
Theoretische Informatik II

Einheit 6.2

Registermaschinen

1. Arbeitsweise

2. Formale Semantik

3. Register-Berechenbarkeit

4. Programmiermethoden

5. Äquivalenz zu Turingmaschinen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 1 Registermaschinen

Registermaschinen

i1 i2 i3 i4 i5

Programm δ Zustand s

Speicherzellen

-
δ(s,(t1,..,tk))=(s′,(op1,..,opk))

�

s,(t1,..,tk)

�

op1

	

op2

?

op3

R

op4

j

op5

* � 6 I Y

i1=0? i2=0? i3=0? i4=0? i5=0?

• Standardarchitektur von Einprozessorsystemen
– Direkter und simultaner Speicherzugriff

– Speicherzellen enthalten natürliche Zahlen

– Keine Ein/Ausgabe, sehr einfacher Befehlssatz

• Unterschiede zur Turingmaschine
– Endlicher Speicher, aber unendlicher Bereich für Werte von Zellen

Achtung! Modelle in Literatur oft flexibler

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 Registermaschinen

Registermaschinen – mathematisch Definition F

i1 i2 i3 i4 i5

Programm δ Zustand s

Speicherzellen

-
δ(s,(t1,..,tk))=(s′,(op1,..,opk))

�

s,(t1,..,tk)

�

op1

	

op2

?

op3

R

op4

j

op5

* � 6 I Y

i1=0? i2=0? i3=0? i4=0? i5=0?

Eine Registermaschine ist ein 5-Tupel ρ = (S, k, δ, s0, F)

• S nichtleere endliche Zustandsmenge

• s0
∈S Anfangszustand

• k ∈N Anzahl der Register

• F⊆S Menge der Endzustände

• δ:(S\F)×{0,1}k → S×{-1,0,1}k Zustandsüberführungsfunktion

Eingabe: Zustand + Testergebnisse: tj = sign(ij) =

{

0 falls ij=0,

1 falls ij>0

Ausgabe: Zustand + Registeroperationen: opj (Subtraktion, Identität, Addition)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 3 Registermaschinen

Arbeitsweise von Registermaschinen

i1 i2 i3 i4 i5

Programm δ Zustand s

Speicherzellen

-
δ(s,(t1,..,tk))=(s′,(op1,..,opk))

�

s,(t1,..,tk)

�

op1

	

op2

?

op3

R

op4

j

op5

* � 6 I Y

i1=0? i2=0? i3=0? i4=0? i5=0?

Theoretische Informatik II §6: Berechenbarkeitsmodelle 3 Registermaschinen

Arbeitsweise von Registermaschinen

i1 i2 i3 i4 i5

Programm δ Zustand s

Speicherzellen

-
δ(s,(t1,..,tk))=(s′,(op1,..,opk))

�

s,(t1,..,tk)

�

op1

	

op2

?

op3

R

op4

j

op5

* � 6 I Y

i1=0? i2=0? i3=0? i4=0? i5=0?

• Anfangssituation
– Eingabezahl n steht im ersten Register

Theoretische Informatik II §6: Berechenbarkeitsmodelle 3 Registermaschinen

Arbeitsweise von Registermaschinen

i1 i2 i3 i4 i5

Programm δ Zustand s

Speicherzellen

-
δ(s,(t1,..,tk))=(s′,(op1,..,opk))

�

s,(t1,..,tk)

�

op1

	

op2

?

op3

R

op4

j

op5

* � 6 I Y

i1=0? i2=0? i3=0? i4=0? i5=0?

• Anfangssituation
– Eingabezahl n steht im ersten Register

• Arbeitschritt
– Inhalte der Register i1,..,ik lesen und mit sign(ij) auf Null testen

– Zustand s und Testergebnisse t1,..,tk als Argumente an δ geben

– δ(s,(t1,..,tk))=(s′,(op1,..,opk)) bestimmen

– Neuer Zustand s′, Register j gemäß Operation opj modifizieren

– Stop wenn s′ Endzustand ist

Theoretische Informatik II §6: Berechenbarkeitsmodelle 3 Registermaschinen

Arbeitsweise von Registermaschinen

i1 i2 i3 i4 i5

Programm δ Zustand s

Speicherzellen

-
δ(s,(t1,..,tk))=(s′,(op1,..,opk))

�

s,(t1,..,tk)

�

op1

	

op2

?

op3

R

op4

j

op5

* � 6 I Y

i1=0? i2=0? i3=0? i4=0? i5=0?

• Anfangssituation
– Eingabezahl n steht im ersten Register

• Arbeitschritt
– Inhalte der Register i1,..,ik lesen und mit sign(ij) auf Null testen

– Zustand s und Testergebnisse t1,..,tk als Argumente an δ geben

– δ(s,(t1,..,tk))=(s′,(op1,..,opk)) bestimmen

– Neuer Zustand s′, Register j gemäß Operation opj modifizieren

– Stop wenn s′ Endzustand ist

• Ergebnis
– Inhalt des ersten Registers

Theoretische Informatik II §6: Berechenbarkeitsmodelle 4 Registermaschinen

Semantik von Registermaschinen Definition G

• Kρ ≡ Menge aller Konfigurationen κ =(s,(i1,..,ik)) von ρ mit

– s ∈S aktueller Zustand

– i
j
∈N Inhalt des Registers j

Theoretische Informatik II §6: Berechenbarkeitsmodelle 4 Registermaschinen

Semantik von Registermaschinen Definition G

• Kρ ≡ Menge aller Konfigurationen κ =(s,(i1,..,ik)) von ρ mit

– s ∈S aktueller Zustand

– i
j
∈N Inhalt des Registers j

• Anfangskonfiguration α:N→Kρ: α(n) = (s0,(n,0,...,0))

Theoretische Informatik II §6: Berechenbarkeitsmodelle 4 Registermaschinen

Semantik von Registermaschinen Definition G

• Kρ ≡ Menge aller Konfigurationen κ =(s,(i1,..,ik)) von ρ mit

– s ∈S aktueller Zustand

– i
j
∈N Inhalt des Registers j

• Anfangskonfiguration α:N→Kρ: α(n) = (s0,(n,0,...,0))

• Nachfolgekonfiguration: δ̂:Kρ→Kρ

– Für κ=(s,(i1,..,ik)) mit δ(s,(sign(i1),..,sign(ik))) = (s′,(op1,..,opk)) ist

δ̂(κ)=(s′,(i′1,..,i
′
k)), wobei i′j =

{

0 falls ij=0 und opj=-1,

ij+opj sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 4 Registermaschinen

Semantik von Registermaschinen Definition G

• Kρ ≡ Menge aller Konfigurationen κ =(s,(i1,..,ik)) von ρ mit

– s ∈S aktueller Zustand

– i
j
∈N Inhalt des Registers j

• Anfangskonfiguration α:N→Kρ: α(n) = (s0,(n,0,...,0))

• Nachfolgekonfiguration: δ̂:Kρ→Kρ

– Für κ=(s,(i1,..,ik)) mit δ(s,(sign(i1),..,sign(ik))) = (s′,(op1,..,opk)) ist

δ̂(κ)=(s′,(i′1,..,i
′
k)), wobei i′j =

{

0 falls ij=0 und opj=-1,

ij+opj sonst

• Ausgabefunktion ω:Kρ→N: ω(s, (i1, .., ik)) = i1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 4 Registermaschinen

Semantik von Registermaschinen Definition G

• Kρ ≡ Menge aller Konfigurationen κ =(s,(i1,..,ik)) von ρ mit

– s ∈S aktueller Zustand

– i
j
∈N Inhalt des Registers j

• Anfangskonfiguration α:N→Kρ: α(n) = (s0,(n,0,...,0))

