 0 0
s0 1 * s1 -1 +1
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−→ . . .
δ
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δ

−→ (s2,2,2n−1)
δ

−→ . . .
δ

−→ (s4,4n,0)
ω

−→ 4n

⇓

hρ2(n)=4n für alle n, Definitionsbereich N, Wertebereich {4n|n ∈N}
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Register-Berechenbarkeit Definition H

• f :N→N RM
k
-berechenbar

– Es gibt eine Registermaschine ρ = (S, k, δ, s0, F ) mit hρ=f

• f :Nm→N
n RM

k
-berechenbar (k≥max(m,n))

– Es gibt eine Registermaschine ρ = (S, k, δ, s0, F ) mit hρ=f und

· Anfangskonfiguration αm:Nm→Kρ: αm(n1,,..,nm) = (s0,(n1,,..,nm,0,...,0))

· Ausgabefunktion ωn:Kρ→N
n: ωn(s, (i1, .., ik)) = i1, .., in

• RM: Menge der Register-berechenbaren Funktionen

– RMk = {f :N→N | f ist RM
k
-berechenbar}

– RM =
⋃

{RMk | k ∈N}
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• Konstante Funktion f3(n) = c
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ρ4 = ({s0,s1}, 1, δ4, s0, {s1}) mit δ4 = s t1 t2 s′ op1 op2

s0 * 0 s1 0 0
s0 * 1 s0 +1 -1

• Multiplikation f5(n,m) = n∗m

– ρ5 muß s1 auf Null herunterzählen und dabei jeweils s0+n berechnen

– n muß zuvor in Hilfsregister kopiert werden
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j
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– Jeder Befehl kann durch RM-Unterprogramme simuliert werden

• Befehlsmacros

– Abkürzungen für Programmfragmente in RM-Programmiersprache
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Simulation der RM-Programmiersprache

• rj := rj+1
– Direkter RM Befehl

• rj := rj−̇1
– Direkter RM Befehl

• rj := c
– Unterprogramm ähnlich zu ρ3

• while rj>0 do op od
– Solange r

j
>0 springe zu Startzustand von op

– Am Endzustand von op springe zurück zum Anfang

– Wenn r
j
=0 gehe zum Endzustand des Befehls

δ = s ... t
j
... s′ ...1 op

j
...

s * 0 * se 0 ... 0 ...0
s * 1 * sop0 0 ... 0 ...0
sop0 — op —
sope * * * s 0 ... 0 ...0
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• while exp(rj)>0 do op od (r
j
:= exp(r

j
) programmierbar)

r’:=r
j
; r’:=exp(r’);

while r’>0 do op; r’:=r
j
; r’:=exp(r’) od

• while exp(rj)=0 do op od

while 1−̇exp(r
j
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• if rj=0 then op fi

r’:=r
j
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• if rj≤ri then op fi

r’:=r
i
−̇r

j
; if r’=0 then op fi

– Vergleichsoperation ≥, <, >, =, 6= analog
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i
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– Subtrahiere r
i
wiederholt von r

j
und speichere letzten “Divisionsrest”

– Korrektur: Ergebnis bleibt 0, wenn Divisionsrest gleich r
i
ist

while r
j
>0 do r’:= r

j
; r

j
:=r

j
−̇r

i
od;

if r’<r
i
then r
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if r’’<r
i
then r

j
:=r

j
−̇1

• rj := rj mod ri

– Subtrahiere r
i
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j
und speichere letzten “Divisionsrest”

– Korrektur: Ergebnis bleibt 0, wenn Divisionsrest gleich r
i
ist

while r
j
>0 do r’:= r

j
; r

j
:=r

j
−̇r

i
od;

if r’<r
i
then r

j
:= r’

• rj := Π
ri
j=1 exp(j)
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• r
k
:= prim-exp(rj,ri) (prim-exp(n,p) = max{k|pk teilt n})
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od

• r
k
:= prim-exp(rj,ri) (prim-exp(n,p) = max{k|pk teilt n})
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– k-Band-Maschine durch Einbandmaschine simulierbar
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Beweis durch gegenseitige Simulation

•RM ⊆ T {1},{1}
– Simuliere jedes Register durch separates (einseitiges) Turingband

– Simuliere Registeroperationen durch Hinzufügen bzw. Löschen von Einsen

– k-Band-Maschine durch Einbandmaschine simulierbar

•RM ⊇ T {1},{1}
– Direkte Simulation nicht möglich da Anzahl der Register endlich

– Codiere Bandinhalt und Kopfsymbol als (beliebig große) Zahlen

– Simuliere Einzelschritte durch entsprechende arithmetische Operationen

– Umfangreiche Details
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Simulation einer RM durch eine TM

i1 i2 i3

δ s

Speicherzellen

-
�

	 ? R

� 6I −→
Band für i1

Band für i2

Band für i3

δ s
-

�

?

