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Typ-0 Berechenbarkeit

•G = (N ,T ,P ,σ) Typ-0 Grammatik

– N , T : Alphabete (Nonterminalsymbole / Terminalsymbole)

– P : Menge von Produktionen α→β (α enthält Nonterminalsymbole)

– σ: Startsymbol
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• Erzeugte Sprache L(G) = {w ∈T ∗ | σ→∗
G
w}

•L⊆T ∗ Typ-0 berechenbar

– L wird von einer Typ-0 Grammatik G erzeugt (L = L(G))

– G “zählt Elemente von L auf”

• f :X∗→Y ∗ Typ-0 berechenbar

– Lf = {v#w|f(v) = w} Typ-0 berechenbar
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L Typ-0 berechenbar ⇔ L semi-entscheidbar Satz Q

⇒ Simuliere Produktionsregeln der Grammatik G

– Schreibe Wort w auf Band 1 und σ auf Band 2

– In Phase i schreibe alle Worte von L(G) auf Band 2, die in i Schritten

ableitbar sind und teste, ob w auf Band 2 vorkommt

– Im Erfolgsfall gebe 1 aus, andernfalls beginne Phase i+1

– Programm terminiert nicht, wenn w 6∈L (Ergebnis ist ⊥)
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⇒ Simuliere Produktionsregeln der Grammatik G

– Schreibe Wort w auf Band 1 und σ auf Band 2

– In Phase i schreibe alle Worte von L(G) auf Band 2, die in i Schritten

ableitbar sind und teste, ob w auf Band 2 vorkommt

– Im Erfolgsfall gebe 1 aus, andernfalls beginne Phase i+1

– Programm terminiert nicht, wenn w 6∈L (Ergebnis ist ⊥)

⇐ Simuliere Abarbeitung der Turingmaschine τ

– Codiere Konfigurationen (s,u,v) als Worte usv

– Simuliere Konfigurationsübergänge als Regeln mit Begrenzern

– Entferne Begrenzer, wenn (Simulation von) τ angehalten hat
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Beweis: Typ-0 berechenbar ⇒ semi-entscheidbar

• Für G = (N ,T ,P ,σ) definiere Mengen Mi

– M0 = {σ}, Mi+1 = {u|∃v ∈Mi v→G
u}

– Mi ist die Menge der in i Schritten ableitbaren Worte
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– M0 = {σ}, Mi+1 = {u|∃v ∈Mi v→G
u}

– Mi ist die Menge der in i Schritten ableitbaren Worte

• Beschreibe Mehrband-TM für Test w ∈L(G)

– L(G) =
⋃
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∗ also w ∈L(G) ⇔ ∃iw ∈Mi
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• Iterative Erzeugung der Mi durch TM

– Codiere Produktionsregeln als Unterprogramme der Turingmaschine

– Beginne mit M0 = {σ}

– Wende Regeln auf Worte von Mi an, schreibe Resultate ans Bandende

– Beginne Vergleich mit w, wenn Mi+1 vollständig erzeugt
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Anmerkungen zum Beweis

• TM berechnet partiell-charakteristische Funktion ψL(G)
– Erfolgreicher Vergleich bedeutet w ∈Mi⊆L(G) (Ergebnis 1)

– w 6∈L(G) bedeutet w 6∈Mi für alle i: keine Terminierung (Ergebnis ⊥)
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• Technische Details aufwendig

– Codierung der Regeln als Programme

– Suchmechanismen: Anfang von Mi ($), nächstes Wort in Mi (#)

– Erzeugung aller ableitbaren Worte durch Bestimmung aller anwendbaren

Regeln (ggf. Anwendbarkeit einer Regel auf mehrere Teilworte)

– Vergleich von w mit Worten auf Band 2, korrekte Ausgabe erzeugen
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• Optimierungen möglich
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– Überschreibe Mi, wenn Mi+1 vollständig erzeugt
...

