Theoretische Informatik 11

Einheit 6.4

Andere Berechenbarkeitsmodelle

1. Typ-0 Berechenbarkeit
2. A-Kalkiil
3. Church’sche These

WwWers,
O ”"}

.‘.\Od

TYP-0 BERECHENBARKEIT I

oG = (N,7,P,0) Typ-0 Grammatik
— N, T Alphabete (Nonterminalsymbole / Terminalsymbole)
— P: Menge von Produktionen a—/3 (« enthalt Nonterminalsymbole)

— o: Startsymbol

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 1 TYP-0 BERECHENBARKEIT

TYP-0 BERECHENBARKEIT I

oG = (N,T,P,0) Typ-0 Grammatik
— N, T Alphabete (Nonterminalsymbole / Terminalsymbole)
— P: Menge von Produktionen a— [(a enthélt Nonterminalsymbole)

— o: Startsymbol

e Ableitbarkeit v —>Z w

—U=uoe u1ﬁ121 = UfX2y — 7‘28222_> oo u bz, =w

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 1 TyP-0 BERECHENBARKEIT

TYP-0 BERECHENBARKEIT I

oG = (N,T,P,0) Typ-0 Grammatik
— N, T Alphabete (Nonterminalsymbole / Terminalsymbole)
— P: Menge von Produktionen a— [(a enthélt Nonterminalsymbole)

— o: Startsymbol

e Ableitbarkeit v —>Z w
v =ueg, = ufz = upg, o ufZ, = 2wz, = w

e Erzeugte Sprache L(G) = {weT™ | 0 =7 w}

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 1 TyP-0 BERECHENBARKEIT

TYP-0 BERECHENBARKEIT I

oG = (N,T,P,0) Typ-0 Grammatik
— N, T Alphabete (Nonterminalsymbole / Terminalsymbole)
— P: Menge von Produktionen a— [(a enthélt Nonterminalsymbole)

— o: Startsymbol

e Ableitbarkeit v —>Z w

v =ueg, = ufz = upg, o ufZ, = 2wz, = w
e Erzeugte Sprache L(G) = {weT™ | 0 =7 w}
e LCT™ Typ-0 berechenbar

— L wird von einer Typ-0 Grammatik G erzeugt (L = L(G))
— G “zahlt Elemente von L auf”

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 1 TyP-0 BERECHENBARKEIT

TYP-0 BERECHENBARKEIT I

oG = (N,T,P,0) Typ-0 Grammatik
— N, T Alphabete (Nonterminalsymbole / Terminalsymbole)
— P: Menge von Produktionen a— [(a enthélt Nonterminalsymbole)

— o: Startsymbol

e Ableitbarkeit v —>Z w

v =ueg, = ufz = upg, o ufZ, = 2wz, = w
e Erzeugte Sprache L(G) = {weT™ | 0 =7 w}
e LCT™ Typ-0 berechenbar

— L wird von einer Typ-0 Grammatik G erzeugt (L = L(G))
— G “zahlt Elemente von L auf”

o f:X*—=Y™* Typ-0 berechenbar
— Ly = {v#w|f(v) = w} Typ-0 berechenbar

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 1 TyP-0 BERECHENBARKEIT

L TYP-0 BERECHENBAR < [SEMI-ENTSCHEIDBAR [Satz Q I

= Simuliere Produktionsregeln der Grammatik G
— Schreibe Wort w auf Band 1 und o auf Band 2

— In Phase ¢ schreibe alle Worte von L(G) auf Band 2, die in ¢ Schritten
ableitbar sind und teste, ob w auf Band 2 vorkommt

— Im Erfolgstall gebe 1 aus, andernfalls beginne Phase 1+1

— Programm terminiert nicht, wenn w ¢ L (Ergebnis ist L)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 2 TyP-0 BERECHENBARKEIT

L TyYP-0 BERECHENBAR < [, SEMI-ENTSCHEIDBAR [Satz Q I

= Simuliere Produktionsregeln der Grammatik G
— Schreibe Wort w auf Band 1 und o auf Band 2

— In Phase ¢ schreibe alle Worte von L(G) auf Band 2, die in ¢ Schritten
ableitbar sind und teste, ob w auf Band 2 vorkommt

— Im Erfolgstall gebe 1 aus, andernfalls beginne Phase 1+1

— Programm terminiert nicht, wenn w ¢ L (Ergebnis ist L)

< Simuliere Abarbeitung der Turingmaschine 7
— Codiere Konfigurationen (s,u,v) als Worte usv
— Simuliere Konfigurationsiibergange als Regeln mit Begrenzern

— Entferne Begrenzer, wenn (Simulation von) 7 angehalten hat

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 2 TyP-0 BERECHENBARKEIT

BEWEIS: TYP-0 BERECHENBAR = SEMI-ENTSCHEIDBAR I

e Fiir G = (N,T,P,0) definiere Mengen M;
- M() — {O’}, Mi—i—l — {’LL|E|’U EMZ' ’U—>G”LL}
— M, ist die Menge der in ¢ Schritten ableitbaren Worte

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 3 TYP-0 BERECHENBARKEIT

BEWEIS: TYP-0 BERECHENBAR = SEMI-ENTSCHEIDBAR I

e Fiir G = (N,T,P,0) definiere Mengen M;
— M() — {O’}, Mi+1 — {U|E|’U EMZ' U—>GU}
— M, ist die Menge der in ¢ Schritten ableitbaren Worte

e Beschreibe Mehrband-TM fiir Test w € L(G)
- L(G) = | MinT* also weL(G) & JiweM,
— Schreibe w auf Band 1, erzeuge M, aut Band 2 und vergleiche

— Trennung zwischen Worten bzw. M; und M, ; durch Symbole #, $
M, M, M,

o |$|#| ul.ul [#|udud (#..# u{u] $|#| vi.v |#... # v{..vg $

2
m

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 3 TyP-0 BERECHENBARKEIT

BEWEIS: TYP-0 BERECHENBAR = SEMI-ENTSCHEIDBAR I

e Fiir G = (N,T,P,0) definiere Mengen M;
— M() — {O’}, Mi+1 — {U|E|’U EMZ' U—>GU}
— M, ist die Menge der in ¢ Schritten ableitbaren Worte

e Beschreibe Mehrband-TM fiir Test w € L(G)
- L(G) = | MinT* also weL(G) & JiweM,
— Schreibe w auf Band 1, erzeuge M, aut Band 2 und vergleiche

