Theoretische Informatik 11

\Wers,
0’(\ z (Q:’

Einheit 7.3 ' !a!
. i

Beweistechniken fur unlosbare Probleme S

-
0d

1. Diagonalisierung
2. Monotonieargumente

3. Problemreduktion

4. Der Satz von Rice



(GRENZEN DER BERECHENBARKEIT I

Wie beweist man die Unlosbarkeit eines Problems?
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(GRENZEN DER BERECHENBARKEIT I

Wie beweist man die Unlosbarkeit eines Problems?

e Diagonalisierung

— Zeige, dafl eine Funktion von jeder berechenbaren Funktion an mindestens
einer Stelle abweicht, also selbst nicht berechenbar sein kann
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e Diagonalisierung

— Zeige, dafl eine Funktion von jeder berechenbaren Funktion an mindestens
einer Stelle abweicht, also selbst nicht berechenbar sein kann

e Wachstums- und Monotonieargumente

— Zeige, dal3 eine Funktion starker wachst als jede berechenbare Funktion
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e Wachstums- und Monotonieargumente

— Zeige, dal3 eine Funktion starker wachst als jede berechenbare Funktion

e Reduktionsmethode und Abschlufleigenschaften

— Zeige, dall Losung des Problems zu einer Losung eines bekanntermaflen
unlosbaren Problems fithren wiirde
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(GRENZEN DER BERECHENBARKEIT I

Wie beweist man die Unlosbarkeit eines Problems?

e Diagonalisierung

— Zeige, dafl eine Funktion von jeder berechenbaren Funktion an mindestens
einer Stelle abweicht, also selbst nicht berechenbar sein kann

e Wachstums- und Monotonieargumente

— Zeige, dal3 eine Funktion starker wachst als jede berechenbare Funktion

e Reduktionsmethode und Abschlufleigenschaften

— Zeige, dall Losung des Problems zu einer Losung eines bekanntermaflen
unlosbaren Problems fithren wiirde

e Anwendung allgemeiner theoretischer Resultate
— Unlosbarkeit folgt direkt aus bekannten Satzen
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DIAGONALISIERUNG I

e Ziel

— Zeige, daf eine unendliche Menge M eine Eigenschaft P nicht besitzt
— 7.B. Entscheidbarkeit, Aufzahlbarkeit, Abzahlbarkeit
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e Ziel

— Zeige, dafl eine unendliche Menge M eine Eigenschaft P nicht besitzt
— 7.B. Entscheidbarkeit, Aufzahlbarkeit, Abzahlbarkeit

e Methodik
— Wir nehmen an, M habe die Eigenschaft P
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e Methodik
— Wir nehmen an, M habe die Eigenschaft P

— Konstruiere ein Element x, das von allen Elementen von M verschieden ist
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e Methodik
— Wir nehmen an, M habe die Eigenschaft P
— Konstruiere ein Element x, das von allen Elementen von M verschieden ist

— Zeige, dafl x € M aufgrund der Annahme gelten mufy
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e Methodik
— Wir nehmen an, M habe die Eigenschaft P
— Konstruiere ein Element x, das von allen Elementen von M verschieden ist
— Zeige, dafl x € M aufgrund der Annahme gelten mufy
— Aus dem Widerspruch folgt, dafl die Annahme nicht gelten kann
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e Ziel
— Zeige, daf3 eine unendliche Menge M eine Eigenschatt P nicht besitzt
— 7.B. Entscheidbarkeit, Aufzahlbarkeit, Abzahlbarkeit

e Methodik
— Wir nehmen an, M habe die Eigenschaft P
— Konstruiere ein Element x. das von allen Elementen von M verschieden ist
— Zeige, dafl x € M aufgrund der Annahme gelten mufy
— Aus dem Widerspruch folgt, dafl die Annahme nicht gelten kann

e Konstruktion des neuen Elementes

Cantor’sches Diagonalverfahren:
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e Ziel
— Zeige, daf3 eine unendliche Menge M eine Eigenschatt P nicht besitzt
— 7.B. Entscheidbarkeit, Aufzahlbarkeit, Abzahlbarkeit

e Methodik
— Wir nehmen an, M habe die Eigenschaft P
— Konstruiere ein Element x. das von allen Elementen von M verschieden ist
— Zeige, dafl x € M aufgrund der Annahme gelten mufy
— Aus dem Widerspruch folgt, dafl die Annahme nicht gelten kann

e Konstruktion des neuen Elementes
Cantor’sches Diagonalverfahren:

— Trage alle Elemente von M als Zeilen einer Tabelle auf
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DIAGONALISIERUNG I

e Ziel
— Zeige, daf3 eine unendliche Menge M eine Eigenschatt P nicht besitzt
— 7.B. Entscheidbarkeit, Aufzahlbarkeit, Abzahlbarkeit

e Methodik
— Wir nehmen an, M habe die Eigenschaft P
— Konstruiere ein Element x. das von allen Elementen von M verschieden ist
— Zeige, dafl x € M aufgrund der Annahme gelten mufy
— Aus dem Widerspruch folgt, dafl die Annahme nicht gelten kann

e Konstruktion des neuen Elementes
Cantor’sches Diagonalverfahren:
— Trage alle Elemente von M als Zeilen einer Tabelle auf

— Konstruiere x auf Diagonale mit Abweichung an jedem Punkt
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DIAGONALISIERUNG I

e Ziel
— Zeige, dafl eine unendliche Menge M eine Eigenschaft P nicht besitzt

— 7.B. Entscheidbarkeit, Aufzahlbarkeit, Abzahlbarkeit

e Methodik
— Wir nehmen an, M habe die Eigenschaft P
— Konstruiere ein Element x. das von allen Elementen von M verschieden ist
— Zeige, dafl x € M aufgrund der Annahme gelten mufy
— Aus dem Widerspruch folgt, dafl die Annahme nicht gelten kann

e Konstruktion des neuen Elementes
Cantor’sches Diagonalverfahren:
— Trage alle Elemente von M als Zeilen einer Tabelle auf
— Konstruiere x auf Diagonale mit Abweichung an jedem Punkt

— Also kann x nicht als Zeile vorkommen
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DIAGONALBEWEISE I: UBERABZAHLBARKEIT VON N—N |

e Die Menge N—N “uberabzahlbar” unendlich

— Die Menge aller Funktionen tiber N kann nicht durchnumeriert werden
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e Die Menge N—N “uberabzahlbar” unendlich

— Die Menge aller Funktionen tiber N kann nicht durchnumeriert werden

- Annahme: N—N ist abzahlbar

- Dann konnen alle Funktionen iiber N in eine Tabelle eingetragen werden

0 1 2 3 4
fol fo(0) Jfo(1) fo(2) fo(3) fo(4)
fi] f1(0) fi(1) f1(2) f1(3) f1(4)
fa f2(0) fo(1) f2(2) f2(3) fa(4)
fz] f3(0) f3(1) f3(2) f3(3) f3(4)
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- Definiere eine neue Funktion f:N—N durch f(z) = f,(z)+1
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fa f2(0) (1) f2)+1 f2(3) fa(4)
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- Definiere eine neue Funktion f:N—N durch f(z) = f,.(x)+1

- f ist offensichtlich total, kann aber in der Tabelle nicht vorkommen
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- Definiere eine neue Funktion f:N—N durch f(z) = f,(z)+1
- f ist offensichtlich total, kann aber in der Tabelle nicht vorkommen
- Ansonsten wére f=f; fir ein i und f;(7) = f(i) = fi(i)+1 v
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EXISTENZ UNBERECHENBARER FUNKTIONEN I

e Abstraktes Argument: es gibt zu viele Funktionen
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e Abstraktes Argument: es gibt zu viele Funktionen

— Die Menge der berechenbaren Funktionen in N—N ist abzahlbar

— Die Menge N—N is nicht abzahlbar
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e Konkretes Argument: Angabe eines Beispiels
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EXISTENZ UNBERECHENBARER FUNKTIONEN I

e Abstraktes Argument: es gibt zu viele Funktionen
— Die Menge der berechenbaren Funktionen in N—N ist abzahlbar
— Die Menge N—N is nicht abzahlbar
— Es gibt mehr Funktionen als es berechenbare Funktionen geben kann

