
Theoretische Informatik II

Einheit 6.3

Rekursive Funktionen

1. Primitiv- und µ-rekursive Funktionen

2. Analyse und Programmierung

3. Äquivalenz zu Registermaschinen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 1 µ-rekursive Funktionen

µ-rekursive Funktionen

Mathematischer Funktionenkalkül auf N

• Funktionen entstehen durch Anwendung von

Operationen auf Grundfunktionen

– Funktionsdefinition benötigt keine Funktionsargumente

– Das informatiktypische “Baukastensystem” entspricht dieser Idee

Theoretische Informatik II §6: Berechenbarkeitsmodelle 1 µ-rekursive Funktionen

µ-rekursive Funktionen

Mathematischer Funktionenkalkül auf N

• Funktionen entstehen durch Anwendung von

Operationen auf Grundfunktionen

– Funktionsdefinition benötigt keine Funktionsargumente

– Das informatiktypische “Baukastensystem” entspricht dieser Idee

• Bausteine gelten als intuitiv berechenbar

– Grundfunktionen: Konstante, Projektion, Nachfolgerzahl

– Operationen: Komposition, einfache Rekursion, Suchschleife

Theoretische Informatik II §6: Berechenbarkeitsmodelle 1 µ-rekursive Funktionen

µ-rekursive Funktionen

Mathematischer Funktionenkalkül auf N

• Funktionen entstehen durch Anwendung von

Operationen auf Grundfunktionen

– Funktionsdefinition benötigt keine Funktionsargumente

– Das informatiktypische “Baukastensystem” entspricht dieser Idee

• Bausteine gelten als intuitiv berechenbar

– Grundfunktionen: Konstante, Projektion, Nachfolgerzahl

– Operationen: Komposition, einfache Rekursion, Suchschleife

• Berechnung durch schrittweise Auswertung

– Direkte Auswertung von Argumenten bei Grundfunktionen

– Einsetzen des Definitionsschemas bei Operationen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 µ-rekursive Funktionen

Bausteine µ-rekursiver Funktionen

1. Nachfolgerfunktion s :N→N mit s(x) = x + 1 für alle x ∈N

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 µ-rekursive Funktionen

Bausteine µ-rekursiver Funktionen

1. Nachfolgerfunktion s :N→N mit s(x) = x + 1 für alle x ∈N

2. Projektionsfunktionen prn
k :Nn→N mit prn

k(x1, ..., xn) = xk (1≤k≤n)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 µ-rekursive Funktionen

Bausteine µ-rekursiver Funktionen

1. Nachfolgerfunktion s :N→N mit s(x) = x + 1 für alle x ∈N

2. Projektionsfunktionen prn
k :Nn→N mit prn

k(x1, ..., xn) = xk (1≤k≤n)

3. Konstantenfunktion cn
k :Nn→N mit cn

k(x1, ..., xn) = k (0≤n)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 µ-rekursive Funktionen

Bausteine µ-rekursiver Funktionen

1. Nachfolgerfunktion s :N→N mit s(x) = x + 1 für alle x ∈N

2. Projektionsfunktionen prn
k :Nn→N mit prn

k(x1, ..., xn) = xk (1≤k≤n)

3. Konstantenfunktion cn
k :Nn→N mit cn

k(x1, ..., xn) = k (0≤n)

4. Komposition f ◦ (g1...gn) :Nk→N Definition K

h = f ◦ (g1...gn), wenn h(~x) = f(g1(~x), ..., gn(~x))

h entsteht aus f :Nn→N und g1...gn:N
k→N durch simultane Einsetzung

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 µ-rekursive Funktionen

Bausteine µ-rekursiver Funktionen

1. Nachfolgerfunktion s :N→N mit s(x) = x + 1 für alle x ∈N

2. Projektionsfunktionen prn
k :Nn→N mit prn

k(x1, ..., xn) = xk (1≤k≤n)

3. Konstantenfunktion cn
k :Nn→N mit cn

k(x1, ..., xn) = k (0≤n)

4. Komposition f ◦ (g1...gn) :Nk→N Definition K

h = f ◦ (g1...gn), wenn h(~x) = f(g1(~x), ..., gn(~x))

h entsteht aus f :Nn→N und g1...gn:N
k→N durch simultane Einsetzung

5. Primitive Rekursion Pr[f, g] :Nk→N Definition L.1

h = Pr[f, g], wenn h(~x, 0) = f(~x) , h(~x, y + 1) = g(~x, y, h(~x, y))

h entsteht aus f :Nk−1→N und g:Nk+1→N durch primitive Rekursion

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 µ-rekursive Funktionen

Bausteine µ-rekursiver Funktionen

1. Nachfolgerfunktion s :N→N mit s(x) = x + 1 für alle x ∈N

2. Projektionsfunktionen prn
k :Nn→N mit prn

k(x1, ..., xn) = xk (1≤k≤n)

3. Konstantenfunktion cn
k :Nn→N mit cn

k(x1, ..., xn) = k (0≤n)

4. Komposition f ◦ (g1...gn) :Nk→N Definition K

h = f ◦ (g1...gn), wenn h(~x) = f(g1(~x), ..., gn(~x))

h entsteht aus f :Nn→N und g1...gn:N
k→N durch simultane Einsetzung

5. Primitive Rekursion Pr[f, g] :Nk→N Definition L.1

h = Pr[f, g], wenn h(~x, 0) = f(~x) , h(~x, y + 1) = g(~x, y, h(~x, y))

h entsteht aus f :Nk−1→N und g:Nk+1→N durch primitive Rekursion

6. µ-Operator µf :Nk→N Definition L.2

h = µf , wenn h(~x) =







min{y | f(~x, y) = 0} falls dies existiert und
alle f(~x, i), i<y definiert

⊥ sonst

h entsteht aus f :Nk+1→N durch Minimierung

Theoretische Informatik II §6: Berechenbarkeitsmodelle 2 µ-rekursive Funktionen

Bausteine µ-rekursiver Funktionen

1. Nachfolgerfunktion s :N→N mit s(x) = x + 1 für alle x ∈N

2. Projektionsfunktionen prn
k :Nn→N mit prn

k(x1, ..., xn) = xk (1≤k≤n)

3. Konstantenfunktion cn
k :Nn→N mit cn

k(x1, ..., xn) = k (0≤n)

4. Komposition f ◦ (g1...gn) :Nk→N Definition K

h = f ◦ (g1...gn), wenn h(~x) = f(g1(~x), ..., gn(~x))

h entsteht aus f :Nn→N und g1...gn:N
k→N durch simultane Einsetzung

5. Primitive Rekursion Pr[f, g] :Nk→N Definition L.1

h = Pr[f, g], wenn h(~x, 0) = f(~x) , h(~x, y + 1) = g(~x, y, h(~x, y))

h entsteht aus f :Nk−1→N und g:Nk+1→N durch primitive Rekursion

6. µ-Operator µf :Nk→N Definition L.2

h = µf , wenn h(~x) =







min{y | f(~x, y) = 0} falls dies existiert und
alle f(~x, i), i<y definiert

⊥ sonst

h entsteht aus f :Nk+1→N durch Minimierung

Abweichende Notation im Skript: N statt s, πn
k statt prn

k , N
0
statt N

Theoretische Informatik II §6: Berechenbarkeitsmodelle 3 µ-rekursive Funktionen

Operationen entsprechen Programmstrukturen

• Komposition =̂ Folge von Anweisungen

y
1
:= g

1
(x

1
,..,xm);...

yn := gn(x1
,..,xm);

h := f(y
1
,..,yn) (h = h(x1, .., xm))

Theoretische Informatik II §6: Berechenbarkeitsmodelle 3 µ-rekursive Funktionen

Operationen entsprechen Programmstrukturen

• Komposition =̂ Folge von Anweisungen

y
1
:= g

1
(x

1
,..,xm);...

yn := gn(x1
,..,xm);

h := f(y
1
,..,yn) (h = h(x1, .., xm))

• Primitive Rekursion =̂ Zählschleife

h := f(x
1
,..,xn);

for i:=1 to y do h := g(x
1
,..,xn,i-1,h) fi (h = h(x1, .., xn, y))

– Primitive Rekursion arbeitet in umgekehrter Reihenfolge

Theoretische Informatik II §6: Berechenbarkeitsmodelle 3 µ-rekursive Funktionen

Operationen entsprechen Programmstrukturen

• Komposition =̂ Folge von Anweisungen

y
1
:= g

1
(x

1
,..,xm);...

yn := gn(x1
,..,xm);

h := f(y
1
,..,yn) (h = h(x1, .., xm))

• Primitive Rekursion =̂ Zählschleife

h := f(x
1
,..,xn);

for i:=1 to y do h := g(x
1
,..,xn,i-1,h) fi (h = h(x1, .., xn, y))