Projekt: Details heraussuchen, kurze Ausarbeitung schreiben
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– Erzeuge alle möglichen Eingabeworte und Anfangskonfigurationen
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• Idee: Generiere alle Konfigurationen von τ

– Erzeuge alle möglichen Eingabeworte und Anfangskonfigurationen

– Codiere Konfigurationsübergänge von τ als Regeln

– Simuliere Ausgabe durch Löschen von Nonterminalsymbolen

• Abzuleitende Worte in simulierender Grammatik

– Worte der Form w # @ u s v $

– w Eingabewort, (s,u,v) Konfiguration von τ bei Verarbeitung von w

– @, $ Trennsymbole



Theoretische Informatik II §6: Berechenbarkeitsmodelle 6 Typ-0 Berechenbarkeit

Rückblick: Konfigurationen in Wort-Darstellung

Programm δ Zustand s

Lese-Schreibkopf

Band

-
δ(s,a)=(s′,a′,P )

?

a′,P

�

s,a
6

a

. . . . . . . u2 u1 u0 v0 v1 . . . . . .

• Konfigurationstripel (s,u,v)

– s aktueller Zustand, u, v String links/rechts vom Kopf
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• Konfigurationstripel (s,u,v)

– s aktueller Zustand, u, v String links/rechts vom Kopf

• Konfigurationsübergänge

– δ(s, a) = (s′, a′, l) liefert δ̂(s, u0u, av) = (s′, u, u0a
′v)

– δ(s, a) = (s′, a′, r) liefert δ̂(s, u, av) = (s′, a′u, v)
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Regeln der Grammatik

• Erzeugung von Anfangskonfigurationen

– Regeln zur Erzeugung von Worten der Form w#@s0w$ für w ∈X∗
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Regeln der Grammatik

• Erzeugung von Anfangskonfigurationen

– Regeln zur Erzeugung von Worten der Form w#@s0w$ für w ∈X∗

• Simulation der Konfigurationsübergänge

– Regeln der Form s a v1 7→ a′ s′ v1 für v1 ∈Γ und δ(s, a) = (s′, a′, r)

– Regeln der Form s a $ 7→ a′ s′ b $ für δ(s, a) = (s′, a′, r)

– Regeln der Form u0 s a 7→ s′ u0 a
′ für u0 ∈Γ und δ(s, a) = (s′, a′, l)

– Regeln der Form @ s a 7→ @ s′ b a′ für δ(s, a) = (s′, a′, l)

– Regeln der Form s a 7→ qf a
′ für δ(s, a) = (s′, a′, h)
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• Schlußregeln (Ausgabe)

– Regeln zum Löschen der Symbole @, $ im Kontext qf

– Regeln müssen qf nach links und dann nach rechts schieben
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– Regeln der Form @ s a 7→ @ s′ b a′ für δ(s, a) = (s′, a′, l)

– Regeln der Form s a 7→ qf a
′ für δ(s, a) = (s′, a′, h)

• Schlußregeln (Ausgabe)

– Regeln zum Löschen der Symbole @, $ im Kontext qf

– Regeln müssen qf nach links und dann nach rechts schieben

• Grammatik erzeugt die Sprache {w#v|hτ (w) = v}

– Details z.B. in Erk-Priese, Seite 199–201
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Der λ-Kalkül

Grundlage funktionaler Programmiersprachen

• Einfacher mathematischer Mechanismus

– Funktionen werden definiert und angewandt

– Die Beschreibung des Funktionsverhaltens ist der Name der Funktion

– Funktionswerte werden ausgerechnet durch Einsetzen von Werten
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• Leicht zu verstehen

– Definition einer Funktion: f(x) = 2*x+3
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– Die Beschreibung des Funktionsverhaltens ist der Name der Funktion
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• Einfacher mathematischer Mechanismus

– Funktionen werden definiert und angewandt

– Die Beschreibung des Funktionsverhaltens ist der Name der Funktion

– Funktionswerte werden ausgerechnet durch Einsetzen von Werten

• Leicht zu verstehen
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– Auswertung der Funktion: f(4) = 2*4+3 = 11