— Trennung zwischen Worten bzw. M; und M, ; durch Symbole #, $
M, M, M,

o [$|#]| ulul [#|ufd | #o#| o [$#| vl [# L #] vl |8

e Iterative Erzeugung der M,; durch TM
— Codiere Produktionsregeln als Unterprogramme der Turingmaschine
— Beginne mit My = {0}
— Wende Regeln auf Worte von M; an, schreibe Resultate ans Bandende

— Beginne Vergleich mit w, wenn M, 1 vollstandig erzeugt

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 3 TyP-0 BERECHENBARKEIT

ANMERKUNGEN ZUM BEWEIS I

e TM berechnet partiell-charakteristische Funktion L(G)
— Erfolgreicher Vergleich bedeutet w e M;cL(G) (Ergebnis 1)
—w ¢ L(G) bedeutet w ¢ M; fiir alle i: keine Terminierung (Ergebnis 1)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 4 TyP-0 BERECHENBARKEIT

ANMERKUNGEN ZUM BEWEIS I

e TM berechnet partiell-charakteristische Funktion L(G)
— Erfolgreicher Vergleich bedeutet w e M;cL(G) (Ergebnis 1)
—w ¢ L(G) bedeutet w ¢ M; fiir alle i: keine Terminierung (Ergebnis 1)

e Technische Details aufwendig
— Codierung der Regeln als Programme
— Suchmechanismen: Anfang von M; ($), nachstes Wort in M; (#)

— Erzeugung aller ableitbaren Worte durch Bestimmung aller anwendbaren
Regeln (ggf. Anwendbarkeit einer Regel auf mehrere Teilworte)

— Vergleich von w mit Worten auf Band 2, korrekte Ausgabe erzeugen

THEORETISCHE INFORMATIK IT §6: BERECHENBARKEITSMODELLE 4 TyP-0 BERECHENBARKEIT

ANMERKUNGEN ZUM BEWEIS I

e TM berechnet partiell-charakteristische Funktion L(G)
— Erfolgreicher Vergleich bedeutet w e M;cL(G) (Ergebnis 1)
—w ¢ L(G) bedeutet w ¢ M; fiir alle i: keine Terminierung (Ergebnis 1)

e Technische Details aufwendig
— Codierung der Regeln als Programme
— Suchmechanismen: Anfang von M; ($), nachstes Wort in M; (#)

— Erzeugung aller ableitbaren Worte durch Bestimmung aller anwendbaren
Regeln (ggf. Anwendbarkeit einer Regel auf mehrere Teilworte)

— Vergleich von w mit Worten auf Band 2, korrekte Ausgabe erzeugen

e Optimierungen moglich
— Erzeuge M; ;1 auf drittem Band

— Uberschreibe M;, wenn M, vollstandig erzeugt

THEORETISCHE INFORMATIK IT §6: BERECHENBARKEITSMODELLE 4 TyP-0 BERECHENBARKEIT

ANMERKUNGEN ZUM BEWEIS I

e TM berechnet partiell-charakteristische Funktion L(G)
— Erfolgreicher Vergleich bedeutet w e M;cL(G) (Ergebnis 1)
—w ¢ L(G) bedeutet w ¢ M; fiir alle i: keine Terminierung (Ergebnis 1)

e Technische Details aufwendig
— Codierung der Regeln als Programme
— Suchmechanismen: Anfang von M; ($), nachstes Wort in M; (#)

— Erzeugung aller ableitbaren Worte durch Bestimmung aller anwendbaren
Regeln (ggf. Anwendbarkeit einer Regel auf mehrere Teilworte)

— Vergleich von w mit Worten auf Band 2, korrekte Ausgabe erzeugen

e Optimierungen moglich
— Erzeuge M; ;1 auf drittem Band

— Uberschreibe M;, wenn M, vollstandig erzeugt

Projekt: Details heraussuchen, kurze Ausarbeitung schreiben

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 4 TyP-0 BERECHENBARKEIT

BEWEIS: SEMI-ENTSCHEIDBAR = TYP-0 BERECHENBAR I

e Zeige: Jede Funktion h; ist Typ-0 berechenbar

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 5 TyYP-0 BERECHENBARKEIT

BEWEIS: SEMI-ENTSCHEIDBAR = TYP-0 BERECHENBAR I

e Zeige: Jede Funktion h; ist Typ-0 berechenbar

— Allgemeinere Aussage: jede Turingmaschine kann simuliert werden

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 5 TYP-0 BERECHENBARKEIT

BEWEIS: SEMI-ENTSCHEIDBAR = TYP-0 BERECHENBAR I

e Zeige: Jede Funktion h; ist Typ-0 berechenbar
— Allgemeinere Aussage: jede Turingmaschine kann simuliert werden

— Spezieller Beweis ist dann: L semi-entscheidbar

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 5 TYP-0 BERECHENBARKEIT

BEWEIS: SEMI-ENTSCHEIDBAR = TYP-0 BERECHENBAR I

e Zeige: Jede Funktion h; ist Typ-0 berechenbar
— Allgemeinere Aussage: jede Turingmaschine kann simuliert werden
— Spezieller Beweis ist dann: L semi-entscheidbar

= 1)1, Turing-berechenbar

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 5 TYP-0 BERECHENBARKEIT

BEWEIS: SEMI-ENTSCHEIDBAR = TYP-0 BERECHENBAR I

e Zeige: Jede Funktion h; ist Typ-0 berechenbar
— Allgemeinere Aussage: jede Turingmaschine kann simuliert werden
— Spezieller Beweis ist dann: L semi-entscheidbar

= 1, Turing-berechenbar
= Ly, = {w#llweL} Typ-0 berechenbar

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 5 TYP-0 BERECHENBARKEIT

BEWEIS: SEMI-ENTSCHEIDBAR = TYP-0 BERECHENBAR I

e Zeige: Jede Funktion h; ist Typ-0 berechenbar
— Allgemeinere Aussage: jede Turingmaschine kann simuliert werden
— Spezieller Beweis ist dann: L semi-entscheidbar
= 1, Turing-berechenbar
= Ly, = {w#llweL} Typ-0 berechenbar
= L = {w|we L} Typ-0 berechenbar

