Theoretische Informatik 11

Einheit 6.3

Rekursive Funktionen

1. Primitiv- und p-rekursive Funktionen
2. Analyse und Programmierung

3. Aquivalenz zu Registermaschinen
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(~-REKURSIVE FUNKTIONEN I

Mathematischer Funktionenkalkul auf N

e Funktionen entstehen durch Anwendung von
Operationen auf Grundfunktionen
— Funktionsdefinition benotigt keine Funktionsargumente

— Das informatiktypische “Baukastensystem” entspricht dieser Idee
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(~-REKURSIVE FUNKTIONEN I

Mathematischer Funktionenkalkul auf N

e Funktionen entstehen durch Anwendung von
Operationen auf Grundfunktionen
— Funktionsdefinition benotigt keine Funktionsargumente

— Das informatiktypische “Baukastensystem” entspricht dieser Idee

e Bausteine gelten als intuitiv berechenbar
— Grundfunktionen: Konstante, Projektion, Nachfolgerzahl

— Operationen: Komposition, einfache Rekursion, Suchschleite
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(t--REKURSIVE FUNKTIONEN I

Mathematischer Funktionenkalkul auf N

e Funktionen entstehen durch Anwendung von
Operationen auf Grundfunktionen
— Funktionsdefinition benotigt keine Funktionsargumente

— Das informatiktypische “Baukastensystem” entspricht dieser Idee

e Bausteine gelten als intuitiv berechenbar
— Grundfunktionen: Konstante, Projektion, Nachfolgerzahl

— Operationen: Komposition, einfache Rekursion, Suchschleite

e Berechnung durch schrittweise Auswertung
— Direkte Auswertung von Argumenten bei Grundfunktionen

— Einsetzen des Definitionsschemas bei Operationen
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BAUSTEINE u-REKURSIVER FUNKTIONEN I

1. Nachfolgerfunktion s :N—N mit s(z) =2 + 1 fiir alle x €N
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BAUSTEINE u-REKURSIVER FUNKTIONEN I

1. Nachfolgerfunktion s :N—N mit s(z) =2 + 1 fiir alle z €N

2. Projektionsfunktionen pr;’ N"—N mit prj(zi,...,z,) = 2; (1<k<n)
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BAUSTEINE u-REKURSIVER FUNKTIONEN I

1. Nachfolgerfunktion s :N—N mit s(z) =2 + 1 fiir alle z €N
2. Projektionsfunktionen pr;’ N"—N mit prj(zi,...,z,) = 2; (1<k<n)

3. Konstantenfunktion ¢! N"—=N mit ¢}(zy,...,z,) =k (0<n)
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BAUSTEINE u-REKURSIVER FUNKTIONEN I

1. Nachfolgerfunktion s :N—N mit s(z) =2 + 1 fiir alle z €N
2. Projektionsfunktionen pr;’ N"—N mit prj(zi,...,z,) = 2; (1<k<n)

3. Konstantenfunktion ¢! N"—=N mit ¢}(zy,...,z,) =k (0<n)

4. Komposition f o (g;...g,) NF—N Definition K

h=fol(gr.gn), wenn h(Z)= f(g1(Z), ..., gn(Z))
h entsteht aus f:N"—N und ¢;...¢,:N*—N durch simultane Einsetzung

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 2 M-REKURSIVE FUNKTIONEN




BAUSTEINE u-REKURSIVER FUNKTIONEN I

1. Nachfolgerfunktion s :N—N mit s(z) =2 + 1 fiir alle z €N
2. Projektionsfunktionen pr;’ N"—N mit prj(zi,...,z,) = 2; (1<k<n)

3. Konstantenfunktion ¢! N"—=N mit ¢}(zy,...,z,) =k (0<n)

4. Komposition f o (g;...g,) NF—N Definition K

h = fol(gi.gn), wenn R(I) = f(g1(Z), ..., ga(T))
h entsteht aus f:N"—N und ¢;...¢,:N*—N durch simultane Einsetzung

5. Primitive Rekursion Pr[f, g] N*—N Definition L.1
h = Pr(f,gl, wenn h(Z,0) = f(Z), h(Z,y+1) = g(Z,y, h(Z,y))
h entsteht aus f:N*"'—N und ¢:N**' =N durch primitive Rekursion
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BAUSTEINE u-REKURSIVER FUNKTIONEN I

1. Nachfolgerfunktion s :N—N mit s(z) =2 + 1 fiir alle z €N

2. Projektionsfunktionen pr;’ N"—N mit prj(zi,...,z,) = 2; (1<k<n)
3. Konstantenfunktion ¢! N"—=N mit ¢}(zy,...,z,) =k (0<n)
4. Komposition f o (g;...g,) NF—N Definition K

h = fol(gi.gn), wenn R(I) = f(g1(Z), ..., ga(T))
h entsteht aus f:N"—N und ¢;...¢,:N*—N durch simultane Einsetzung

5. Primitive Rekursion Pr[f, g] N*—N Definition L.1
h = Pr(f,gl, wenn h(Z,0) = f(Z), h(Z,y+1) = g(Z,y, h(Z,y))
h entsteht aus f:N*"'—N und ¢:N**' =N durch primitive Rekursion

6. u-Operator pf :NF—N Definition L.2
( min{y | f(Z,y) = 0} falls dies existiert und
h=puf, wenn h(Z) = < alle f(Z,1),i<y definiert
L sonst

\
h entsteht aus f:N**'—N durch Minimierung
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BAUSTEINE u-REKURSIVER FUNKTIONEN I

1. Nachfolgerfunktion s :N—N mit s(z) =2 + 1 fiir alle z €N

2. Projektionsfunktionen pr;’ N"—N mit prj(zi,...,z,) = 2; (1<k<n)
3. Konstantenfunktion ¢! N"—=N mit ¢}(zy,...,z,) =k (0<n)
4. Komposition f o (g;...g,) NF—N Definition K

h=fol(gr.gn), wenn h(Z)= f(g1(Z), ..., gn(Z))
h entsteht aus f:N"—N und ¢;...¢,:N*—N durch simultane Einsetzung

5. Primitive Rekursion Pr[f, g] N*—N Definition L.1
h = Pr(f,gl, wenn h(Z,0) = f(Z), h(Z,y+1) = g(Z,y, h(Z,y))
h entsteht aus f:N*"'—N und ¢:N**' =N durch primitive Rekursion

6. u-Operator pf :NF—N Definition L.2
( min{y | f(Z,y) = 0} falls dies existiert und
h=puf, wenn h(Z) = < alle f(Z,1),i<y definiert
L sonst

\
h entsteht aus f:N**'—N durch Minimierung

Abweichende Notation im Skript: N statt s, ) statt pr;, N statt N
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OPERATIONEN ENTSPRECHEN PROGRAMMSTRUKTUREN I

e Komposition = Folge von Anweisungen

Vi 0= &(xp X))