Name der Funktion ist irrelevant
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Der λ-Kalkül

Grundlage funktionaler Programmiersprachen

• Einfacher mathematischer Mechanismus

– Funktionen werden definiert und angewandt

– Die Beschreibung des Funktionsverhaltens ist der Name der Funktion

– Funktionswerte werden ausgerechnet durch Einsetzen von Werten

• Leicht zu verstehen

– Definition einer Funktion: f =̂ λx. 2*x+3 λ-Notation

– Auswertung der Funktion:

Name der Funktion ist irrelevant
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Der λ-Kalkül

Grundlage funktionaler Programmiersprachen

• Einfacher mathematischer Mechanismus

– Funktionen werden definiert und angewandt

– Die Beschreibung des Funktionsverhaltens ist der Name der Funktion

– Funktionswerte werden ausgerechnet durch Einsetzen von Werten

• Leicht zu verstehen

– Definition einer Funktion: f =̂ λx. 2*x+3 λ-Notation

– Auswertung der Funktion: (λx. 2*x+3)(4)
β

−→ 11 Applikation

+ ReduktionName der Funktion ist irrelevant
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λ-Kalkül – Syntax und Semantik

• λ-Terme

– Variablen x

– λx.t, wobei x Variable und t λ-Term λ-Abstraktion

Vorkommen von x in t werden gebunden

– f t, wobei t und f λ-Terme Applikation

– (t), wobei t λ-Term
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λ-Kalkül – Syntax und Semantik

• λ-Terme

– Variablen x

– λx.t, wobei x Variable und t λ-Term λ-Abstraktion

Vorkommen von x in t werden gebunden

– f t, wobei t und f λ-Terme Applikation

– (t), wobei t λ-Term

• Konventionen

– Applikation bindet stärker als λ-Abstraktion

– Applikation ist links-assoziativ: f t
1
t
2

=̂ (f t
1
) t

2

– Notation f(t
1
,...,tn) entspricht iterierter Applikation f t

1
...tn
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• Konventionen

– Applikation bindet stärker als λ-Abstraktion

– Applikation ist links-assoziativ: f t
1
t
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=̂ (f t
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) t

2

– Notation f(t
1
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1
...tn

• Auswertung von λ-Termen

– Ersetze Funktionsparameter durch Funktionsargumente

– Reduktion (λx.t)(b)
β

−→ t[b/x]
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T ≡ λx.λy.x

F ≡ λx.λy.y

if b then s else t ≡ b s t

Konditional ist invers zu T und F

if T then s else t if F then s else t

≡ T s t ≡ F s t

≡ (λx.λy.x) s t ≡ (λx.λy.y) s t

−→ (λy.s) t −→ (λy.y) t

−→ s −→ t
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−→ (λx.λy.t) u v

−→ (λy.t[u/x]) u v
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– Repräsentiere die Zahl n durch den Term λf.λx. f (f..(f t)..)
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n-mal– Notation: n ≡ λf.λx. fn x

– Bezeichnung: Church Numerals

• f :Nn→N λ-berechenbar:

– Es gibt einen λ-Term t mit f(x1, ..., xn) = m ⇔ t x1 ...xn = m

• Operationen müssen Termvielfachheit verändern

– z.B. add m n muß als Wert immer den Term m+n ergeben
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−→ λf.λx. fm ((λx. fn x) x)

−→ λf.λx. fm (fn x)

−→ λf.λx. fm+n x
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• Zeige: add m n reduziert zu m+n

add m n ≡ (λm.λn.λf.λx. m f (n f x)) m n

−→ (λn.λf.λx. m f (n f x)) n

−→ λf.λx. m f (n f x)

≡ λf.λx. (λf.λx. fm x) f (n f x)

−→ λf.λx. (λx. fm x) (n f x)

−→ λf.λx. fm (n f x)

≡ λf.λx. fm ((λf.λx. fn x) f x)

−→ λf.λx. fm ((λx. fn x) x)

