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Einheit 7.3

Beweistechniken für unlösbare Probleme
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2. Monotonieargumente
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– Zeige, daß eine Funktion von jeder berechenbaren Funktion an mindestens

einer Stelle abweicht, also selbst nicht berechenbar sein kann

• Wachstums- und Monotonieargumente

– Zeige, daß eine Funktion stärker wächst als jede berechenbare Funktion

• Reduktionsmethode und Abschlußeigenschaften

– Zeige, daß Lösung des Problems zu einer Lösung eines bekanntermaßen

unlösbaren Problems führen würde

• Anwendung allgemeiner theoretischer Resultate

– Unlösbarkeit folgt direkt aus bekannten Sätzen
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Diagonalisierung

• Ziel

– Zeige, daß eine unendliche Menge M eine Eigenschaft P nicht besitzt

– z.B. Entscheidbarkeit, Aufzählbarkeit, Abzählbarkeit
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• Ziel

– Zeige, daß eine unendliche Menge M eine Eigenschaft P nicht besitzt
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• Methodik
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– Also kann x nicht als Zeile vorkommen
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– Die Menge aller Funktionen über N kann nicht durchnumeriert werden

· Annahme: N→N ist abzählbar
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– Die Menge N→N is nicht abzählbar
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Existenz unberechenbarer Funktionen

• Abstraktes Argument: es gibt zu viele Funktionen

– Die Menge der berechenbaren Funktionen in N→N ist abzählbar

– Die Menge N→N is nicht abzählbar
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– Weitere konkrete Beispiele folgen
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0 1 2 3 4 ...
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... ... ... ... ... ... ...
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Unentscheidbarkeit des Halteproblems Satz J.a

Annahme: H = {(i, n) |ϕi(n)6=⊥} ist entscheidbar

– Dann ist χ
H
:N→N berechenbar, wobei χ

H
(i, n) =

{

1 wenn ϕi(n) hält

0 sonst

0 1 2 3 4 ...

ϕ0 ⊥ × × ⊥ × ...

ϕ1 ⊥ × × × × ...

ϕ2 × × × × × ...

ϕ3 ⊥ × ⊥ ⊥ ⊥ ...
... ... ... ... ... ... ...

– Definiere eine neue Funktion f :N→N durch

f(n) :=

{

0 wenn ϕn(n) nicht hält

⊥ sonst

– Dann ist f berechenbar, denn f(n) = µz[χH(n, n)=0]
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Diagonalbeweise II:

Unentscheidbarkeit des Halteproblems Satz J.a

Annahme: H = {(i, n) |ϕi(n)6=⊥} ist entscheidbar

– Dann ist χ
H
:N→N berechenbar, wobei χ

H
(i, n) =

{

1 wenn ϕi(n) hält
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ϕ1 ⊥ × × × × ...

ϕ2 × × × × × ...

ϕ3 ⊥ × ⊥ ⊥ ⊥ ...
... ... ... ... ... ... ...

– Definiere eine neue Funktion f :N→N durch

f(n) :=

{

0 wenn ϕn(n) nicht hält

⊥ sonst

– Dann ist f berechenbar, denn f(n) = µz[χH(n, n)=0]

– Also gibt es ein i mit f = ϕi
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– Dann ist f berechenbar, denn f(n) = µz[χH(n, n)=0]

– Also gibt es ein i mit f = ϕi

– Aber für dieses i gilt: ϕi(i) hält ⇔ f(i) hält ⇔ ϕi(i) hält nicht
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– Dann ist f berechenbar, denn f(n) = µz[χH(n, n)=0]

– Also gibt es ein i mit f = ϕi

– Aber für dieses i gilt: ϕi(i) hält ⇔ f(i) hält ⇔ ϕi(i) hält nicht

– Dies ist ein Widerspruch, also ist die Annahme “H entscheidbar” falsch √
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Unentscheidbarkeit des Halteproblems Satz J.a

Annahme: H = {(i, n) |ϕi(n)6=⊥} ist entscheidbar

– Dann ist χ
H
:N→N berechenbar, wobei χ

H
(i, n) =
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1 wenn ϕi(n) hält

0 sonst

0 1 2 3 4 ...

ϕ0 ⊥ × × ⊥ × ...

ϕ1 ⊥ × × × × ...

ϕ2 × × × × × ...