• Nachfolgekonfiguration: δ̂:Kρ→Kρ

– Für κ=(s,(i1,..,ik)) mit δ(s,(sign(i1),..,sign(ik))) = (s′,(op1,..,opk)) ist

δ̂(κ)=(s′,(i′1,..,i
′
k)), wobei i′j =

{

0 falls ij=0 und opj=-1,

ij+opj sonst

• Ausgabefunktion ω:Kρ→N: ω(s, (i1, .., ik)) = i1

• Die von ρ berechnete Funktion hρ:N→N ist definiert durch

hρ(n) =

{

ω(δ̂m(α(n))) falls m=min{j | ∃s ∈F . δ̂j(α(n))=(s,)} existiert
⊥ sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 4 Registermaschinen

Semantik von Registermaschinen Definition G

• Kρ ≡ Menge aller Konfigurationen κ =(s,(i1,..,ik)) von ρ mit

– s ∈S aktueller Zustand

– i
j
∈N Inhalt des Registers j

• Anfangskonfiguration α:N→Kρ: α(n) = (s0,(n,0,...,0))

• Nachfolgekonfiguration: δ̂:Kρ→Kρ

– Für κ=(s,(i1,..,ik)) mit δ(s,(sign(i1),..,sign(ik))) = (s′,(op1,..,opk)) ist

δ̂(κ)=(s′,(i′1,..,i
′
k)), wobei i′j =

{

0 falls ij=0 und opj=-1,

ij+opj sonst

• Ausgabefunktion ω:Kρ→N: ω(s, (i1, .., ik)) = i1

• Die von ρ berechnete Funktion hρ:N→N ist definiert durch

hρ(n) =

{

ω(δ̂m(α(n))) falls m=min{j | ∃s ∈F . δ̂j(α(n))=(s,)} existiert
⊥ sonst

Definition HDefinitionsbereich von ρ ist {n ∈N |hρ(n)6=⊥},

Wertebereich von ρ ist {m ∈N | ∃n ∈N hρ(n)=m}

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Registermaschinen

Beispiele für Registermaschinen

• ρ1 = ({s0,s1}, 1, δ1, s0, {s1}) mit δ1 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Registermaschinen

Beispiele für Registermaschinen

• ρ1 = ({s0,s1}, 1, δ1, s0, {s1}) mit δ1 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1

Zähle Eingabewert n auf Null herunter und addiere Eins

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Registermaschinen

Beispiele für Registermaschinen

• ρ1 = ({s0,s1}, 1, δ1, s0, {s1}) mit δ1 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1

Zähle Eingabewert n auf Null herunter und addiere Eins

• Mathematische Analyse:

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Registermaschinen

Beispiele für Registermaschinen

• ρ1 = ({s0,s1}, 1, δ1, s0, {s1}) mit δ1 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1

Zähle Eingabewert n auf Null herunter und addiere Eins

• Mathematische Analyse:

– Anfangskonfiguration: α(n) = (s
0
,n)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Registermaschinen

Beispiele für Registermaschinen

• ρ1 = ({s0,s1}, 1, δ1, s0, {s1}) mit δ1 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1

Zähle Eingabewert n auf Null herunter und addiere Eins

• Mathematische Analyse:

– Anfangskonfiguration: α(n) = (s
0
,n)

– Nachfolgekonfigurationen: δ̂(s
0
,n) =

{

(s
0
, n−1) falls n>0,

(s
1
, 1) falls n=0

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Registermaschinen

Beispiele für Registermaschinen

• ρ1 = ({s0,s1}, 1, δ1, s0, {s1}) mit δ1 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1

Zähle Eingabewert n auf Null herunter und addiere Eins

• Mathematische Analyse:

– Anfangskonfiguration: α(n) = (s
0
,n)

– Nachfolgekonfigurationen: δ̂(s
0
,n) =

{

(s
0
, n−1) falls n>0,

(s
1
, 1) falls n=0

– Terminierung: min{j | δ̂j(s
0
,n)=(s

1
,)} = n+1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Registermaschinen

Beispiele für Registermaschinen

• ρ1 = ({s0,s1}, 1, δ1, s0, {s1}) mit δ1 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1

Zähle Eingabewert n auf Null herunter und addiere Eins

• Mathematische Analyse:

– Anfangskonfiguration: α(n) = (s
0
,n)

– Nachfolgekonfigurationen: δ̂(s
0
,n) =

{

(s
0
, n−1) falls n>0,

(s
1
, 1) falls n=0

– Terminierung: min{j | δ̂j(s
0
,n)=(s

1
,)} = n+1

– Ergebnis: δ̂n+1(s
0
,n) = (s

1
,1)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Registermaschinen

Beispiele für Registermaschinen

• ρ1 = ({s0,s1}, 1, δ1, s0, {s1}) mit δ1 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1

Zähle Eingabewert n auf Null herunter und addiere Eins

• Mathematische Analyse:

– Anfangskonfiguration: α(n) = (s
0
,n)

– Nachfolgekonfigurationen: δ̂(s
0
,n) =

{

(s
0
, n−1) falls n>0,

(s
1
, 1) falls n=0

– Terminierung: min{j | δ̂j(s
0
,n)=(s

1
,)} = n+1

– Ergebnis: δ̂n+1(s
0
,n) = (s

1
,1)

– Ausgabefunktion: ω(s
1
, 1) = 1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 Registermaschinen

Beispiele für Registermaschinen

• ρ1 = ({s0,s1}, 1, δ1, s0, {s1}) mit δ1 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1

Zähle Eingabewert n auf Null herunter und addiere Eins

• Mathematische Analyse:

– Anfangskonfiguration: α(n) = (s
0
,n)

– Nachfolgekonfigurationen: δ̂(s
0
,n) =

{

(s
0
, n−1) falls n>0,

(s
1
, 1) falls n=0

– Terminierung: min{j | δ̂j(s
0
,n)=(s

1
,)} = n+1

– Ergebnis: δ̂n+1(s
0
,n) = (s

1
,1)

– Ausgabefunktion: ω(s
1
, 1) = 1

⇓

hρ1(n)=1 für alle n, Definitionsbereich N, Wertebereich {1}

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Registermaschinen

Beispiele für Registermaschinen II

• ρ2 = ({s0,s1,s2,s3,s4 }, 2, δ2, s0, {s4 }) mit δ2 = s t1 t2 s′ op1 op2

s0 0 0 s4 0 0
s0 0 1 s2 0 0
s0 1 * s1 -1 +1
s1 * * s0 0 +1
s2 * 0 s4 0 0
s2 * 1 s3 +1 -1
s3 * * s2 +1 0

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Registermaschinen

Beispiele für Registermaschinen II

• ρ2 = ({s0,s1,s2,s3,s4 }, 2, δ2, s0, {s4 }) mit δ2 = s t1 t2 s′ op1 op2

s0 0 0 s4 0 0
s0 0 1 s2 0 0
s0 1 * s1 -1 +1
s1 * * s0 0 +1
s2 * 0 s4 0 0
s2 * 1 s3 +1 -1
s3 * * s2 +1 0

• Analyse

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Registermaschinen

Beispiele für Registermaschinen II

• ρ2 = ({s0,s1,s2,s3,s4 }, 2, δ2, s0, {s4 }) mit δ2 = s t1 t2 s′ op1 op2

s0 0 0 s4 0 0
s0 0 1 s2 0 0
s0 1 * s1 -1 +1
s1 * * s0 0 +1
s2 * 0 s4 0 0
s2 * 1 s3 +1 -1
s3 * * s2 +1 0

• Analyse

n
α

−→ (s0,n,0)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Registermaschinen

Beispiele für Registermaschinen II

• ρ2 = ({s0,s1,s2,s3,s4 }, 2, δ2, s0, {s4 }) mit δ2 = s t1 t2 s′ op1 op2

s0 0 0 s4 0 0
s0 0 1 s2 0 0
s0 1 * s1 -1 +1
s1 * * s0 0 +1
s2 * 0 s4 0 0
s2 * 1 s3 +1 -1
s3 * * s2 +1 0

