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Universelle Maschinen

1. Standardnumerierung berechenbarer Funktionen
2. Universelle Funktion

3. Grundeigenschaften berechenbarer Funktionen



NocH OFFENE FRAGEN I

e Gibt es unentscheidbare Mengen?
— Unentscheidbar aber aufzahlbar?
— Nicht aufzahlbar’?
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NocH OFFENE FRAGEN I

e Gibt es unentscheidbare Mengen?
— Unentscheidbar aber autzahlbar?

— Nicht aufzahlbar’?

e Gibt es unberechenbare Funktionen?

® Wie beweist man Unlosbarkeit?
— Kardinalitatsargument: es gibt mehr Funktionen als Programme

— Konkretes Gegenbeispiel konstruieren
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NocH OFFENE FRAGEN I

e Gibt es unentscheidbare Mengen?
— Unentscheidbar aber autzahlbar?

— Nicht aufzahlbar’?

e Gibt es unberechenbare Funktionen?

® Wie beweist man Unlosbarkeit?
— Kardinalitatsargument: es gibt mehr Funktionen als Programme

— Konkretes Gegenbeispiel konstruieren

e Was benotigt man fiir diese Argumente?
— Prazisierung der Grundannahmen zur Berechenbarkeit

— Nachweis, dafl diese Grundannahmen erfillt sind
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GRUNDANNAHMEN UBER BERECHNUNGEN I

e Programme und Daten sind als Zahlen codierbar
— Programme und Daten werden als Worte dargestellt
— Worte, die Programme darstellen, konnen durchnumeriert werden
— ;: Berechnete Funktion des Programms ¢ (y;: N—N)

— ®;: Rechenzeitfunktion zum Programm ¢ (domain(®;) = domain(y;))
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e Programme und Daten sind als Zahlen codierbar
— Programme und Daten werden als Worte dargestellt
— Worte, die Programme darstellen, konnen durchnumeriert werden
— ;. Berechnete Funktion des Programms ¢ (p; : N—N)

— ®;: Rechenzeitfunktion zum Programm ¢  (domain(®;) = domain(y;))

e Computer sind universelle Maschinen
— Bei Eingabe beliebiger Programme und Daten berechnen sie das Ergebnis

— Die Funktion u:NxN—N mit u(z,n) = ¢;(n) ist berechenbar
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e Computer sind universelle Maschinen
— Bei Eingabe beliebiger Programme und Daten berechnen sie das Ergebnis

— Die Funktion u:NxN—N mit u(z,n) = ¢;(n) ist berechenbar

e Man kann Programme effektiv zusammensetzen
— Die Nummer des entstehenden Programms kann berechnet werden

— Es gibt eine berechenbare totale Funktion h mit POn(ij) = PiOP;
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— Programme und Daten werden als Worte dargestellt
— Worte, die Programme darstellen, konnen durchnumeriert werden
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— ®;: Rechenzeitfunktion zum Programm ¢  (domain(®;) = domain(y;))

e Computer sind universelle Maschinen
— Bei Eingabe beliebiger Programme und Daten berechnen sie das Ergebnis

— Die Funktion u:NxN—N mit u(z,n) = ¢;(n) ist berechenbar

e Man kann Programme effektiv zusammensetzen
— Die Nummer des entstehenden Programms kann berechnet werden

— Es gibt eine berechenbare totale Funktion h mit POn(ij) = PiOP;

e Rechenzeit ist entscheidbar
— Man kann fiir beliebige i, n,t €N testen ob ®;(n) = t ist oder nicht
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CODIERUNG VON TURINGMASCHINEN I

N

e Codierung der Alphabete in einem Alphabet I’
~ Wiahle T' = { #, S0...5p, Y0V, 7, L, b }
wobel S'={s0,....5n}, I'={Y0,s 7}, X={Vigs--Yi,, } ST, b=y, e T\ X
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e Codierung der Alphabete in einem Alphabet I’
~ Wiahle T' = { #, S0...5p, Y0V, 7, L, b }
wobei S:{So,...,Sn}, F:{’)/o,...,”)/k}, X = {’}/io,...,”}/im} cl, b:’)/k € F\X