Yn LT gn(Xl’ ° e ’Xm) ’
h :=f (yl’ .. ’Yn) (h — h<3317 --axrn))
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OPERATIONEN ENTSPRECHEN PROGRAMMSTRUKTUREN I

e Komposition = Folge von Anweisungen

v, = g(x, %),

Vo 1= 8% %) 5
h := f(yl’ .. ,yn) (h — h@:l: --afljm»

e Primitive Rekursion = Zahlschleife

h = £(x,..,%);
for i:=1 to y do h := g(x,,..,x,i-1,h) fi (h="I(z. . 2, y))

— Primitive Rekursion arbeitet in umgekehrter Reihenfolge
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OPERATIONEN ENTSPRECHEN PROGRAMMSTRUKTUREN I

e Komposition = Folge von Anweisungen

y, := g(x,..,%,);

Yn - gn(Xl’ ° ’Xm) )
h = £ (yl’ .. ,yn) (h — h<371: -wﬂjzrz))

e Primitive Rekursion = Zahlschleife

h = £(x,..,%);
for i:=1 to y do h := g(x,,..,x,i-1,h) fi (h="I(z. . 2, y))

— Primitive Rekursion arbeitet in umgekehrter Reihenfolge

e Minimierung = While-schleife (unbegrenzte Suche)

y := 0;
while f(x,..x,,y)#0 do y:=y+1 od;
h :=y (h = h(xy,..,2,))

— Ergebnis ist Anzahl der Schleifendurchlaufe bis zum Erfolg
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PRIMITIV- UND HU-REKURSIVE FUNKTIONEN Definition M

°of :N* >N primitiv-rekursiv

— f ist Nachfolger-, Projektions- oder Konstantenfunktion

— f entsteht aus primitiv-rekursiven Funktionen durch Komposition

oder primitive Rekursion
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PRIMITIV- UND HU-REKURSIVE FUNKTIONEN Definition M

°of :N* >N primitiv-rekursiv
— f ist Nachfolger-, Projektions- oder Konstantenfunktion

— f entsteht aus primitiv-rekursiven Funktionen durch Komposition

oder primitive Rekursion

Tprimt Menge der primitiv-rekursiven Funktionen
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PRIMITIV- UND HU-REKURSIVE FUNKTIONEN Definition M

°of :N* >N primitiv-rekursiv
— f ist Nachfolger-, Projektions- oder Konstantenfunktion

— f entsteht aus primitiv-rekursiven Funktionen durch Komposition

oder primitive Rekursion

7,

prim? Menge der primitiv-rekursiven Funktionen

° f:Nk—>N p-rekursiv
— f ist Nachfolger-, Projektions- oder Konstantenfunktion

— f entsteht aus p-rekursiven Funktionen durch Komposition,

primitive Rekursion oder Minimierung
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PRIMITIV- UND HU-REKURSIVE FUNKTIONEN Definition M

°of :N* >N primitiv-rekursiv
— f ist Nachfolger-, Projektions- oder Konstantenfunktion

— f entsteht aus primitiv-rekursiven Funktionen durch Komposition
oder primitive Rekursion

Tprimt Menge der primitiv-rekursiven Funktionen
° f:Nk—>N p-rekursiv

— f ist Nachfolger-, Projektions- oder Konstantenfunktion

— f entsteht aus p-rekursiven Funktionen durch Komposition,
primitive Rekursion oder Minimierung

7+ Menge der p-rekursiven Funktionen

R s Menge der totalen p-rekursiven Funktionen
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BEOBACHTUNGEN UND OFFENE FRAGEN I

e /~-rekursive Funktionen konnen partiell sein
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BEOBACHTUNGEN UND OFFENE FRAGEN I

e /-rekursive Funktionen konnen partiell sein

e Offensichtlich gilt: R, € 7,
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BEOBACHTUNGEN UND OFFENE FRAGEN I

e /-rekursive Funktionen konnen partiell sein

e Offensichtlich gilt: R, € 7,
e Offensichtlich gilt: 7,,.;,, € R,

— Alle Grundfunktionen sind total und p-rekursiv

— Komposition und Primitive Rekursion erhalten Totalitat
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BEOBACHTUNGEN UND OFFENE FRAGEN I

e /-rekursive Funktionen konnen partiell sein

e Offensichtlich gilt: R, € 7,
e Offensichtlich gilt: 7,,.;,, € R,

— Alle Grundfunktionen sind total und p-rekursiv

— Komposition und Primitive Rekursion erhalten Totalitat

e Sind die Inklusionen echt?

— oder konnten zwel Klassen zusammentallen®
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BEOBACHTUNGEN UND OFFENE FRAGEN I

e /-rekursive Funktionen konnen partiell sein

e Offensichtlich gilt: R, € 7,
e Offensichtlich gilt: 7,,.;,, € R

— Alle Grundfunktionen sind total und p-rekursiv

— Komposition und Primitive Rekursion erhalten Totalitat

e Sind die Inklusionen echt?

— oder konnten zwel Klassen zusammenfallen?

e Ist eine der Klassen vergleichbar zu RM bzw. 77
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BEOBACHTUNGEN UND OFFENE FRAGEN I

e /-rekursive Funktionen konnen partiell sein

e Offensichtlich gilt: R, € 7,
e Offensichtlich gilt: 7,,.;,, € R

— Alle Grundfunktionen sind total und p-rekursiv

— Komposition und Primitive Rekursion erhalten Totalitat

e Sind die Inklusionen echt?

— oder konnten zwel Klassen zusammentallen?

e Ist eine der Klassen vergleichbar zu RM bzw. 77

Diese Fragen miussen noch untersucht werden
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ANALYSE PRIMITIV-REKURSIVER FUNKTIONEN I

o f = Pr[p'r}, S0 prg’] Was macht f?
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ANALYSE PRIMITIV-REKURSIVER FUNKTIONEN I

o f = Pr[p'r%, S0 prg’] Was macht f?

e Stelligeitsanalyse:
pri:N—-N, pri:N° N s o pr3:N*—N — [ N*>N
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ANALYSE PRIMITIV-REKURSIVER FUNKTIONEN I

o f = Pr[p'r%, S0 prg’] Was macht f?

e Stelligeitsanalyse:
pri:N—-N, pri:N° N s o pr3:N*—N — [ :N*—>N

e Abarbeitungsbeispiel: f(2,2)
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ANALYSE PRIMITIV-REKURSIVER FUNKTIONEN I

o f = Pr[p'r%, S0 prg’] Was macht f?

e Stelligeitsanalyse:
pri:N—-N, pri:N° N s o pr3:N*—N — [ :N*—>N

e Abarbeitungsbeispiel: f,(2,2) = (sopri(2,1, f1(2,1))
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ANALYSE PRIMITIV-REKURSIVER FUNKTIONEN I

o f = Pr[p'r-}, S0 prg’] Was macht f?