– Primitive Rekursion arbeitet in umgekehrter Reihenfolge

• Minimierung =̂ While-schleife (unbegrenzte Suche)

y := 0;

while f(x
1
..xn,y)6=0 do y:=y+1 od;

h := y (h = h(x1, .., xn))

– Ergebnis ist Anzahl der Schleifendurchläufe bis zum Erfolg

Theoretische Informatik II §6: Berechenbarkeitsmodelle 4 µ-rekursive Funktionen

Primitiv- und µ-rekursive Funktionen Definition M

• f :Nk→N primitiv-rekursiv

– f ist Nachfolger-, Projektions- oder Konstantenfunktion

– f entsteht aus primitiv-rekursiven Funktionen durch Komposition

oder primitive Rekursion

Theoretische Informatik II §6: Berechenbarkeitsmodelle 4 µ-rekursive Funktionen

Primitiv- und µ-rekursive Funktionen Definition M

• f :Nk→N primitiv-rekursiv

– f ist Nachfolger-, Projektions- oder Konstantenfunktion

– f entsteht aus primitiv-rekursiven Funktionen durch Komposition

oder primitive Rekursion

Tprim: Menge der primitiv-rekursiven Funktionen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 4 µ-rekursive Funktionen

Primitiv- und µ-rekursive Funktionen Definition M

• f :Nk→N primitiv-rekursiv

– f ist Nachfolger-, Projektions- oder Konstantenfunktion

– f entsteht aus primitiv-rekursiven Funktionen durch Komposition

oder primitive Rekursion

Tprim: Menge der primitiv-rekursiven Funktionen

• f :Nk→N µ-rekursiv

– f ist Nachfolger-, Projektions- oder Konstantenfunktion

– f entsteht aus µ-rekursiven Funktionen durch Komposition,

primitive Rekursion oder Minimierung

Theoretische Informatik II §6: Berechenbarkeitsmodelle 4 µ-rekursive Funktionen

Primitiv- und µ-rekursive Funktionen Definition M

• f :Nk→N primitiv-rekursiv

– f ist Nachfolger-, Projektions- oder Konstantenfunktion

– f entsteht aus primitiv-rekursiven Funktionen durch Komposition

oder primitive Rekursion

Tprim: Menge der primitiv-rekursiven Funktionen

• f :Nk→N µ-rekursiv

– f ist Nachfolger-, Projektions- oder Konstantenfunktion

– f entsteht aus µ-rekursiven Funktionen durch Komposition,

primitive Rekursion oder Minimierung

Tµ: Menge der µ-rekursiven Funktionen

Rµ: Menge der totalen µ-rekursiven Funktionen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 µ-rekursive Funktionen

Beobachtungen und offene Fragen

• µ-rekursive Funktionen können partiell sein

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 µ-rekursive Funktionen

Beobachtungen und offene Fragen

• µ-rekursive Funktionen können partiell sein

• Offensichtlich gilt: Rµ ⊆ Tµ

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 µ-rekursive Funktionen

Beobachtungen und offene Fragen

• µ-rekursive Funktionen können partiell sein

• Offensichtlich gilt: Rµ ⊆ Tµ

• Offensichtlich gilt: Tprim ⊆ Rµ

– Alle Grundfunktionen sind total und µ-rekursiv

– Komposition und Primitive Rekursion erhalten Totalität

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 µ-rekursive Funktionen

Beobachtungen und offene Fragen

• µ-rekursive Funktionen können partiell sein

• Offensichtlich gilt: Rµ ⊆ Tµ

• Offensichtlich gilt: Tprim ⊆ Rµ

– Alle Grundfunktionen sind total und µ-rekursiv

– Komposition und Primitive Rekursion erhalten Totalität

• Sind die Inklusionen echt?

– oder könnten zwei Klassen zusammenfallen?

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 µ-rekursive Funktionen

Beobachtungen und offene Fragen

• µ-rekursive Funktionen können partiell sein

• Offensichtlich gilt: Rµ ⊆ Tµ

• Offensichtlich gilt: Tprim ⊆ Rµ

– Alle Grundfunktionen sind total und µ-rekursiv

– Komposition und Primitive Rekursion erhalten Totalität

• Sind die Inklusionen echt?

– oder könnten zwei Klassen zusammenfallen?

• Ist eine der Klassen vergleichbar zu RM bzw. T ?

Theoretische Informatik II §6: Berechenbarkeitsmodelle 5 µ-rekursive Funktionen

Beobachtungen und offene Fragen

• µ-rekursive Funktionen können partiell sein

• Offensichtlich gilt: Rµ ⊆ Tµ

• Offensichtlich gilt: Tprim ⊆ Rµ

– Alle Grundfunktionen sind total und µ-rekursiv

– Komposition und Primitive Rekursion erhalten Totalität

• Sind die Inklusionen echt?

– oder könnten zwei Klassen zusammenfallen?

• Ist eine der Klassen vergleichbar zu RM bzw. T ?

Diese Fragen müssen noch untersucht werden

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 µ-rekursive Funktionen

Analyse primitiv-rekursiver Funktionen

• f1 = Pr[pr1
1, s ◦ pr3

3] Was macht f 1?

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 µ-rekursive Funktionen

Analyse primitiv-rekursiver Funktionen

• f1 = Pr[pr1
1, s ◦ pr3

3] Was macht f 1?

• Stelligeitsanalyse:

pr1
1:N→N, pr3

3:N
3→N, s ◦ pr3

3:N
3→N 7→ f

1
: N2→N

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 µ-rekursive Funktionen

Analyse primitiv-rekursiver Funktionen

• f1 = Pr[pr1
1, s ◦ pr3

3] Was macht f 1?

• Stelligeitsanalyse:

pr1
1:N→N, pr3

3:N
3→N, s ◦ pr3

3:N
3→N 7→ f

1
: N2→N

• Abarbeitungsbeispiel: f1(2, 2)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 µ-rekursive Funktionen

Analyse primitiv-rekursiver Funktionen

• f1 = Pr[pr1
1, s ◦ pr3

3] Was macht f 1?

• Stelligeitsanalyse:

pr1
1:N→N, pr3

3:N
3→N, s ◦ pr3

3:N
3→N 7→ f

1
: N2→N

• Abarbeitungsbeispiel: f1(2, 2) = (s ◦ pr3
3(2, 1, f1(2, 1))

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 µ-rekursive Funktionen

Analyse primitiv-rekursiver Funktionen

• f1 = Pr[pr1
1, s ◦ pr3

3] Was macht f 1?

• Stelligeitsanalyse:

pr1
1:N→N, pr3

3:N
3→N, s ◦ pr3

3:N
3→N 7→ f

1
: N2→N

• Abarbeitungsbeispiel: f1(2, 2) = (s ◦ pr3
3(2, 1, (s ◦ pr3

3(2, 0, f1(2, 0)))

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 µ-rekursive Funktionen

Analyse primitiv-rekursiver Funktionen

• f1 = Pr[pr1
1, s ◦ pr3

3] Was macht f 1?

• Stelligeitsanalyse:

pr1
1:N→N, pr3

3:N
3→N, s ◦ pr3

3:N
3→N 7→ f

1
: N2→N

• Abarbeitungsbeispiel: f1(2, 2) = (s ◦ pr3
3(2, 1, (s ◦ pr3

3(2, 0, pr1
1(2)))

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 µ-rekursive Funktionen

Analyse primitiv-rekursiver Funktionen

• f1 = Pr[pr1
1, s ◦ pr3

3] Was macht f 1?

• Stelligeitsanalyse:

pr1
1:N→N, pr3

3:N
3→N, s ◦ pr3

3:N
3→N 7→ f

1
: N2→N

• Abarbeitungsbeispiel: f1(2, 2) = (s ◦ pr3
3(2, 1, s ◦ pr3

3(2, 0, 2))

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 µ-rekursive Funktionen

Analyse primitiv-rekursiver Funktionen

• f1 = Pr[pr1
1, s ◦ pr3

3] Was macht f 1?

• Stelligeitsanalyse:

pr1
1:N→N, pr3

3:N
3→N, s ◦ pr3

3:N
3→N 7→ f

1
: N2→N

• Abarbeitungsbeispiel: f1(2, 2) = (s ◦ pr3
3(2, 1, s(2))

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 µ-rekursive Funktionen

Analyse primitiv-rekursiver Funktionen

• f1 = Pr[pr1
1, s ◦ pr3

3] Was macht f 1?

• Stelligeitsanalyse:

pr1
1:N→N, pr3

3:N
3→N, s ◦ pr3

3:N
3→N 7→ f

1
: N2→N

• Abarbeitungsbeispiel: f1(2, 2) = s ◦ pr3
3(2, 1, 3)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 µ-rekursive Funktionen

Analyse primitiv-rekursiver Funktionen

• f1 = Pr[pr1
1, s ◦ pr3

3] Was macht f 1?