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 5 TYP-0 BERECHENBARKEIT

BEWEIS: SEMI-ENTSCHEIDBAR = TYP-0 BERECHENBAR I

e Zeige: Jede Funktion h; ist Typ-0 berechenbar
— Allgemeinere Aussage: jede Turingmaschine kann simuliert werden
— Spezieller Beweis ist dann: L semi-entscheidbar
= 1, Turing-berechenbar
= Ly, = {w#llweL} Typ-0 berechenbar
= L = {w|we L} Typ-0 berechenbar

e Idee: Generiere alle Konfigurationen von 7
— Erzeuge alle moglichen Eingabeworte und Anfangskonfigurationen
— Codiere Konfigurationsiibergange von 7 als Regeln

— Simuliere Ausgabe durch Loschen von Nonterminalsymbolen

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 5 TyP-0 BERECHENBARKEIT

BEWEIS: SEMI-ENTSCHEIDBAR = TYP-0 BERECHENBAR I

e Zeige: Jede Funktion /., ist Typ-0 berechenbar
— Allgemeinere Aussage: jede Turingmaschine kann simuliert werden
— Spezieller Beweis ist dann: L semi-entscheidbar
= 1, Turing-berechenbar
= Ly, = {w#llweL} Typ-0 berechenbar
= L = {w|we L} Typ-0 berechenbar

e Idee: Generiere alle Konfigurationen von 7
— Erzeuge alle moglichen Eingabeworte und Anfangskonfigurationen
— Codiere Konfigurationsiibergange von 7 als Regeln

— Simuliere Ausgabe durch Loschen von Nonterminalsymbolen

e Abzuleitende Worte in simulierender Grammatik
— Worte der Form w # Q usv $

— w Eingabewort, (s,u,v) Konfiguration von 7 bei Verarbeitung von w

— @, $ Trennsymbole

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 5 TyP-0 BERECHENBARKEIT

RUCKBLICK: KONFIGURATIONEN IN WORT-DARSTELLUNG

d(s,a)=(s",a’,P)
Programm o Zustand s
S,a
a a' P
Band o U9 Uy U Vo U1

Lese-Schreibkopf

e Konfigurationstripel (s,u,v)

— s aktueller Zustand, w, v String links/rechts vom Kopf

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 6 TyP-0 BERECHENBARKEIT

RUCKBLICK: KONFIGURATIONEN IN WORT-DARSTELLUNG

d(s,a)=(s",a’,P)
Programm o Zustand s
S,a
a a' P
Band o U9 Uy U Vo U1

Lese-Schreibkopf

e Konfigurationstripel (s,u,v)
— s aktueller Zustand, w, v String links/rechts vom Kopf

e Konfigurationsubergange
~6(s,a) = (¢, d,1) liefert o(s, ugu, av) = (s',u, upa'v)

—8(s,a) = (s, d,r) liefert (s, u,av) = (s, a'u,v)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 6 TyP-0 BERECHENBARKEIT

REGELN DER GRAMMATIK I

e Erzeugung von Anfangskonfigurationen

— Regeln zur Erzeugung von Worten der Form w#@Qsgw$ fir w e X*

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 7 TyP-0 BERECHENBARKEIT

REGELN DER GRAMMATIK I

e Erzeugung von Anfangskonfigurationen

— Regeln zur Erzeugung von Worten der Form w#@Qsgw$ fir w e X*

e Simulation der Konfigurationsiibergange

— Regeln der Form sawv; — a's'vy fir vy el und 6(s,a) = (s',a’,r

) =
— Regeln der Form sa$ — a’'s'b$ fir 6(s,a) = (s',d’,r

)
)
— Regeln der Form ugsa +— s'uga’ fir ugel’ und d(s,a) = (s',d’,1)
— Regeln der Form @Qsa — Qs'ba’ fir §(s,a) = (s',d’,1)

)

— Regeln der Form sa — gy a fiir 6(s,a) = (s',d, h

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 7 TyP-0 BERECHENBARKEIT

REGELN DER GRAMMATIK I

e Erzeugung von Anfangskonfigurationen

— Regeln zur Erzeugung von Worten der Form w#Qsqw$ fir w e X*

e Simulation der Konfigurationsiibergange

— Regeln der Form sawv; — a's'vy fir vy el und 6(s,a) = (s',a’,r

) =
— Regeln der Form sa$ — a’'s'b$ fir 6(s,a) = (s',d’,r

)
)
— Regeln der Form ugsa +— s'uga’ fir ugel’ und d(s,a) = (s',d’,1)
— Regeln der Form @Qsa — Qs'ba’ fir §(s,a) = (s',d’,1)

)

— Regeln der Form sa — gy a fiir 6(s,a) = (s',d, h

e Schluf3iregeln (Ausgabe)
— Regeln zum Loschen der Symbole @, § im Kontext ¢

— Regeln mussen ¢y nach links und dann nach rechts schieben

THEORETISCHE INFORMATIK IT §6: BERECHENBARKEITSMODELLE 7 TyP-0 BERECHENBARKEIT

REGELN DER GRAMMATIK I

e Erzeugung von Anfangskonfigurationen

— Regeln zur Erzeugung von Worten der Form w#Qsqw$ fir w e X*

e Simulation der Konfigurationsiibergange

— Regeln der Form sawv; — a's'vy fir vy el und 6(s,a) = (s',a’,r

) =
— Regeln der Form sa$ — a’'s'b$ fir 6(s,a) = (s',d’,r

)
)
— Regeln der Form ugsa +— s'uga’ fir ugel’ und d(s,a) = (s',d’,1)
— Regeln der Form @Qsa — Qs'ba’ fir §(s,a) = (s',d’,1)

)

— Regeln der Form sa — gy a fiir 6(s,a) = (s',d, h

e Schluf3iregeln (Ausgabe)
— Regeln zum Loschen der Symbole @, § im Kontext ¢

— Regeln mussen ¢y nach links und dann nach rechts schieben

e Grammatik erzeugt die Sprache {w#uv|h;(w) = v}
— Details z.B. in Erk-Priese, Seite 199-201

THEORETISCHE INFORMATIK IT §6: BERECHENBARKEITSMODELLE 7 TyP-0 BERECHENBARKEIT

DER M-KALKUL I

Grundlage funktionaler Programmiersprachen

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 8 A-KALKUL

DER M-KALKUL I

Grundlage funktionaler Programmiersprachen

e Einfacher mathematischer Mechanismus
— Funktionen werden definiert und angewandt
— Die Beschreibung des Funktionsverhaltens ist der Name der Funktion