ϕ3 ⊥ × ⊥ ⊥ ⊥ ...
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– Definiere eine neue Funktion f :N→N durch

f(n) :=

{

0 wenn ϕn(n) nicht hält

⊥ sonst

– Dann ist f berechenbar, denn f(n) = µz[χH(n, n)=0]

– Also gibt es ein i mit f = ϕi

– Aber für dieses i gilt: ϕi(i) hält ⇔ f(i) hält ⇔ ϕi(i) hält nicht

– Dies ist ein Widerspruch, also ist die Annahme “H entscheidbar” falsch √

Terminierung von Programmen ist nicht testbar
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Diagonalbeweise III:

Total berechenbare Funktionen sind nicht aufzählbar

Annahme: Rϕ = {i |ϕi total} ist aufzählbar
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Diagonalbeweise III:

Total berechenbare Funktionen sind nicht aufzählbar

Annahme: Rϕ = {i |ϕi total} ist aufzählbar

· Dann gibt es eine berechenbare totale Funktion f mit range(f) = Rϕ
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Diagonalbeweise III:

Total berechenbare Funktionen sind nicht aufzählbar

Annahme: Rϕ = {i |ϕi total} ist aufzählbar

· Dann gibt es eine berechenbare totale Funktion f mit range(f) = Rϕ

· Dann lassen sich alle Funktionen aus R wie folgt in eine Tabelle eintragen

0 1 2 3 4 ...

ϕf(0) ϕf(0)(0) ϕf(0)(1) ϕf(0)(2) ϕf(0)(3) ϕf(0)(4) ...

ϕf(1) ϕf(1)(0) ϕf(1)(1) ϕf(1)(2) ϕf(1)(3) ϕf(1)(4) ...

ϕf(2) ϕf(2)(0) ϕf(2)(1) ϕf(2)(2) ϕf(2)(3) ϕf(2)(4) ...

ϕf(3) ϕf(3)(0) ϕf(3)(1) ϕf(3)(2) ϕf(3)(3) ϕf(3)(4) ...
... ... ... ... ... ... ...
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... ... ... ... ... ... ...

· Definiere eine neue Funktion h:N→N durch h(n) = ϕf(n)(n)+1
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Annahme: Rϕ = {i |ϕi total} ist aufzählbar

· Dann gibt es eine berechenbare totale Funktion f mit range(f) = Rϕ

· Dann lassen sich alle Funktionen aus R wie folgt in eine Tabelle eintragen

0 1 2 3 4 ...
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· h ist offensichtlich total und berechenbar, denn h(n) = u(f(n), n)+1
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Diagonalbeweise III:

Total berechenbare Funktionen sind nicht aufzählbar

Annahme: Rϕ = {i |ϕi total} ist aufzählbar

· Dann gibt es eine berechenbare totale Funktion f mit range(f) = Rϕ

· Dann lassen sich alle Funktionen aus R wie folgt in eine Tabelle eintragen

0 1 2 3 4 ...

ϕf(0) ϕf(0)(0)+1 ϕf(0)(1) ϕf(0)(2) ϕf(0)(3) ϕf(0)(4) ...

ϕf(1) ϕf(1)(0) ϕf(1)(1)+1 ϕf(1)(2) ϕf(1)(3) ϕf(1)(4) ...

ϕf(2) ϕf(2)(0) ϕf(2)(1) ϕf(2)(2)+1 ϕf(2)(3) ϕf(2)(4) ...
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· Definiere eine neue Funktion h:N→N durch h(n) = ϕf(n)(n)+1

· h ist offensichtlich total und berechenbar, denn h(n) = u(f(n), n)+1

· Also gibt es ein i ∈Rϕ mit h = ϕi und damit ein j ∈N mit i=f(j)
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Diagonalbeweise III:

Total berechenbare Funktionen sind nicht aufzählbar

Annahme: Rϕ = {i |ϕi total} ist aufzählbar

· Dann gibt es eine berechenbare totale Funktion f mit range(f) = Rϕ

· Dann lassen sich alle Funktionen aus R wie folgt in eine Tabelle eintragen

0 1 2 3 4 ...

ϕf(0) ϕf(0)(0)+1 ϕf(0)(1) ϕf(0)(2) ϕf(0)(3) ϕf(0)(4) ...

ϕf(1) ϕf(1)(0) ϕf(1)(1)+1 ϕf(1)(2) ϕf(1)(3) ϕf(1)(4) ...