6

+

3

W

O

# b b b b b b . . .

# 1 1 b b b b . . .

# 1 1 1 1 1 b . . .

• Band für Register r wird kellerartig verarbeitet

– Kopf am rechten Ende der unären Codierung des Registerinhalts
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• Band für Register r wird kellerartig verarbeitet

– Kopf am rechten Ende der unären Codierung des Registerinhalts

• Überführungsfunktion direkt simulierbar

– Registerinhaltstest 0: Lesen des Bandanfangsmarkers #

– Registerinhaltstest 1: Lesen einer 1

– Registerinhalt vergrößern: nach rechts gehen und eine 1 schreiben

– Registerinhalt verringern: 1 löschen und nach links gehen (wenn möglich)
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Simulation einer TM durch eine RM
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?

�
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. . . . v4 v3 v2 v1 u1 u2 u3
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v
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u

. . .

−→
ι(s) π(u) π(v) . . .

δRM sRM
-

�

	 ? R

� 6I

• Repräsentiere TM-Konfigurationen in Registern
– 3 Register für linke Hälfte, rechte Häfte, Zustand

– Braucht eindeutige Codierung π von Strings als Zahlen
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– Braucht eindeutige Codierung π von Strings als Zahlen
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– Je ein separater Zustand pro Eintrag in der Tabelle
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• Repräsentiere TM-Konfigurationen in Registern
– 3 Register für linke Hälfte, rechte Häfte, Zustand

– Braucht eindeutige Codierung π von Strings als Zahlen

• Repräsentiere Überführungstabelle in Zuständen
– Je ein separater Zustand pro Eintrag in der Tabelle

– Unterprogramm schreibt (codiertes) Ergebnis δ(s,a)=(s′,a′,P ) in Register

• Simuliere Ausführung der Turingmaschine
– Erzeuge Codierung der TM-Anfangskonfiguration aus RM-Eingabe

– Simuliere Berechnung der TM-Nachfolgekonfiguration

– Decodiere TM-Endkonfiguration in Ausgabe der Registermaschine
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Codierung von Konfigurationen und Überführungsfunktion

• Primzahlcodierung π von Strings über Γ Definition J

– Für Γ = {a1,. . . ,am} sei ι(a
i
)=i

– Für w = w1...wr sei π(w) = Πr
j=1 p

ι(wj)
j (pj = nth-prime(j))

z.B. π(ε) = 1, π(a4a2a1) = 24 · 32 · 51 = 720

– π injektiv wegen Eindeutigkeit der Primzahlzerlegung



Theoretische Informatik II §6: Berechenbarkeitsmodelle 18 Registermaschinen

Codierung von Konfigurationen und Überführungsfunktion
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• Primzahlcodierung π von Strings über Γ Definition J

– Für Γ = {a1,. . . ,am} sei ι(a
i
)=i

– Für w = w1...wr sei π(w) = Πr
j=1 p

ι(wj)
j (pj = nth-prime(j))

z.B. π(ε) = 1, π(a4a2a1) = 24 · 32 · 51 = 720

– π injektiv wegen Eindeutigkeit der Primzahlzerlegung

• Repräsentation von TM-Konfigurationen

– Für S = {s0,. . . ,sk
} sei ι(s

i
)=i

– Verwende alternative Repräsentation (s,u,v) von Konfigurationen

– Codierung durch Registerinhalt (r1,r2,r3, . . . ) = (ι(s),π(u),π(v), . . . )

• Repräsentation der Überführungstabelle

– Für S={s0,. . . ,sk
}, Γ={a1,. . . ,am} verwende Zustände s̄1,. . . , s̄(k+1)∗m

– Zustand s̄j∗m+i enthält Unterprogramm für δ(s
j
,a

i
)=(sj′,ai′,P )

r1:=j
′; r4:=i

′; r5:=ι(P ) (ι(l)=0, ι(h)=1, ι(r)=2)

