
Theoretische Informatik II

Einheit 6.3

Rekursive Funktionen

1. Primitiv- und µ-rekursive Funktionen

2. Analyse und Programmierung

3. Äquivalenz zu Registermaschinen
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– Das informatiktypische “Baukastensystem” entspricht dieser Idee
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Operationen auf Grundfunktionen
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• Bausteine gelten als intuitiv berechenbar

– Grundfunktionen: Konstante, Projektion, Nachfolgerzahl

– Operationen: Komposition, einfache Rekursion, Suchschleife

• Berechnung durch schrittweise Auswertung

– Direkte Auswertung von Argumenten bei Grundfunktionen

– Einsetzen des Definitionsschemas bei Operationen
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Abweichende Notation im Skript: N statt s, πn
k statt prn

k , N
0
statt N
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h := f(x
1
,..,xn);

for i:=1 to y do h := g(x
1
,..,xn,i-1,h) fi (h = h(x1, .., xn, y))

– Primitive Rekursion arbeitet in umgekehrter Reihenfolge

• Minimierung =̂ While-schleife (unbegrenzte Suche)

y := 0;

while f(x
1
..xn,y)6=0 do y:=y+1 od;

h := y (h = h(x1, .., xn))

– Ergebnis ist Anzahl der Schleifendurchläufe bis zum Erfolg
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• Offensichtlich gilt: Rµ ⊆ Tµ

• Offensichtlich gilt: Tprim ⊆ Rµ

– Alle Grundfunktionen sind total und µ-rekursiv
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• Sind die Inklusionen echt?

– oder könnten zwei Klassen zusammenfallen?

• Ist eine der Klassen vergleichbar zu RM bzw. T ?

Diese Fragen müssen noch untersucht werden
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Das ist die Rekursionsgleichung der Addition

x+0 = x

x+(y+1) = (x+y)+1

}

7→ f1 = add : N2→N mit add(n,m) = n+m
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min{y | 1 = 0} falls dies existiert

⊥ sonst

= ⊥

• f3 = µf1 f3(x) =

{

0 falls x = 0

⊥ sonst

• f4 = µh mit h(x, y) =

{

0 falls x = y

⊥ sonst

f4(x) =

{

0 falls x=0

⊥ sonst

h(x, y) = 0 für x = y aber ist h für x > 0 und y < x nicht definiert
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• Rekursives Verhalten:

– p(0) = 0−̇1 = 0

– p(y+1) = (y+1)−̇1 = y

• Beschreibung durch Primitive Rekursion:

– Benötigt: f :N0→N mit f() = 0 7→ f = c0
0
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7→ p = Pr[c0
0, pr2
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Ein Beweis ist ein Argument, das den Leser überzeugt

• Nicht notwendig formal oder mit allen Details

• Präzise genug. um Details rekonstruieren zu können

• Knapp genug, um übersichtlich und merkbar zu sein

• Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daß Sie nichts mehr falsch machen können

... es reicht nicht, daß Sie es einmal richtig gemacht haben

• Tip: ausführliche Lösungen entwickeln, bis Sie genug Erfahrung haben.

Für Präsentation zentrale Gedanken aus Lösung extrahieren

• Test: verstehen Ihre Kommilitonen Ihre Lösung und warum sie funktioniert?
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Lösungen für k>1 analog
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Programmierbar mit Fallunterscheidung und primitiver

Rekursion (aufwendiger Ausdruck)



Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 µ-rekursive Funktionen

Weitere primitiv-rekursive Funktionen

• Absolute Differenz absdiff : N2→N absdiff (n,m) = |n − m|



Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 µ-rekursive Funktionen

Weitere primitiv-rekursive Funktionen

• Absolute Differenz absdiff : N2→N absdiff (n,m) = |n − m|

• Maximum max : N2→N max(n,m) =

{

n falls n ≥ m

m sonst



Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 µ-rekursive Funktionen

Weitere primitiv-rekursive Funktionen

• Absolute Differenz absdiff : N2→N absdiff (n,m) = |n − m|

• Maximum max : N2→N max(n,m) =

{

n falls n ≥ m

m sonst

• Minimum min : N2→N min(n,m) =

{

m falls n ≥ m

n sonst



Theoretische Informatik II §6: Berechenbarkeitsmodelle 13 µ-rekursive Funktionen

Weitere primitiv-rekursive Funktionen
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• Absolute Differenz absdiff : N2→N absdiff (n,m) = |n − m|
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{
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• Quadratwurzel sqrt : N→N sqrt(n) = b√nc