ϕf(2) ϕf(2)(0) ϕf(2)(1) ϕf(2)(2)+1 ϕf(2)(3) ϕf(2)(4) ...

ϕf(3) ϕf(3)(0) ϕf(3)(1) ϕf(3)(2) ϕf(3)(3)+1 ϕf(3)(4) ...
... ... ... ... ... ... ...

· Definiere eine neue Funktion h:N→N durch h(n) = ϕf(n)(n)+1

· h ist offensichtlich total und berechenbar, denn h(n) = u(f(n), n)+1

· Also gibt es ein i ∈Rϕ mit h = ϕi und damit ein j ∈N mit i=f(j)

· Für dieses j gilt ϕf(j)(j) = h(j) = ϕf(j)(j)+1 √
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Andere unlösbare Probleme mit Diagonalbeweisen

• Selbstanwendbarkeitsproblem:

– S = {i |ϕi(i)6=⊥} unentscheidbar, aber aufzählbar
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• Selbstanwendbarkeitsproblem:

– S = {i |ϕi(i)6=⊥} unentscheidbar, aber aufzählbar

• Entscheidungsproblem:

– E = {(i, j) | ϕi(j) = 1} unentscheidbar, aber aufzählbar
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• Entscheidungsproblem:

– E = {(i, j) | ϕi(j) = 1} unentscheidbar, aber aufzählbar

• Monotone Funktionen:

– MON = {i | ∀k. ϕi(k) < ϕi(k+1)} nicht aufzählbar
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Andere unlösbare Probleme mit Diagonalbeweisen

• Selbstanwendbarkeitsproblem:

– S = {i |ϕi(i)6=⊥} unentscheidbar, aber aufzählbar

• Entscheidungsproblem:

– E = {(i, j) | ϕi(j) = 1} unentscheidbar, aber aufzählbar

• Monotone Funktionen:

– MON = {i | ∀k. ϕi(k) < ϕi(k+1)} nicht aufzählbar

• Entscheidungsfunktionen:

– EF = {i | ∀j. ϕi(j) ∈{0, 1}} nicht aufzählbar
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Monotonieargumente

• Ziel

– Zeige, daß eine Funktion f eine Eigenschaft P nicht besitzt

– z.B. primitiv rekursiv, berechenbar, maximale Komplexität (Rechenzeit)
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• Ziel

– Zeige, daß eine Funktion f eine Eigenschaft P nicht besitzt

– z.B. primitiv rekursiv, berechenbar, maximale Komplexität (Rechenzeit)

• Methodik

– Zeige daß f stärker wächst als jede Funktion mit Eigenschaft P
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• Ziel

– Zeige, daß eine Funktion f eine Eigenschaft P nicht besitzt

– z.B. primitiv rekursiv, berechenbar, maximale Komplexität (Rechenzeit)

• Methodik

– Zeige daß f stärker wächst als jede Funktion mit Eigenschaft P

· Induktive Analyse des Wachstumsverhaltens von f

· Analyse des maximalen Wachstums von Funktionen mit Eigenschaft P
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– Zeige, daß eine Funktion f eine Eigenschaft P nicht besitzt

– z.B. primitiv rekursiv, berechenbar, maximale Komplexität (Rechenzeit)

• Methodik

– Zeige daß f stärker wächst als jede Funktion mit Eigenschaft P

· Induktive Analyse des Wachstumsverhaltens von f

· Analyse des maximalen Wachstums von Funktionen mit Eigenschaft P

– f kann also nicht selbst Eigenschaft P besitzen
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Monotonieargumente

• Ziel

– Zeige, daß eine Funktion f eine Eigenschaft P nicht besitzt

– z.B. primitiv rekursiv, berechenbar, maximale Komplexität (Rechenzeit)

• Methodik

– Zeige daß f stärker wächst als jede Funktion mit Eigenschaft P

· Induktive Analyse des Wachstumsverhaltens von f

· Analyse des maximalen Wachstums von Funktionen mit Eigenschaft P

– f kann also nicht selbst Eigenschaft P besitzen

• Beispiele

– Die Ackermann Funktion ist nicht primitiv-rekursiv

– Die Busy-Beaver Funktion ist nicht berechenbar folgt

– Komplexitätsanalysen
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Das Busy-Beaver Problem

Biber stauen Bäche, indem sie Holzstücke in den Bach tragen. Fleißige Biber tragen
mehr Holzstücke zusammen als faule. Größere Biber können mehr leisten als kleine.