−→ λf.λx. fm (fn x)

−→ λf.λx. fm+n x ≡ m+n



Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 λ-Kalkül

Rekursion im λ-Kalkül

Y-Kombinator: Y ≡ λf. (λx. f (x x)) (λx. f (x x))

• Y ist Fixpunktkombinator

– Y t = t (Y t) für beliebige Terme t



Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 λ-Kalkül

Rekursion im λ-Kalkül

Y-Kombinator: Y ≡ λf. (λx. f (x x)) (λx. f (x x))

• Y ist Fixpunktkombinator

– Y t = t (Y t) für beliebige Terme t

Y t ≡ λf. (λx. f (x x)) (λx. f (x x)) t

−→ (λx. t (x x)) (λx. t (x x))

−→ t ( (λx. t (x x)) (λx. t (x x)) )

t (Y t) ≡ t (λf. (λx. f (x x)) (λx. f (x x)) t)

−→ t ( (λx. t (x x)) (λx. t (x x)) )



Theoretische Informatik II §6: Berechenbarkeitsmodelle 16 λ-Kalkül
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Y-Kombinator: Y ≡ λf. (λx. f (x x)) (λx. f (x x))

• Y ist Fixpunktkombinator

– Y t = t (Y t) für beliebige Terme t

Y t ≡ λf. (λx. f (x x)) (λx. f (x x)) t

−→ (λx. t (x x)) (λx. t (x x))

−→ t ( (λx. t (x x)) (λx. t (x x)) )

t (Y t) ≡ t (λf. (λx. f (x x)) (λx. f (x x)) t)

−→ t ( (λx. t (x x)) (λx. t (x x)) )

• Rekursion darstellbar als

letrec f(x)= t ≡ Y(λf.λx.t)
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Alle µ-rekursiven Funktione sind λ-berechenbar

• Nachfolgerfunktion s: s ≡ λn.λf.λx. n f (f x)

• Projektionsfunktionen prnm prnm ≡ λx
1
..λxn. xm

• Konstantenfunktion cnm: cnm ≡ λx
1
..λxn. m

• Komposition f ◦ (g1...gn):

– ◦ ≡ λf.λg
1
..λgn.λx. f (g1

x)..(gnx)

• Primitive Rekursion Pr[f, g]:

– PR ≡ λf.λg.
letrec h(x)= λy.if zero y then f x else g x (p y) (h x (p y))

• Minimierung µ[f ]:

– Mu ≡ λf.λx.
(letrec min(y)= if zero(f x y) then y else min (s y)) 0
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– Zustandsüberführungsfunktion erlaubt alternative Resultate

• Abakus

– Erweiterung des mechanischen Abakus: beliebig viele Stangen und Kugeln

– Zwei Operationen: Kugel hinzunehmen / Kugel wegnehmen

• Markov-Algorithmen

– Wie Typ-0 Grammatiken, aber mit fester Strategie für Regelanwendung

– Verarbeitet Eingabeworte, statt mit einem Startsymbol zu beginnen

• Arithmetische Repräsentierbarkeit

– Spezifikation von Funktionen in arithmetisch-logischem Kalkül

– f ist repräsentierbar, wenn das Ein-/Ausgabeverhalten von f

eindeutig durch eine Formel spezifiziert werden kann

– Eindeutigkeit muß ausschließlich aus logischen Axiomen beweisbar sein
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Die Church’sche These

• Alle Berechenbarkeitsmodelle sind äquivalent

– Keines kann mehr berechnen als Turingmaschinen

– Es ist keine intuitiv berechenbare Funktion bekannt, die nicht

von Turingmaschinen berechnet werden kann

• Church’sche These:

Die Klasse der Turing-berechenbaren Funktionen stimmt mit

der Klasse der intuitiv berechenbaren Funktionen überein

– Unbeweisbare, aber wahrscheinlich richtige Behauptung

– Arbeitshypothese für theoretische Argumente

· man darf in Beweisen “intuitive” Programme angeben