• Analyse

n
α

−→ (s0,n,0)
δ

−→ (s1,n−1,1)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Registermaschinen

Beispiele für Registermaschinen II

• ρ2 = ({s0,s1,s2,s3,s4 }, 2, δ2, s0, {s4 }) mit δ2 = s t1 t2 s′ op1 op2

s0 0 0 s4 0 0
s0 0 1 s2 0 0
s0 1 * s1 -1 +1
s1 * * s0 0 +1
s2 * 0 s4 0 0
s2 * 1 s3 +1 -1
s3 * * s2 +1 0

• Analyse

n
α

−→ (s0,n,0)
δ

−→ (s1,n−1,1)
δ

−→ (s0,n−1,2)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Registermaschinen

Beispiele für Registermaschinen II

• ρ2 = ({s0,s1,s2,s3,s4 }, 2, δ2, s0, {s4 }) mit δ2 = s t1 t2 s′ op1 op2

s0 0 0 s4 0 0
s0 0 1 s2 0 0
s0 1 * s1 -1 +1
s1 * * s0 0 +1
s2 * 0 s4 0 0
s2 * 1 s3 +1 -1
s3 * * s2 +1 0

• Analyse

n
α

−→ (s0,n,0)
δ

−→ (s1,n−1,1)
δ

−→ (s0,n−1,2)
δ

−→ . . .
δ

−→ (s2,0, 2n)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Registermaschinen

Beispiele für Registermaschinen II

• ρ2 = ({s0,s1,s2,s3,s4 }, 2, δ2, s0, {s4 }) mit δ2 = s t1 t2 s′ op1 op2

s0 0 0 s4 0 0
s0 0 1 s2 0 0
s0 1 * s1 -1 +1
s1 * * s0 0 +1
s2 * 0 s4 0 0
s2 * 1 s3 +1 -1
s3 * * s2 +1 0

• Analyse

n
α

−→ (s0,n,0)
δ

−→ (s1,n−1,1)
δ

−→ (s0,n−1,2)
δ

−→ . . .
δ

−→ (s2,0, 2n)
δ

−→ (s3,1,2n−1)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Registermaschinen

Beispiele für Registermaschinen II

• ρ2 = ({s0,s1,s2,s3,s4 }, 2, δ2, s0, {s4 }) mit δ2 = s t1 t2 s′ op1 op2

s0 0 0 s4 0 0
s0 0 1 s2 0 0
s0 1 * s1 -1 +1
s1 * * s0 0 +1
s2 * 0 s4 0 0
s2 * 1 s3 +1 -1
s3 * * s2 +1 0

• Analyse

n
α

−→ (s0,n,0)
δ

−→ (s1,n−1,1)
δ

−→ (s0,n−1,2)
δ

−→ . . .
δ

−→ (s2,0, 2n)
δ

−→ (s3,1,2n−1)
δ

−→ (s2,2,2n−1)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Registermaschinen

Beispiele für Registermaschinen II

• ρ2 = ({s0,s1,s2,s3,s4 }, 2, δ2, s0, {s4 }) mit δ2 = s t1 t2 s′ op1 op2

s0 0 0 s4 0 0
s0 0 1 s2 0 0
s0 1 * s1 -1 +1
s1 * * s0 0 +1
s2 * 0 s4 0 0
s2 * 1 s3 +1 -1
s3 * * s2 +1 0

• Analyse

n
α

−→ (s0,n,0)
δ

−→ (s1,n−1,1)
δ

−→ (s0,n−1,2)
δ

−→ . . .
δ

−→ (s2,0, 2n)
δ

−→ (s3,1,2n−1)
δ

−→ (s2,2,2n−1)
δ

−→ . . .
δ

−→ (s4,4n,0)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Registermaschinen

Beispiele für Registermaschinen II

• ρ2 = ({s0,s1,s2,s3,s4 }, 2, δ2, s0, {s4 }) mit δ2 = s t1 t2 s′ op1 op2

s0 0 0 s4 0 0
s0 0 1 s2 0 0
s0 1 * s1 -1 +1
s1 * * s0 0 +1
s2 * 0 s4 0 0
s2 * 1 s3 +1 -1
s3 * * s2 +1 0

• Analyse

n
α

−→ (s0,n,0)
δ

−→ (s1,n−1,1)
δ

−→ (s0,n−1,2)
δ

−→ . . .
δ

−→ (s2,0, 2n)
δ

−→ (s3,1,2n−1)
δ

−→ (s2,2,2n−1)
δ

−→ . . .
δ

−→ (s4,4n,0)
ω

−→ 4n

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Registermaschinen

Beispiele für Registermaschinen II

• ρ2 = ({s0,s1,s2,s3,s4 }, 2, δ2, s0, {s4 }) mit δ2 = s t1 t2 s′ op1 op2

s0 0 0 s4 0 0
s0 0 1 s2 0 0
s0 1 * s1 -1 +1
s1 * * s0 0 +1
s2 * 0 s4 0 0
s2 * 1 s3 +1 -1
s3 * * s2 +1 0

• Analyse

n
α

−→ (s0,n,0)
δ

−→ (s1,n−1,1)
δ

−→ (s0,n−1,2)
δ

−→ . . .
δ

−→ (s2,0, 2n)
δ

−→ (s3,1,2n−1)
δ

−→ (s2,2,2n−1)
δ

−→ . . .
δ

−→ (s4,4n,0)
ω

−→ 4n

⇓

hρ2(n)=4n für alle n, Definitionsbereich N, Wertebereich {4n|n ∈N}

Theoretische Informatik II §6: Berechenbarkeitsmodelle 7 Registermaschinen

Register-Berechenbarkeit Definition H

• f :N→N RM
k
-berechenbar

– Es gibt eine Registermaschine ρ = (S, k, δ, s0, F) mit hρ=f

• f :Nm→N
n RM

k
-berechenbar (k≥max(m,n))

– Es gibt eine Registermaschine ρ = (S, k, δ, s0, F) mit hρ=f und

· Anfangskonfiguration αm:Nm→Kρ: αm(n1,,..,nm) = (s0,(n1,,..,nm,0,...,0))

· Ausgabefunktion ωn:Kρ→N
n: ωn(s, (i1, .., ik)) = i1, .., in

• RM: Menge der Register-berechenbaren Funktionen

– RMk = {f :N→N | f ist RM
k
-berechenbar}

– RM =
⋃

{RMk | k ∈N}

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 Registermaschinen

Beispiele Register-Berechenbarer Funktionen

• Konstante Funktion f3(n) = c

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 Registermaschinen

Beispiele Register-Berechenbarer Funktionen

• Konstante Funktion f3(n) = c

– ρ3 muß Register s0 auf Null herunterzählen und dann c mal 1 addieren

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 Registermaschinen

Beispiele Register-Berechenbarer Funktionen

• Konstante Funktion f3(n) = c

– ρ3 muß Register s0 auf Null herunterzählen und dann c mal 1 addieren

ρ3 = ({s0,..,sc }, 1, δ3, s0, {sc }) mit δ3 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1
s1 * s2 +1
...

sc−1 * sc +1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 Registermaschinen

Beispiele Register-Berechenbarer Funktionen

• Konstante Funktion f3(n) = c

– ρ3 muß Register s0 auf Null herunterzählen und dann c mal 1 addieren

ρ3 = ({s0,..,sc }, 1, δ3, s0, {sc }) mit δ3 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1
s1 * s2 +1
...

sc−1 * sc +1

• Addition f4(n,m) = n+m

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 Registermaschinen

Beispiele Register-Berechenbarer Funktionen

• Konstante Funktion f3(n) = c

– ρ3 muß Register s0 auf Null herunterzählen und dann c mal 1 addieren

ρ3 = ({s0,..,sc }, 1, δ3, s0, {sc }) mit δ3 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1
s1 * s2 +1
...