• Stelligeitsanalyse:

pr1
1:N→N, pr3

3:N
3→N, s ◦ pr3

3:N
3→N 7→ f

1
: N2→N

• Abarbeitungsbeispiel: f1(2, 2) = s(3)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 µ-rekursive Funktionen

Analyse primitiv-rekursiver Funktionen

• f1 = Pr[pr1
1, s ◦ pr3

3] Was macht f 1?

• Stelligeitsanalyse:

pr1
1:N→N, pr3

3:N
3→N, s ◦ pr3

3:N
3→N 7→ f

1
: N2→N

• Abarbeitungsbeispiel: f1(2, 2) = 4

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 µ-rekursive Funktionen

Analyse primitiv-rekursiver Funktionen

• f1 = Pr[pr1
1, s ◦ pr3

3] Was macht f 1?

• Stelligeitsanalyse:

pr1
1:N→N, pr3

3:N
3→N, s ◦ pr3

3:N
3→N 7→ f

1
: N2→N

• Abarbeitungsbeispiel: f1(2, 2) = 4

• Rekursives Verhalten:

f1(x, 0) = pr1
1(x) = x

f1(x, y+1) = (s ◦ pr3
3)(x, y, f(x, y)) = s(f(x, y)) = f(x, y)+1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 µ-rekursive Funktionen

Analyse primitiv-rekursiver Funktionen

• f1 = Pr[pr1
1, s ◦ pr3

3] Was macht f 1?

• Stelligeitsanalyse:

pr1
1:N→N, pr3

3:N
3→N, s ◦ pr3

3:N
3→N 7→ f

1
: N2→N

• Abarbeitungsbeispiel: f1(2, 2) = 4

• Rekursives Verhalten:

f1(x, 0) = pr1
1(x) = x

f1(x, y+1) = (s ◦ pr3
3)(x, y, f(x, y)) = s(f(x, y)) = f(x, y)+1

Das ist die Rekursionsgleichung der Addition

x+0 = x

x+(y+1) = (x+y)+1

}

7→ f1 = add : N2→N mit add(n,m) = n+m

Theoretische Informatik II §6: Berechenbarkeitsmodelle 7 µ-rekursive Funktionen

Analyse µ-rekursiver Funktionen

• f2 = µc2
1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 7 µ-rekursive Funktionen

Analyse µ-rekursiver Funktionen

• f2 = µc2
1 f2(x) =







min{y | c2
1(x, y) = 0} falls y existiert und alle

c2
1(x, i), i<y definiert

⊥ sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 7 µ-rekursive Funktionen

Analyse µ-rekursiver Funktionen

• f2 = µc2
1 f2(x) =







min{y | c2
1(x, y) = 0} falls y existiert und alle

c2
1(x, i), i<y definiert

⊥ sonst

=

{

min{y | 1 = 0} falls dies existiert

⊥ sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 7 µ-rekursive Funktionen

Analyse µ-rekursiver Funktionen

• f2 = µc2
1 f2(x) =







min{y | c2
1(x, y) = 0} falls y existiert und alle

c2
1(x, i), i<y definiert

⊥ sonst

=

{

min{y | 1 = 0} falls dies existiert

⊥ sonst

= ⊥

Theoretische Informatik II §6: Berechenbarkeitsmodelle 7 µ-rekursive Funktionen

Analyse µ-rekursiver Funktionen

• f2 = µc2
1 f2(x) =







min{y | c2
1(x, y) = 0} falls y existiert und alle

c2
1(x, i), i<y definiert

⊥ sonst

=

{

min{y | 1 = 0} falls dies existiert

⊥ sonst

= ⊥

• f3 = µf1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 7 µ-rekursive Funktionen

Analyse µ-rekursiver Funktionen

• f2 = µc2
1 f2(x) =







min{y | c2
1(x, y) = 0} falls y existiert und alle

c2
1(x, i), i<y definiert

⊥ sonst

=

{

min{y | 1 = 0} falls dies existiert

⊥ sonst

= ⊥

• f3 = µf1 f3(x) =

{

0 falls x = 0

⊥ sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 7 µ-rekursive Funktionen

Analyse µ-rekursiver Funktionen

• f2 = µc2
1 f2(x) =







min{y | c2
1(x, y) = 0} falls y existiert und alle

c2
1(x, i), i<y definiert

⊥ sonst

=

{

min{y | 1 = 0} falls dies existiert

⊥ sonst

= ⊥

• f3 = µf1 f3(x) =

{

0 falls x = 0

⊥ sonst

• f4 = µh mit h(x, y) =

{

0 falls x = y

⊥ sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 7 µ-rekursive Funktionen

Analyse µ-rekursiver Funktionen

• f2 = µc2
1 f2(x) =







min{y | c2
1(x, y) = 0} falls y existiert und alle

c2
1(x, i), i<y definiert

⊥ sonst

=

{

min{y | 1 = 0} falls dies existiert

⊥ sonst

= ⊥

• f3 = µf1 f3(x) =

{

0 falls x = 0

⊥ sonst

• f4 = µh mit h(x, y) =

{

0 falls x = y

⊥ sonst

f4(x) =

{

0 falls x=0

⊥ sonst

h(x, y) = 0 für x = y aber ist h für x > 0 und y < x nicht definiert

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 µ-rekursive Funktionen

“Programmierung” µ-rekursiver Funktionen

• Vorgängerfunktion p : N→N p(n) = n−̇1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 µ-rekursive Funktionen

“Programmierung” µ-rekursiver Funktionen

• Vorgängerfunktion p : N→N p(n) = n−̇1

• Rekursives Verhalten:

– p(0) = 0−̇1 = 0

– p(y+1) = (y+1)−̇1 = y

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 µ-rekursive Funktionen

“Programmierung” µ-rekursiver Funktionen

• Vorgängerfunktion p : N→N p(n) = n−̇1

• Rekursives Verhalten:

– p(0) = 0−̇1 = 0

– p(y+1) = (y+1)−̇1 = y

• Beschreibung durch Primitive Rekursion:

– Benötigt: f :N0→N mit f() = 0 7→ f = c0
0

und g:N2→N mit g(y, p(y)) = p(y+1) = y 7→ g = pr2
1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 8 µ-rekursive Funktionen

“Programmierung” µ-rekursiver Funktionen

• Vorgängerfunktion p : N→N p(n) = n−̇1

• Rekursives Verhalten:

– p(0) = 0−̇1 = 0

– p(y+1) = (y+1)−̇1 = y

• Beschreibung durch Primitive Rekursion:

– Benötigt: f :N0→N mit f() = 0 7→ f = c0
0

und g:N2→N mit g(y, p(y)) = p(y+1) = y 7→ g = pr2
1

7→ p = Pr[c0
0, pr2

1]

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 µ-rekursive Funktionen

Exkurs: Wie genau muß man sein? Wiederholung

Ein Beweis ist ein Argument, das den Leser überzeugt

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 µ-rekursive Funktionen

Exkurs: Wie genau muß man sein? Wiederholung

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 µ-rekursive Funktionen

Exkurs: Wie genau muß man sein? Wiederholung

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 µ-rekursive Funktionen

Exkurs: Wie genau muß man sein? Wiederholung

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

• Knapp genug, um übersichtlich und merkbar zu sein

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 µ-rekursive Funktionen

Exkurs: Wie genau muß man sein? Wiederholung

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

• Knapp genug, um übersichtlich und merkbar zu sein

• Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daß Sie nichts mehr falsch machen können

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 µ-rekursive Funktionen

Exkurs: Wie genau muß man sein? Wiederholung

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

• Knapp genug, um übersichtlich und merkbar zu sein

• Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daß Sie nichts mehr falsch machen können

... es reicht nicht, daß Sie es einmal richtig gemacht haben

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 µ-rekursive Funktionen

Exkurs: Wie genau muß man sein? Wiederholung

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

• Knapp genug, um übersichtlich und merkbar zu sein

• Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daß Sie nichts mehr falsch machen können

... es reicht nicht, daß Sie es einmal richtig gemacht haben

• Tip: ausführliche Lösungen entwickeln, bis Sie genug Erfahrung haben.

Für Präsentation zentrale Gedanken aus Lösung extrahieren

Theoretische Informatik II §6: Berechenbarkeitsmodelle 9 µ-rekursive Funktionen

Exkurs: Wie genau muß man sein? Wiederholung

Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

• Knapp genug, um übersichtlich und merkbar zu sein

• Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daß Sie nichts mehr falsch machen können

... es reicht nicht, daß Sie es einmal richtig gemacht haben

• Tip: ausführliche Lösungen entwickeln, bis Sie genug Erfahrung haben.