— Funktionswerte werden ausgerechnet durch Einsetzen von Werten

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 8 A-KALKUL

DER M-KALKUL I

Grundlage funktionaler Programmiersprachen

e Einfacher mathematischer Mechanismus
— Funktionen werden definiert und angewandt
— Die Beschreibung des Funktionsverhaltens ist der Name der Funktion

— Funktionswerte werden ausgerechnet durch Einsetzen von Werten

e Leicht zu verstehen

— Definition einer Funktion: f(x) = 2%x+3

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 8 A-KALKUL

DER M-KALKUL I

Grundlage funktionaler Programmiersprachen

e Einfacher mathematischer Mechanismus

— Funktionen werden definiert und angewandt
— Die Beschreibung des Funktionsverhaltens ist der Name der Funktion

— Funktionswerte werden ausgerechnet durch Einsetzen von Werten

e Leicht zu verstehen

— Definition einer Funktion: f(x)

2*x+3
— Auswertung der Funktion: £(4)

2x4+3 = 11

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE

M-KALKUL

DER M-KALKUL I

Grundlage funktionaler Programmiersprachen

e Einfacher mathematischer Mechanismus
— Funktionen werden definiert und angewandt
— Die Beschreibung des Funktionsverhaltens ist der Name der Funktion

— Funktionswerte werden ausgerechnet durch Einsetzen von Werten

e Leicht zu verstehen
— Definition einer Funktion: f = x — 2%x+3
— Auswertung der Funktion: £f(4) = 2*%4+3 = 11

Name der Funktion ist irrelevant

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 8 A-KALKUL

DER M-KALKUL I

Grundlage funktionaler Programmiersprachen

e Einfacher mathematischer Mechanismus
— Funktionen werden definiert und angewandt
— Die Beschreibung des Funktionsverhaltens ist der Name der Funktion

— Funktionswerte werden ausgerechnet durch Einsetzen von Werten

e Leicht zu verstehen
— Definition einer Funktion: £ = \x. 2%x+3 Abstraktion von x

— Auswertung der Funktion: £f(4) = 2*%4+3 = 11

Name der Funktion ist irrelevant

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 8 A-KALKUL

DER M-KALKUL I

Grundlage funktionaler Programmiersprachen

e Einfacher mathematischer Mechanismus
— Funktionen werden definiert und angewandt
— Die Beschreibung des Funktionsverhaltens ist der Name der Funktion

— Funktionswerte werden ausgerechnet durch Einsetzen von Werten

e Leicht zu verstehen
— Definition einer Funktion: f = A\x. 2*%x+3 M-Notation

— Auswertung der Funktion:

Name der Funktion ist irrelevant

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 8 A-KALKUL

DER M-KALKUL I

Grundlage funktionaler Programmiersprachen

e Einfacher mathematischer Mechanismus
— Funktionen werden definiert und angewandt
— Die Beschreibung des Funktionsverhaltens ist der Name der Funktion

— Funktionswerte werden ausgerechnet durch Einsetzen von Werten

e Leicht zu verstehen
— Definition einer Funktion: f = A\x. 2*%x+3 M-Notation

— Auswertung der Funktion: (Ax. 2*x+3) (4) Applikation

Name der Funktion ist irrelevant

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 8 A-KALKUL

DER M-KALKUL I

Grundlage funktionaler Programmiersprachen

e Einfacher mathematischer Mechanismus
— Funktionen werden definiert und angewandt
— Die Beschreibung des Funktionsverhaltens ist der Name der Funktion

— Funktionswerte werden ausgerechnet durch Einsetzen von Werten

e Leicht zu verstehen

— Definition einer Funktion: f = A\x. 2*%x+3 A-Notation
— Auswertung der Funktion: (Ax. 2*x+3) (4) S Applikation
Name der Funktion ist irrelevant + Reduktion

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 8 A-KALKUL

A-KALKUL — SYNTAX UND SEMANTIK I

e \-Terme

— Variablen x

— Ax.t, wobel x Variable und ¢t A-Term A-Abstraktion
Vorkommen von x in ¢ werden gebunden
— ft, wobei t und f A\-Terme Applikation

— (t), wobei t A-Term

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 9 A-KALKUL

A-KALKUL — SYNTAX UND SEMANTIK I

e \-Terme

— Variablen x

— Ax.t, wobel x Variable und ¢t A-Term A-Abstraktion
Vorkommen von x in ¢t werden gebunden
— ft, wobei t und f A-Terme Applikation

— (t), wobei t A-Term

e Konventionen
— Applikation bindet starker als A-Abstraktion
— Applikation ist links-assoziativ: ftt,= (f t) t,
— Notation f(¢,,...,¢) entspricht iterierter Applikation f ¢, ...¢

n

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 9 A-KALKUL

A-KALKUL — SYNTAX UND SEMANTIK I

e \-Terme

— Variablen x

— Ax.t, wobel x Variable und ¢t A-Term A-Abstraktion
Vorkommen von x in ¢t werden gebunden
— ft, wobei t und f A-Terme Applikation

— (t), wobei t A-Term

e Konventionen
— Applikation bindet starker als A-Abstraktion
— Applikation ist links-assoziativ: ftt,= (f t) t,
— Notation f(¢,,...,¢) entspricht iterierter Applikation f ¢, ...¢

n

e Auswertung von A-Termen

— Ersetze Funktionsparameter durch Funktionsargumente
~ Reduktion (\a.t) (b)) — 5 tlb/x]

— Substitution #[b/x]: ersetze freie Vorkommen von x in ¢ durch b

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 9 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— (Af.Ax. n f (£ x)[AMfAx.x/n]

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— AfoAx. n £ (£) [AMf.Ax.x/n

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— Af. Ax. m £ (£ %) [Af.Ax.x/n)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— AM.oAx., (Mf. A Ax.x) £ (£ x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— Ao Ax. (M. x.x) £ (£ x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— Mo Ax., (M. x.x) £ (£ x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— AMoAx., (M. x.x) £ (£ x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— AMoAx., (M. x.x) £ (£ x)
— (Ax.x| [/ £]