sc−1 * sc +1

• Addition f4(n,m) = n+m

– ρ4 muß Register s1 auf Null herunterzählen und dabei s0 hochzählen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 Registermaschinen

Beispiele Register-Berechenbarer Funktionen

• Konstante Funktion f3(n) = c

– ρ3 muß Register s0 auf Null herunterzählen und dann c mal 1 addieren

ρ3 = ({s0,..,sc }, 1, δ3, s0, {sc }) mit δ3 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1
s1 * s2 +1
...

sc−1 * sc +1

• Addition f4(n,m) = n+m

– ρ4 muß Register s1 auf Null herunterzählen und dabei s0 hochzählen

ρ4 = ({s0,s1}, 1, δ4, s0, {s1}) mit δ4 = s t1 t2 s′ op1 op2

s0 * 0 s1 0 0
s0 * 1 s0 +1 -1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 Registermaschinen

Beispiele Register-Berechenbarer Funktionen

• Konstante Funktion f3(n) = c

– ρ3 muß Register s0 auf Null herunterzählen und dann c mal 1 addieren

ρ3 = ({s0,..,sc }, 1, δ3, s0, {sc }) mit δ3 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1
s1 * s2 +1
...

sc−1 * sc +1

• Addition f4(n,m) = n+m

– ρ4 muß Register s1 auf Null herunterzählen und dabei s0 hochzählen

ρ4 = ({s0,s1}, 1, δ4, s0, {s1}) mit δ4 = s t1 t2 s′ op1 op2

s0 * 0 s1 0 0
s0 * 1 s0 +1 -1

• Multiplikation f5(n,m) = n∗m

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 Registermaschinen

Beispiele Register-Berechenbarer Funktionen

• Konstante Funktion f3(n) = c

– ρ3 muß Register s0 auf Null herunterzählen und dann c mal 1 addieren

ρ3 = ({s0,..,sc }, 1, δ3, s0, {sc }) mit δ3 = s t1 s′ op1

s0 0 s1 +1
s0 1 s0 -1
s1 * s2 +1
...

sc−1 * sc +1

• Addition f4(n,m) = n+m

– ρ4 muß Register s1 auf Null herunterzählen und dabei s0 hochzählen

ρ4 = ({s0,s1}, 1, δ4, s0, {s1}) mit δ4 = s t1 t2 s′ op1 op2

s0 * 0 s1 0 0
s0 * 1 s0 +1 -1

• Multiplikation f5(n,m) = n∗m

– ρ5 muß s1 auf Null herunterzählen und dabei jeweils s0+n berechnen

– n muß zuvor in Hilfsregister kopiert werden

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 Registermaschinen

Erweiterung des Modells für Programmierzwecke

• Unterprogramme

– Umbenennung: Separate Zustände s′0,..s
′
n und Register r′1,..,r

′
k

– Aufruf: speichere Argumente in r′1, springe nach s′0

– Rückgabe: kopiere Werte von r′1 ins gewünschte Register,

springe zum Folgezustand des Aufrufs

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 Registermaschinen

Erweiterung des Modells für Programmierzwecke

• Unterprogramme

– Umbenennung: Separate Zustände s′0,..s
′
n und Register r′1,..,r

′
k

– Aufruf: speichere Argumente in r′1, springe nach s′0

– Rückgabe: kopiere Werte von r′1 ins gewünschte Register,

springe zum Folgezustand des Aufrufs

• RM-Programmiersprache
r

j
:= r

j
+1

r
j
:= r

j
−̇1 i−̇j = max(i−j,0)

r
j
:= c (c ∈N)

while r
j
=0 do op od (op beliebiger Befehl)

– Jeder Befehl kann durch RM-Unterprogramme simuliert werden

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 Registermaschinen

Erweiterung des Modells für Programmierzwecke

• Unterprogramme

– Umbenennung: Separate Zustände s′0,..s
′
n und Register r′1,..,r

′
k

– Aufruf: speichere Argumente in r′1, springe nach s′0

– Rückgabe: kopiere Werte von r′1 ins gewünschte Register,

springe zum Folgezustand des Aufrufs

• RM-Programmiersprache
r

j
:= r

j
+1

r
j
:= r

j
−̇1 i−̇j = max(i−j,0)

r
j
:= c (c ∈N)

while r
j
=0 do op od (op beliebiger Befehl)

– Jeder Befehl kann durch RM-Unterprogramme simuliert werden

• Befehlsmacros

– Abkürzungen für Programmfragmente in RM-Programmiersprache

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Registermaschinen

Simulation der RM-Programmiersprache

• rj := rj+1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Registermaschinen

Simulation der RM-Programmiersprache

• rj := rj+1
– Direkter RM Befehl

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Registermaschinen

Simulation der RM-Programmiersprache

• rj := rj+1
– Direkter RM Befehl

• rj := rj−̇1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Registermaschinen

Simulation der RM-Programmiersprache

• rj := rj+1
– Direkter RM Befehl

• rj := rj−̇1
– Direkter RM Befehl

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Registermaschinen

Simulation der RM-Programmiersprache

• rj := rj+1
– Direkter RM Befehl

• rj := rj−̇1
– Direkter RM Befehl

• rj := c

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Registermaschinen

Simulation der RM-Programmiersprache

• rj := rj+1
– Direkter RM Befehl

• rj := rj−̇1
– Direkter RM Befehl

• rj := c
– Unterprogramm ähnlich zu ρ3

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Registermaschinen

Simulation der RM-Programmiersprache

• rj := rj+1
– Direkter RM Befehl

• rj := rj−̇1
– Direkter RM Befehl

• rj := c
– Unterprogramm ähnlich zu ρ3

• while rj>0 do op od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 Registermaschinen

Simulation der RM-Programmiersprache

• rj := rj+1
– Direkter RM Befehl

• rj := rj−̇1
– Direkter RM Befehl

• rj := c
– Unterprogramm ähnlich zu ρ3

• while rj>0 do op od
– Solange r

j
>0 springe zu Startzustand von op

– Am Endzustand von op springe zurück zum Anfang

– Wenn r
j
=0 gehe zum Endzustand des Befehls

δ = s ... t
j
... s′ ...1 op

j
...

s * 0 * se 0 ... 0 ...0
s * 1 * sop0 0 ... 0 ...0
sop0 — op —
sope * * * s 0 ... 0 ...0

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Registermaschinen

Befehlsmacros I: Arithmetik

• rj := ri

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Registermaschinen

Befehlsmacros I: Arithmetik

• rj := ri
– Verschiebe r

i
in Hilfsregister r’ und kopiere r’ simultan nach r

j
und r

i

r
j
:=0; r’:=0; while r

i
>0 do r

i
:=r

i
−̇1; r’:=r’+1 od;

while r’>0 do r’:=r’−̇1; r
j
:=r

j
+1; r

i
:=r

i
+1 od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Registermaschinen

Befehlsmacros I: Arithmetik

• rj := ri
– Verschiebe r

i
in Hilfsregister r’ und kopiere r’ simultan nach r

j
und r

i

r
j
:=0; r’:=0; while r

i
>0 do r

i
:=r

i
−̇1; r’:=r’+1 od;

while r’>0 do r’:=r’−̇1; r
j
:=r

j
+1; r

i
:=r

i
+1 od

• rj := rj+ri

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Registermaschinen

Befehlsmacros I: Arithmetik

• rj := ri
– Verschiebe r

i
in Hilfsregister r’ und kopiere r’ simultan nach r

j
und r

i

r
j
:=0; r’:=0; while r

i
>0 do r

i
:=r

i
−̇1; r’:=r’+1 od;

while r’>0 do r’:=r’−̇1; r
j
:=r

j
+1; r

i
:=r

i
+1 od

• rj := rj+ri
– Kopiere r

i
in nach r’ und zähle simultan r’ herunter und r

j
hoch

r’ := r
i
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
+1 od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Registermaschinen