Für Präsentation zentrale Gedanken aus Lösung extrahieren

• Test: verstehen Ihre Kommilitonen Ihre Lösung und warum sie funktioniert?

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 µ-rekursive Funktionen

Beispiele primitiv-rekursiver Funktionen

• Subtraktion sub : N
2→N sub(n,m) = n−̇m

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 µ-rekursive Funktionen

Beispiele primitiv-rekursiver Funktionen

• Subtraktion sub : N
2→N sub(n,m) = n−̇m

– sub(x, 0) = x = pr1
1(x)

– sub(x, y+1) = x−̇(y+1) = (x−̇y)−̇1 = p(x−̇y) = p ◦ pr3
3)(x, y, sub(x, y))

7→ sub = Pr[pr1
1, p ◦ pr3

3]

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 µ-rekursive Funktionen

Beispiele primitiv-rekursiver Funktionen

• Subtraktion sub : N
2→N sub(n,m) = n−̇m

– sub(x, 0) = x = pr1
1(x)

– sub(x, y+1) = x−̇(y+1) = (x−̇y)−̇1 = p(x−̇y) = p ◦ pr3
3)(x, y, sub(x, y))

7→ sub = Pr[pr1
1, p ◦ pr3

3]

• Multiplikation mul : N
2→N mul(n, m) = n∗m

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 µ-rekursive Funktionen

Beispiele primitiv-rekursiver Funktionen

• Subtraktion sub : N
2→N sub(n,m) = n−̇m

– sub(x, 0) = x = pr1
1(x)

– sub(x, y+1) = x−̇(y+1) = (x−̇y)−̇1 = p(x−̇y) = p ◦ pr3
3)(x, y, sub(x, y))

7→ sub = Pr[pr1
1, p ◦ pr3

3]

• Multiplikation mul : N
2→N mul(n, m) = n∗m

– mul(x, 0) = 0 = c1
0(x)

– mul(x, y+1) = mul(x, y)+x = (add ◦ (pr3
1, pr

3
3))(x, y, mul(x, y))

7→ mul = Pr[c1
0, (add ◦ (pr3

1, pr
3
3))]

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 µ-rekursive Funktionen

Beispiele primitiv-rekursiver Funktionen

• Subtraktion sub : N
2→N sub(n,m) = n−̇m

– sub(x, 0) = x = pr1
1(x)

– sub(x, y+1) = x−̇(y+1) = (x−̇y)−̇1 = p(x−̇y) = p ◦ pr3
3)(x, y, sub(x, y))

7→ sub = Pr[pr1
1, p ◦ pr3

3]

• Multiplikation mul : N
2→N mul(n, m) = n∗m

– mul(x, 0) = 0 = c1
0(x)

– mul(x, y+1) = mul(x, y)+x = (add ◦ (pr3
1, pr

3
3))(x, y, mul(x, y))

7→ mul = Pr[c1
0, (add ◦ (pr3

1, pr
3
3))]

• Exponentiierung exp : N
2→N exp(n,m) = nm

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 µ-rekursive Funktionen

Beispiele primitiv-rekursiver Funktionen

• Subtraktion sub : N
2→N sub(n,m) = n−̇m

– sub(x, 0) = x = pr1
1(x)

– sub(x, y+1) = x−̇(y+1) = (x−̇y)−̇1 = p(x−̇y) = p ◦ pr3
3)(x, y, sub(x, y))

7→ sub = Pr[pr1
1, p ◦ pr3

3]

• Multiplikation mul : N
2→N mul(n, m) = n∗m

– mul(x, 0) = 0 = c1
0(x)

– mul(x, y+1) = mul(x, y)+x = (add ◦ (pr3
1, pr

3
3))(x, y, mul(x, y))

7→ mul = Pr[c1
0, (add ◦ (pr3

1, pr
3
3))]

• Exponentiierung exp : N
2→N exp(n,m) = nm

exp = Pr[c1
1, (mul ◦ (pr3

1, pr
3
3))]

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 µ-rekursive Funktionen

Beispiele primitiv-rekursiver Funktionen

• Subtraktion sub : N
2→N sub(n,m) = n−̇m

– sub(x, 0) = x = pr1
1(x)

– sub(x, y+1) = x−̇(y+1) = (x−̇y)−̇1 = p(x−̇y) = p ◦ pr3
3)(x, y, sub(x, y))

7→ sub = Pr[pr1
1, p ◦ pr3

3]

• Multiplikation mul : N
2→N mul(n, m) = n∗m

– mul(x, 0) = 0 = c1
0(x)

– mul(x, y+1) = mul(x, y)+x = (add ◦ (pr3
1, pr

3
3))(x, y, mul(x, y))

7→ mul = Pr[c1
0, (add ◦ (pr3

1, pr
3
3))]

• Exponentiierung exp : N
2→N exp(n,m) = nm

exp = Pr[c1
1, (mul ◦ (pr3

1, pr
3
3))]

• Fakultät fak : N→N fak(n) = n! = 1*2*...*n

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 µ-rekursive Funktionen

Beispiele primitiv-rekursiver Funktionen

• Subtraktion sub : N
2→N sub(n,m) = n−̇m

– sub(x, 0) = x = pr1
1(x)

– sub(x, y+1) = x−̇(y+1) = (x−̇y)−̇1 = p(x−̇y) = p ◦ pr3
3)(x, y, sub(x, y))

7→ sub = Pr[pr1
1, p ◦ pr3

3]

• Multiplikation mul : N
2→N mul(n, m) = n∗m

– mul(x, 0) = 0 = c1
0(x)

– mul(x, y+1) = mul(x, y)+x = (add ◦ (pr3
1, pr

3
3))(x, y, mul(x, y))

7→ mul = Pr[c1
0, (add ◦ (pr3

1, pr
3
3))]

• Exponentiierung exp : N
2→N exp(n,m) = nm

exp = Pr[c1
1, (mul ◦ (pr3

1, pr
3
3))]

• Fakultät fak : N→N fak(n) = n! = 1*2*...*n

fak = Pr[c0
1, (mul ◦ (s ◦ pr2

1, pr
2
2))]

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 µ-rekursive Funktionen

Beispiele primitiv-rekursiver Funktionen

• Subtraktion sub : N
2→N sub(n,m) = n−̇m

– sub(x, 0) = x = pr1
1(x)

– sub(x, y+1) = x−̇(y+1) = (x−̇y)−̇1 = p(x−̇y) = p ◦ pr3
3)(x, y, sub(x, y))

7→ sub = Pr[pr1
1, p ◦ pr3

3]

• Multiplikation mul : N
2→N mul(n, m) = n∗m

– mul(x, 0) = 0 = c1
0(x)

– mul(x, y+1) = mul(x, y)+x = (add ◦ (pr3
1, pr

3
3))(x, y, mul(x, y))

7→ mul = Pr[c1
0, (add ◦ (pr3

1, pr
3
3))]

• Exponentiierung exp : N
2→N exp(n,m) = nm

exp = Pr[c1
1, (mul ◦ (pr3

1, pr
3
3))]

• Fakultät fak : N→N fak(n) = n! = 1*2*...*n

fak = Pr[c0
1, (mul ◦ (s ◦ pr2

1, pr
2
2))]

• Signum-Funktion sign : N→N sign(n) =

{

0 falls n = 0

1 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 10 µ-rekursive Funktionen

Beispiele primitiv-rekursiver Funktionen

• Subtraktion sub : N
2→N sub(n,m) = n−̇m

– sub(x, 0) = x = pr1
1(x)

– sub(x, y+1) = x−̇(y+1) = (x−̇y)−̇1 = p(x−̇y) = p ◦ pr3
3)(x, y, sub(x, y))

7→ sub = Pr[pr1
1, p ◦ pr3

3]

• Multiplikation mul : N
2→N mul(n, m) = n∗m

– mul(x, 0) = 0 = c1
0(x)

– mul(x, y+1) = mul(x, y)+x = (add ◦ (pr3
1, pr

3
3))(x, y, mul(x, y))

7→ mul = Pr[c1
0, (add ◦ (pr3

1, pr
3
3))]

• Exponentiierung exp : N
2→N exp(n,m) = nm

exp = Pr[c1
1, (mul ◦ (pr3

1, pr
3
3))]

• Fakultät fak : N→N fak(n) = n! = 1*2*...*n

fak = Pr[c0
1, (mul ◦ (s ◦ pr2

1, pr
2
2))]

• Signum-Funktion sign : N→N sign(n) =

{

0 falls n = 0

1 sonst

sign = Pr[c0
0, c

2
1]