Die Busy-Beaver Funktion liefert die Länge der längsten ununterbrochenen Staumauer,
die ein Biber zusammentragen kann, ohne daß schon eine Teilmauer vorhanden war.
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Das Busy-Beaver Problem

Biber stauen Bäche, indem sie Holzstücke in den Bach tragen. Fleißige Biber tragen
mehr Holzstücke zusammen als faule. Größere Biber können mehr leisten als kleine.

Die Busy-Beaver Funktion liefert die Länge der längsten ununterbrochenen Staumauer,
die ein Biber zusammentragen kann, ohne daß schon eine Teilmauer vorhanden war.

• Beschreibe Biber durch Turingmaschinen
– Holzstücke werden durch das Symbol | beschrieben

– τ = ({1..n}, {|}, {|, b}, δ, 1, b) heißt Busy-Beaver TM der Größe n

– BBT(n) sei die Menge aller Busy-Beaver Turingmaschinen der Größe n
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mehr Holzstücke zusammen als faule. Größere Biber können mehr leisten als kleine.

Die Busy-Beaver Funktion liefert die Länge der längsten ununterbrochenen Staumauer,
die ein Biber zusammentragen kann, ohne daß schon eine Teilmauer vorhanden war.

• Beschreibe Biber durch Turingmaschinen
– Holzstücke werden durch das Symbol | beschrieben

– τ = ({1..n}, {|}, {|, b}, δ, 1, b) heißt Busy-Beaver TM der Größe n

– BBT(n) sei die Menge aller Busy-Beaver Turingmaschinen der Größe n

• Beschreibe Produktivität von Bibern

– Produktivität(τ ) =

{

n wenn hτ(ε) = |n

0 wenn τ bei Eingabe ε nicht hält
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Biber stauen Bäche, indem sie Holzstücke in den Bach tragen. Fleißige Biber tragen
mehr Holzstücke zusammen als faule. Größere Biber können mehr leisten als kleine.

Die Busy-Beaver Funktion liefert die Länge der längsten ununterbrochenen Staumauer,
die ein Biber zusammentragen kann, ohne daß schon eine Teilmauer vorhanden war.

• Beschreibe Biber durch Turingmaschinen
– Holzstücke werden durch das Symbol | beschrieben

– τ = ({1..n}, {|}, {|, b}, δ, 1, b) heißt Busy-Beaver TM der Größe n

– BBT(n) sei die Menge aller Busy-Beaver Turingmaschinen der Größe n

• Beschreibe Produktivität von Bibern

– Produktivität(τ ) =

{

n wenn hτ(ε) = |n

0 wenn τ bei Eingabe ε nicht hält

• Beschreibe maximal mögliche Leistung von Bibern
– BB(n) = max {Produktivität(τ ) | τ ∈BBT(n)}
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Das Busy-Beaver Problem

Biber stauen Bäche, indem sie Holzstücke in den Bach tragen. Fleißige Biber tragen
mehr Holzstücke zusammen als faule. Größere Biber können mehr leisten als kleine.

Die Busy-Beaver Funktion liefert die Länge der längsten ununterbrochenen Staumauer,
die ein Biber zusammentragen kann, ohne daß schon eine Teilmauer vorhanden war.

• Beschreibe Biber durch Turingmaschinen
– Holzstücke werden durch das Symbol | beschrieben

– τ = ({1..n}, {|}, {|, b}, δ, 1, b) heißt Busy-Beaver TM der Größe n

– BBT(n) sei die Menge aller Busy-Beaver Turingmaschinen der Größe n

• Beschreibe Produktivität von Bibern

– Produktivität(τ ) =

{

n wenn hτ(ε) = |n

0 wenn τ bei Eingabe ε nicht hält

• Beschreibe maximal mögliche Leistung von Bibern
– BB(n) = max {Produktivität(τ ) | τ ∈BBT(n)}

Ist die Busy-Beaver Funktion berechenbar?
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Theoretische Informatik II §7: Elementare Berechenbarkeitstheorie 10 Beweistechniken für unlösbare Probeme
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•BB(n) bekannt für kleine n:
n 1 2 3 4 5 6 . . .