e Codierung der Zustandsuberfithrungsfunktion o
— Beschreibe 0(s,a)=(s",a’,P) durch code(d(s,a)) = sas'a’ P
— Beschreibe § durch das Wort code(d(sg,70)) - .. code(d(s,,7i))
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~ Wihle T' = { #, S0...5n, Y0.- Y, 7, L, b }
wobei S:{So,...,Sn}, F:{’)/o,...,”)/k}, X = {’}/io,...,”}/im} cl, b:’)/k € F\X

e Codierung der Zustandsuberfithrungsfunktion o
— Beschreibe 0(s,a)=(s",a’,P) durch code(d(s,a)) = sas'a’ P
— Beschreibe ¢ durch das Wort code(d(sg,70)) - .. code(d(s,,7r))

e Codierung der Turingmaschine 7
— Beschreibe 7 = (S, X, ', 9, sy, b) durch das Wort
Wy = Yig--Yig#rcode(d(s0,%0)) - - - code(d(sn,7x))
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e Codierung der Turingmaschine 7
— Beschreibe 7 = (S, X, ', 9, sy, b) durch das Wort

Wr = Yig-Yim#rcode(d(s0,%)) - - code(d(sn k)
— w; sei die Codierung von w, im festen Alphabet {0,1} (§,€l’ = (...01)

j—mal

AN
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e Codierung der Alphabete in einem Alphabet I’
~ Wiahle T' = { #, S0...5p, Y0V, 7, L, b }
wobel S'={s0,....5n}, I'={Y0,s 7}, X={Vigs--Yi,, } ST, b=y, e T\ X

e Codierung der Zustandsuberfithrungsfunktion o
— Beschreibe 0(s,a)=(s",a’,P) durch code(d(s,a)) = sas'a’ P
— Beschreibe § durch das Wort code(d(sg,70)) - .. code(d(s,,7i))

e Codierung der Turingmaschine 7
— Beschreibe 7 = (S, X, ', 9, s¢, b) durch das Wort

Wr = Yig-Yim#rcode(d(s0,%)) - - code(d(sn k)
— w; sei die Codierung von w, im festen Alphabet {0,1} (7,€l’ = 0...01)

Jj—mal

AN

Viele Varianten in Details der Codierung
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NUMERIERUNG VON WORTEN I

e Bestimme lexikograpische Ordnung auf Worten
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NUMERIERUNG VON WORTEN I

e Bestimme lexikograpische Ordnung auf Worten
— Worte iiber einem Alphabet X = {1, .., z,} konnen geordnet werden

E< N < ... <ZT, <11 <P < ...<TpTy <T1x111 < ...
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— Worte iiber einem Alphabet X = {1, .., z,} konnen geordnet werden
E< N < ... <ZT, <11 <P < ...<TpTy <T1x111 < ...

—u < v, falls |u| < |v] oder w=uy...tup, v="101...0p,

up<vp tur ein k<m und w;=v; fur alle 1<k

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 4 UNIVERSELLE MASCHINEN




NUMERIERUNG VON WORTEN I

e Bestimme lexikograpische Ordnung auf Worten
— Worte iiber einem Alphabet X = {1, .., z,} konnen geordnet werden
E< N < ... <ZT, <11 <P < ...<TpTy <T1x111 < ...

—u < v, falls |u| < |v] oder w=uy...tup, v="101...0p,
up<vp tur ein k<m und w;=v; fur alle 1<k

— Dabei x;<x;, falls i<y
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e Bestimme lexikograpische Ordnung auf Worten
— Worte tiber einem Alphabet X = {x1, .., z,} konnen geordnet werden
E< N < ... <ZT, <11 <P < ...<TpTy <T1x111 < ...

—u < v, falls |u| < |v|] oder u=wuj...upy, v ="01...0y,
up<vp tur ein k<m und w;=v; fur alle 1<k

— Dabei x;<x;, falls i<y

e Numeriere gemafl der lexikograpischen Ordnung

—v(2) sei das Wort mit der Nummer i

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 4 UNIVERSELLE MASCHINEN




NUMERIERUNG VON WORTEN I

e Bestimme lexikograpische Ordnung auf Worten
— Worte tiber einem Alphabet X = {x1, .., z,} konnen geordnet werden
E< N < ... <ZT, <11 <P < ...<TpTy <T1x111 < ...