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 µ-rekursive Funktionen

Programmiertechniken für rekursive Funktionen

• Definition durch Fallunterscheidung

h(~x) =

{

f(~x) falls test(~x) = 0

g(~x) sonst
(f , g und test:Nk→N primitiv-rekursiv)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 µ-rekursive Funktionen

Programmiertechniken für rekursive Funktionen

• Definition durch Fallunterscheidung

h(~x) =

{

f(~x) falls test(~x) = 0

g(~x) sonst
(f , g und test:Nk→N primitiv-rekursiv)

Wende Signum-Funktion auf Testergebnis an und multipliziere auf

– h(~x) = (1−̇sign(test(~x))) ∗ f(~x) + sign(test(~x)) ∗ g(~x)

7→ h = add ◦ (mul ◦ (sub ◦ (c1
1, sign ◦ test), f), mul ◦ (sign ◦ test, g))

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 µ-rekursive Funktionen

Programmiertechniken für rekursive Funktionen

• Definition durch Fallunterscheidung

h(~x) =

{

f(~x) falls test(~x) = 0

g(~x) sonst
(f , g und test:Nk→N primitiv-rekursiv)

Wende Signum-Funktion auf Testergebnis an und multipliziere auf

– h(~x) = (1−̇sign(test(~x))) ∗ f(~x) + sign(test(~x)) ∗ g(~x)

7→ h = add ◦ (mul ◦ (sub ◦ (c1
1, sign ◦ test), f), mul ◦ (sign ◦ test, g))

• Generelle Summe Σr
i=0f(~x, i)

Generelles Produkt Πr
i=0f(~x, i) (f :Nk+1→N primitiv-rekursiv)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 µ-rekursive Funktionen

Programmiertechniken für rekursive Funktionen

• Definition durch Fallunterscheidung

h(~x) =

{

f(~x) falls test(~x) = 0

g(~x) sonst
(f , g und test:Nk→N primitiv-rekursiv)

Wende Signum-Funktion auf Testergebnis an und multipliziere auf

– h(~x) = (1−̇sign(test(~x))) ∗ f(~x) + sign(test(~x)) ∗ g(~x)

7→ h = add ◦ (mul ◦ (sub ◦ (c1
1, sign ◦ test), f), mul ◦ (sign ◦ test, g))

• Generelle Summe Σr
i=0f(~x, i)

Generelles Produkt Πr
i=0f(~x, i) (f :Nk+1→N primitiv-rekursiv)

–
∑

0

i=0
f(~x, i) = f(~x, 0)

–
∑y+1

i=0
f(~x, i) = (

∑y
i=0

f(~x, i)) + f(~x, y + 1)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 µ-rekursive Funktionen

Programmiertechniken für rekursive Funktionen

• Definition durch Fallunterscheidung

h(~x) =

{

f(~x) falls test(~x) = 0

g(~x) sonst
(f , g und test:Nk→N primitiv-rekursiv)

Wende Signum-Funktion auf Testergebnis an und multipliziere auf

– h(~x) = (1−̇sign(test(~x))) ∗ f(~x) + sign(test(~x)) ∗ g(~x)

7→ h = add ◦ (mul ◦ (sub ◦ (c1
1, sign ◦ test), f), mul ◦ (sign ◦ test, g))

• Generelle Summe Σr
i=0f(~x, i)

Generelles Produkt Πr
i=0f(~x, i) (f :Nk+1→N primitiv-rekursiv)

–
∑

0

i=0
f(~x, i) = f(~x, 0)

–
∑y+1

i=0
f(~x, i) = (

∑y
i=0

f(~x, i)) + f(~x, y + 1)

7→ Σf = Pr[f ◦ (pr1
1, c

1
0), add ◦ (pr3

3, f ◦ (pr3
1, s ◦ pr3

2))] (für k=1)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 11 µ-rekursive Funktionen

Programmiertechniken für rekursive Funktionen

• Definition durch Fallunterscheidung

h(~x) =

{

f(~x) falls test(~x) = 0

g(~x) sonst
(f , g und test:Nk→N primitiv-rekursiv)

Wende Signum-Funktion auf Testergebnis an und multipliziere auf

– h(~x) = (1−̇sign(test(~x))) ∗ f(~x) + sign(test(~x)) ∗ g(~x)

7→ h = add ◦ (mul ◦ (sub ◦ (c1
1, sign ◦ test), f), mul ◦ (sign ◦ test, g))

• Generelle Summe Σr
i=0f(~x, i)

Generelles Produkt Πr
i=0f(~x, i) (f :Nk+1→N primitiv-rekursiv)

–
∑

0

i=0
f(~x, i) = f(~x, 0)

–
∑y+1

i=0
f(~x, i) = (

∑y
i=0

f(~x, i)) + f(~x, y + 1)

7→ Σf = Pr[f ◦ (pr1
1, c

1
0), add ◦ (pr3

3, f ◦ (pr3
1, s ◦ pr3

2))] (für k=1)

7→ Πf = Pr[f ◦ (pr1
1, c

1
0), mul ◦ (pr3

3, f ◦ (pr3
1, s ◦ pr3

2))]

Lösungen für k>1 analog

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 µ-rekursive Funktionen

Programmiertechniken für rekursive Funktionen

• Beschränkte Minimierung

h(~x, t) =

{

min{y≤t | f(~x, y) = 0} falls dies existiert

t+1 sonst
(f :Nk+1→N ∈ Tprim)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 µ-rekursive Funktionen

Programmiertechniken für rekursive Funktionen

• Beschränkte Minimierung

h(~x, t) =

{

min{y≤t | f(~x, y) = 0} falls dies existiert

t+1 sonst
(f :Nk+1→N ∈ Tprim)

Rekursives Verhalten:

– h(~x, 0) =

{

0 fallsf(~x, 0) = 0

1 sonst
= sign(f(~x, 0))

– h(~x, t+1) =







h(~x, t) falls h(~x, t)≤t

t+1 falls h(~x, t) = t+1 und f(~x, t+1) = 0

t+2 sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 12 µ-rekursive Funktionen

Programmiertechniken für rekursive Funktionen

• Beschränkte Minimierung

h(~x, t) =

{

min{y≤t | f(~x, y) = 0} falls dies existiert

t+1 sonst
(f :Nk+1→N ∈ Tprim)

Rekursives Verhalten:

– h(~x, 0) =

{

0 fallsf(~x, 0) = 0

1 sonst
= sign(f(~x, 0))

– h(~x, t+1) =







h(~x, t) falls h(~x, t)≤t

t+1 falls h(~x, t) = t+1 und f(~x, t+1) = 0

t+2 sonst

Programmierbar mit Fallunterscheidung und primitiver

Rekursion (aufwendiger Ausdruck)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 µ-rekursive Funktionen