1 4 6 13 ≥4098 ≥6.4*10462

• Vollständige Analyse nicht möglich

– |BBT(n)| ist (|S|∗|Γ|∗|{r, l}|)(|S|∗|Γ|−1) ∗ (|S|∗|Γ|∗|{h}|) ∗ (|S|∗|Γ|) = (4n)2n

|BBT(1)|=16, |BBT(2)|=4096, |BBT(3)|=2985984, . . .
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– Produktivität ist 3 (4, wenn man alle Holzstücke zählt)

•BB(n) bekannt für kleine n:
n 1 2 3 4 5 6 . . .

1 4 6 13 ≥4098 ≥6.4*10462

• Vollständige Analyse nicht möglich

– |BBT(n)| ist (|S|∗|Γ|∗|{r, l}|)(|S|∗|Γ|−1) ∗ (|S|∗|Γ|∗|{h}|) ∗ (|S|∗|Γ|) = (4n)2n

|BBT(1)|=16, |BBT(2)|=4096, |BBT(3)|=2985984, . . .

– Anzahl möglicher Bandkonfigurationen einer TM ist unbegrenzt
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Beweisführung durch Reduktion

• P ′≤P bedeutet “P ′ ist leichter als P”

– Ist P lösbar, dann kann P ′ wie folgt gelöst werden
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Theoretische Informatik II §7: Elementare Berechenbarkeitstheorie 13 Beweistechniken für unlösbare Probeme
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· Löse f(x) mit der Lösungsmethode für P

· Es gilt x ∈P ′ ⇔ f(x) ∈P , also überträgt sich das Ergebnis

• Aus P ′≤P und P entscheidbar folgt P ′ entscheidbar

– Übertragung von Entscheidbarkeit: χ
P ′

(x) = χ
f−1(P )

(x) = χ
P
(f(x))

• Aus P ′≤P und P aufzählbar folgt P ′ aufzählbar

– Übertragung von Aufzählbarkeit: ψ
P ′

(x) = ψ
f−1(P )

(x) = ψ
P
(f(x))
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Beispiele von Problemreduktion

•S = {i |ϕi(i)6=⊥} ≤ H = {(i, n) |ϕi(n)6=⊥}
“Das Selbstanwendbarkeitsproblem ist leichter als das Halteproblem”



Theoretische Informatik II §7: Elementare Berechenbarkeitstheorie 14 Beweistechniken für unlösbare Probeme
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– Durch Klammerzählung bestimme alle ui und vi und die Anzahl k



Theoretische Informatik II §7: Elementare Berechenbarkeitstheorie 16 Beweistechniken für unlösbare Probeme
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– Zähle alle möglichen Indexfolgen i1, .., in mit ij≤k auf

(Verwende Umkehrung der Standardtupelfunktion für Listen 〈i1, .., in〉∗)



Theoretische Informatik II §7: Elementare Berechenbarkeitstheorie 16 Beweistechniken für unlösbare Probeme
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• Aufzählungsalgorithmus:

– Eingabe: Wort w = {(u1, v1), .., (uk, vk)} ∈ (X ∪ {"(", ")", ","})∗
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– w ∈PKP ⇒ Es gibt i1, .., in mit ui1..uin = vi1..vin

⇒ Aufzählung endet bei 〈i1, .., in〉
∗ mit Ausgabe 1

– w 6∈PKP ⇒ Es gibt keine Korrespondenz

⇒ Aufzählung terminiert nicht, da Test niemals erfolgreich
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MPKP≤PKP

• Abbildung f erzwingt erstes Wortpaar als Anfang

– Erweitere Alphabet X zu X ′ = X ∪ {#, $}

– Modifiziere Worte w = a1...an zu ŵ = a1#a2#...#an
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, .. (ûk#,#v̂k)
︸ ︷︷ ︸

(u′
k+1,v

′
k+1)

, ($,#$)
︸ ︷︷ ︸

(u′
k+2,v

′
k+2)

}

• Zeige K ∈MPKP ⇔ f(K) ∈PKP
– K ∈MPKP ⇒ Es gibt i2, .., in mit u1ui2..uin = v1vi2..vin



Theoretische Informatik II §7: Elementare Berechenbarkeitstheorie 18 Beweistechniken für unlösbare Probeme
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– Definiere Abbildung f durch

f{(u1, v1), .., (uk, vk)} = {(#û1#,#v̂1)
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MPKP≤PKP