—u < v, falls |u| < |v|] oder u=wuj...upy, v ="01...0y,
up<vp tur ein k<m und w;=v; fur alle 1<k

— Dabei x;<x;, falls i<y

e Numeriere gemafl der lexikograpischen Ordnung

—v(2) sei das Wort mit der Nummer i

—v(0)=¢, v(1)=x1, ...v(n)=x,, v(n+1)=z121, ... V(N*+n)=2,2,, ...
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NUMERIERUNG VON WORTEN I

e Bestimme lexikograpische Ordnung auf Worten
— Worte tiber einem Alphabet X = {x1, .., z,} konnen geordnet werden
E< N < ... <ZT, <11 <P < ...<TpTy <T1x111 < ...

—u < v, falls |u| < |v|] oder u=wuj...upy, v ="01...0y,
up<vp tur ein k<m und w;=v; fur alle 1<k

— Dabei x;<x;, falls i<y

e Numeriere gemafl der lexikograpischen Ordnung
—v(2) sei das Wort mit der Nummer i
—v(0)=¢, v(1)=m1, ...v(n)=x,, v(n+1)=z121, ... V(N*+N)=THT), ...

(1) entspricht der n-adischen Darstellung der Zahl i
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NUMERIERUNG VON TURINGMASCHINEN

o7 M ={we{0,1}*|I:TM w=w-} ist entscheidbar

— Man kann testen, ob ein Wort w € [™* ein Turingprogramm beschreibt
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NUMERIERUNG VON TURINGMASCHINEN I

e 7T M ={we{0,1}*|I7:TM w=w+} ist entscheidbar
— Man kann testen, ob ein Wort w € [™* ein Turingprogramm beschreibt

— Bestimme X: Menge der Symbole in w bis zum #

— Bestimme 0: je 5 Symbole beschreiben einen Tabelleneintrag

— Bestimme S, I', sgp und b aus 9

— Priife Vollstandigkeit und korrekte Anordnung der Tabelle fir ¢
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NUMERIERUNG VON TURINGMASCHINEN I

e 7T M ={we{0,1}*|I7:TM w=w+} ist entscheidbar
— Man kann testen, ob ein Wort w € [™* ein Turingprogramm beschreibt

— Bestimme X: Menge der Symbole in w bis zum #
— Bestimme 0: je 5 Symbole beschreiben einen Tabelleneintrag
— Bestimme S, I', so und b aus 9

— Priife Vollstandigkeit und korrekte Anordnung der Tabelle fir ¢

~ T wird implizit identifiziert
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o7 M ={we{0,1}*|I:TM w=w-} ist entscheidbar
— Man kann testen, ob ein Wort w € [™* ein Turingprogramm beschreibt
— Bestimme X: Menge der Symbole in w bis zum #
— Bestimme 0: je 5 Symbole beschreiben einen Tabelleneintrag
— Bestimme S, I', sgp und b aus ¢
— Priife Vollstandigkeit und korrekte Anordnung der Tabelle fir ¢

~ T wird implizit identifiziert

e Numeriere Worte, die Turingmaschinen codieren
—n.(0) :==min{j |v(j)eT M} n.(i+1) := min{j>n, (i) |v(j) e T M}
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e Numeriere Worte, die Turingmaschinen codieren
—n.(0) :==min{j |v(j)eT M} n.(i+1) := min{j>n, (i) |v(j) e T M}

n-:N—N ist berechenbar
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— Priife Vollstandigkeit und korrekte Anordnung der Tabelle fir ¢

~ T wird implizit identifiziert

e Numeriere Worte, die Turingmaschinen codieren
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— 1;: Turingmaschine 7 mit w,=v(n.(7)) “die i-te Turingmaschine”
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— Godelnummer der Turingmaschine 7: Zahl ¢ mit 7 = 7;
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e 7T M ={we{0,1}*|I7:TM w=w+} ist entscheidbar
— Man kann testen, ob ein Wort w € [™* ein Turingprogramm beschreibt

— Bestimme X: Menge der Symbole in w bis zum #
— Bestimme 0: je 5 Symbole beschreiben einen Tabelleneintrag
— Bestimme S, I', sgp und b aus 9

— Priife Vollstandigkeit und korrekte Anordnung der Tabelle fir ¢

~ T wird implizit identifiziert

e Numeriere Worte, die Turingmaschinen codieren
—n.(0) :==min{j |v(j)eT M} n.(i+1) := min{j>n, (i) |v(j) e T M}
n-:N—N ist berechenbar
— 1;: Turingmaschine 7 mit w,=v(n.(7)) “die i-te Turingmaschine”