Weitere primitiv-rekursive Funktionen

• Absolute Differenz absdiff : N2→N absdiff (n,m) = |n − m|

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 µ-rekursive Funktionen

Weitere primitiv-rekursive Funktionen

• Absolute Differenz absdiff : N2→N absdiff (n,m) = |n − m|

• Maximum max : N2→N max(n,m) =

{

n falls n ≥ m

m sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 µ-rekursive Funktionen

Weitere primitiv-rekursive Funktionen

• Absolute Differenz absdiff : N2→N absdiff (n,m) = |n − m|

• Maximum max : N2→N max(n,m) =

{

n falls n ≥ m

m sonst

• Minimum min : N2→N min(n,m) =

{

m falls n ≥ m

n sonst

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 µ-rekursive Funktionen

Weitere primitiv-rekursive Funktionen

• Absolute Differenz absdiff : N2→N absdiff (n,m) = |n − m|

• Maximum max : N2→N max(n,m) =

{

n falls n ≥ m

m sonst

• Minimum min : N2→N min(n,m) =

{

m falls n ≥ m

n sonst

• Division div : N2→N div(n,m) = n÷m

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 µ-rekursive Funktionen

Weitere primitiv-rekursive Funktionen

• Absolute Differenz absdiff : N2→N absdiff (n,m) = |n − m|

• Maximum max : N2→N max(n,m) =

{

n falls n ≥ m

m sonst

• Minimum min : N2→N min(n,m) =

{

m falls n ≥ m

n sonst

• Division div : N2→N div(n,m) = n÷m

• Divisionsrest mod : N2→N mod(n,m) = n mod m

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 µ-rekursive Funktionen

Weitere primitiv-rekursive Funktionen

• Absolute Differenz absdiff : N2→N absdiff (n,m) = |n − m|

• Maximum max : N2→N max(n,m) =

{

n falls n ≥ m

m sonst

• Minimum min : N2→N min(n,m) =

{

m falls n ≥ m

n sonst

• Division div : N2→N div(n,m) = n÷m

• Divisionsrest mod : N2→N mod(n,m) = n mod m

• Quadratwurzel sqrt : N→N sqrt(n) = b√nc

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 µ-rekursive Funktionen

Weitere primitiv-rekursive Funktionen

• Absolute Differenz absdiff : N2→N absdiff (n,m) = |n − m|

• Maximum max : N2→N max(n,m) =

{

n falls n ≥ m

m sonst

• Minimum min : N2→N min(n,m) =

{

m falls n ≥ m

n sonst

• Division div : N2→N div(n,m) = n÷m

• Divisionsrest mod : N2→N mod(n,m) = n mod m

• Quadratwurzel sqrt : N→N sqrt(n) = b√nc

• Logarithmus ld : N→N ld(n) = blog2 nc

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 µ-rekursive Funktionen

Weitere primitiv-rekursive Funktionen

• Absolute Differenz absdiff : N2→N absdiff (n,m) = |n − m|

• Maximum max : N2→N max(n,m) =

{

n falls n ≥ m

m sonst

• Minimum min : N2→N min(n,m) =

{

m falls n ≥ m

n sonst

• Division div : N2→N div(n,m) = n÷m

• Divisionsrest mod : N2→N mod(n,m) = n mod m

• Quadratwurzel sqrt : N→N sqrt(n) = b√nc

• Logarithmus ld : N→N ld(n) = blog2 nc

• Größter gemeinsamer Teiler ggT : N2→N

Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 µ-rekursive Funktionen

Weitere primitiv-rekursive Funktionen

• Absolute Differenz absdiff : N2→N absdiff (n,m) = |n − m|

• Maximum max : N2→N max(n,m) =

{

n falls n ≥ m

m sonst

• Minimum min : N2→N min(n,m) =

{

m falls n ≥ m

n sonst

• Division div : N2→N div(n,m) = n÷m

• Divisionsrest mod : N2→N mod(n,m) = n mod m

• Quadratwurzel sqrt : N→N sqrt(n) = b√nc

• Logarithmus ld : N→N ld(n) = blog2 nc

• Größter gemeinsamer Teiler ggT : N2→N

• Kleinstes gemeinsames Vielfaches kgV : N2→N

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0
1
2
3
4
5...

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0
1
2
3
4
5...

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0
1 1
2
3
4
5...

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0 2
1 1
2
3
4
5...

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0 2
1 1
2 3
3
4
5...

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0 2
1 1 4
2 3
3
4
5...

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0 2 5
1 1 4
2 3
3
4
5...

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0 2 5 9
1 1 4 8
2 3 7
3 6
4
5...

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0 2 5 9 14
1 1 4 8 13
2 3 7 12
3 6 11
4 10
5...

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0 2 5 9 14 20
1 1 4 8 13 19
2 3 7 12 18
3 6 11 17
4 10 16
5 15...

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0 2 5 9 14 20 ...
1 1 4 8 13 19 ...
2 3 7 12 18 ...
3 6 11 17 ...
4 10 16 ...
5 15

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0 2 5 9 14 20 ...
1 1 4 8 13 19 ...
2 3 7 12 18 ...
3 6 11 17 ...
4 10 16 ...
5 15

〈x, y〉

:=

(x+y)(x+y+1)÷2 + y

“Standard-Tupelfunktion”

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0 2 5 9 14 20 ...
1 1 4 8 13 19 ...
2 3 7 12 18 ...
3 6 11 17 ...
4 10 16 ...
5 15

〈x, y〉

:=

(x+y)(x+y+1)÷2 + y

“Standard-Tupelfunktion”

• 〈〉:N2→N ist primitiv-rekursiv und bijektiv

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0 2 5 9 14 20 ...
1 1 4 8 13 19 ...
2 3 7 12 18 ...
3 6 11 17 ...
4 10 16 ...
5 15

〈x, y〉

:=

(x+y)(x+y+1)÷2 + y

“Standard-Tupelfunktion”

• 〈〉:N2→N ist primitiv-rekursiv und bijektiv

• Die Umkehrfunktionen π2
i := pr2

i ◦ 〈〉−1 sind primitiv-rekursiv

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0 2 5 9 14 20 ...
1 1 4 8 13 19 ...
2 3 7 12 18 ...
3 6 11 17 ...
4 10 16 ...
5 15

〈x, y〉

:=

(x+y)(x+y+1)÷2 + y

“Standard-Tupelfunktion”

• 〈〉:N2→N ist primitiv-rekursiv und bijektiv

• Die Umkehrfunktionen π2
i := pr2

i ◦ 〈〉−1 sind primitiv-rekursiv

• 〈〉 kann iterativ auf N
k→N und auf N

∗→N fortgesetzt werden

– 〈x, y, z〉3 = 〈x, 〈y, z〉〉, . . . , 〈x1...xk〉∗ = 〈k, 〈x1, .., xk〉k〉
– Alle Funktionen sind bijektiv und primitiv-rekursiv

– Alle Umkehrfunktionen πk
i und π∗

i sind primitiv-rekursiv

Theoretische Informatik II §6: Berechenbarkeitsmodelle 14 µ-rekursive Funktionen

Berechenbare Numerierung von Zahlenpaaren

0 1 2 3 4 5 ...
0 0 2 5 9 14 20 ...
1 1 4 8 13 19 ...
2 3 7 12 18 ...
3 6 11 17 ...
4 10 16 ...
5 15

〈x, y〉

:=

(x+y)(x+y+1)÷2 + y

“Standard-Tupelfunktion”

• 〈〉:N2→N ist primitiv-rekursiv und bijektiv

• Die Umkehrfunktionen π2
i := pr2

i ◦ 〈〉−1 sind primitiv-rekursiv

• 〈〉 kann iterativ auf N
k→N und auf N

∗→N fortgesetzt werden

– 〈x, y, z〉3 = 〈x, 〈y, z〉〉, . . . , 〈x1...xk〉∗ = 〈k, 〈x1, .., xk〉k〉
– Alle Funktionen sind bijektiv und primitiv-rekursiv

– Alle Umkehrfunktionen πk
i und π∗

i sind primitiv-rekursiv

• Jede rekursive Funktion kann einstellig simuliert werden

– Für f :N2→N und g := f ◦ (pi21, pi
2
2) gilt g : N→N und f(x, y) = g(〈x, y〉)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 15 µ-rekursive Funktionen

Ausdruckskraft rekursiver Funktionen

Tprim ⊂ Rµ ⊂ Tµ = RM = T

Theoretische Informatik II §6: Berechenbarkeitsmodelle 15 µ-rekursive Funktionen

Ausdruckskraft rekursiver Funktionen

Tprim ⊂ Rµ ⊂ Tµ = RM = T

• Tprim ⊆ Rµ ⊆ Tµ gilt offensichtlich

– Grundfunktionen und Anwendungen von p.r. Operationen sind total

Theoretische Informatik II §6: Berechenbarkeitsmodelle 15 µ-rekursive Funktionen

Ausdruckskraft rekursiver Funktionen

Tprim ⊂ Rµ ⊂ Tµ = RM = T

• Tprim ⊆ Rµ ⊆ Tµ gilt offensichtlich

– Grundfunktionen und Anwendungen von p.r. Operationen sind total

• Rµ 6= Rµ

– Nicht alle µ-rekursiven Funktionen sind total (Beispiel: f
3
= µadd)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 15 µ-rekursive Funktionen

Ausdruckskraft rekursiver Funktionen

Tprim ⊂ Rµ ⊂ Tµ = RM = T

• Tprim ⊆ Rµ ⊆ Tµ gilt offensichtlich

– Grundfunktionen und Anwendungen von p.r. Operationen sind total

• Rµ 6= Rµ

– Nicht alle µ-rekursiven Funktionen sind total (Beispiel: f
3
= µadd)

• Tprim 6= Rµ

– Primitiv-rekursive Funktionen haben endliche Schachtelungstiefe

– Unbegrenzte Iteration über Schachtelungstiefe ist intuitiv berechenbar

– Konkretes Beispiel: Ackermann-Funktion

Theoretische Informatik II §6: Berechenbarkeitsmodelle 15 µ-rekursive Funktionen

Ausdruckskraft rekursiver Funktionen

Tprim ⊂ Rµ ⊂ Tµ = RM = T

• Tprim ⊆ Rµ ⊆ Tµ gilt offensichtlich

– Grundfunktionen und Anwendungen von p.r. Operationen sind total

• Rµ 6= Rµ

– Nicht alle µ-rekursiven Funktionen sind total (Beispiel: f
3
= µadd)

• Tprim 6= Rµ

– Primitiv-rekursive Funktionen haben endliche Schachtelungstiefe

– Unbegrenzte Iteration über Schachtelungstiefe ist intuitiv berechenbar

– Konkretes Beispiel: Ackermann-Funktion

• Tµ = RM
⊆: Gebe RM-Unterprogramme für Grundfunktionen und Operationen

⊇: Beschreibe RM-Konfigurationsübergänge und Terminierung µ-rekursiv

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 µ-rekursive Funktionen

Schachtelungstiefe

Wie kompliziert ist eine Funktion ?