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— AMoAx., (M. x.x) £ (£ x)

— AX.X

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— Mo Ax., (M. x.x) £ (£ x)
s (Ax.x) (f x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— Ao Ax. (M. x.x) £ (£ x)
— Ax. (A\x.x) (f x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— AM.oAx., (Mf. A Ax.x) £ (£ x)
s M oAx. (Ax.x) (f x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— AM.oAx., (Mf. A Ax.x) £ (£ x)
s A Ax. (A\x.x) (£ x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— AM.oAx., (Mf. A Ax.x) £ (£ x)
s Ao Ax. (Ax.x) (f x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An. AMf. Ax. n £ (f x)) (Af.Ax.x)
— A Ax. (M. Ax.x) £ (£ x)
— A Ax.(Ax.x) (f %)
— x|l x/x

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— AM.oAx., (Mf. A Ax.x) £ (£ x)
s Ao Ax. (Ax.x) (f x)

— f x

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An.AMf. \x. n f (f x)) (AMf.\x.x)
— AM.oAx., (Mf. A Ax.x) £ (£ x)
s A Ax. (A\x.x) (£ x)

— AMx. f x

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An. AMf. Ax. n £ (f x)) (Af.Ax.x)
— A Ax. (M. Ax.x) £ (£ x)
— A Ax.(Ax.x) (f %)
— Af.Ax. f x

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

SUBSTITUTION UND REDUKTION AM BEISPIEL I

(An. AMf. Ax. n £ (f x)) (Af.Ax.x)
— A Ax. (M. Ax.x) £ (£ x)
— A Ax.(Ax.x) (f %)
— Af.Ax. f x

U

On. M. Ax.n f (f 1)) Of.) x.x) —— M.\x. f x

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 10 A-KALKUL

DARSTELLUNG BOOLESCHER OPERATOREN IM MA-KALKUL I

T = AX.\y.X
F = AX.Ay.y
if b then s else ¢ = bst

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 11 A-KALKUL

DARSTELLUNG BOOLESCHER OPERATOREN IM MA-KALKUL I

T = AX.\y.X
F = AX.Ay.y
if b then s else ¢ = bst

Konditional ist invers zu T und F

if T then s else ¢
Tst

= (AX.Ay.x) st
— (Ay.s)t

% S

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 11 A-KALKUL

DARSTELLUNG BOOLESCHER OPERATOREN IM MA-KALKUL I

T = AX.\y.X
F = AX.Ay.y
if b then s else ¢ = bst

Konditional ist invers zu T und F

if T then s else t if F then s else t
= Tst = Fst
= (AX.Ay.x) st = (Ax.\y.y) st
— (Ay.s)t — (Ay.y)t
— S — 1

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 11 A-KALKUL

BILDUNG UND ANALYSE VON PAAREN I

(s,1t) = Ap. pst
pair.1 = pair (Ax.\y.x)
pair.2 = pair (Ax.A\y.y)

pair (Ax.Ay.t)

let (z,y) =pair in t

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 12 A-KALKUL

BILDUNG UND ANALYSE VON PAAREN I

(s,1t) = Ap. pst
pair.1 = pair (Ax.\y.x)
pair.2 = pair (Ax.A\y.y)

let (z,y) =pair in t pair (Ar.A\y.t)

Analyseoperator ist invers zur Paarbildung

let (z,y)=(u,v) Iint
= (u,v)(\r.\y.t)
= (Ap. puv)(A\z.\y.t)
— (Az.\y.t) uv
— (\y.tlu/x]) uv
— tlu,v/x,y])

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 12 A-KALKUL

A-BERECHENBARE FUNKTIONEN AUF N I

e Darstellung von Zahlen durch iterierte Terme

— Semantisch: wiederholte Anwendung von Funktionen

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 13 A-KALKUL

A-BERECHENBARE FUNKTIONEN AUF N I

e Darstellung von Zahlen durch iterierte Terme

— Semantisch: wiederholte Anwendung von Funktionen

— Reprasentiere die Zahl n durch den Term Af . Ax. £ (£..(ft)..),
n-mal

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 13 A-KALKUL

A-BERECHENBARE FUNKTIONEN AUF N I

e Darstellung von Zahlen durch iterierte Terme
— Semantisch: wiederholte Anwendung von Funktionen
— Reprasentiere die Zahl n durch den Term Mf . Ax. £ (f..(ft)..)

— Notation' m = M. \x.f"x n-mal

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 13 A-KALKUL

A-BERECHENBARE FUNKTIONEN AUF N I

e Darstellung von Zahlen durch iterierte Terme
— Semantisch: wiederholte Anwendung von Funktionen
— Reprasentiere die Zahl n durch den Term Af . Ax. £ (£..(ft)..),
— Notationn m = Af.) x.f"x n-mal

— Bezeichnung: Church Numerals

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 13 A-KALKUL

A-BERECHENBARE FUNKTIONEN AUF N I

e Darstellung von Zahlen durch iterierte Terme
— Semantisch: wiederholte Anwendung von Funktionen
— Reprasentiere die Zahl n durch den Term Mf . Ax. £ (f..(ft)..)

— Notation' m = M. \x.f"x n-mal

— Bezeichnung: Church Numerals

e f:N"—N M-berechenbar:

— Es gibt einen A\-Term ¢t mit f(zy,...,2,)=m < t T7 ...T,

[
3

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 13 A-KALKUL

A-BERECHENBARE FUNKTIONEN AUF N I

e Darstellung von Zahlen durch iterierte Terme
— Semantisch: wiederholte Anwendung von Funktionen
— Reprasentiere die Zahl n durch den Term Mf . Ax. £ (f..(ft)..)