• Abbildung f erzwingt erstes Wortpaar als Anfang

– Erweitere Alphabet X zu X ′ = X ∪ {#, $}

– Modifiziere Worte w = a1...an zu ŵ = a1#a2#...#an
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⇒ #û1#︸ ︷︷ ︸

u′1
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· (s#, a′ s′#) für δ(s, b) = (s′, a′, r)

· (d s a, s′ d a′) für d ∈Γ und δ(s, a) = (s′, a′, l)

· (# s a, # s′ b a′) für δ(s, a) = (s′, a′, l)

· (d s#, s′ d a′ #) für d ∈Γ und δ(s, b) = (s′, a′, r)
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′) für δ(s, a) = (s′, a′, h)

– Ergänze “Kopierregeln” (a, a) für alle a ∈Γ∪{#}
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– Beschreibe Konfigurationsübergänge durch Wortpaare

· (s a, a′ s′) für δ(s, a) = (s′, a′, r)
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· (s a, qf a
′) für δ(s, a) = (s′, a′, h)

– Ergänze “Kopierregeln” (a, a) für alle a ∈Γ∪{#}

– Ergänze “Löschregeln” (a qf , qf) und (qf a, qf) für alle a ∈Γ
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Zeige hτ (w)6=⊥ ⇒ f(τ, w) ∈MPKP
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H≤MPKP : Korrektheit der Transformation f

Zeige hτ (w)6=⊥ ⇒ f(τ, w) ∈MPKP

– Wegen hτ(w)6=⊥ gibt es eine Konfigurationsfolge

κ0=s0w → κ1 . . .→ κt=xm..x0 s y0..yn mit δ( , ) = (s, y0, h)
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– Mit der Löschregel (x0 qf , qf) erzeugen wir daraus

· #s0w#κ1# . . .#κt#xm..x1x0 qf
· #s0w#κ1# . . .#κt#xm..x1x0 qf y0..yn#xm..x1qf

– Mit den Kopierregeln bekommen wir

· #s0w#κ1# . . .#κt#xm..x1x0 qf y0..yn#
· #s0w#κ1# . . .#κt#xm..x1x0 qf y0..yn#xm..x1qf y0..yn#
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H≤MPKP : Korrektheit der Transformation f (II)

Zeige hτ (w)6=⊥ ⇐ f(τ, w) ∈MPKP
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H≤MPKP : Korrektheit der Transformation f (II)

Zeige hτ (w)6=⊥ ⇐ f(τ, w) ∈MPKP

– Es gelte f(τ, w) ∈MPKP

– Also gibt es i2, .., in mit u1ui2..uin = v1vi2..vin

– u1ui2..uin muß mit #s0w# beginnen und mit qf # # enden
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– Aus der Korrespondenz können wir daher eine Konfigurationsfolge

κ0=s0w → . . .→ κt=xm..x0 s y0..yn konstruieren mit δ( , ) = (s, y0, h)

– Also hält τ bei Eingabe w √

Es folgt H≤MPKP , also ist MPKP unentscheidbar
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Unentscheidbarkeiten auf Grammatiken Sätze S /T

Für kontextfreie Grammatiken G, G′ sind

die folgende Probleme unentscheidbar

1. L(G) ∩ L(G′) = ∅
2. L(G) ∩ L(G′) unendlich

3. L(G) ∩ L(G′) kontextfrei

4. L(G) ⊆ L(G′)

5. L(G) = L(G′)

6. L(G) = X∗

7.G mehrdeutig

8. L(G) kontextfrei

9. L(G) regulär

10. L(G) ∈ DPDA
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Beweis von Unentscheidbarkeiten

Reduktion auf das Post’sche Korrespondenzproblem

• Transformiere ein PKP in Grammatiken G und G′
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Beweis von Unentscheidbarkeiten

Reduktion auf das Post’sche Korrespondenzproblem

• Transformiere ein PKP in Grammatiken G und G′
– Gegeben K = {(u1, v1), .., (uk, vk)} über X = {0, 1}

– Wähle Terminalalphabet := {0, 1, $, a1, .., ak}

– Konstruiere G := S→A$B,
A→a1Au1, . . . A→akAuk, A→a1u1, . . . A→akuk
B→v1Ba1, . . . B→vkBak, B→v1a1, . . . B→vkak