Befehlsmacros I: Arithmetik

• rj := ri
– Verschiebe r

i
in Hilfsregister r’ und kopiere r’ simultan nach r

j
und r

i

r
j
:=0; r’:=0; while r

i
>0 do r

i
:=r

i
−̇1; r’:=r’+1 od;

while r’>0 do r’:=r’−̇1; r
j
:=r

j
+1; r

i
:=r

i
+1 od

• rj := rj+ri
– Kopiere r

i
in nach r’ und zähle simultan r’ herunter und r

j
hoch

r’ := r
i
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
+1 od

• rj := rj−̇ri

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Registermaschinen

Befehlsmacros I: Arithmetik

• rj := ri
– Verschiebe r

i
in Hilfsregister r’ und kopiere r’ simultan nach r

j
und r

i

r
j
:=0; r’:=0; while r

i
>0 do r

i
:=r

i
−̇1; r’:=r’+1 od;

while r’>0 do r’:=r’−̇1; r
j
:=r

j
+1; r

i
:=r

i
+1 od

• rj := rj+ri
– Kopiere r

i
in nach r’ und zähle simultan r’ herunter und r

j
hoch

r’ := r
i
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
+1 od

• rj := rj−̇ri
– Kopiere r

i
nach r’ und reduziere r’ und r

j
simultan

r’:=r
i
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
−̇1 od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Registermaschinen

Befehlsmacros I: Arithmetik

• rj := ri
– Verschiebe r

i
in Hilfsregister r’ und kopiere r’ simultan nach r

j
und r

i

r
j
:=0; r’:=0; while r

i
>0 do r

i
:=r

i
−̇1; r’:=r’+1 od;

while r’>0 do r’:=r’−̇1; r
j
:=r

j
+1; r

i
:=r

i
+1 od

• rj := rj+ri
– Kopiere r

i
in nach r’ und zähle simultan r’ herunter und r

j
hoch

r’ := r
i
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
+1 od

• rj := rj−̇ri
– Kopiere r

i
nach r’ und reduziere r’ und r

j
simultan

r’:=r
i
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
−̇1 od

• rj := rj*ri

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Registermaschinen

Befehlsmacros I: Arithmetik

• rj := ri
– Verschiebe r

i
in Hilfsregister r’ und kopiere r’ simultan nach r

j
und r

i

r
j
:=0; r’:=0; while r

i
>0 do r

i
:=r

i
−̇1; r’:=r’+1 od;

while r’>0 do r’:=r’−̇1; r
j
:=r

j
+1; r

i
:=r

i
+1 od

• rj := rj+ri
– Kopiere r

i
in nach r’ und zähle simultan r’ herunter und r

j
hoch

r’ := r
i
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
+1 od

• rj := rj−̇ri
– Kopiere r

i
nach r’ und reduziere r’ und r

j
simultan

r’:=r
i
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
−̇1 od

• rj := rj*ri
– r

i
-faches Aufaddieren von r

j
unter Verwendung von Hilfsregistern

r’:=r
i
; r’’:=r

j
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
+r’’ od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Registermaschinen

Befehlsmacros I: Arithmetik

• rj := ri
– Verschiebe r

i
in Hilfsregister r’ und kopiere r’ simultan nach r

j
und r

i

r
j
:=0; r’:=0; while r

i
>0 do r

i
:=r

i
−̇1; r’:=r’+1 od;

while r’>0 do r’:=r’−̇1; r
j
:=r

j
+1; r

i
:=r

i
+1 od

• rj := rj+ri
– Kopiere r

i
in nach r’ und zähle simultan r’ herunter und r

j
hoch

r’ := r
i
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
+1 od

• rj := rj−̇ri
– Kopiere r

i
nach r’ und reduziere r’ und r

j
simultan

r’:=r
i
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
−̇1 od

• rj := rj*ri
– r

i
-faches Aufaddieren von r

j
unter Verwendung von Hilfsregistern

r’:=r
i
; r’’:=r

j
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
+r’’ od

• rj := rj
ri

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 Registermaschinen

Befehlsmacros I: Arithmetik

• rj := ri
– Verschiebe r

i
in Hilfsregister r’ und kopiere r’ simultan nach r

j
und r

i

r
j
:=0; r’:=0; while r

i
>0 do r

i
:=r

i
−̇1; r’:=r’+1 od;

while r’>0 do r’:=r’−̇1; r
j
:=r

j
+1; r

i
:=r

i
+1 od

• rj := rj+ri
– Kopiere r

i
in nach r’ und zähle simultan r’ herunter und r

j
hoch

r’ := r
i
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
+1 od

• rj := rj−̇ri
– Kopiere r

i
nach r’ und reduziere r’ und r

j
simultan

r’:=r
i
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
−̇1 od

• rj := rj*ri
– r

i
-faches Aufaddieren von r

j
unter Verwendung von Hilfsregistern

r’:=r
i
; r’’:=r

j
; while r’>0 do r’:=r’−̇1; r

j
:=r

j
+r’’ od

• rj := rj
ri

r’:=r
i
; r’’:=r

j
; r

j
:=1;

while r’>0 do r’:=r’−̇1; r
j
:=r

j
*r’’ od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Registermaschinen

Befehlsmacros II: Programmstrukturen

• while exp(rj)>0 do op od (r
j
:= exp(r

j
) programmierbar)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Registermaschinen

Befehlsmacros II: Programmstrukturen

• while exp(rj)>0 do op od (r
j
:= exp(r

j
) programmierbar)

r’:=r
j
; r’:=exp(r’);

while r’>0 do op; r’:=r
j
; r’:=exp(r’) od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Registermaschinen

Befehlsmacros II: Programmstrukturen

• while exp(rj)>0 do op od (r
j
:= exp(r

j
) programmierbar)

r’:=r
j
; r’:=exp(r’);

while r’>0 do op; r’:=r
j
; r’:=exp(r’) od

• while exp(rj)=0 do op od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Registermaschinen

Befehlsmacros II: Programmstrukturen

• while exp(rj)>0 do op od (r
j
:= exp(r

j
) programmierbar)

r’:=r
j
; r’:=exp(r’);

while r’>0 do op; r’:=r
j
; r’:=exp(r’) od

• while exp(rj)=0 do op od

while 1−̇exp(r
j
)>0 do op od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Registermaschinen

Befehlsmacros II: Programmstrukturen

• while exp(rj)>0 do op od (r
j
:= exp(r

j
) programmierbar)

r’:=r
j
; r’:=exp(r’);

while r’>0 do op; r’:=r
j
; r’:=exp(r’) od

• while exp(rj)=0 do op od

while 1−̇exp(r
j
)>0 do op od

• if rj=0 then op fi

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Registermaschinen

Befehlsmacros II: Programmstrukturen

• while exp(rj)>0 do op od (r
j
:= exp(r

j
) programmierbar)

r’:=r
j
; r’:=exp(r’);

while r’>0 do op; r’:=r
j
; r’:=exp(r’) od

• while exp(rj)=0 do op od

while 1−̇exp(r
j
)>0 do op od

• if rj=0 then op fi

r’:=r
j
; while r’=0 do op; r’:=1 od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Registermaschinen

Befehlsmacros II: Programmstrukturen

• while exp(rj)>0 do op od (r
j
:= exp(r

j
) programmierbar)

r’:=r
j
; r’:=exp(r’);

while r’>0 do op; r’:=r
j
; r’:=exp(r’) od

• while exp(rj)=0 do op od

while 1−̇exp(r
j
)>0 do op od

• if rj=0 then op fi

r’:=r
j
; while r’=0 do op; r’:=1 od

• if rj≤ri then op fi

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 Registermaschinen

Befehlsmacros II: Programmstrukturen

• while exp(rj)>0 do op od (r
j
:= exp(r

j
) programmierbar)

r’:=r
j
; r’:=exp(r’);

while r’>0 do op; r’:=r
j
; r’:=exp(r’) od

• while exp(rj)=0 do op od

while 1−̇exp(r
j
)>0 do op od

• if rj=0 then op fi

r’:=r
j
; while r’=0 do op; r’:=1 od

• if rj≤ri then op fi

r’:=r
i
−̇r

j
; if r’=0 then op fi

– Vergleichsoperation ≥, <, >, =, 6= analog

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 Registermaschinen

Befehlsmacros III: Division und Produkte

• rj := rj÷ri (Integerdivision)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 Registermaschinen