e Stelligeitsanalyse:
pri:N—-N, pri:N° N s o pr3:N*—N — [ :N*—>N

e Abarbeitungsbeispiel: f,(2,2) = (sopri(2,1, (sopri(2,0, fi1(2,0)))
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ANALYSE PRIMITIV-REKURSIVER FUNKTIONEN I

o f = Pr[p'r-}, S0 prg’] Was macht f?

e Stelligeitsanalyse:
pri:N—-N, pri:N° N s o pr3:N*—N — [ :N*—>N

e Abarbeitungsbeispiel: f(2,2) = (sopri(2,1, (sopr3(2,0, pri(2)))
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ANALYSE PRIMITIV-REKURSIVER FUNKTIONEN I

o f = Pr[p'r%, S0 prg’] Was macht f?

e Stelligeitsanalyse:
pri:N—-N, pri:N° N s o pr3:N*—N — [ :N*—>N

e Abarbeitungsbeispiel: f(2,2) = (sopri(2,1, sopri(2,0, 2))
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ANALYSE PRIMITIV-REKURSIVER FUNKTIONEN I

o f = Pr[p'r%, S0 prg’] Was macht f?

e Stelligeitsanalyse:
pri:N—-N, pri:N° N s o pr3:N*—N — [ :N*—>N

e Abarbeitungsbeispiel: f(2,2) = (sopri(2,1, s(2))
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ANALYSE PRIMITIV-REKURSIVER FUNKTIONEN I

o f = Pr[p'r%, S0 prg’] Was macht f?

e Stelligeitsanalyse:
pri:N—-N, pri:N° N s o pr3:N*—N — [ :N*—>N

e Abarbeitungsbeispiel: f(2,2) = sopr3(2,1, 3)
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ANALYSE PRIMITIV-REKURSIVER FUNKTIONEN I

o f = Pr[p'r%, S0 prg’] Was macht f?

e Stelligeitsanalyse:
pri:N—-N, pri:N° N s o pr3:N*—N — [ :N*—>N

e Abarbeitungsbeispiel: f(2,2) = s(3)
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ANALYSE PRIMITIV-REKURSIVER FUNKTIONEN I

o f = Pr[p'r%, S0 prg’] Was macht f?

e Stelligeitsanalyse:
pri:N—-N, pri:N° N s o pr3:N*—N — [ :N*—>N

e Abarbeitungsbeispiel: f(2,2) =4
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ANALYSE PRIMITIV-REKURSIVER FUNKTIONEN I

o f = Pr[p'r-}, S0 prg’] Was macht f?

e Stelligeitsanalyse:
pri:N—-N, pri:N° N s o pr3:N*—N — [ :N*—>N

e Abarbeitungsbeispiel: f(2,2) =4

® Rekursives Verhalten:
fi(x,0) = pri(z) = 2
filz,y+1) = (soprs)(z,y, f(z,y) = s(f(x,y) = flz,y)+1
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ANALYSE PRIMITIV-REKURSIVER FUNKTIONEN I

o f = Pr[p'r%, S0 prg’] Was macht f?

e Stelligeitsanalyse:
pri:N—-N, pri:N° N s o pr3:N*—N — [ N*>N

e Abarbeitungsbeispiel: f(2,2) =4

® Rekursives Verhalten:
fi(x,0) = pri(z) = 2
filz,y+1) = (sopry)(z,y, f(z,y) = s(f(z,y) = flz,y)+]

Das ist die Rekursionsgleichung der Addition

rz+0=2x

> — add :N*->N mit add —
x+(y+1)=(x+y)+1} f1=a mit add(n, m) = n+m
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ANALYSE HU-REKURSIVER FUNKTIONEN I

o fr= pci
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ANALYSE HU-REKURSIVER FUNKTIONEN I

( min{y| ci(x,y) = 0} falls y existiert und alle
o f,= UC% folx) = < ci(x,1),1<y definiert
L sonst
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ANALYSE HU-REKURSIVER FUNKTIONEN I

( min{y| ci(x,y) = 0} falls y existiert und alle

° f2 — uc% folx) = < ci(x,1), i<y definiert

\ 1 sonst

( min{y|1 =0} falls dies existiert

\ 1 sonst

H-REKURSIVE FUNKTIONEN
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ANALYSE HU-REKURSIVER FUNKTIONEN I

( min{y| ci(x,y) = 0} falls y existiert und alle

° f2 — uc% folx) = < ci(x,1), i<y definiert

\ 1 sonst

( min{y|1 =0} falls dies existiert

\ 1 sonst

= 1
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ANALYSE HU-REKURSIVER FUNKTIONEN I

( min{y| ci(x,y) = 0} falls y existiert und alle

° f2 uc% folx) = < ci(x,1), i<y definiert

1 sonst

\

( min{y|1 =0} falls dies existiert

\ 1 sonst

= 1

®
“h
w

|

11
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ANALYSE HU-REKURSIVER FUNKTIONEN I

( min{y| ci(x,y) = 0} falls y existiert und alle
° f2 — uc% folx) = < ci(x,1), i<y definiert
L sonst
<( min{y|1 =0} falls dies existiert
L sonst
= 1
0 fallsx =0
. — ) =
.f3 i1 f3() {J_ sonst
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ANALYSE HU-REKURSIVER FUNKTIONEN I

( min{y| ci(x,y) = 0} falls y existiert und alle

° f2 — uc% folx) = < ci(x,1), i<y definiert

\ 1 sonst

B ( min{y|1 =0} falls dies existiert

7\

1 sonst

1
0 fallsz =0
amute o[

1 sonst

0 fallsz =1y

® fu, = ph mit hix,y) =
fa=p (,y) Lot
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ANALYSE HU-REKURSIVER FUNKTIONEN I

( min{y| ci(x,y) = 0} falls y existiert und alle
° f2 — uc% folx) = < ci(x,1), i<y definiert

\ 1 sonst

B <r min{y |1 =0} falls dies existiert

1 sonst

o f.= nfi fs(z) =

1
0 fallsz =0
1 sonst

0 fall —
o fy = phmithiz,y)={ 7
1 sonst

Fil) = { 0 falls x=0

L sonst
h(z,y) =0 fur x = y aber ist h fiir z > 0 und y < x nicht definiert
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“PROGRAMMIERUNG” u-REKURSIVER FUNKTIONEN I

e Vorgangerfunktion p: N—N p(n) = n—1
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“PROGRAMMIERUNG” p-REKURSIVER FUNKTIONEN I

e Vorgangerfunktion p: N—N p(n) = n—1

® Rekursives Verhalten:
~p(0)=0-1=0
~py+l) = (y+1)-1=y
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“PROGRAMMIERUNG” p-REKURSIVER FUNKTIONEN I

e Vorgangerfunktion p: N—N p(n) = n—1

® Rekursives Verhalten:
~p(0) =0-1=0
~py+l) = (y+1)-1=y

e Beschreibung durch Primitive Rekursion:
— Benotigt: f:N'—=N mit f() =0 — [ =cp
und  ¢:N*=N mit g(y,p(y)) = p(y+1) =y — g =pri
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“PROGRAMMIERUNG” p-REKURSIVER FUNKTIONEN I

e Vorgangerfunktion p: N—N p(n) = n—1

® Rekursives Verhalten:
~p(0) =0-1=0
~py+l) = (y+1)-1=y

e Beschreibung durch Primitive Rekursion:
— Benotigt: f:N'—=N mit f() =0 — [ =cp
und  ¢:N*=N mit g(y,p(y)) = p(y+1) =y — g =pri