– Dann gilt L(G) = {ain..ai1ui1..uin $ vjm..vj1aj1..ajm | iν, jµ≤k}

– Konstruiere G′ := S→a1Sa1, .., S→akSak, S→T ,
T→0T0, T→1T1, T→$,



Theoretische Informatik II §7: Elementare Berechenbarkeitstheorie 23 Beweistechniken für unlösbare Probeme
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– Zeige, wie Lösung eines bekannten Problems P ′ zur Lösung von P ′ führt
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– M entscheidbar ⇔ M und M aufzählbar

– Reduzierbarkeit ist ein besonders mächtiger Spezialfall
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– M , M ′ aufzählbar, dann auch M∪M ′, M∩M ′, g(M), g−1(M)

– M entscheidbar ⇔ M und M aufzählbar

– Reduzierbarkeit ist ein besonders mächtiger Spezialfall

• Umkehrung der Abschlußeigenschaften
– M nicht entscheidbar ⇒ M nicht entscheidbar

– M aufzählbar, nicht entscheidbar ⇒ M weder aufzählbar noch entscheidbar

– M entscheidbar, M∪M ′ nicht entscheidbar ⇒ M ′ nicht entscheidbar

– M entscheidbar, M\M ′ nicht entscheidbar ⇒ M ′ nicht entscheidbar
... ...
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Resultate aus Abschlußeigenschaften

• {(i, n) |ϕi(n)=⊥} ist nicht aufzählbar Satz J.b

– {(i, n) |ϕi(n)=⊥} ist das Komplement von H = {(i, n) |ϕi(n)6=⊥}

– H ist aufzählbar aber unentscheidbar, also kann H nicht aufzählbar sein
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– {i |ϕi(i)=⊥} ist das Komplement von S = {i |ϕi(i)6=⊥}

– S ist aufzählbar aber unentscheidbar, also kann S nicht aufzählbar sein

•PROGz = {i |ϕi = z} ist nicht aufzählbar

– Es gilt H≤PROGz und H ist nicht aufzählbar

•PFϕ = {i |ϕi partiell} ist unentscheidbar

– PFϕ ist das Komplement von Rϕ = {i |ϕi total}

– Rϕ ist nicht aufzählbar, also kann PFϕ = Rϕ nicht entscheidbar sein
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Welche Verifikationsprobleme sind entscheidbar?

• Halteproblem
– Kann man von einem beliebigen Programm entscheiden,

ob es bei bestimmten Eingaben hält oder nicht?

– Bereits als unentscheidbar nachgewiesen
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• Halteproblem
– Kann man von einem beliebigen Programm entscheiden,

ob es bei bestimmten Eingaben hält oder nicht?

– Bereits als unentscheidbar nachgewiesen

• Korrektheitsproblem
– Kann man von einem beliebigen Programm entscheiden,

ob es eine bestimmte Funktion berechnet oder nicht?

– Für die Nullfunktion bereits als unentscheidbar nachgewiesen

– Gilt ähnliches für andere Funktionen?

• Spezifikationsproblem
– Kann man von einem beliebigen Programm entscheiden,

ob es eine gegebene Spezfikation erfüllt oder nicht?

• Äquivalenzproblem
– Kann man entscheiden, ob zwei beliebige Programme die gleiche

Funktion berechnen oder nicht?

Gibt es eine allgemeine Antwort?
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Der Satz von Rice Satz O

Keine nichttriviale extensionale Eigenschaft

berechenbarer Funktionen ist entscheidbar

Für ∅6=P⊂Tµ ist LP = {i | ϕi ∈P} nicht entscheidbar
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Anwendungen des Satzes von Rice

•MON = {i | ∀k. ϕi(k) < ϕi(k+1)}
– Monotone Funktionen sind unentscheidbar
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Anwendungen des Satzes von Rice

•MON = {i | ∀k. ϕi(k) < ϕi(k+1)}
– Monotone Funktionen sind unentscheidbar

•EF = {i | ∀j. ϕi(j) ∈ {0, 1}}
– Entscheidungsfunktionen sind unentscheidbar

•PROGspec = {i | ϕi erfüllt Spezifikation spec}
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Keine Programmeigenschaft kann getestet werden

Beweise müssen von Hand geführt werden

Rechnerunterstützung nur in Spezialfällen möglich