• Tiefe =̂ Anzahl verschachtelter For-Schleifen

– Funktionen ohne Minimierung und primitive Rekursion 7→ Tiefe 0

– Komposition mit Funktionen der Tiefe n 7→ Tiefe n

– Primitive Rekursion mit Funktionen der Tiefe n 7→ Tiefe n+1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 µ-rekursive Funktionen

Schachtelungstiefe

Wie kompliziert ist eine Funktion ?

• Tiefe =̂ Anzahl verschachtelter For-Schleifen

– Funktionen ohne Minimierung und primitive Rekursion 7→ Tiefe 0

– Komposition mit Funktionen der Tiefe n 7→ Tiefe n

– Primitive Rekursion mit Funktionen der Tiefe n 7→ Tiefe n+1

• Beispiele

– Tiefe 1: Addition add, Vorgänger p, Signum sign

– Tiefe 2: Multiplikation mul, Subtraktion sub

– Tiefe 3: Exponentiation exp, Fakultät fak

Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 µ-rekursive Funktionen

Schachtelungstiefe

Wie kompliziert ist eine Funktion ?

• Tiefe =̂ Anzahl verschachtelter For-Schleifen

– Funktionen ohne Minimierung und primitive Rekursion 7→ Tiefe 0

– Komposition mit Funktionen der Tiefe n 7→ Tiefe n

– Primitive Rekursion mit Funktionen der Tiefe n 7→ Tiefe n+1

• Beispiele

– Tiefe 1: Addition add, Vorgänger p, Signum sign

– Tiefe 2: Multiplikation mul, Subtraktion sub

– Tiefe 3: Exponentiation exp, Fakultät fak

• Primitiv-rekursiven Funktionen haben eine

begrenzte Schachtelungstiefe

– Minimierung ist nicht begrenzbar

Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 µ-rekursive Funktionen

Ackermann-Funktionen (1928)

Funktionen mit Schachtelungstiefe n

Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 µ-rekursive Funktionen

Ackermann-Funktionen (1928)

Funktionen mit Schachtelungstiefe n

• Definiere Funktionen An iterativ:

A0(x) :=







1 falls x = 0

2 falls x = 1

x+2 sonst

An+1(0) := 1

An+1(x+1) := An(An+1(x))

Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 µ-rekursive Funktionen

Ackermann-Funktionen (1928)

Funktionen mit Schachtelungstiefe n

• Definiere Funktionen An iterativ:

A0(x) :=







1 falls x = 0

2 falls x = 1

x+2 sonst

An+1(0) := 1

An+1(x+1) := An(An+1(x))

• Jede der Funktionen An ist primitiv-rekursiv

Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 µ-rekursive Funktionen

Ackermann-Funktionen (1928)

Funktionen mit Schachtelungstiefe n

• Definiere Funktionen An iterativ:

A0(x) :=







1 falls x = 0

2 falls x = 1

x+2 sonst

An+1(0) := 1

An+1(x+1) := An(An+1(x))

• Jede der Funktionen An ist primitiv-rekursiv

• Wachstumsverhalten

A1(x) = 2x (x≥1)

A2(x) = 2x

A3(x) = 2(2(2...2))
︸ ︷︷ ︸
x−mal

A4(0) = 1

A4(1) = 2

A4(2) = 22 = 4

A4(3) = 2222

= 65536

A4(4) = 2(2(2...2))
︸ ︷︷ ︸

65536−mal

A4(5) = 2(2(2...2))
︸ ︷︷ ︸

A4(4)−mal

Theoretische Informatik II §6: Berechenbarkeitsmodelle 18 µ-rekursive Funktionen

Die große Ackermann-Funktion

Beispiel für Tprim 6= Rµ Satz O

Theoretische Informatik II §6: Berechenbarkeitsmodelle 18 µ-rekursive Funktionen

Die große Ackermann-Funktion

Beispiel für Tprim 6= Rµ Satz O

• Definiere A(x) := Ax(x) (Große Ackermann-Funktion)

– Die Berechnung von A(x) benötigt Schachtelungstiefe x

– Keine Begrenzung der Schachtelungstiefe möglich

Theoretische Informatik II §6: Berechenbarkeitsmodelle 18 µ-rekursive Funktionen

Die große Ackermann-Funktion

Beispiel für Tprim 6= Rµ Satz O

• Definiere A(x) := Ax(x) (Große Ackermann-Funktion)

– Die Berechnung von A(x) benötigt Schachtelungstiefe x

– Keine Begrenzung der Schachtelungstiefe möglich

• A kann nicht primitiv-rekursiv sein
– A wächst schneller als jede primitiv-rekursive Funktion

– Für jede p.r. Funktion f gibt es ein k mit f(n)<A(n) für alle n>k
(sehr aufwendig)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 18 µ-rekursive Funktionen

Die große Ackermann-Funktion

Beispiel für Tprim 6= Rµ Satz O

• Definiere A(x) := Ax(x) (Große Ackermann-Funktion)

– Die Berechnung von A(x) benötigt Schachtelungstiefe x

– Keine Begrenzung der Schachtelungstiefe möglich

• A kann nicht primitiv-rekursiv sein
– A wächst schneller als jede primitiv-rekursive Funktion

– Für jede p.r. Funktion f gibt es ein k mit f(n)<A(n) für alle n>k
(sehr aufwendig)

• A ist total und µ-rekursiv
– Beschreibe Abarbeitungsfunktion δ eines Berechnungsstacks für A:

· δ〈wn0〉∗=w1, δ〈w01〉∗=w2, δ〈w0(x+2)〉∗=w(x+4),

· δ〈w(n+1)(x+1)〉∗=〈wn(n+1), x〉∗
· δ ist primitiv-rekursiv (aufwendig)

– Für n ∈N berechne A(n) = δk〈nn〉 für k = min{j|π2
1(δ

j〈nn〉) = 1}
· k existiert immer

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 µ-rekursive Funktionen

Tµ ⊆ RM Satz N.1

• Simuliere Grundfunktionen und Operationen
– Verwende Standardanfangskonfiguration α und -ausgabefunktion ω

– RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung

– RM-Programmiersprache vereinfacht Beschreibung

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 µ-rekursive Funktionen

Tµ ⊆ RM Satz N.1

• Simuliere Grundfunktionen und Operationen
– Verwende Standardanfangskonfiguration α und -ausgabefunktion ω

– RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung

– RM-Programmiersprache vereinfacht Beschreibung

• Simulation der Grundfunktionen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 µ-rekursive Funktionen

Tµ ⊆ RM Satz N.1

• Simuliere Grundfunktionen und Operationen
– Verwende Standardanfangskonfiguration α und -ausgabefunktion ω

– RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung

– RM-Programmiersprache vereinfacht Beschreibung

• Simulation der Grundfunktionen
– Nachfolgerfunktion p: r

1
:= r

1
+1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 µ-rekursive Funktionen

Tµ ⊆ RM Satz N.1

• Simuliere Grundfunktionen und Operationen
– Verwende Standardanfangskonfiguration α und -ausgabefunktion ω

– RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung

– RM-Programmiersprache vereinfacht Beschreibung

• Simulation der Grundfunktionen
– Nachfolgerfunktion p: r

1
:= r

1
+1

– Projektionsfunktion prn
k : r

1
:= r

k

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 µ-rekursive Funktionen

Tµ ⊆ RM Satz N.1

• Simuliere Grundfunktionen und Operationen
– Verwende Standardanfangskonfiguration α und -ausgabefunktion ω

– RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung

– RM-Programmiersprache vereinfacht Beschreibung

• Simulation der Grundfunktionen
– Nachfolgerfunktion p: r

1
:= r

1
+1

– Projektionsfunktion prn
k : r

1
:= r

k

– Konstantenfunktion cn
k : r

1
:= k

Theoretische Informatik II §6: Berechenbarkeitsmodelle 19 µ-rekursive Funktionen

Tµ ⊆ RM Satz N.1

• Simuliere Grundfunktionen und Operationen
– Verwende Standardanfangskonfiguration α und -ausgabefunktion ω

– RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung

– RM-Programmiersprache vereinfacht Beschreibung

• Simulation der Grundfunktionen
– Nachfolgerfunktion p: r

1
:= r

1
+1

– Projektionsfunktion prn
k : r

1
:= r

k

– Konstantenfunktion cn
k : r

1
:= k

• RM-Unterprogramm für Komposition f ◦ (g1...gn)
– F, G1, .., Gn RM-Unterprogramme für f :Nn→N und g1...gn:Nk→N, m>max(k, n)

rm+1 := G
1
(r

1
,..,r

k
)