— Godelnummer der Turingmaschine 7: Zahl ¢ mit 7 = 7;

Numerierung von Programmen ist bijektiv
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NUMERIERUNG BERECHENBARER FUNKTIONEN I

e Berechenbare Funktionen auf Worten

—¢; = h;: “die von der ¢-ten Turingmaschine berechnete Funktion”
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NUMERIERUNG BERECHENBARER FUNKTIONEN I

e Berechenbare Funktionen auf Worten

—¢; = h;: “die von der ¢-ten Turingmaschine berechnete Funktion”

—t;: Schrittzahlfunktion der Turingmaschine 7; Kap. 6, Def. E

£ (w) { m falls Berechnung von 7;(w) in m Schritten terminiert,
\W) =

1 sonst
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e Berechenbare Funktionen auf Worten

—¢; = h;: “die von der ¢-ten Turingmaschine berechnete Funktion”

—t;: Schrittzahlfunktion der Turingmaschine 7;

Kap. 6, Def. E
£ (w) { m falls Berechnung von 7;(w) in m Schritten terminiert,
W) =

1 sonst

® Berechenbare Funktionen auf Zahlen

—; = rtogor : N—N “die i-te berechenbare Funktion”
r:N— X" bijektive Reprasentation von Zahlen als Worte

- ®; = t;or : N—>N “Schrittzahlfunktion von ¢;”
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—¢; = h;: “die von der ¢-ten Turingmaschine berechnete Funktion”
—t;: Schrittzahlfunktion der Turingmaschine 7;

Kap. 6, Def. E

£ (w) m falls Berechnung von 7;(w) in m Schritten terminiert,
() =
2 L sonst

® Berechenbare Funktionen auf Zahlen

—; = rtogor : N—N “die i-te berechenbare Funktion”

r:N— X* bijektive Reprasentation von Zahlen als Worte

- ®, = t,or : N—>N “Schrittzahlfunktion von ¢,”
e Eigenschaften von ¢ und ®
—  1s surjektiv, aber nicht bijektiv

— domain(P;) = domain(y;) (P; terminiert auf den gleichen Eingaben wie ;)

—{(i,n,t) | P;(n)=t} ist entscheidbar “Rechenzeit ist entscheidbar”
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NUMERIERUNG BERECHENBARER FUNKTIONEN I

e Berechenbare Funktionen auf Worten

—¢; = h;: “die von der ¢-ten Turingmaschine berechnete Funktion”
—t;: Schrittzahlfunktion der Turingmaschine 7;

Kap. 6, Def. E

£ (w) m falls Berechnung von 7;(w) in m Schritten terminiert,
() =
: L sonst

® Berechenbare Funktionen auf Zahlen

—; = rtogor : N—N “die i-te berechenbare Funktion”

r:N— X* bijektive Reprasentation von Zahlen als Worte

- ®, = t,or : N—>N “Schrittzahlfunktion von ¢,”
e Eigenschaften von ¢ und ®
—  1s surjektiv, aber nicht bijektiv

— domain(P;) = domain(y;) (P; terminiert auf den gleichen Eingaben wie ;)

—{(i,n,t) | P;(n)=t} ist entscheidbar “Rechenzeit ist entscheidbar”

Die Numerierung berechenbarer Funktionen ist nur surjektiv
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UNIVERSELLE TURINGMASCHINEN I

Kann man alle Turingprogramme auf einer

einzigen Maschine ausfiithren?
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UNIVERSELLE TURINGMASCHINEN I

Kann man alle Turingprogramme auf einer

einzigen Maschine ausfiithren?

e Universelle Maschinen Definiton H

— 7, ist universell, wenn h, (w.,v) = h,(v) fir jede TM 7 und jedes v € X*
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— 7, ist universell, wenn h, (w.,v) = h,(v) fir jede TM 7 und jedes v € X*
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einzigen Maschine ausfiithren?
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— 7, ist universell, wenn h, (w.,v) = h.(v) fiir jede TM 7 und jedes v € X*