— p = P'r[cg, pr%]
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EXKURS: WIE GENAU MUSS MAN SEIN? Wiederholung

Ein Beweis ist ein Argument, das den Leser tiberzeugt
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Ein Beweis ist ein Argument, das den Leser tiberzeugt

e Nicht notwendig formal oder mit allen Details
e Prazise genug. um Details rekonstruieren zu konnen
e Knapp genug, um ubersichtlich und merkbar zu sein

e Gedankenspriinge sind erlaubt, wenn Sie die Materie gut genug verstehen,
daB Sie nichts mehr falsch machen konnen

... s reicht nicht, daB Sie es einmal richtig gemacht haben

e Tip: ausfiihrliche Losungen entwickeln, bis Sie genug Erfahrung haben.

Fir Prasentation zentrale Gedanken aus Losung extrahieren

e Test: verstehen |hre Kommilitonen |hre Losung und warum sie funktioniert?
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BEISPIELE PRIMITIV-REKURSIVER FUNKTIONEN I

e Subtraktion sub:N*—N sub(n,m) = n—m
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BEISPIELE PRIMITIV-REKURSIVER FUNKTIONEN I

e Subtraktion sub:N*—N sub(n,m) = n—m
— sub(z,0) = x = pri(z)
= sub(z,y+1) = z—(y+1) = (z—y)—1 = plz—y) = p o pry)(z,y, sub(x,y))
— sub = Prlpry, p o prj]

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 M-REKURSIVE FUNKTIONEN




BEISPIELE PRIMITIV-REKURSIVER FUNKTIONEN I

e Subtraktion sub:N°—N sub(n,m) = n—m
— sub(x,0) = z = pri(z)

— sub(z,y+1) = z—(y+1) = (x—y)—1 = p(x—y) = po pr3)(z, y, sub(x,y))
— sub = Prlpri{,p o prj]

e Multiplikation mul : N>*—N mul(n,m) = nxm

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 M-REKURSIVE FUNKTIONEN




BEISPIELE PRIMITIV-REKURSIVER FUNKTIONEN I

e Subtraktion sub:N°—N sub(n,m) = n—m
— sub(x,0) = z = pri(z)

— sub(z,y+1) = z—(y+1) = (x—y)—1 = p(x—y) = po pr3)(z, y, sub(x,y))
— sub = Prlpri{,p o prj]

e Multiplikation mul : N>*—N mul(n,m) = nxm
—mul(z,0) =0 = ¢}(x)
—mul(z,y+1) = mul(z,y)+z = (add o (pr}, pr3))(z,y, mul(z,y))
— mul = Pr(c}, (add o (pr?, pr3))]

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 M-REKURSIVE FUNKTIONEN




BEISPIELE PRIMITIV-REKURSIVER FUNKTIONEN I

e Subtraktion sub:N°—N sub(n,m) = n—m
— sub(x,0) = z = pri(z)

— sub(z,y+1) = z—(y+1) = (x—y)—1 = p(x—y) = po pr3)(z, y, sub(x,y))
— sub = Prlpri{,p o prj]

e Multiplikation mul : N>*—N mul(n,m) = nxm
—mul(z,0) =0 = ¢}(x)
—mul(z,y+1) = mul(z,y)+z = (add o (pr}, pr3))(z,y, mul(z,y))
— mul = Pr(c}, (add o (pr?, pr3))]

e Exponentiierung exp : N°—N exp(n,m) = n™

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 M-REKURSIVE FUNKTIONEN




BEISPIELE PRIMITIV-REKURSIVER FUNKTIONEN I

e Subtraktion sub:N°—N sub(n,m) = n—m
— sub(x,0) = z = pri(z)

— sub(z,y+1) = z—(y+1) = (x—y)—1 = p(x—y) = po pr3)(z, y, sub(x,y))
— sub = Prlpri{,p o prj]

e Multiplikation mul : N>*—N mul(n,m) = nxm
—mul(z,0) =0 = ¢}(x)
—mul(z,y+1) = mul(z,y)+z = (add o (pr}, pr3))(z,y, mul(z,y))
— mul = Pr(c}, (add o (pr?, pr3))]

e Exponentiierung exp : N°—N exp(n,m) = n™
exp = Prley, (mul o (pry, pr3))]

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 M-REKURSIVE FUNKTIONEN




BEISPIELE PRIMITIV-REKURSIVER FUNKTIONEN I

e Subtraktion sub:N°—N sub(n,m) = n—m
— sub(x,0) = z = pri(z)

— sub(z,y+1) = z—(y+1) = (x—y)—1 = p(x—y) = po pr3)(z, y, sub(x,y))
— sub = Prlpri{,p o prj]

e Multiplikation mul : N>*—N mul(n,m) = nxm
—mul(z,0) =0 = ¢}(x)
—mul(z,y+1) = mul(z,y)+z = (add o (pr}, pr3))(z,y, mul(z,y))
— mul = Pr(c}, (add o (pr?, pr3))]

e Exponentiierung exp : N°—N exp(n,m) = n™
exp = Prley, (mul o (pry, pr3))]

e Fakultat fak:N—N fak(n) = nl = 1%2%...*%n

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 M-REKURSIVE FUNKTIONEN




BEISPIELE PRIMITIV-REKURSIVER FUNKTIONEN I

e Subtraktion sub:N°—N sub(n,m) = n—m
— sub(x,0) = z = pri(z)

— sub(z,y+1) = z—(y+1) = (x—y)—1 = p(x—y) = po pr3)(z, y, sub(x,y))
— sub = Prlpri{,p o prj]

e Multiplikation mul : N>*—N mul(n,m) = nxm
—mul(z,0) =0 = ¢}(x)
—mul(z,y+1) = mul(z,y)+z = (add o (pr}, pr3))(z,y, mul(z,y))
— mul = Pr(c}, (add o (pr?, pr3))]

e Exponentiierung exp : N°—N exp(n,m) = n™
exp = Prley, (mul o (pry, pr3))]

e Fakultat fak:N—N fak(n) = nl = 1%2%...*%n
fak = Prlc}, (mul o (s o pri, pr3))]