– Register r6, r7, . . . werden für Zwischenergebnisse der Simulation benutzt
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Simulation der TM Ausführung im Detail

• Erzeugung der Anfangskonfiguration

– Anfangskonfiguration der RM ist α(n) = (s0,(n,0,...,0))

– Anfangskonfiguration der TM ist (s0,ε, 1...1︸︷︷︸
n

)

– Der Einfachheit halber hat rechter String mindestens ein (Kopf-)symbol

if r1=0 then r3:=2
ι(b) else r3:=Π

r1
j=1 nth-prime(j)ι(1) fi;

r1:=0; r2:=1
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j=2 p
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– Berechne ι(v1) und speichere nach r4, “lösche” v1 aus r3

r4:=prim-exp(r3,2); r3:= r3 div 2r4
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Simulation der TM Ausführung im Detail

• Erzeugung der Anfangskonfiguration

– Anfangskonfiguration der RM ist α(n) = (s0,(n,0,...,0))

– Anfangskonfiguration der TM ist (s0,ε, 1...1︸︷︷︸
n

)

– Der Einfachheit halber hat rechter String mindestens ein (Kopf-)symbol

if r1=0 then r3:=2
ι(b) else r3:=Π

r1
j=1 nth-prime(j)ι(1) fi;

r1:=0; r2:=1

• Lesen des Symbols unter dem Kopf

– Codierung des Strings v1...vr in r3 ist 2ι(v1)*Πr
j=2 p

ι(vj)
j

– Berechne ι(v1) und speichere nach r4, “lösche” v1 aus r3

r4:=prim-exp(r3,2); r3:= r3 div 2r4

• Bestimmung des auszuführenden Befehls

– Durch schrittweises Herunterzählen gehe zum Zustand s̄r1∗m+r4

– Führe entsprechendes Unterprogramm aus und gehe zum Zustand s̄

– r1 enthät Folgezustand, r4 neues Kopfsymbol, r5 Kopfbewegung
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Simuliere Schreiben (r4) und Kopfbewegung (r5)

Kopfbewegung erfordert Umcodierung der Strings
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if r5=1 then r3:= r3 * 2r4; goto se fi P = h
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if r5=2 then P = r

r6:=r3; r3:=1; r7:=2; r8:=2 r7=n, r8 = (n-1)te Primzahl

while r6>1 do Umverschlüsseln r
3
: von nte auf (n-1)te Primzahl)

r9:= nth-prime(r7); r10:=prim-exp(r6,r9)

r6:=r6 div r9
r10; r3:=r3*r8

r10; r8:=r9; r7:=r7+1

od
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r10; r8:=r9; r7:=r7+1
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if r5=0 then ... P = l, analog
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Simulation der TM Ausführung: Ausgabe

• Decodierung der Ausgabekonfiguration

– Endkonfiguration der TM ist (s,u,v) mit u=1kb∗, v=1jb∗

– Endkonfiguration der RM muß k + j in Register r1 enthalten

– Schrittweise decodiere Primexponenten bis zum ersten Leerzeichen
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• Decodierung der Ausgabekonfiguration

– Endkonfiguration der TM ist (s,u,v) mit u=1kb∗, v=1jb∗

– Endkonfiguration der RM muß k + j in Register r1 enthalten

– Schrittweise decodiere Primexponenten bis zum ersten Leerzeichen

r1:=0; r4:=1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

while r6=ι(1) do

r2:= r2 div r5
r6; r1:=r1+1;

r4:=r4+1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

od;

r4:=1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

while r6=ι(1) do

r3:= r3 div r5
r6; r1:=r1+1;

r4:=r4+1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

od
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• Decodierung der Ausgabekonfiguration

– Endkonfiguration der TM ist (s,u,v) mit u=1kb∗, v=1jb∗

– Endkonfiguration der RM muß k + j in Register r1 enthalten

– Schrittweise decodiere Primexponenten bis zum ersten Leerzeichen

r1:=0; r4:=1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

while r6=ι(1) do

r2:= r2 div r5
r6; r1:=r1+1;

r4:=r4+1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

od;

r4:=1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

while r6=ι(1) do

r3:= r3 div r5
r6; r1:=r1+1;

r4:=r4+1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

od

q.e.d