Befehlsmacros III: Division und Produkte

• rj := rj÷ri (Integerdivision)

– Subtrahiere r
i
wiederholt von Kopie von r

j
und zähle dabei r

j
hoch

– Korrektur um −̇1, wenn Divisionsrest bleibt

r’:=r
j
; r

j
:=0;

while r’>0 do r’’:=r’; r’:=r’−̇r
i
; r

j
:=r

j
+1 od

if r’’<r
i
then r

j
:=r

j
−̇1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 Registermaschinen

Befehlsmacros III: Division und Produkte

• rj := rj÷ri (Integerdivision)

– Subtrahiere r
i
wiederholt von Kopie von r

j
und zähle dabei r

j
hoch

– Korrektur um −̇1, wenn Divisionsrest bleibt

r’:=r
j
; r

j
:=0;

while r’>0 do r’’:=r’; r’:=r’−̇r
i
; r

j
:=r

j
+1 od

if r’’<r
i
then r

j
:=r

j
−̇1

• rj := rj mod ri

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 Registermaschinen

Befehlsmacros III: Division und Produkte

• rj := rj÷ri (Integerdivision)

– Subtrahiere r
i
wiederholt von Kopie von r

j
und zähle dabei r

j
hoch

– Korrektur um −̇1, wenn Divisionsrest bleibt

r’:=r
j
; r

j
:=0;

while r’>0 do r’’:=r’; r’:=r’−̇r
i
; r

j
:=r

j
+1 od

if r’’<r
i
then r

j
:=r

j
−̇1

• rj := rj mod ri

– Subtrahiere r
i
wiederholt von r

j
und speichere letzten “Divisionsrest”

– Korrektur: Ergebnis bleibt 0, wenn Divisionsrest gleich r
i
ist

while r
j
>0 do r’:= r

j
; r

j
:=r

j
−̇r

i
od;

if r’<r
i
then r

j
:= r’

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 Registermaschinen

Befehlsmacros III: Division und Produkte

• rj := rj÷ri (Integerdivision)

– Subtrahiere r
i
wiederholt von Kopie von r

j
und zähle dabei r

j
hoch

– Korrektur um −̇1, wenn Divisionsrest bleibt

r’:=r
j
; r

j
:=0;

while r’>0 do r’’:=r’; r’:=r’−̇r
i
; r

j
:=r

j
+1 od

if r’’<r
i
then r

j
:=r

j
−̇1

• rj := rj mod ri

– Subtrahiere r
i
wiederholt von r

j
und speichere letzten “Divisionsrest”

– Korrektur: Ergebnis bleibt 0, wenn Divisionsrest gleich r
i
ist

while r
j
>0 do r’:= r

j
; r

j
:=r

j
−̇r

i
od;

if r’<r
i
then r

j
:= r’

• rj := Π
ri
j=1 exp(j)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 Registermaschinen

Befehlsmacros III: Division und Produkte

• rj := rj÷ri (Integerdivision)

– Subtrahiere r
i
wiederholt von Kopie von r

j
und zähle dabei r

j
hoch

– Korrektur um −̇1, wenn Divisionsrest bleibt

r’:=r
j
; r

j
:=0;

while r’>0 do r’’:=r’; r’:=r’−̇r
i
; r

j
:=r

j
+1 od

if r’’<r
i
then r

j
:=r

j
−̇1

• rj := rj mod ri

– Subtrahiere r
i
wiederholt von r

j
und speichere letzten “Divisionsrest”

– Korrektur: Ergebnis bleibt 0, wenn Divisionsrest gleich r
i
ist

while r
j
>0 do r’:= r

j
; r

j
:=r

j
−̇r

i
od;

if r’<r
i
then r

j
:= r’

• rj := Π
ri
j=1 exp(j)

r’:=r
i
; r

j
:=1; while r’>0 do r

j
:=r

j
*exp(r’); r’:=r’−̇1 od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 Registermaschinen

Befehlsmacros IV: Primfaktoren

• rj := prime(ri) (prime(x) = 0, wenn x Primzahl ist)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 Registermaschinen

Befehlsmacros IV: Primfaktoren

• rj := prime(ri) (prime(x) = 0, wenn x Primzahl ist)

r
j
:=1; r’:=2;

while r
i
-r’>0 do

if r
i
mod r’ = 0 then r

j
:=0 fi;

r’:=r’+1

od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 Registermaschinen

Befehlsmacros IV: Primfaktoren

• rj := prime(ri) (prime(x) = 0, wenn x Primzahl ist)

r
j
:=1; r’:=2;

while r
i
-r’>0 do

if r
i
mod r’ = 0 then r

j
:=0 fi;

r’:=r’+1

od

• rj := nth-prime(ri) (nth-prime(n) ist die n-te Primzahl)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 Registermaschinen

Befehlsmacros IV: Primfaktoren

• rj := prime(ri) (prime(x) = 0, wenn x Primzahl ist)

r
j
:=1; r’:=2;

while r
i
-r’>0 do

if r
i
mod r’ = 0 then r

j
:=0 fi;

r’:=r’+1

od

• rj := nth-prime(ri) (nth-prime(n) ist die n-te Primzahl)

r’:=r
i
; r

j
:=1;

while r’>0 do

r
j
:=r

j
+1;

if prime(r
j
) = 0 then r’:=r’-1 fi

od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 Registermaschinen

Befehlsmacros IV: Primfaktoren

• rj := prime(ri) (prime(x) = 0, wenn x Primzahl ist)

r
j
:=1; r’:=2;

while r
i
-r’>0 do

if r
i
mod r’ = 0 then r

j
:=0 fi;

r’:=r’+1

od

• rj := nth-prime(ri) (nth-prime(n) ist die n-te Primzahl)

r’:=r
i
; r

j
:=1;

while r’>0 do

r
j
:=r

j
+1;

if prime(r
j
) = 0 then r’:=r’-1 fi

od

• r
k
:= prim-exp(rj,ri) (prim-exp(n,p) = max{k|pk teilt n})

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 Registermaschinen

Befehlsmacros IV: Primfaktoren

• rj := prime(ri) (prime(x) = 0, wenn x Primzahl ist)

r
j
:=1; r’:=2;

while r
i
-r’>0 do

if r
i
mod r’ = 0 then r

j
:=0 fi;

r’:=r’+1

od

• rj := nth-prime(ri) (nth-prime(n) ist die n-te Primzahl)

r’:=r
i
; r

j
:=1;

while r’>0 do

r
j
:=r

j
+1;

if prime(r
j
) = 0 then r’:=r’-1 fi

od

• r
k
:= prim-exp(rj,ri) (prim-exp(n,p) = max{k|pk teilt n})

r
k
:=0; r’:=r

j
;

while r’ mod r
i
= 0 do r’:=r’ div r

i
; r

k
:=r

k
+1 od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 15 Registermaschinen

Register-Berechenbarkeit =̂ Turing-Berechenbarkeit

RM = T {1},{1} Satz I

Beweis durch gegenseitige Simulation

Theoretische Informatik II §6: Berechenbarkeitsmodelle 15 Registermaschinen

Register-Berechenbarkeit =̂ Turing-Berechenbarkeit

RM = T {1},{1} Satz I

Beweis durch gegenseitige Simulation

•RM ⊆ T {1},{1}
– Simuliere jedes Register durch separates (einseitiges) Turingband

– Simuliere Registeroperationen durch Hinzufügen bzw. Löschen von Einsen

– k-Band-Maschine durch Einbandmaschine simulierbar

Theoretische Informatik II §6: Berechenbarkeitsmodelle 15 Registermaschinen

Register-Berechenbarkeit =̂ Turing-Berechenbarkeit

RM = T {1},{1} Satz I

Beweis durch gegenseitige Simulation

•RM ⊆ T {1},{1}
– Simuliere jedes Register durch separates (einseitiges) Turingband

– Simuliere Registeroperationen durch Hinzufügen bzw. Löschen von Einsen

– k-Band-Maschine durch Einbandmaschine simulierbar

•RM ⊇ T {1},{1}
– Direkte Simulation nicht möglich da Anzahl der Register endlich

– Codiere Bandinhalt und Kopfsymbol als (beliebig große) Zahlen

– Simuliere Einzelschritte durch entsprechende arithmetische Operationen

– Umfangreiche Details

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 Registermaschinen

Simulation einer RM durch eine TM

i1 i2 i3

δ s

Speicherzellen

-
�

	 ? R

� 6I −→
Band für i1

Band für i2

Band für i3

δ s
-

�

?