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 M-REKURSIVE FUNKTIONEN




BEISPIELE PRIMITIV-REKURSIVER FUNKTIONEN I

e Subtraktion sub:N°—N sub(n,m) = n—m
— sub(z,0) = x = pri(z)
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1

sign = Pr[c), c?
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PROGRAMMIERTECHNIKEN FUR REKURSIVE FUNKTIONEN I

® Definition durch Fallunterscheidung

h(Z) = { f(Z) falls test(Z) =0

(_,> " (f, g und test:NF—N primitiv-rekursiv)
g(Z) sons
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PROGRAMMIERTECHNIKEN FUR REKURSIVE FUNKTIONEN I

® Definition durch Fallunterscheidung

v) falls test(x) =0
h(f) — { f<:f> A Les (:C) (f, g und test:NF—N primitiv-rekursiv)
g(Z) sonst

Wende Signum-Funktion auf Testergebnis an und multipliziere auf
— W(Z) = (1—sign(test(Z))) * f(T) + sign(test(T)) * g(T)

— h = add o (mul o (sub o (ci, sign o test), f), mul o (sign o test, g))

H-REKURSIVE FUNKTIONEN
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PROGRAMMIERTECHNIKEN FUR REKURSIVE FUNKTIONEN I
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e Generelle Summe X} f(Z,1)
Generelles Produkt II}_f(%,%) (fN"1-N primitiv-rekursiv)
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PROGRAMMIERTECHNIKEN FUR REKURSIVE FUNKTIONEN I

® Definition durch Fallunterscheidung

h(T) = { f(x) falls test(z) =0

(_,) (f, g und test:N*—N primitiv-rekursiv)
g(x) sonst

Wende Signum-Funktion auf Testergebnis an und multipliziere auf
— W(Z) = (1—sign(test(Z))) * f(T) + sign(test(T)) * g(T)
— h = add o (mul o (sub o (ci, sign o test), f), mul o (sign o test, g))

e Generelle Summe X} f(Z,1)
Generelles Produkt II}_f(%,%) (fN"1-N primitiv-rekursiv)
- Yo f(#0) = £(Z,0)
S f(E@ ) = (2 f(34) + f(@y+ 1)
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PROGRAMMIERTECHNIKEN FUR REKURSIVE FUNKTIONEN I

® Definition durch Fallunterscheidung

h(Z) = { f(Z) falls test(Z) = 0

(_,) (f, g und test:N*—N primitiv-rekursiv)
g(x) sonst

Wende Signum-Funktion auf Testergebnis an und multipliziere auf
— W(Z) = (1—sign(test(Z))) * f(T) + sign(test(T)) * g(T)
— h = add o (mul o (sub o (ci, sign o test), f), mul o (sign o test, g))

e Generelle Summe X} f(Z,1)
Generelles Produkt II}_f(%,%) (fN"1-N primitiv-rekursiv)
- X f(@1) = f(3,0)
-2 f(@0) = (2 f(@0) + f(Zy + 1)
— Xf = Pr(fo(pri, ), addo (pr3, f o (pri,sopr3))] (fiir k=1)
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PROGRAMMIERTECHNIKEN FUR REKURSIVE FUNKTIONEN I

® Definition durch Fallunterscheidung

h(Z) = { f(Z) falls test(Z) = 0

(_,) (f, g und test:N*—N primitiv-rekursiv)
g(x) sonst

Wende Signum-Funktion auf Testergebnis an und multipliziere auf
— W(Z) = (1—sign(test(Z))) * f(T) + sign(test(T)) * g(T)
— h = add o (mul o (sub o (ci, sign o test), f), mul o (sign o test, g))

e Generelle Summe X} f(Z,1)
Generelles Produkt H::Of(i, ’L) (f:NF1 N primitiv-rekursiv)
- Yy f(@.0) = £(7,0)
=0 (@) = (S f(#0) + f(F,y +1)
— X f = Pr[fo(pri,c}), addo (pr3, f o (pri,soprs))] (fiir k=1)
— I1f = Pr(f o (pri, ), mul o (pr3, f o (pri, s o pr3))]

Losungen fiir £>1 analog
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PROGRAMMIERTECHNIKEN FUR REKURSIVE FUNKTIONEN I

e Beschrankte Minimierung
(7.1) { min{y<t| f(Z,y) = 0} falls dies existiert
T,t) =

(fiNkH_l—)N € Trz'm)
t+1 sonst g
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PROGRAMMIERTECHNIKEN FUR REKURSIVE FUNKTIONEN I

e Beschrankte Minimierung
h(7.t) — { min{y<t| f(Z,y) = 0} falls dies existiert (NN € Ty
t+1 sonst
Rekursives Verhalten:

ORlsf(E,00 =0 _ i@ on

~h(Z,0) =<
\ 1 sonst

(L7, 1) falls h(Z, 1)<t
—h(Z,t4+1) = < t+1  falls h(Z,t) = t+1 und f(Z,t+1) =0
t+2  sonst

\

12 U-REKURSIVE FUNKTIONEN
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PROGRAMMIERTECHNIKEN FUR REKURSIVE FUNKTIONEN I

e Beschrankte Minimierung
h(7.t) — min{y<t| f(Z,y) = 0} falls dies existiert (NN € Ty
t+1 sonst
Rekursives Verhalten:

0 fallsf(#,0) =0 _ sign(f(Z,0))

—h(Z,0) =4
\ 1 sonst

[ h(Z,1) falls h(Z, 1)<t
—h(Z,t4+1) = < t+1  falls h(Z,t) = t+1 und f(Z,t+1) =0
t+2  sonst

\
Programmierbar mit Fallunterscheidung und primitiver

Rekursion (aufwendiger Ausdruck)

12 M-REKURSIVE FUNKTIONEN
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WEITERE PRIMITIV-REKURSIVE FUNKTIONEN I

e Absolute Differenz absdiff: N*—~N absdiff (n,m) = |n — m|
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WEITERE PRIMITIV-REKURSIVE FUNKTIONEN I

e Absolute Differenz absdiff: N>—N absdiff (n,m) = |n — m|
e Maximum max:N*—N maz(n, m) = { n fallsn >m
m sonst
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WEITERE PRIMITIV-REKURSIVE FUNKTIONEN I
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\

.. : o , [ m falls n >m
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\ n  sonst
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m sonst

\
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e Division div:N°—N div(n,m) = n<+m
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m sonst

\

(mfallanm

¢ Minimum min : N°—N min(n, m) = <
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e Division div:N°—N div(n,m) = n+m
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WEITERE PRIMITIV-REKURSIVE FUNKTIONEN I

e Absolute Differenz absdiff: N>-N absdiff (n,m) = |n — m|
)
e Maximum max:N*—N maz(n, m) = < n fallsn >m
m sonst