— Insbesondere A, (r(i),v) = h(v) fir alle ¢,v (r:N—X* Zahlendarstellung)

e Universelle Funktionen Definiton |

— w:NxN—=N ist universell, wenn u(z,n) = ¢;(n) fir alle i,n e N

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 7 UNIVERSELLE MASCHINEN




UNIVERSELLE TURINGMASCHINEN I

Kann man alle Turingprogramme auf einer

einzigen Maschine ausfiithren?

e Universelle Maschinen Definiton H

— 7, ist universell, wenn h, (w.,v) = h.(v) fiir jede TM 7 und jedes v € X*

— Insbesondere A, (r(i),v) = h(v) fir alle ¢,v (r:N—X* Zahlendarstellung)

e Universelle Funktionen Definiton |

— w:NxN—=N ist universell, wenn u(z,n) = ¢;(n) fir alle i,n e N

e (Gibt es universelle Maschinen?

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 7 UNIVERSELLE MASCHINEN




UNIVERSELLE TURINGMASCHINEN I

Kann man alle Turingprogramme auf einer

einzigen Maschine ausfiithren?

e Universelle Maschinen Definiton H

— 7, ist universell, wenn h, (w.,v) = h.(v) fiir jede TM 7 und jedes v € X*

— Insbesondere A, (r(i),v) = h(v) fir alle ¢,v (r:N—X* Zahlendarstellung)

e Universelle Funktionen Definiton |

— w:NxN—=N ist universell, wenn u(z,n) = ¢;(n) fir alle i,n e N

e (Gibt es universelle Maschinen?

— Die Numerierung n. ist berechenbar

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 7 UNIVERSELLE MASCHINEN




UNIVERSELLE TURINGMASCHINEN I

Kann man alle Turingprogramme auf einer

einzigen Maschine ausfiithren?

e Universelle Maschinen Definiton H

— 7, ist universell, wenn h, (w.,v) = h.(v) fiir jede TM 7 und jedes v € X*

— Insbesondere A, (r(i),v) = h(v) fir alle ¢,v (r:N—X* Zahlendarstellung)

e Universelle Funktionen Definiton |
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— Die Numerierung n. ist berechenbar

— Turingprogramme lassen sich simulieren
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Kann man alle Turingprogramme auf einer

einzigen Maschine ausfiithren?
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— 7, ist universell, wenn h, (w.,v) = h.(v) fiir jede TM 7 und jedes v € X*

— Insbesondere A, (r(i),v) = h(v) fir alle ¢,v (r:N—X* Zahlendarstellung)

e Universelle Funktionen Definiton |

— w:NxN—=N ist universell, wenn u(z,n) = ¢;(n) fir alle i,n e N

e Gibt es universelle Maschinen?
— Die Numerierung n. ist berechenbar
— Turingprogramme lassen sich simulieren

— Baue universelle Maschine mit von, und Einzelschrittsimulation
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PROGRAMMIERUNG UNIVERSELLER TURINGMASCHINEN I

0u(s,(a1,a2,a3))
Programm ¢, Zustand s
Sa(@haz,ag)/V \

Band 1 ....| D y/l/ 0l a \1 b ... Arbeitsband fur T
\

Band 2 ... |lax||O | O | 1| Db \b\ b ... Programm w,;
|\

Band 8 ....|b | b | b | b]|1]asl|l1l ... Zustand von T

e Benutze 3 Arbeitsbander (4 Hilfsbander)

— 1. Eingabe- und Arbeitsband der simulierten Turingmaschine 7

— 2. w;: Codierung des Programms von 7
— 3. Aktueller Zustand von 7
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e Generiere und simuliere Programm von 7
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Band 1 ....| D y/l/ 0l a \1 b ... Arbeitsband fur T
\
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— Bei Eingabe (der Codierung von) 4, x berechne w, = v(n,)(7)
— Schreibe ¢ auf Band 1, w, auf Band 2, Anfangszustand von 7 auf Band 3
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0u(s,(a1,a2,a3))
Programm 9, Zustand s
S;(CLLCLQJCLS)/V \
Band 1 ....| D y/l/ 0l a \1 b ... Arbeitsband fur T
\
Band 2 ... |lax||O | O | 1| Db \b\ b ... Programm w,;
Band 8 ....|b | b | b|b]|1 CL3‘1 ... Zustand von T
e Benutze 3 Arbeitsbander (4 Hilfsbander)