6

+

3

W

O

b b b b b b . . .

1 1 b b b b . . .

1 1 1 1 1 b . . .

• Band für Register r wird kellerartig verarbeitet

– Kopf am rechten Ende der unären Codierung des Registerinhalts

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 Registermaschinen

Simulation einer RM durch eine TM

i1 i2 i3

δ s

Speicherzellen

-
�

	 ? R

� 6I −→
Band für i1

Band für i2

Band für i3

δ s
-

�

?

6

+

3

W

O

b b b b b b . . .

1 1 b b b b . . .

1 1 1 1 1 b . . .

• Band für Register r wird kellerartig verarbeitet

– Kopf am rechten Ende der unären Codierung des Registerinhalts

• Überführungsfunktion direkt simulierbar

– Registerinhaltstest 0: Lesen des Bandanfangsmarkers #

– Registerinhaltstest 1: Lesen einer 1

– Registerinhalt vergrößern: nach rechts gehen und eine 1 schreiben

– Registerinhalt verringern: 1 löschen und nach links gehen (wenn möglich)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 Registermaschinen

Simulation einer TM durch eine RM

δ s
-

?

�

6

. . . . v4 v3 v2 v1 u1 u2 u3
︸ ︷︷ ︸

v
︸ ︷︷ ︸

u

. . .

−→
ι(s) π(u) π(v) . . .

δRM sRM
-

�

	 ? R

� 6I

• Repräsentiere TM-Konfigurationen in Registern
– 3 Register für linke Hälfte, rechte Häfte, Zustand

– Braucht eindeutige Codierung π von Strings als Zahlen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 Registermaschinen

Simulation einer TM durch eine RM

δ s
-

?

�

6

. . . . v4 v3 v2 v1 u1 u2 u3
︸ ︷︷ ︸

v
︸ ︷︷ ︸

u

. . .

−→
ι(s) π(u) π(v) . . .

δRM sRM
-

�

	 ? R

� 6I

• Repräsentiere TM-Konfigurationen in Registern
– 3 Register für linke Hälfte, rechte Häfte, Zustand

– Braucht eindeutige Codierung π von Strings als Zahlen

• Repräsentiere Überführungstabelle in Zuständen
– Je ein separater Zustand pro Eintrag in der Tabelle

– Unterprogramm schreibt (codiertes) Ergebnis δ(s,a)=(s′,a′,P) in Register

Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 Registermaschinen

Simulation einer TM durch eine RM

δ s
-

?

�

6

. . . . v4 v3 v2 v1 u1 u2 u3
︸ ︷︷ ︸

v
︸ ︷︷ ︸

u

. . .

−→
ι(s) π(u) π(v) . . .

δRM sRM
-

�

	 ? R

� 6I

• Repräsentiere TM-Konfigurationen in Registern
– 3 Register für linke Hälfte, rechte Häfte, Zustand

– Braucht eindeutige Codierung π von Strings als Zahlen

• Repräsentiere Überführungstabelle in Zuständen
– Je ein separater Zustand pro Eintrag in der Tabelle

– Unterprogramm schreibt (codiertes) Ergebnis δ(s,a)=(s′,a′,P) in Register

• Simuliere Ausführung der Turingmaschine
– Erzeuge Codierung der TM-Anfangskonfiguration aus RM-Eingabe

– Simuliere Berechnung der TM-Nachfolgekonfiguration

– Decodiere TM-Endkonfiguration in Ausgabe der Registermaschine

Theoretische Informatik II §6: Berechenbarkeitsmodelle 18 Registermaschinen

Codierung von Konfigurationen und Überführungsfunktion

• Primzahlcodierung π von Strings über Γ Definition J

– Für Γ = {a1,. . . ,am} sei ι(a
i
)=i

– Für w = w1...wr sei π(w) = Πr
j=1 p

ι(wj)
j (pj = nth-prime(j))

z.B. π(ε) = 1, π(a4a2a1) = 24 · 32 · 51 = 720

– π injektiv wegen Eindeutigkeit der Primzahlzerlegung

Theoretische Informatik II §6: Berechenbarkeitsmodelle 18 Registermaschinen

Codierung von Konfigurationen und Überführungsfunktion

• Primzahlcodierung π von Strings über Γ Definition J

– Für Γ = {a1,. . . ,am} sei ι(a
i
)=i

– Für w = w1...wr sei π(w) = Πr
j=1 p

ι(wj)
j (pj = nth-prime(j))

z.B. π(ε) = 1, π(a4a2a1) = 24 · 32 · 51 = 720

– π injektiv wegen Eindeutigkeit der Primzahlzerlegung

• Repräsentation von TM-Konfigurationen

– Für S = {s0,. . . ,sk
} sei ι(s

i
)=i

– Verwende alternative Repräsentation (s,u,v) von Konfigurationen

– Codierung durch Registerinhalt (r1,r2,r3, . . .) = (ι(s),π(u),π(v), . . .)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 18 Registermaschinen

Codierung von Konfigurationen und Überführungsfunktion

• Primzahlcodierung π von Strings über Γ Definition J

– Für Γ = {a1,. . . ,am} sei ι(a
i
)=i

– Für w = w1...wr sei π(w) = Πr
j=1 p

ι(wj)
j (pj = nth-prime(j))

z.B. π(ε) = 1, π(a4a2a1) = 24 · 32 · 51 = 720

– π injektiv wegen Eindeutigkeit der Primzahlzerlegung

• Repräsentation von TM-Konfigurationen

– Für S = {s0,. . . ,sk
} sei ι(s

i
)=i

– Verwende alternative Repräsentation (s,u,v) von Konfigurationen

– Codierung durch Registerinhalt (r1,r2,r3, . . .) = (ι(s),π(u),π(v), . . .)