— Notation' m = M. \x.f"x n-mal

— Bezeichnung: Church Numerals

e f:N"—N M-berechenbar:

— Es gibt einen A\-Term t mit f(zy,...,2,)=m < tZT7 ...T, =M

e Operationen miussen Termvielfachheit verandern

—z.B. add m m muf} als Wert immer den Term m+n ergeben

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 13 A-KALKUL

PROGRAMMIERUNG IM M-KALKUL I

e Nachfolgerfunktion: s = An. A\f.Ax. n £ (f x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 14 A-KALKUL

PROGRAMMIERUNG IM M-KALKUL I

e Nachfolgerfunktion: s = An. Af.\x. n f (f x)

— Zeige: Der Wert von s 1v ist der Term n+1

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 14 A-KALKUL

PROGRAMMIERUNG IM M-KALKUL I

e Nachfolgerfunktion: s = An. Af.\x. n f (f x)

— Zeige: Der Wert von s 1v ist der Term n+1

(An.AMf. X x. nf (£ x)) (AMf.) \x. f"x)

SN

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 14 A-KALKUL

PROGRAMMIERUNG IM M-KALKUL I

e Nachfolgerfunktion: s = An. Af.\x. n f (f x)

— Zeige: Der Wert von s 1v ist der Term n+1

(An. Mf. \x. nf (f x)) (AMf.) \x. f"x)
— Af.x. (AMf.) \x. f"x) £ (f x)

SN

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 14 A-KALKUL

PROGRAMMIERUNG IM M-KALKUL I

e Nachfolgerfunktion: s = An. Af.\x. n f (f x)

— Zeige: Der Wert von s 1v ist der Term n+1

(An. Mf. \x. nf (f x)) (AMf.) \x. f"x)
— Af.x. (AMf.) \x. f"x) £ (f x)
— Af.) x. (Ox. f"x) (f x)

SN

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 14 A-KALKUL

PROGRAMMIERUNG IM M-KALKUL I

e Nachfolgerfunktion: s = An. Af.\x. n f (f x)

— Zeige: Der Wert von s 1v ist der Term n+1

(An.Af. A x. n £ (f x)) (AMf.Ax. £"x)
— M. Ax. (Mf.x. £f"x) £ (f x)

— M. Ax. (Ax. f"x) (f %)

— A Ax. £ (f x)

SN

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 14 A-KALKUL

PROGRAMMIERUNG IM M-KALKUL I

e Nachfolgerfunktion: s = An. Af.\x. n f (f x)

— Zeige: Der Wert von s 1v ist der Term n+1

(An.Af. A x. n £ (f x)) (AMf.Ax. £"x)
— M. Ax. (Mf.x. £f"x) £ (f x)

— M. Ax. (Ax. f"x) (f %)

— A Ax. £ (f x)

— M.)x. "t x

SN

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 14 A-KALKUL

PROGRAMMIERUNG IM M-KALKUL I

e Nachfolgerfunktion: s = An. Af.\x. n f (f x)

— Zeige: Der Wert von s 1v ist der Term n+1

(An.Af. A x. n £ (f x)) (AMf.Ax. £"x)
— M. Ax. (Mf.x. £f"x) £ (f x)

— M. Ax. (Ax. f"x) (f %)

— A Ax. £ (f x)

— M.)x. "t x

SN

]
S
+
[—

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 14 A-KALKUL

PROGRAMMIERUNG IM M-KALKUL I

e Nachfolgerfunktion: s = An. Af.\x. n f (f x)

— Zeige: Der Wert von s 1v ist der Term n+1

(An.Af. A x. n £ (f x)) (AMf.Ax. £"x)
— M. Ax. (M. x. £"x) £ (f x)

— M. Ax. (Ax. f"x) (f %)

— A Ax. £ (f x)

— M.)x. "t x = n+1

e Addition: add = Mm. \n. M f.\x. m f (n £ x)

SN

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 14 A-KALKUL

PROGRAMMIERUNG IM M-KALKUL I

e Nachfolgerfunktion: s = An. Af.\x. n f (f x)

— Zeige: Der Wert von s 1v ist der Term n+1

(An.Af. A x. n £ (f x)) (AMf.Ax. £"x)
— M. Ax. (M. x. £"x) £ (f x)

— M. Ax. (Ax. f"x) (f %)

— A Ax. £ (f x)

— M.)x. "t x = n+1

e Addition: add = Mm. \n. M f.\x. m f (n £ x)

SN

e Multiplikation: mul = Am. An. Af. A x. m (n f) x

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 14 A-KALKUL

PROGRAMMIERUNG IM M-KALKUL I

e Nachfolgerfunktion: s = An. Af.\x. n f (f x)

— Zeige: Der Wert von s 1v ist der Term n+1

(An.Af. A x. n £ (f x)) (AMf.Ax. £"x)
— M. Ax. (M. x. £"x) £ (f x)

— M. Ax. (Ax. f"x) (f %)

— A Ax. £ (f x)

— M.)x. "t x = n+1

e Addition: add = Mm. \n. M f.\x. m f (n £ x)

S n

e Multiplikation: mul = Am. An. Af. A x. m (n f) x

. n (An.F) T

@ Test auf Null: zero

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 14 A-KALKUL

PROGRAMMIERUNG IM MA-KALKUL I

e Nachfolgerfunktion: s = An. Af.\x. n f (f x)

— Zeige: Der Wert von s 1v ist der Term n+1

s n (An.Af. A x. n £ (f x)) (AMf.Ax. £"x)
— M. Ax. (M. x. £"x) £ (f x)
— M. Ax. (Ax. f"x) (f %)
— A Ax. £ (f x)

— M.)x. "t x = n+1

e Addition: add = Mm. \n. M f.\x. m f (n £ x)

e Multiplikation: mul = Am. An. Af. A x. m (n f) x

. n (An.F) T

@ Test auf Null: zero

e Vorgangerfunktion:
p = An. (n(\fx. s, let f,x)=Ffxin f x)) (\z.0, 0)).2

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 14 A-KALKUL

AUSWERTUNG DER ADDITIONSFUNKTION I

e Zeige: add m 7 reduziert zu m+n

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 15 A-KALKUL

AUSWERTUNG DER ADDITIONSFUNKTION I

e Zeige: add m 7 reduziert zu m+n

add mn = Onm.dn M\Mf.\x. mf (nfx)) mn

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 15 A-KALKUL

AUSWERTUNG DER ADDITIONSFUNKTION I

e Zeige: add m 7 reduziert zu m+n

add mn = Onm.dn M\Mf.\x. mf (nfx)) mn
— (n M. x. mf (nfx))n

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 15 A-KALKUL

AUSWERTUNG DER ADDITIONSFUNKTION I

e Zeige: add m 7 reduziert zu m+n

add mn = Onm.dn M\Mf.\x. mf (nfx)) mn
— (n M. x. mf (nfx))n
— M. Xx. mf (n £ x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 15 A-KALKUL