...
rm+n := Gn(r1

,..,r
k
)

r
1
:= rm+1; ..; rn := rm+n

r
1
:= F(r

1
,..,rn)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 µ-rekursive Funktionen

Tµ ⊆ RM: RM-Unterprogramme für Operationen

• Unterprogramm für Primitive Rekursion Pr[f, g]
– F, G RM-Unterprogramme für f :Nk−1→N und g:Nk+1→N

rk+1 := F(r
1
,..,rk−1)

rk+2 := r
k
; Grenze der Zählschleife

r
k
:= 0; Zähle vorwärts

while r
k
<rk+2 do rk+1 := G(r

1
,..,rk+1); r

k
:= r

k
+1 od;

r
1
:= rk+1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 20 µ-rekursive Funktionen

Tµ ⊆ RM: RM-Unterprogramme für Operationen

• Unterprogramm für Primitive Rekursion Pr[f, g]
– F, G RM-Unterprogramme für f :Nk−1→N und g:Nk+1→N

rk+1 := F(r
1
,..,rk−1)

rk+2 := r
k
; Grenze der Zählschleife

r
k
:= 0; Zähle vorwärts

while r
k
<rk+2 do rk+1 := G(r

1
,..,rk+1); r

k
:= r

k
+1 od;

r
1
:= rk+1

• RM-Unterprogramm für Minimierung µf
– F RM-Unterprogramm für f :Nk+1→N, m>max(k, n)

rk+1 := 0

rk+2 := F(r
1
,..,rk+1)

while rk+2>0 do rk+1 := rk+1+1; rk+2 := F(r
1
,..,rk+1) od;

r
1
:= rk+1

Theoretische Informatik II §6: Berechenbarkeitsmodelle 21 µ-rekursive Funktionen

Tµ ⊇ RM Satz N.2

• Codiere RM-Konfigurationen als Zahlentupel

– Sei ρ = (S,k, δ, s0,F) und o.B.d.A F={sx}
– Codiere κ= (s

j
,(i1,..,ik)) als κ̄=(j,i1,..,ik)

Theoretische Informatik II §6: Berechenbarkeitsmodelle 21 µ-rekursive Funktionen

Tµ ⊇ RM Satz N.2

• Codiere RM-Konfigurationen als Zahlentupel

– Sei ρ = (S,k, δ, s0,F) und o.B.d.A F={sx}
– Codiere κ= (s

j
,(i1,..,ik)) als κ̄=(j,i1,..,ik)

• Simuliere Überführungsfunktion δ̂

– Für κ̄=(j,i1,..,ik) mit δ(sj,(sign(i1),..,sign(ik))) = (sj′,(op1,..,opk)) ist

δ̄(κ̄)=(j ′,(i′1,..,i
′
k)), wobei i′j =

{

0 falls ij=0 und opj=-1,

ij+opj sonst

δ̄ und die Iteration δ̄∗ sind primitiv-rekursiv

Theoretische Informatik II §6: Berechenbarkeitsmodelle 21 µ-rekursive Funktionen

Tµ ⊇ RM Satz N.2

• Codiere RM-Konfigurationen als Zahlentupel

– Sei ρ = (S,k, δ, s0,F) und o.B.d.A F={sx}
– Codiere κ= (s

j
,(i1,..,ik)) als κ̄=(j,i1,..,ik)

• Simuliere Überführungsfunktion δ̂

– Für κ̄=(j,i1,..,ik) mit δ(sj,(sign(i1),..,sign(ik))) = (sj′,(op1,..,opk)) ist

δ̄(κ̄)=(j ′,(i′1,..,i
′
k)), wobei i′j =

{

0 falls ij=0 und opj=-1,

ij+opj sonst

δ̄ und die Iteration δ̄∗ sind primitiv-rekursiv

• Beschreibe Rechenzeitfunktion tρ

– tρ(n) = min{j | prk+1

1
(δ̄∗((0, n, 0, .., 0), j)) = x} tρ ist µ-rekursiv

Theoretische Informatik II §6: Berechenbarkeitsmodelle 21 µ-rekursive Funktionen

Tµ ⊇ RM Satz N.2

• Codiere RM-Konfigurationen als Zahlentupel

– Sei ρ = (S,k, δ, s0,F) und o.B.d.A F={sx}
– Codiere κ= (s

j
,(i1,..,ik)) als κ̄=(j,i1,..,ik)

• Simuliere Überführungsfunktion δ̂

– Für κ̄=(j,i1,..,ik) mit δ(sj,(sign(i1),..,sign(ik))) = (sj′,(op1,..,opk)) ist

δ̄(κ̄)=(j ′,(i′1,..,i
′
k)), wobei i′j =

{

0 falls ij=0 und opj=-1,

ij+opj sonst

δ̄ und die Iteration δ̄∗ sind primitiv-rekursiv

• Beschreibe Rechenzeitfunktion tρ

– tρ(n) = min{j | prk+1

1
(δ̄∗((0, n, 0, .., 0), j)) = x} tρ ist µ-rekursiv

• Beschreibe Semantik hρ von ρ

– hρ(n) = prk+1

2
(δ̄∗((0, n, 0, .., 0), tρ(n)) hρ ist µ-rekursiv

Theoretische Informatik II §6: Berechenbarkeitsmodelle 22 µ-rekursive Funktionen

Konsequenzen

Für Argumente zur Berechenbarkeit können

wahlweise Turingmaschinen Registermaschinen

oder µ-rekursive Funktionen eingesetzt werden

Theoretische Informatik II §6: Berechenbarkeitsmodelle 22 µ-rekursive Funktionen

Konsequenzen

Für Argumente zur Berechenbarkeit können

wahlweise Turingmaschinen Registermaschinen

oder µ-rekursive Funktionen eingesetzt werden

Kleene Normalform Theorem:

Für jede berechenbare Funktion h kann man primitiv-

rekursive Funktionen f und g konstruieren, so daß

h(x) = g(x, µ f(x))

– Konstruiere RM für h und wähle f = tρ und g = prk+1

2
◦ δ̄∗

Theoretische Informatik II §6: Berechenbarkeitsmodelle 22 µ-rekursive Funktionen

Konsequenzen

Für Argumente zur Berechenbarkeit können

wahlweise Turingmaschinen Registermaschinen

oder µ-rekursive Funktionen eingesetzt werden

Kleene Normalform Theorem:

Für jede berechenbare Funktion h kann man primitiv-

rekursive Funktionen f und g konstruieren, so daß

h(x) = g(x, µ f(x))

– Konstruiere RM für h und wähle f = tρ und g = prk+1

2
◦ δ̄∗

Berechenbare Funktionen kommen mit einer

einzigen Minimierung (While-Schleife) aus

Theoretische Informatik II §6: Berechenbarkeitsmodelle 23 µ-rekursive Funktionen

Min-rekursive Funktionen

Funktionsdefinition ohne primitive Rekursion

Theoretische Informatik II §6: Berechenbarkeitsmodelle 23 µ-rekursive Funktionen

Min-rekursive Funktionen

Funktionsdefinition ohne primitive Rekursion

• f :Nk→N min-rekursiv

– f ist Addition, Nachfolger-, Projektions- oder Konstantenfunktion

– f entsteht aus min-rekursiven Funktionen durch Komposition

oder Minimierung

Theoretische Informatik II §6: Berechenbarkeitsmodelle 23 µ-rekursive Funktionen

Min-rekursive Funktionen

Funktionsdefinition ohne primitive Rekursion

• f :Nk→N min-rekursiv

– f ist Addition, Nachfolger-, Projektions- oder Konstantenfunktion

– f entsteht aus min-rekursiven Funktionen durch Komposition

oder Minimierung

Tmin: Menge der min-rekursiven Funktionen

Theoretische Informatik II §6: Berechenbarkeitsmodelle 23 µ-rekursive Funktionen

Min-rekursive Funktionen

Funktionsdefinition ohne primitive Rekursion

• f :Nk→N min-rekursiv

– f ist Addition, Nachfolger-, Projektions- oder Konstantenfunktion

– f entsteht aus min-rekursiven Funktionen durch Komposition

oder Minimierung

Tmin: Menge der min-rekursiven Funktionen

• Tmin = Tµ

– Tmin ⊆ Tµ: Offensichtlich, da add ∈Tµ

– Tmin ⊇ Tµ: beschreibe Abarbeitung des Rekursionsstacks

und suche nach erstem erzeugten Stack der Länge 1

ähnlich wie bei Berechnung der Ackermann Funktion
(extrem aufwendig)