\

(mfallanm

¢ Minimum min : N°—N min(n, m) = <

| 7 sonst
e Division div:N°—N div(n,m) = n+m
e Divisionsrest mod:N*—N mod(n,m) = n mod m
e Quadratwurzel sqrt:N—N sqrt(n) = |v/n]
e Logarithmus ld:N—N ld(n) = |logyn|

o Grofiter gemeinsamer Teiler ggT :N>—N
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WEITERE PRIMITIV-REKURSIVE FUNKTIONEN I

e Absolute Differenz absdiff: N>-N absdiff (n,m) = |n — m|
)
e Maximum max:N*—N max(n, m) = ¢ n fallsn >m
m sonst

\

(mfallanm

e Minimum min : N°*—N min(n, m) = <

| 7 sonst
e Division div:N°—N div(n,m) = n+m
e Divisionsrest mod:N*—N mod(n,m) = n mod m
e Quadratwurzel sqrt:N—N sqrt(n) = |v/n]
e Logarithmus ld:N—N ld(n) = |logyn|

o Grofiter gemeinsamer Teiler ggT :N>—N

e Kleinstes gemeinsames Vielfaches kgV :N°—=N
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BERECHENBARE NUMERIERUNG VON ZAHLENPAAREN I

O 1 2 3 4 5 ..

A WO
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BERECHENBARE NUMERIERUNG VON ZAHLENPAAREN I

O 1 2 3 4 5 ..
O 0 2 5 9 14 20 .. ()
1| 1 4 8 13 19 B
2| 3 7 12 18 N
3| 6 11 17 (z+y)(z+y+1)+2 +y
;1 1(5) 16 “Standard-Tupelfunktion”
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BERECHENBARE NUMERIERUNG VON ZAHLENPAAREN I

O 1 2 3 4 5 ..
O 0 2 5 9 14 20 .. () )
1| 1 4 8 13 19 B
2| 3 7 12 18 o
3| 6 11 17 (z+y) (z+y+1)+2 4y
?; 1(5) 16 “Standard-Tupelfunktion”

e ():N*—>N ist primitiv-rekursiv und bijektiv
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BERECHENBARE NUMERIERUNG VON ZAHLENPAAREN I

O 1 2 3 4 5 ..
O 0 2 5 9 14 20 .. () )
1| 1 4 8 13 19 B
2| 3 7 12 18 o
3| 6 11 17 (z+y) (z+y+1)+2 4y
?; 1(5) 16 “Standard-Tupelfunktion”

e ():N*—>N ist primitiv-rekursiv und bijektiv

2
1

e Die Umkehrfunktionen 77 := pr? o () 7! sind primitiv-rekursiv
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BERECHENBARE NUMERIERUNG VON ZAHLENPAAREN I

O 1 2 3 4 5 ..
O 0 2 5 9 14 20 .. () )
1| 1 4 8 13 19 B
2| 3 7 12 18 o
3| 6 11 17 (z+y) (z+y+1)+2 4y
;1 1(5) 16 “Standard-Tupelfunktion”

e ():N*—>N ist primitiv-rekursiv und bijektiv

2
1

e Die Umkehrfunktionen 77 := pr? o () 7! sind primitiv-rekursiv

e () kann iterativ auf N*—=N und auf N*—N fortgesetzt werden

Ay, 2 =z, (g, 2)), ..., (wa)t = (k, (2, . xp)F)
— Alle Funktionen sind bijektiv und primitiv-rekursiv
— Alle Umkehrfunktionen 7% und 7 sind primitiv-rekursiv
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BERECHENBARE NUMERIERUNG VON ZAHLENPAAREN I

O 1 2 3 4 5 ..
O 0 2 5 9 14 20 .. () )
1| 1 4 8 13 19 B
2| 3 7 12 18 o
3| 6 11 17 (z+y) (z+y+1)+2 4y
;1 1(5) 16 “Standard-Tupelfunktion”

e ():N*—>N ist primitiv-rekursiv und bijektiv

2
1

e Die Umkehrfunktionen 77 := pr? o () 7! sind primitiv-rekursiv

e () kann iterativ auf N*—=N und auf N*—N fortgesetzt werden

Ay, 2 =z, (g, 2)), ..., (wa)t = (k, (2, . xp)F)
— Alle Funktionen sind bijektiv und primitiv-rekursiv
— Alle Umkehrfunktionen 7% und 7 sind primitiv-rekursiv

e Jede rekursive Funktion kann einstellig simuliert werden
- Fir f:N*>N und g := f o (pif, pi3) gilt ¢:N->Nund f(z,y) = g((z,9))
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AUSDRUCKSKRAFT REKURSIVER FUNKTIONEN I

Zp
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AUSDRUCKSKRAFT REKURSIVER FUNKTIONEN I

Zp

® Trim © Ru & 7y gilt offensichtlich

— Grundfunktionen und Anwendungen von p.r. Operationen sind total
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AUSDRUCKSKRAFT REKURSIVER FUNKTIONEN I

Zp

® Trim © Ru & 7y gilt offensichtlich

— Grundfunktionen und Anwendungen von p.r. Operationen sind total

R, # Ry
— Nicht alle p-rekursiven Funktionen sind total (Beispiel: f,= padd)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 15 M-REKURSIVE FUNKTIONEN




AUSDRUCKSKRAFT REKURSIVER FUNKTIONEN I

Zp

® Trim © Ru & 7y gilt offensichtlich

— Grundfunktionen und Anwendungen von p.r. Operationen sind total

R, # Ry
— Nicht alle p-rekursiven Funktionen sind total (Beispiel: f,= padd)

® %rim - Ru
— Primitiv-rekursive Funktionen haben endliche Schachtelungstiefe

— Unbegrenzte Iteration tiber Schachtelungstiefe ist intuitiv berechenbar

— Konkretes Beispiel: Ackermann-Funktion
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AUSDRUCKSKRAFT REKURSIVER FUNKTIONEN I

Zp

® T rim © Ryu & 7y gilt offensichtlich

— Grundfunktionen und Anwendungen von p.r. Operationen sind total

o R, # Ry
— Nicht alle p-rekursiven Funktionen sind total (Beispiel: f,= padd)

® %rim - Ru
— Primitiv-rekursive Funktionen haben endliche Schachtelungstiefe

— Unbegrenzte Iteration iiber Schachtelungstiefe ist intuitiv berechenbar

— Konkretes Beispiel: Ackermann-Funktion

o7, = RM
c: Gebe RM-Unterprogramme fiir Grundfunktionen und Operationen

2. Beschreibe RM-Konfigurationsiibergange und Terminierung p-rekursiv
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SCHACHTELUNGSTIEFE I

Wie kompliziert ist eine Funktion ?

e Tiefe = Anzahl verschachtelter For-Schleifen

— Funktionen ohne Minimierung und primitive Rekursion — Tiefe 0
— Komposition mit Funktionen der Tiefe n — Tiefe n
— Primitive Rekursion mit Funktionen der Tiefe n — Tiefe n+1
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SCHACHTELUNGSTIEFE I

Wie kompliziert ist eine Funktion ?