AUSWERTUNG DER ADDITIONSFUNKTION I

e Zeige: add m 7 reduziert zu m+n

add mn = OmAn . AMf.Xx. mf (nf x)) mn
— (A AMf Axx. mf (nfx))n
— M. Xx.mf (n £ x)

M. Ax. (M. x. f7x) £ (n £ x)

M-KALKUL

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 15

AUSWERTUNG DER ADDITIONSFUNKTION I

e Zeige: add m 7 reduziert zu m+n

add mn = OmAn . AMf.Xx. mf (nf x)) mn
— (A AMf Axx. mf (nfx))n
— M. Xx.mf (n £ x)
A Ax. (M x. £7"x) £ (n £ x)
— M. Ax. (Ax. £7"x) (n £ x)

M-KALKUL

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 15

AUSWERTUNG DER ADDITIONSFUNKTION I

e Zeige: add m 7 reduziert zu m+n

add mn = OmAn . AMf.Xx. mf (nf x)) mn
— (A AMf Axx. mf (nfx))n
— M. Xx.mf (n £ x)
A Ax. (M x. £7"x) £ (n £ x)
— M. Ax. (Ax. £7"x) (n £ x)
— M. Ax. £ (n £ x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 15 A-KALKUL

AUSWERTUNG DER ADDITIONSFUNKTION I

e Zeige: add m 7 reduziert zu m+n

add mn = OmAn . AMf.Xx. mf (nf x)) mn
— (A AMf Axx. mf (nfx))n
— M. Xx.mf (n £ x)
A Ax. (M x. £7"x) £ (n £ x)
— M. Ax. (Ax. £7"x) (n £ x)
— M. Ax. £ (n £ x)
M. Ax. (M. A x. £f7"x) £ %)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 15 A-KALKUL

AUSWERTUNG DER ADDITIONSFUNKTION I

e Zeige: add m 7 reduziert zu m+n

add mn = OmAn . AMf.Xx. mf (nf x)) mn
— (A AMf Axx. mf (nfx))n
— M. Xx.mf (n £ x)
A Ax. (M x. £7"x) £ (n £ x)
— M. Ax. (Ax. £7"x) (n £ x)
— M. Ax. £ (n £ x)
M. Ax. £ (M. A x. £"x) £ x)
— M. Ax. £ ((Ox. £f"x) x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 15 A-KALKUL

AUSWERTUNG DER ADDITIONSFUNKTION I

e Zeige: add m 7 reduziert zu m+n

add mn = OmAn . AMf.Xx. mf (nf x)) mn
— (A AMf Axx. mf (nfx))n
— M. Xx.mf (n £ x)
A Ax. (M x. £7"x) £ (n £ x)
— M. Ax. (Ax. £7"x) (n £ x)
— M. Ax. £ (n £ x)
= AMoAx. £ ((Af. A x. £7"x) £ x)
— M. Ax. £ ((Ox. £f"x) x)
— A Ax. £ (" x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 15 A-KALKUL

AUSWERTUNG DER ADDITIONSFUNKTION I

e Zeige: add m 7 reduziert zu m+n

add mn = OmAn . AMf.Xx. mf (nf x)) mn
— (A AMf Axx. mf (nfx))n
— M. Xx.mf (n £ x)
A Ax. (M x. £7"x) £ (n £ x)
— M. Ax. (Ax. £7"x) (n £ x)
— M. Ax. £ (n £ x)
= AMoAx. £ ((Af. A x. £7"x) £ x)
— M. Ax. £ ((Ox. £f"x) x)
— A Ax. £ (" x)

— M. \x. f7Tx

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 15 A-KALKUL

AUSWERTUNG DER ADDITIONSFUNKTION I

e Zeige: add m 7 reduziert zu m+n

add mn = OmAn . AMf.Xx. mf (nf x)) mn
— (A AMf Axx. mf (nfx))n
— M. Xx.mf (n £ x)
A Ax. (M x. £7"x) £ (n £ x)
— M. Ax. (Ax. £7"x) (n £ x)
— M. Ax. £ (n £ x)
= AMoAx. £ ((Af. A x. £7"x) £ x)
— M. Ax. £ ((Ox. £f"x) x)
— A Ax. £ (" x)

— M. \x. f7Tx

m+n

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 15 A-KALKUL

REKURSION IM M-KALKUL I

Y-Kombinator: Y = M. (\x. f(xx)) (\x. f (xx))

e Y ist Fixpunktkombinator
~Y t =t (Y t)fur beliebige Terme ¢

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 16 A-KALKUL

REKURSION IM M-KALKUL I

Y-Kombinator: Y = M. (\x. f(xx)) (\x. f (xx))

e Y ist Fixpunktkombinator
~Y t =t (Y t)fur beliebige Terme ¢

Y ¢ = M. (Ox.f (xx))(\x.f (xx)) t
— (Ax.t (x x)) (Mx.t (x x))
— t ((Mx.t xx)) (Ax.t (xx)))

t (Y t) = t (M. (Mx.f (xx)) (Mx.f (xx)) 1)
— t ((Mx.t xx)) (Ax.t (xx)))

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 16 A-KALKUL

REKURSION IM M-KALKUL I

Y-Kombinator: Y = M. (\x. f(xx)) (\x. f (xx))

e Y ist Fixpunktkombinator
~Y t =t (Y t)fur beliebige Terme ¢

Y ¢ = M. (Ox.f (xx))(\x.f (xx)) t
— (Ax.t (x x)) (Mx.t (x x))
— t ((Mx.t xx)) (Ax.t (xx)))

t (Y t) = t (M. (Mx.f (xx)) (Mx.f (xx)) 1)
— t ((Mx.t xx)) (Ax.t (xx)))

e Rekursion darstellbar als
letrec f(x) =t = Y(\f.\x.t)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 16 A-KALKUL

AUSDRUCKSKRAFT DES M\-KALKULS I

Alle p-rekursiven Funktione sind A-berechenbar

e Nachfolgerfunktion s: s = An.\Mf.\x. n f (f x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 17 A-KALKUL