• Repräsentation der Überführungstabelle

– Für S={s0,. . . ,sk
}, Γ={a1,. . . ,am} verwende Zustände s̄1,. . . , s̄(k+1)∗m

– Zustand s̄j∗m+i enthält Unterprogramm für δ(s
j
,a

i
)=(sj′,ai′,P)

r1:=j
′; r4:=i

′; r5:=ι(P) (ι(l)=0, ι(h)=1, ι(r)=2)

– Register r6, r7, . . . werden für Zwischenergebnisse der Simulation benutzt

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 Registermaschinen

Simulation der TM Ausführung im Detail

• Erzeugung der Anfangskonfiguration

– Anfangskonfiguration der RM ist α(n) = (s0,(n,0,...,0))

– Anfangskonfiguration der TM ist (s0,ε, 1...1︸︷︷︸
n

)

– Der Einfachheit halber hat rechter String mindestens ein (Kopf-)symbol

if r1=0 then r3:=2
ι(b) else r3:=Π

r1
j=1 nth-prime(j)ι(1) fi;

r1:=0; r2:=1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 Registermaschinen

Simulation der TM Ausführung im Detail

• Erzeugung der Anfangskonfiguration

– Anfangskonfiguration der RM ist α(n) = (s0,(n,0,...,0))

– Anfangskonfiguration der TM ist (s0,ε, 1...1︸︷︷︸
n

)

– Der Einfachheit halber hat rechter String mindestens ein (Kopf-)symbol

if r1=0 then r3:=2
ι(b) else r3:=Π

r1
j=1 nth-prime(j)ι(1) fi;

r1:=0; r2:=1

• Lesen des Symbols unter dem Kopf

– Codierung des Strings v1...vr in r3 ist 2ι(v1)*Πr
j=2 p

ι(vj)
j

– Berechne ι(v1) und speichere nach r4, “lösche” v1 aus r3

r4:=prim-exp(r3,2); r3:= r3 div 2r4

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 Registermaschinen

Simulation der TM Ausführung im Detail

• Erzeugung der Anfangskonfiguration

– Anfangskonfiguration der RM ist α(n) = (s0,(n,0,...,0))

– Anfangskonfiguration der TM ist (s0,ε, 1...1︸︷︷︸
n

)

– Der Einfachheit halber hat rechter String mindestens ein (Kopf-)symbol

if r1=0 then r3:=2
ι(b) else r3:=Π

r1
j=1 nth-prime(j)ι(1) fi;

r1:=0; r2:=1

• Lesen des Symbols unter dem Kopf

– Codierung des Strings v1...vr in r3 ist 2ι(v1)*Πr
j=2 p

ι(vj)
j

– Berechne ι(v1) und speichere nach r4, “lösche” v1 aus r3

r4:=prim-exp(r3,2); r3:= r3 div 2r4

• Bestimmung des auszuführenden Befehls

– Durch schrittweises Herunterzählen gehe zum Zustand s̄r1∗m+r4

– Führe entsprechendes Unterprogramm aus und gehe zum Zustand s̄

– r1 enthät Folgezustand, r4 neues Kopfsymbol, r5 Kopfbewegung

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Registermaschinen

Simuliere Schreiben (r4) und Kopfbewegung (r5)

Kopfbewegung erfordert Umcodierung der Strings

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Registermaschinen

Simuliere Schreiben (r4) und Kopfbewegung (r5)

Kopfbewegung erfordert Umcodierung der Strings

if r5=1 then r3:= r3 * 2r4; goto se fi P = h

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Registermaschinen

Simuliere Schreiben (r4) und Kopfbewegung (r5)

Kopfbewegung erfordert Umcodierung der Strings

if r5=1 then r3:= r3 * 2r4; goto se fi P = h

if r5=2 then P = r

r6:=r3; r3:=1; r7:=2; r8:=2 r7=n, r8 = (n-1)te Primzahl

while r6>1 do Umverschlüsseln r
3
: von nte auf (n-1)te Primzahl)

r9:= nth-prime(r7); r10:=prim-exp(r6,r9)

r6:=r6 div r9
r10; r3:=r3*r8

r10; r8:=r9; r7:=r7+1

od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Registermaschinen

Simuliere Schreiben (r4) und Kopfbewegung (r5)

Kopfbewegung erfordert Umcodierung der Strings

if r5=1 then r3:= r3 * 2r4; goto se fi P = h

if r5=2 then P = r

r6:=r3; r3:=1; r7:=2; r8:=2 r7=n, r8 = (n-1)te Primzahl

while r6>1 do Umverschlüsseln r
3
: von nte auf (n-1)te Primzahl)

r9:= nth-prime(r7); r10:=prim-exp(r6,r9)

r6:=r6 div r9
r10; r3:=r3*r8

r10; r8:=r9; r7:=r7+1

od

if r3=1 then r3:=2
ι(b) fi Sonderfall Bandende: rechts ein b anhängen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Registermaschinen

Simuliere Schreiben (r4) und Kopfbewegung (r5)

Kopfbewegung erfordert Umcodierung der Strings

if r5=1 then r3:= r3 * 2r4; goto se fi P = h

if r5=2 then P = r

r6:=r3; r3:=1; r7:=2; r8:=2 r7=n, r8 = (n-1)te Primzahl

while r6>1 do Umverschlüsseln r
3
: von nte auf (n-1)te Primzahl)

r9:= nth-prime(r7); r10:=prim-exp(r6,r9)

r6:=r6 div r9
r10; r3:=r3*r8

r10; r8:=r9; r7:=r7+1

od

if r3=1 then r3:=2
ι(b) fi Sonderfall Bandende: rechts ein b anhängen

r6:=r2; r2:=2
r4; r7:=2; r8:=2

while r6>1 do Umverschlüsseln r
2
: von (n-1)te auf nte Primzahl)

r9:= nth-prime(r7); r10:=prim-exp(r6,r8)

r6:=r6 div r8
r10; r2:=r2*r9

r10; r8:=r9; r7:=r7+1

od

fi

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 Registermaschinen

Simuliere Schreiben (r4) und Kopfbewegung (r5)

Kopfbewegung erfordert Umcodierung der Strings

if r5=1 then r3:= r3 * 2r4; goto se fi P = h

if r5=2 then P = r

r6:=r3; r3:=1; r7:=2; r8:=2 r7=n, r8 = (n-1)te Primzahl

while r6>1 do Umverschlüsseln r
3
: von nte auf (n-1)te Primzahl)

r9:= nth-prime(r7); r10:=prim-exp(r6,r9)

r6:=r6 div r9
r10; r3:=r3*r8

r10; r8:=r9; r7:=r7+1

od

if r3=1 then r3:=2
ι(b) fi Sonderfall Bandende: rechts ein b anhängen

r6:=r2; r2:=2
r4; r7:=2; r8:=2

while r6>1 do Umverschlüsseln r
2
: von (n-1)te auf nte Primzahl)

r9:= nth-prime(r7); r10:=prim-exp(r6,r8)

r6:=r6 div r8
r10; r2:=r2*r9

r10; r8:=r9; r7:=r7+1

od

fi

if r5=0 then ... P = l, analog

Theoretische Informatik II §6: Berechenbarkeitsmodelle 21 Registermaschinen

Simulation der TM Ausführung: Ausgabe

• Decodierung der Ausgabekonfiguration

– Endkonfiguration der TM ist (s,u,v) mit u=1kb∗, v=1jb∗

– Endkonfiguration der RM muß k + j in Register r1 enthalten

– Schrittweise decodiere Primexponenten bis zum ersten Leerzeichen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 21 Registermaschinen

Simulation der TM Ausführung: Ausgabe

• Decodierung der Ausgabekonfiguration

– Endkonfiguration der TM ist (s,u,v) mit u=1kb∗, v=1jb∗

– Endkonfiguration der RM muß k + j in Register r1 enthalten

– Schrittweise decodiere Primexponenten bis zum ersten Leerzeichen

r1:=0; r4:=1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

while r6=ι(1) do

r2:= r2 div r5
r6; r1:=r1+1;

r4:=r4+1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

od;

r4:=1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

while r6=ι(1) do

r3:= r3 div r5
r6; r1:=r1+1;

r4:=r4+1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

od

Theoretische Informatik II §6: Berechenbarkeitsmodelle 21 Registermaschinen

Simulation der TM Ausführung: Ausgabe

• Decodierung der Ausgabekonfiguration

– Endkonfiguration der TM ist (s,u,v) mit u=1kb∗, v=1jb∗

– Endkonfiguration der RM muß k + j in Register r1 enthalten

– Schrittweise decodiere Primexponenten bis zum ersten Leerzeichen

r1:=0; r4:=1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

while r6=ι(1) do

r2:= r2 div r5
r6; r1:=r1+1;

r4:=r4+1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

od;

r4:=1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

while r6=ι(1) do

r3:= r3 div r5
r6; r1:=r1+1;

r4:=r4+1; r5:=nth-prime(r4); r6:=prim-exp(r2,r5)

od

q.e.d