• Logarithmus ld : N→N ld(n) = blog2 nc

• Größter gemeinsamer Teiler ggT : N2→N

• Kleinstes gemeinsames Vielfaches kgV : N2→N
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– Alle Funktionen sind bijektiv und primitiv-rekursiv

– Alle Umkehrfunktionen πk
i und π∗

i sind primitiv-rekursiv

• Jede rekursive Funktion kann einstellig simuliert werden

– Für f :N2→N und g := f ◦ (pi21, pi
2
2) gilt g : N→N und f(x, y) = g(〈x, y〉)
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• Tprim ⊆ Rµ ⊆ Tµ gilt offensichtlich

– Grundfunktionen und Anwendungen von p.r. Operationen sind total

• Rµ 6= Rµ

– Nicht alle µ-rekursiven Funktionen sind total (Beispiel: f
3
= µadd)

• Tprim 6= Rµ

– Primitiv-rekursive Funktionen haben endliche Schachtelungstiefe

– Unbegrenzte Iteration über Schachtelungstiefe ist intuitiv berechenbar

– Konkretes Beispiel: Ackermann-Funktion

• Tµ = RM
⊆: Gebe RM-Unterprogramme für Grundfunktionen und Operationen

⊇: Beschreibe RM-Konfigurationsübergänge und Terminierung µ-rekursiv
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Schachtelungstiefe

Wie kompliziert ist eine Funktion ?

• Tiefe =̂ Anzahl verschachtelter For-Schleifen

– Funktionen ohne Minimierung und primitive Rekursion 7→ Tiefe 0

– Komposition mit Funktionen der Tiefe n 7→ Tiefe n

– Primitive Rekursion mit Funktionen der Tiefe n 7→ Tiefe n+1

• Beispiele

– Tiefe 1: Addition add, Vorgänger p, Signum sign

– Tiefe 2: Multiplikation mul, Subtraktion sub

– Tiefe 3: Exponentiation exp, Fakultät fak

• Primitiv-rekursiven Funktionen haben eine

begrenzte Schachtelungstiefe

– Minimierung ist nicht begrenzbar



Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 µ-rekursive Funktionen

Ackermann-Funktionen (1928)

Funktionen mit Schachtelungstiefe n



Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 µ-rekursive Funktionen

Ackermann-Funktionen (1928)

Funktionen mit Schachtelungstiefe n

• Definiere Funktionen An iterativ:

A0(x) :=







1 falls x = 0

2 falls x = 1

x+2 sonst

An+1(0) := 1

An+1(x+1) := An(An+1(x))



Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 µ-rekursive Funktionen

Ackermann-Funktionen (1928)

Funktionen mit Schachtelungstiefe n

• Definiere Funktionen An iterativ:

A0(x) :=







1 falls x = 0

2 falls x = 1

x+2 sonst

An+1(0) := 1

An+1(x+1) := An(An+1(x))

• Jede der Funktionen An ist primitiv-rekursiv



Theoretische Informatik II §6: Berechenbarkeitsmodelle 17 µ-rekursive Funktionen

Ackermann-Funktionen (1928)

Funktionen mit Schachtelungstiefe n

• Definiere Funktionen An iterativ:

A0(x) :=







1 falls x = 0

2 falls x = 1

x+2 sonst

An+1(0) := 1

An+1(x+1) := An(An+1(x))

• Jede der Funktionen An ist primitiv-rekursiv

• Wachstumsverhalten

A1(x) = 2x (x≥1)

A2(x) = 2x

A3(x) = 2(2(2...2))
︸ ︷︷ ︸
x−mal

A4(0) = 1

A4(1) = 2

A4(2) = 22 = 4

A4(3) = 2222

= 65536

A4(4) = 2(2(2...2))
︸ ︷︷ ︸

65536−mal

A4(5) = 2(2(2...2))
︸ ︷︷ ︸

A4(4)−mal
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Die große Ackermann-Funktion

Beispiel für Tprim 6= Rµ Satz O

• Definiere A(x) := Ax(x) (Große Ackermann-Funktion)

– Die Berechnung von A(x) benötigt Schachtelungstiefe x

– Keine Begrenzung der Schachtelungstiefe möglich

• A kann nicht primitiv-rekursiv sein
– A wächst schneller als jede primitiv-rekursive Funktion

– Für jede p.r. Funktion f gibt es ein k mit f(n)<A(n) für alle n>k
(sehr aufwendig)

• A ist total und µ-rekursiv
– Beschreibe Abarbeitungsfunktion δ eines Berechnungsstacks für A:

· δ〈wn0〉∗=w1, δ〈w01〉∗=w2, δ〈w0(x+2)〉∗=w(x+4),

· δ〈w(n+1)(x+1)〉∗=〈wn(n+1), x〉∗
· δ ist primitiv-rekursiv (aufwendig)

– Für n ∈N berechne A(n) = δk〈nn〉 für k = min{j|π2
1(δ

j〈nn〉) = 1}
· k existiert immer
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– RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung

– RM-Programmiersprache vereinfacht Beschreibung
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• Simuliere Grundfunktionen und Operationen
– Verwende Standardanfangskonfiguration α und -ausgabefunktion ω

– RM-Unterprogrammtechnik vermeidet Konflikte durch Umbenennung

– RM-Programmiersprache vereinfacht Beschreibung

• Simulation der Grundfunktionen
– Nachfolgerfunktion p: r

1
:= r

1
+1

– Projektionsfunktion prn
k : r

1
:= r

k

– Konstantenfunktion cn
k : r

1
:= k

• RM-Unterprogramm für Komposition f ◦ (g1...gn)
– F, G1, .., Gn RM-Unterprogramme für f :Nn→N und g1...gn:Nk→N, m>max(k, n)

rm+1 := G
1
(r

1
,..,r

k
)

...
rm+n := Gn(r1

,..,r
k
)

r
1
:= rm+1; ..; rn := rm+n

r
1
:= F(r

1
,..,rn)
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Tµ ⊆ RM: RM-Unterprogramme für Operationen

• Unterprogramm für Primitive Rekursion Pr[f, g]
– F, G RM-Unterprogramme für f :Nk−1→N und g:Nk+1→N

rk+1 := F(r
1
,..,rk−1)

rk+2 := r
k
; Grenze der Zählschleife

r
k
:= 0; Zähle vorwärts

while r
k
<rk+2 do rk+1 := G(r

1
,..,rk+1); r

k
:= r

k
+1 od;

r
1
:= rk+1
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Tµ ⊆ RM: RM-Unterprogramme für Operationen

• Unterprogramm für Primitive Rekursion Pr[f, g]
– F, G RM-Unterprogramme für f :Nk−1→N und g:Nk+1→N

rk+1 := F(r
1
,..,rk−1)

rk+2 := r
k
; Grenze der Zählschleife

r
k
:= 0; Zähle vorwärts

while r
k
<rk+2 do rk+1 := G(r

1
,..,rk+1); r

k
:= r

k
+1 od;

r
1
:= rk+1

• RM-Unterprogramm für Minimierung µf
– F RM-Unterprogramm für f :Nk+1→N, m>max(k, n)

rk+1 := 0

rk+2 := F(r
1
,..,rk+1)

while rk+2>0 do rk+1 := rk+1+1; rk+2 := F(r
1
,..,rk+1) od;

r
1
:= rk+1
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Tµ ⊇ RM Satz N.2
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k)), wobei i′j =

{

0 falls ij=0 und opj=-1,

ij+opj sonst

δ̄ und die Iteration δ̄∗ sind primitiv-rekursiv

• Beschreibe Rechenzeitfunktion tρ

– tρ(n) = min{j | prk+1

1
(δ̄∗((0, n, 0, .., 0), j)) = x} tρ ist µ-rekursiv

• Beschreibe Semantik hρ von ρ

– hρ(n) = prk+1

2
(δ̄∗((0, n, 0, .., 0), tρ(n)) hρ ist µ-rekursiv
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Für Argumente zur Berechenbarkeit können

wahlweise Turingmaschinen Registermaschinen

oder µ-rekursive Funktionen eingesetzt werden

Kleene Normalform Theorem:

Für jede berechenbare Funktion h kann man primitiv-

rekursive Funktionen f und g konstruieren, so daß

h(x) = g(x, µ f(x))

– Konstruiere RM für h und wähle f = tρ und g = prk+1

2
◦ δ̄∗

Berechenbare Funktionen kommen mit einer

einzigen Minimierung (While-Schleife) aus
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Min-rekursive Funktionen

Funktionsdefinition ohne primitive Rekursion

• f :Nk→N min-rekursiv

– f ist Addition, Nachfolger-, Projektions- oder Konstantenfunktion

– f entsteht aus min-rekursiven Funktionen durch Komposition

oder Minimierung

Tmin: Menge der min-rekursiven Funktionen

• Tmin = Tµ

– Tmin ⊆ Tµ: Offensichtlich, da add ∈Tµ

– Tmin ⊇ Tµ: beschreibe Abarbeitung des Rekursionsstacks

und suche nach erstem erzeugten Stack der Länge 1

ähnlich wie bei Berechnung der Ackermann Funktion
(extrem aufwendig)


