
Theoretische Informatik II

Einheit 7.2

Universelle Maschinen

1. Standardnumerierung berechenbarer Funktionen

2. Universelle Funktion

3. Grundeigenschaften berechenbarer Funktionen
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– Nicht aufzählbar’?

• Gibt es unberechenbare Funktionen?

• Wie beweist man Unlösbarkeit?

– Kardinalitätsargument: es gibt mehr Funktionen als Programme

– Konkretes Gegenbeispiel konstruieren

• Was benötigt man für diese Argumente?

– Präzisierung der Grundannahmen zur Berechenbarkeit

– Nachweis, daß diese Grundannahmen erfüllt sind
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– Die Funktion u :N×N→N mit u(i, n) = ϕi(n) ist berechenbar

• Man kann Programme effektiv zusammensetzen

– Die Nummer des entstehenden Programms kann berechnet werden

– Es gibt eine berechenbare totale Funktion h mit ϕh(i,j) = ϕi◦ϕj

• Rechenzeit ist entscheidbar

– Man kann für beliebige i, n, t ∈N testen ob Φi(n) = t ist oder nicht
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• Codierung der Alphabete in einem Alphabet Γ̂

– Wähle Γ̂ ≡ { #, s0...sn, γ0...γk, r, l, h }

wobei S = {s0,...,sn}, Γ = {γ0,...,γk}, X = {γi0,...,γim}⊆Γ, b=γk ∈ Γ\X
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– Beschreibe δ(s,a)=(s′,a′,P ) durch code(δ(s,a)) ≡ s a s′ a′ P

– Beschreibe δ durch das Wort code(δ(s0,γ0)) . . . code(δ(sn,γk))

• Codierung der Turingmaschine τ

– Beschreibe τ = (S, X , Γ, δ, s0, b) durch das Wort
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Viele Varianten in Details der Codierung
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• Numeriere gemäß der lexikograpischen Ordnung

– ν(i) sei das Wort mit der Nummer i

– ν(0)=ε, ν(1)=x1, . . . ν(n)=xn, ν(n+1)=x1x1, . . . ν(n2+n)=xnxn, . . .

ν(i) entspricht der n-adischen Darstellung der Zahl i



Theoretische Informatik II §7: Elementare Berechenbarkeitstheorie 5 Universelle Maschinen

Numerierung von Turingmaschinen

• T M = {w ∈ {0, 1}∗ | ∃τ :TM w=wτ} ist entscheidbar

– Man kann testen, ob ein Wort w ∈ Γ̂∗ ein Turingprogramm beschreibt



Theoretische Informatik II §7: Elementare Berechenbarkeitstheorie 5 Universelle Maschinen

Numerierung von Turingmaschinen

• T M = {w ∈ {0, 1}∗ | ∃τ :TM w=wτ} ist entscheidbar

– Man kann testen, ob ein Wort w ∈ Γ̂∗ ein Turingprogramm beschreibt

– Bestimme X : Menge der Symbole in w bis zum #

– Bestimme δ: je 5 Symbole beschreiben einen Tabelleneintrag

– Bestimme S, Γ, s0 und b aus δ
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r:N→X∗ bijektive Repräsentation von Zahlen als Worte

– Φi ≡ ti◦r : N→N “Schrittzahlfunktion von ϕi”

• Eigenschaften von ϕ und Φ

– ϕ is surjektiv, aber nicht bijektiv

– domain(Φi) = domain(ϕi) (Φi terminiert auf den gleichen Eingaben wie ϕi)

– {(i, n, t) |Φi(n)=t} ist entscheidbar “Rechenzeit ist entscheidbar”



Theoretische Informatik II §7: Elementare Berechenbarkeitstheorie 6 Universelle Maschinen

Numerierung berechenbarer Funktionen

• Berechenbare Funktionen auf Worten

– ϕ̂i ≡ hτi: “die von der i-ten Turingmaschine berechnete Funktion”

– ti: Schrittzahlfunktion der Turingmaschine τi Kap. 6, Def. E

ti(w) =

{

m falls Berechnung von τi(w) in m Schritten terminiert,

⊥ sonst

• Berechenbare Funktionen auf Zahlen

– ϕi ≡ r−1◦ϕ̂i◦r : N→N “die i-te berechenbare Funktion”

r:N→X∗ bijektive Repräsentation von Zahlen als Worte

– Φi ≡ ti◦r : N→N “Schrittzahlfunktion von ϕi”

• Eigenschaften von ϕ und Φ

– ϕ is surjektiv, aber nicht bijektiv

– domain(Φi) = domain(ϕi) (Φi terminiert auf den gleichen Eingaben wie ϕi)

– {(i, n, t) |Φi(n)=t} ist entscheidbar “Rechenzeit ist entscheidbar”
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Universelle Turingmaschinen

Kann man alle Turingprogramme auf einer

einzigen Maschine ausführen?

• Universelle Maschinen Definiton H

– τu ist universell, wenn hτu(wτ , v) = hτ(v) für jede TM τ und jedes v ∈X∗
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6

+
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W
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• Benutze 3 Arbeitsbänder (+ Hilfsbänder)
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– 2. wτ : Codierung des Programms von τ
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Details z.B. in Hopcroft, Motwani, Ullman, Seite 387–389
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Technisches Resultat mit wenig eigener Bedeutung
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Alles weitere folgt aus diesen Axiomen
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Kein Maschinenmodell nötig
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• {(i, n, t)|Φi(n) = t} ist entscheidbar Rechenzeit



Theoretische Informatik II §7: Elementare Berechenbarkeitstheorie 12 Universelle Maschinen

Wichtige entscheidbare und aufzählbare Mengen
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– Graph der universellen Funktion



Theoretische Informatik II §7: Elementare Berechenbarkeitstheorie 12 Universelle Maschinen

Wichtige entscheidbare und aufzählbare Mengen
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• {(i, n, y)|ϕi(n) = y} ist aufzählbar Berechnung

– Graph der universellen Funktion
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– Haltebereich der universellen Funktion

• S = {i|ϕi(i)6=⊥} ist aufzählbar Selbstanwendbarkeitsproblem

– Haltebereich von λi.u(i, i)