e Tiefe = Anzahl verschachtelter For-Schleifen

— Funktionen ohne Minimierung und primitive Rekursion — Tiefe 0
— Komposition mit Funktionen der Tiefe n — Tiefe n
— Primitive Rekursion mit Funktionen der Tiefe n — Tiefe n+1

e Beispiele
— Tiefe 1: Addition add, Vorganger p, Signum sign
— Tiefe 2: Multiplikation mul, Subtraktion sub
— Tiefe 3: Exponentiation exp, Fakultat fak
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SCHACHTELUNGSTIEFE I

Wie kompliziert ist eine Funktion ?

e Tiefe = Anzahl verschachtelter For-Schleifen

— Funktionen ohne Minimierung und primitive Rekursion — Tiefe 0
— Komposition mit Funktionen der Tiefe n — Tiefe n
— Primitive Rekursion mit Funktionen der Tiefe n — Tiefe n+1

e Beispiele
— Tiefe 1: Addition add, Vorganger p, Signum sign
— Tiefe 2: Multiplikation mul, Subtraktion sub
— Tiefe 3: Exponentiation exp, Fakultat fak

e Primitiv-rekursiven Funktionen haben eine
begrenzte Schachtelungstiefe

— Minimierung ist nicht begrenzbar
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ACKERMANN-FUNKTIONEN (1928)

Funktionen mit Schachtelungstiefe n
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ACKERMANN-FUNKTIONEN (1928)

Funktionen mit Schachtelungstiefe n

e Definiere Funktionen A,, iterativ:

(1 falls € = 0
Ao(x) = q 2 falls x =1

x+2 sonst

\
An—|—1(0) =1

Api(z+1) = Ap(Anya(x))
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ACKERMANN-FUNKTIONEN (1928)

Funktionen mit Schachtelungstiefe n

e Definiere Funktionen A,, iterativ:

(1 falls € = 0
Ao(x) = ¢ 2 falls x =1

x+2 sonst

\
An—|—1(0) =1

Api(z+1) = Ap(Anya(x))

e Jede der Funktionen A, ist primitiv-rekursiv

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 17 M-REKURSIVE FUNKTIONEN




ACKERMANN-FUNKTIONEN (1928)

Funktionen mit Schachtelungstiefe n

e Definiere Funktionen A,, iterativ:

( 1 falls x = 0
Ao(x) = ¢ 2 falls x =1
x+2 sonst

\

An_|_1(0) =1
Apti(z+1) := Ap(Apyi(x))

e Jede der Funktionen A, ist primitiv-rekursiv

e Wachstumsverhalten 522
A4(3) = 22" = 65536

Ai(x) = 2x (z>1) Ay4(0) =1 .2
Ay(4) = (LZ(i_)l
Az(x) = 2° Ay(l) =2 65536 —mal
2 2
As(z) =227 ) A2) =22 =4 Ay(5)= 227 )
x—mal Ay (4)—mal
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DIE GROSSE ACKERMANN-FUNKTION I

Beispiel fur 7,,.;,, 7 Ry Satz O
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DIE GROSSE ACKERMANN-FUNKTION I

Beispiel fur 7,,,.;,, # Ry Satz O

e Definiere A(x) := Agz(x) (GroBie Ackermann-Funktion)
— Die Berechnung von A(x) benotigt Schachtelungstiefe x
— Keine Begrenzung der Schachtelungstiefe moglich
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DIE GROSSE ACKERMANN-FUNKTION I

Beispiel fur 7,,,.;,, # Ry Satz O

e Definiere A(x) := Agz(x) (GroBie Ackermann-Funktion)
— Die Berechnung von A(x) benotigt Schachtelungstiefe x
— Keine Begrenzung der Schachtelungstiefe moglich

e A kann nicht primitiv-rekursiv sein
— A wachst schneller als jede primitiv-rekursive Funktion
— Fiir jede p.r. Funktion f gibt es ein k& mit f(n)<A(n) fir alle n>k

(sehr aufwendig)
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DIE GROSSE ACKERMANN-FUNKTION I

Beispiel fur 7., # Ry Satz O

e Definiere A(x) := Agz(x) (GroBie Ackermann-Funktion)
— Die Berechnung von A(x) benotigt Schachtelungstiefe x
— Keine Begrenzung der Schachtelungstiefe moglich

e A kann nicht primitiv-rekursiv sein
— A wachst schneller als jede primitiv-rekursive Funktion
— Fiir jede p.r. Funktion f gibt es ein k& mit f(n)<A(n) fir alle n>k
(sehr aufwendig)
e A ist total und p-rekursiv
— Beschreibe Abarbeitungsfunktion ¢ eines Berechnungsstacks fir A:
- 5(wn0)*=wl, 6(w0l)*=w2, §{wi(z+2)) =w(zr+4),
- O(w(n+1)(z+1)) =(wn(n+1), z)*
- 0 1st primitiv-rekursiv (aufwendig)
~ Fiir neN berechne A(n) = §*(nn) fiir k = min{j|7?(6’(nn)) = 1}

- k existiert immer
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Tl'l’ g RM Satz N.1

e Simuliere Grundfunktionen und Operationen
— Verwende Standardanfangskonfiguration o und -ausgabefunktion w
— RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung
— RM-Programmiersprache vereinfacht Beschreibung
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Tl'l’ g RM Satz N.1

e Simuliere Grundfunktionen und Operationen
— Verwende Standardanfangskonfiguration o und -ausgabefunktion w
— RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung
— RM-Programmiersprache vereinfacht Beschreibung

e Simulation der Grundfunktionen
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Tl'l’ g RM Satz N.1

e Simuliere Grundfunktionen und Operationen
— Verwende Standardanfangskonfiguration o und -ausgabefunktion w
— RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung
— RM-Programmiersprache vereinfacht Beschreibung

e Simulation der Grundfunktionen
— Nachfolgerfunktion p: r, :=r+l

1
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Tl*l’ g RM Satz N.1

e Simuliere Grundfunktionen und Operationen
— Verwende Standardanfangskonfiguration o und -ausgabefunktion w
— RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung
— RM-Programmiersprache vereinfacht Beschreibung

e Simulation der Grundfunktionen
— Nachfolgerfunktion p: r, :=r+l

1

— Projektionsfunktion prj: r, := r,
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Tl*l’ g RM Satz N.1

e Simuliere Grundfunktionen und Operationen
— Verwende Standardanfangskonfiguration o und -ausgabefunktion w

— RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung
— RM-Programmiersprache vereinfacht Beschreibung

e Simulation der Grundfunktionen
— Nachfolgerfunktion p: r, :=r+l

- . . . n. .=
Projektionsfunktion prj: r, := r,
— Konstantenfunktion ¢i: r, := k
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Tl’l’ g RM Satz N.1

e Simuliere Grundfunktionen und Operationen
— Verwende Standardanfangskonfiguration o und -ausgabefunktion w
— RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung
— RM-Programmiersprache vereinfacht Beschreibung

e Simulation der Grundfunktionen
— Nachfolgerfunktion p: r = r+l

1

— Projektionsfunktion prj: r, := r,

— Konstantenfunktion ¢i: r, := k

e RM-Unterprogramm fiir Komposition f o (g1...gn)
— F, G, ..,G, RM-Unterprogramme fiir f:N"—N und g...g,;N*—N, m>max(k,n)

rype1 = G(r,..,r)
Cytn = G (x,..,T)

r := F(r,..,r)

1
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TM C RM: RM-UNTERPROGRAMME FUR OPERATIONEN

e Unterprogramm fiir Primitive Rekursion Pr|f, g]
— F, G RM-Unterprogramme fiir f:N*"'=N und ¢:Nf*1—N
i1 = F(r,..,rp-1)
T2 = T,; Grenze der Zahlschleife
r, = 0; Zahle vorwarts

while r<ry,o do rpyy := G(r,..,rp4); T, = r+l od;

k
Ty = g4
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TM C RM: RM-UNTERPROGRAMME FUR OPERATIONEN

e Unterprogramm fiir Primitive Rekursion Pr|f, g]
— F, G RM-Unterprogramme fiir f:N*"!' =N und ¢:Nf1—N
i1 = F(r,..,rp-1)
T2 1= T); Grenze der Zahlschleife
r := 0; Zahle vorwérts

k
while r<ry,o do rpyy := G(r,..,rp4); T, = r+l od;

k
Ty = g4

e RM-Unterprogramm fur Minimierung pf
— F RM-Unterprogramm fiir f:N*"' =N m>maz(k,n)
Tp+1 = 0
Tiio = F(r,..,Tp1)
while rj9>0 do Ty := Trpy+l; rpee = F(r,..,rpe1) 0d;

= Tiyl
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T,, 2 RM

Satz N.2

e Codiere RM-Konfigurationen als Zahlentupel

—Sei p=(5,k,0,8, F) und 0.B.d A F={s,}

— Codiere k= (s,(i1,..,i)) als K=(7,i1,..,i})

,]7
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Tl'l’ 2 RM Satz N.2

e Codiere RM-Konfigurationen als Zahlentupel
—Sei p = (5,k,9,s0, F) und 0.B.d.A F={s,}

— Codiere k= (s,(i1,..,i)) als K=(J,i1,..,0x)
e Simuliere ﬂ'berfﬁhrungsfunktion )

— Fiir k=(7,41,..,2) mit d(s;,(sign(é1),..,sign(ix))) = (s;7,(op1,..,0px)) ist

0(R)=(j",(i}....i},)), wobei 7} = {

o und die Iteration 0" sind primitiv-rekursiv

0 falls 2;=0 und op;=-1,

1j+op; sonst
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Tl'l’ 2 RM Satz N.2

e Codiere RM-Konfigurationen als Zahlentupel
—Sei p = (5,k,9,s0, F) und 0.B.d.A F={s,}

— Codiere k= (s,(i1,..,i)) als K=(J,i1,..,0x)
e Simuliere ﬂ'berfﬁhrungsfunktion )

— Fiir k=(7,41,..,2) mit d(s;,(sign(é1),..,sign(ix))) = (s;7,(op1,..,0px)) ist

0(R)=(j",(i}....i},)), wobei 7} = {

o und die Iteration 0" sind primitiv-rekursiv

0 falls 2;=0 und op;=-1,

1j+op; sonst

® Beschreibe Rechenzeitfunktion tp
—t,(n) = min{j | pritH(5*((0,n,0,..,0),5)) = x} t, ist p-rekursiv

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 21 M-REKURSIVE FUNKTIONEN




Tl'l’ 2 RM Satz N.2

e Codiere RM-Konfigurationen als Zahlentupel
—Sei p = (5,k,9,s0, F) und 0.B.d.A F={s,}
— Codiere k= (s,(i1,..,i)) als K=(J,i1,..,0x)

e Simuliere Uberfiihrungsfunktion )
— Fiir k=(7,41,..,2) mit d(s;,(sign(é1),..,sign(ix))) = (s;7,(op1,..,0px)) ist

0(R)=(j",(i}....i},)), wobei 7} = {

o und die Iteration 0" sind primitiv-rekursiv

0 falls 2;=0 und op;=-1,

1j+op; sonst

e Beschreibe Rechenzeitfunktion £,
—t,(n) = min{j | pritH(5*((0,n,0,..,0),5)) = x} t, ist p-rekursiv

e Beschreibe Semantik h, von p
— hy(n) = pratH(6*((0,n,0,..,0),t,(n)) h, ist p-rekursiv
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KONSEQUENZEN I

Fir Argumente zur Berechenbarkeit konnen

wahlweise Turingmaschinen Registermaschinen

oder p-rekursive Funktionen eingesetzt werden
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KONSEQUENZEN I

Fir Argumente zur Berechenbarkeit konnen

wahlweise Turingmaschinen Registermaschinen

oder p-rekursive Funktionen eingesetzt werden

Kleene Normalform Theorem:
Fir jede berechenbare Funktion A kann man primitiv-

rekursive Funktionen f und g konstruieren, so daf3

h(z) = g(z, p f(z))
— Konstruiere RM fir A und wahle f = ¢, und g = p'ré€+1 0 d*
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KONSEQUENZEN I

Fir Argumente zur Berechenbarkeit konnen

wahlweise Turingmaschinen Registermaschinen

oder p-rekursive Funktionen eingesetzt werden

Kleene Normalform Theorem:
Fir jede berechenbare Funktion A kann man primitiv-

rekursive Funktionen f und g konstruieren, so daf3

h(z) = g(z, p f(z))
— Konstruiere RM fir A und wahle f = ¢, und g = p'ré€+1 0 d*

Berechenbare Funktionen kommen mit einer

einzigen Minimierung (While-Schleife) aus
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MIN-REKURSIVE FUNKTIONEN I

Funktionsdefinition ohne primitive Rekursion
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MIN-REKURSIVE FUNKTIONEN I

Funktionsdefinition ohne primitive Rekursion

°of :N* 5N min-rekursiv
— f ist Addition, Nachfolger-, Projektions- oder Konstantenfunktion
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°of :N* 5N min-rekursiv
— f ist Addition, Nachfolger-, Projektions- oder Konstantenfunktion

— f entsteht aus min-rekursiven Funktionen durch Komposition

oder Minimierung

T int Menge der min-rekursiven Funktionen

o Tmzn p— TH
— Tin € 7, Offensichtlich, da add €7,
— Tpnin 2 1,2 beschreibe Abarbeitung des Rekursionsstacks
und suche nach erstem erzeugten Stack der Lange 1

ahnlich wie bei Berechnung der Ackermann Funktion

(extrem aufwendig)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 23 M-REKURSIVE FUNKTIONEN