AUSDRUCKSKRAFT DES M\-KALKULS I

Alle p-rekursiven Funktione sind A-berechenbar

e Nachfolgerfunktion s: S An.Af.Ax. n f (f x)

e Projektionsfunktionen pr}, pr = Ax,..)\x,. X%,

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 17 A-KALKUL

AUSDRUCKSKRAFT DES M\-KALKULS I

Alle p-rekursiven Funktione sind A-berechenbar

e Nachfolgerfunktion s: s = An.\Mf.\x. n f (f x)
e Projektionsfunktionen pr}, pr = Ax,..)\x,. X%,
e Konstantenfunktion ¢ : c’ = Mx,..\x,. MW

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 17 A-KALKUL

AUSDRUCKSKRAFT DES M\-KALKULS I

Alle p-rekursiven Funktione sind A-berechenbar

e Nachfolgerfunktion s: s = An.\Mf.\x. n f (f x)
e Projektionsfunktionen pr}, pr = Ax,..)\x,. X%,
e Konstantenfunktion ¢ : c’ = Ax,..)x,. T

e Komposition f o (g1...gn):
—0 = M.\g.. g, Ax. £ (gx)..(g,x)

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 17 A-KALKUL

AUSDRUCKSKRAFT DES M\-KALKULS I

Alle p-rekursiven Funktione sind A-berechenbar

e Nachfolgerfunktion s: s = An.\Mf.\x. n f (f x)
e Projektionsfunktionen pr}, pr = Ax,..)\x,. X%,
e Konstantenfunktion ¢ : c’ = Ax,..)x,. T

e Komposition f o (g1...gn):
—0 = M.\g.. g, Ax. £ (gx)..(g,x)

e Primitive Rekursion Pr|f,g|:

PR =)M.)g.
letrec h(x) = \y.if zeroy then £x else gx (py) (hx (py))

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 17 A-KALKUL

AUSDRUCKSKRAFT DES M\-KALKULS I

Alle p-rekursiven Funktione sind A-berechenbar

e Nachfolgerfunktion s: s = An.\Mf.\x. n f (f x)
e Projektionsfunktionen pr}, pr = Ax,..)\x,. X%,
e Konstantenfunktion ¢ : c’ = Ax,..)x,. T

e Komposition f o (g1...gn):
—0 = M.\g.. g, Ax. £ (gx)..(g,x)

e Primitive Rekursion Pr|f,g|:

PR =)M.)g.
letrec h(x) = \y.if zeroy then £x else gx (py) (hx (py))

e Minimierung p|f]:

- Mu = M.)x.
(letrec min(y) =if zero(f xy) then y else min (sy)) 0

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 17 A-KALKUL

WEITERE MODELLE I

e Nichtdeterministische Turingmaschine
— Arbeitsweise wie gewohnliche Turingmaschine

— Zustandsiiberfithrungsfunktion erlaubt alternative Resultate

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 18 CHURCH’SCHE THESE

WEITERE MODELLE I

e Nichtdeterministische Turingmaschine
— Arbeitsweise wie gewohnliche Turingmaschine

— Zustandsuberfuhrungsfunktion erlaubt alternative Resultate

e Abakus

— Erweiterung des mechanischen Abakus: beliebig viele Stangen und Kugeln

— Zwei Operationen: Kugel hinzunehmen / Kugel wegnehmen

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 18 CHURCH’SCHE THESE

WEITERE MODELLE I

e Nichtdeterministische Turingmaschine
— Arbeitsweise wie gewohnliche Turingmaschine

— Zustandsuberfuhrungsfunktion erlaubt alternative Resultate

e Abakus

— Erweiterung des mechanischen Abakus: beliebig viele Stangen und Kugeln

— Zwei Operationen: Kugel hinzunehmen / Kugel wegnehmen

e Markov-Algorithmen
— Wie Typ-0 Grammatiken, aber mit fester Strategie fiir Regelanwendung

— Verarbeitet Eingabeworte, statt mit einem Startsymbol zu beginnen

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 18 CHURCH’SCHE THESE

WEITERE MODELLE I

e Nichtdeterministische Turingmaschine
— Arbeitsweise wie gewohnliche Turingmaschine

— Zustandsuberfuhrungsfunktion erlaubt alternative Resultate

e Abakus

— Erweiterung des mechanischen Abakus: beliebig viele Stangen und Kugeln

— Zwei Operationen: Kugel hinzunehmen / Kugel wegnehmen

e Markov-Algorithmen
— Wie Typ-0 Grammatiken, aber mit fester Strategie fiir Regelanwendung

— Verarbeitet Eingabeworte, statt mit einem Startsymbol zu beginnen

e Arithmetische Reprasentierbarkeit
— Spezifikation von Funktionen in arithmetisch-logischem Kalkiil

— f ist reprasentierbar, wenn das Ein-/Ausgabeverhalten von f
eindeutig durch eine Formel spezifiziert werden kann

— Eindeutigkeit mufl ausschliellich aus logischen Axiomen beweisbar sein

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 18 CHURCH’SCHE THESE

DIE CHURCH’SCHE THESE I

e Alle Berechenbarkeitsmodelle sind aquivalent
— Keines kann mehr berechnen als Turingmaschinen

— Es ist keine intuitiv berechenbare Funktion bekannt, die nicht

von Turingmaschinen berechnet werden kann

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 19 CHURCH’SCHE THESE

DIE CHURCH’SCHE THESE I

e Alle Berechenbarkeitsmodelle sind aquivalent
— Keines kann mehr berechnen als Turingmaschinen

— Es ist keine intuitiv berechenbare Funktion bekannt, die nicht

von Turingmaschinen berechnet werden kann

e Church’sche These:

Die Klasse der Turing-berechenbaren Funktionen stimmt mit

der Klasse der intuitiv berechenbaren Funktionen uberein

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 19 CHURCH’SCHE THESE

DIE CHURCH’SCHE THESE I

e Alle Berechenbarkeitsmodelle sind aquivalent

— Keines kann mehr berechnen als Turingmaschinen

— Es ist keine intuitiv berechenbare Funktion bekannt, die nicht

von Turingmaschinen berechnet werden kann

e Church’sche These:

Die Klasse der Turing-berechenbaren Funktionen stimmt mit

der Klasse der intuitiv berechenbaren Funktionen uberein

— Unbeweisbare, aber wahrscheinlich richtige Behauptung

— Arbeitshypothese fiir theoretische Argumente
- man darf in Beweisen “intuitive” Programme angeben

THEORETISCHE INFORMATIK II §6: BERECHENBARKEITSMODELLE 19 CHURCH’SCHE THESE