— 1. Eingabe- und Arbeitsband der simulierten Turingmaschine 7

— 2. w;: Codierung des Programms von 7
— 3. Aktueller Zustand von 7

e Generiere und simuliere Programm von 7
— Bei Eingabe (der Codierung von) 4, x berechne w, = v(n,)(7)
— Schreibe ¢ auf Band 1, w, auf Band 2, Anfangszustand von 7 auf Band 3
— Simuliere Einzelschritte von 7 gemald Programm w.
— Bei Terminierung steht Ausgabewort auf Band 1
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PROGRAMMIERUNG UNIVERSELLER TURINGMASCHINEN I

0u(s,(a1,a2,a3))
Programm 9, Zustand s
Sa(@haz,%)/y \

Band 1 ....| D y/l/ 0l a \1 b ... Arbeitsband fur T
\

Band 2 ... |lax||O | O | 1| Db \b\ b ... Programm w,;
|\

Band 8 ....|b | b | b | b]|1]asl|l1l ... Zustand von T

e Benutze 3 Arbeitsbander (4 Hilfsbander)

— 1. Eingabe- und Arbeitsband der simulierten Turingmaschine 7
— 2. w;: Codierung des Programms von 7
— 3. Aktueller Zustand von 7

e Generiere und simuliere Programm von 7
— Bei Eingabe (der Codierung von) 4, x berechne w, = v(n,)(7)
— Schreibe ¢ auf Band 1, w, auf Band 2, Anfangszustand von 7 auf Band 3
— Simuliere Einzelschritte von 7 gemald Programm w.
— Bei Terminierung steht Ausgabewort auf Band 1

Details z.B. in Hopcroft, Motwani, Ullman, Seite 387-389
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DAS UBERSETZUNGSLEMMA |

Turingmaschinen sind effektiv kombinierbar
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— Index k kann aus ¢z und 7 berechnet werden

— Es gibt eine berechenbare totale Funktion h mit Ph(i,j) = PiOP;

e Allgemeinste Version: SMIIN Theorem
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e Kombiniere ¢; und ¢; zu ¢p mit @i = @;0p;
— Index k kann aus ¢z und 7 berechnet werden

— Es gibt eine berechenbare totale Funktion h mit Ph(i,j) = PiOP;

e Allgemeinste Version: SMIIN Theorem
— Es gibt eine berechenbare totale Funktion s mit @, (7)) = @5 (n, %)
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Turingmaschinen sind effektiv kombinierbar

e Kombiniere 7 und 79 zu 7 mit hr = h+ Shr,
— Umbenennung der Zustande von 7
— Springe vom “Endzustand” von 7 zum Anfangszustand von 7
— Programm w; kann aus w,, und w,, berechnet werden

— Godelnummer k von 7 kann aus denen fur 7; und 7 berechnet werden

e Kombiniere ¢; und ¢; zu ¢p mit @i = @;0p;
— Index k kann aus ¢z und 7 berechnet werden

— Es gibt eine berechenbare totale Funktion h mit Ph(i,j) = PiOP;

e Allgemeinste Version: SMIIN Theorem
— Es gibt eine berechenbare totale Funktion s mit @, (7)) = @5 (n, %)

Technisches Resultat mit wenig eigener Bedeutung
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ZUSAMMENFASSUNG:
KERNAXIOME DER BERECHENBAREITSTHEORIE

e Berechenbare Funktionen sind effektiv numerierbar
— ; : N—N: berechnete Funktion des Programms 4
— @;: Rechenzeitfunktion zum Programm ¢

— domain(®;) = domain(y;)
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— @;: Rechenzeitfunktion zum Programm ¢

— domain(®;) = domain(y;)

e Die Menge {(7,n,t) | ®;(n)=t} ist entscheidbar

® Die universelle Funktion i1st berechenbar [UTM Theorem

— 4 :NXN—N mit u(z,n) = ¢;(n) ist berechenbar

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 10 UNIVERSELLE MASCHINEN




ZUSAMMENFASSUNG:
KERNAXIOME DER BERECHENBAREITSTHEORIE

e Berechenbare Funktionen sind effektiv numerierbar
— ; : N—N: berechnete Funktion des Programms 4
— @;: Rechenzeitfunktion zum Programm ¢

— domain(®;) = domain(y;)

e Die Menge {(7,n,t) | ®;(n)=t} ist entscheidbar

e Die universelle Funktion ist berechenbar [UTM Theorem
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e Programme sind effektiv kombinierbar SMN Theorem

— Es gibt eine berechenbare totale Funktion A mit ;,; j) = 0%,
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ZUSAMMENFASSUNG:
KERNAXIOME DER BERECHENBAREITSTHEORIE

e Berechenbare Funktionen sind effektiv numerierbar
— ; : N—N: berechnete Funktion des Programms 4
— @;: Rechenzeitfunktion zum Programm ¢

— domain(®;) = domain(y;)

e Die Menge {(7,n,t) | ®;(n)=t} ist entscheidbar

e Die universelle Funktion ist berechenbar [UTM Theorem
— u:NXN—=N mit u(z,n) = ¢;(n) ist berechenbar

e Programme sind effektiv kombinierbar SMN Theorem

— Es gibt eine berechenbare totale Funktion A mit ;,; j) = 0%,
— Es gibt eine berechenbare totale Funktion s mit @, ,y(2) = @ (n, )

Alles weitere folgt aus diesen Axiomen
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KLEENE NORMALFORM THEOREM I

Es gibt berechenbare totale Funktionen f,g und h
mit p;(n) = g(pf(i,n)) und ®;(n) = h(pnf(i,n))
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KLEENE NORMALFORM THEOREM I

Es gibt berechenbare totale Funktionen f,g und h
mit p;(n) = g(pf(i,n)) und ®;(n) = h(pnf(i,n))

e Bewels
)

0 falls ®;(n)=t und @;(n)=
~ Definiere f(i,n, {y, 1)) = ¢ (n) pi(n)=y

1 sonst

\
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)

0 falls ®;(n)=t und @;(n)=
~ Definiere f(i,n, (y,t)) = 4 (n) ei(n)=y

1 sonst

\

— [:N*=N ist total berechenbar, da {(7,n,t) | ®;(n)=t} entscheidbar ist
— Wahle g=7% und h=m3
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KLEENE NORMALFORM THEOREM I

Es gibt berechenbare totale Funktionen f,g und h
mit p;(n) = g(pf(i,n)) und ®;(n) = h(pnf(i,n))

e Bewels
)

0 falls ®;(n)=t und @;(n)=
~ Definiere f(i,n, (y,t)) = 4 (n) ei(n)=y

1 sonst

\

— [:N*=N ist total berechenbar, da {(7,n,t) | ®;(n)=t} entscheidbar ist
— Wahle g=7% und h=m3

Kein Maschinenmodell notig
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WICHTIGE ENTSCHEIDBARE UND AUFZAHLBARE MENGEN I

o {(z,n,t)|P;(n) =t} ist entscheidbar Rechenzeit
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— Kernaxiom der Berechenbarkeitstheorie

o {(2,n,y)|p;(n) = y} ist aufzihlbar

— Graph der universellen Funktion
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WICHTIGE ENTSCHEIDBARE UND AUFZAHLBARE MENGEN I

o {(z,n,t)|P;(n) =t} ist entscheidbar Rechenzeit

— Kernaxiom der Berechenbarkeitstheorie

o {(2,n,y)|p;(n) = y} ist aufzihlbar Berechnung

— Graph der universellen Funktion

o H = {(2,n)|p;(n)#L} ist aufziahlbar Halteproblem
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o {(z,n,t)|P;(n) =t} ist entscheidbar Rechenzeit

— Kernaxiom der Berechenbarkeitstheorie

o {(2,n,y)|p;(n) = y} ist aufzdhlbar Berechnung

— Graph der universellen Funktion

o H = {(2,n)|p;(n)#L} ist aufziahlbar Halteproblem

— Haltebereich der universellen Funktion

oS — {ZlQOZ(Z)#J_} ist aufzahlbar Selbstanwendbarkeitsproblem
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o {(z,n,t)|P;(n) =t} ist entscheidbar Rechenzeit

— Kernaxiom der Berechenbarkeitstheorie

o {(2,n,y)|p;(n) = y} ist aufzdhlbar Berechnung

— Graph der universellen Funktion

o H = {(2,n)|p;(n)#L} ist aufziahlbar Halteproblem

— Haltebereich der universellen Funktion

oS — {ZlQOZ(Z)#J_} ist aufzahlbar Selbstanwendbarkeitsproblem

— Haltebereich von \i.u(i, )
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