— Es gibt nichtberechenbare Funktionen auf N—N v

e Konkretes Argument: Angabe eines Beispiels
— Das Halteproblem H = {(i,n) | p;(n)#L} ist unentscheidbar (Beweis folgt)

— Die charakteristische Funktion x,:N—N ist nicht berechenbar v

— Weitere konkrete Beispiele folgen
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DIAGONALBEWEISE 11:
UNENTSCHEIDBARKEIT DES HALTEPROBLEMS

Satz J.a

Annahme: H = {(z,n) | p;(n)#L} ist entscheidbar
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DIAGONALBEWEISE 11:
UNENTSCHEIDBARKEIT DES HALTEPROBLEMS Satz J.a

Annahme: H = {(z,n) | p;(n)#L} ist entscheidbar
1 wenn ;(n) halt

— Dann ist x,,:N—N berechenbar, wobei x,,(¢,1) = 0 .
SONS
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Annahme: H = {(z,n) | p;(n)#L} ist entscheidbar
1 wenn ;(n) halt

— Dann ist x,,:N—N berechenbar, wobei x,,(¢,1) =

0 sonst
o 1 2 3 4.
Yo | X X Xx L x .
o1 L L x x x .
po| X x L x X .
o3 L x 1 x 1 .
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DIAGONALBEWEISE 11:
UNENTSCHEIDBARKEIT DES HALTEPROBLEMS Satz J.a

Annahme: H = {(z,n) | p;(n)#L} ist entscheidbar
1 wenn ;(n) halt

— Dann ist x,,:N—N berechenbar, wobei x,,(¢,1) =

0 sonst
| | . o 1 2 3 4
— Definiere eine neue Funktion f:N .—>N d?I‘Ch wol L x x L x
Fn) = 0 wenn @, (n) nicht hélt p1| L x x  x X
1 sonst P X X XXX
3 1 X 1 1 L

— Dann ist f berechenbar, denn f(n) = p.[x,(n,n)=0]
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DIAGONALBEWEISE 11:
UNENTSCHEIDBARKEIT DES HALTEPROBLEMS Satz J.a

Annahme: H = {(z,n) | p;(n)#L} ist entscheidbar
1 wenn ;(n) halt

— Dann ist x,,:N—N berechenbar, wobei x,,(¢,1) =

0 sonst
| | . o 1 2 3 4
— Definiere eine neue Funktion f:N—N durch o0 L x x L x
f(n) = { 0 wenn ¢,(n) nicht halt o1 L x x x X
1 sonst ©o| X X X X X
o3 L x L L 1

— Dann ist f berechenbar, denn f(n) = p.[x,(n,n)=0]
— Also gibt es ein ¢ mit [ = ;
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DIAGONALBEWEISE 11:

UNENTSCHEIDBARKEIT DES HALTEPROBLEMS Satz J.a

Annahme: H = {(z,n) | p;(n)#L} ist entscheidbar

1 ; halt
— Dann ist x,,:N—N berechenbar, wobei x,,(¢,1) = wenn ;(n) ha

0 sonst
o 1 2 3 4
— Definiere eine neue Funktion f:N .—>N d?I‘Ch wol L x x L x
f(n) = 0 wenn ¢,(n) nicht halt o1 L x x x X
1 sonst P X X XXX
3 1 X 1 1 L

— Dann ist f berechenbar, denn f(n) = p.[x,(n,n)=0]
— Also gibt es ein ¢ mit [ = ;
— Aber fiir dieses ¢ gilt: ¢;(¢) halt < f(i) halt < ¢;(i) halt nicht
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DIAGONALBEWEISE 11:

UNENTSCHEIDBARKEIT DES HALTEPROBLEMS Satz J.a

Annahme: H = {(z,n) | p;(n)#L} ist entscheidbar

1 ; halt
— Dann ist x,,:N—N berechenbar, wobei x,,(¢,1) = wenn ;(n) ha

0 sonst
| | . o 1 2 3 4
— Definiere eine neue Funktion f:N—N durch o0 L x x L x
f(n) — { 0 wenn ¢,(n) nicht halt o1l L X x x X
1 sonst ©o| X X X X X
o3 L x L L 1

— Dann ist f berechenbar, denn f(n) = p.[x,(n,n)=0]

— Also gibt es ein ¢ mit [ = ;

— Aber fiir dieses ¢ gilt: ¢;(¢) halt < f(i) halt < ¢;(i) halt nicht

— Dies ist ein Widerspruch, also ist die Annahme “H entscheidbar” falsch — ,
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DIAGONALBEWEISE 11:

UNENTSCHEIDBARKEIT DES HALTEPROBLEMS Satz J.a

Annahme: H = {(z,n) | p;(n)#L} ist entscheidbar

1 ; halt
— Dann ist x,,:N—N berechenbar, wobei x,,(¢,1) = wenn ;(n) ha

0 sonst
| | . o 1 2 3 4
— Definiere eine neue Funktion f:N—N durch o0 L x x L x
f(n) — { 0 wenn @,(n) nicht halt o1 L x X x X
1 sonst ©o| X X X X X
o3 L x L L 1

— Dann ist f berechenbar, denn f(n) = p.[x,(n,n)=0]

— Also gibt es ein ¢ mit [ = ;

— Aber fiir dieses ¢ gilt: ¢;(¢) halt < f(i) halt < ¢;(i) halt nicht

— Dies ist ein Widerspruch, also ist die Annahme “H entscheidbar” falsch — ,

Terminierung von Programmen ist nicht testbar
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DIAGONALBEWEISE I11:
TOTAL BERECHENBARE FUNKTIONEN SIND NICHT AUFZAHLBAR

Annahme: R, = {1 | ¢; total} ist aufzahlbar
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DIAGONALBEWEISE I11:
TOTAL BERECHENBARE FUNKTIONEN SIND NICHT AUFZAHLBAR

Annahme: R, = {1 | ¢; total} ist aufzahlbar
- Dann gibt es eine berechenbare totale Funktion f mit range(f) = R,
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DIAGONALBEWEISE I11:
TOTAL BERECHENBARE FUNKTIONEN SIND NICHT AUFZAHLBAR

Annahme: R, = {1 | ¢; total} ist aufzahlbar
- Dann gibt es eine berechenbare totale Funktion f mit range(f) = R,

- Dann lassen sich alle Funktionen aus R wie folgt in eine Tabelle eintragen

0 1 2 3 4
wro)| Pr0)0) w0 (1) vr(0)(2) ©r(0)(3) ©r(0)(4)
eray | erm0) (1) wr)(2) wr)(3) wr)(4)
©re) | r2(0) ©r(2)(1) ©1(2)(2) ©r(2)(3) ©1(2)(4)
vre) | r3)(0) pr3)(1) ©r(3)(2) ©1(3)(3) ©1(3)(4)
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DIAGONALBEWEISE I11:
TOTAL BERECHENBARE FUNKTIONEN SIND NICHT AUFZAHLBAR

Annahme: R, = {1 | ¢; total} ist aufzahlbar
- Dann gibt es eine berechenbare totale Funktion f mit range(f) = R,

- Dann lassen sich alle Funktionen aus R wie folgt in eine Tabelle eintragen

0 1 2 3 4
ero) | Pro)0)+1  @ro)(l) Pr(0)(2) ©r(0)(3) ©r(0)(4)
v | erw(0) wr)(1) ©r1)(2) ©r(1)(3) ©r)(4)
©re) | Pre)0) ©r2)(1) ©r2)(2) ©(2)(3) ©r2)(4)
wrey | Pre)(0) pr3)(1) ©r(3)(2) ©1(3)(3) ©1(3)(4)

- Definiere eine neue Funktion h:N—N durch h(n) = ¢, (n)+1
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DIAGONALBEWEISE I11:
TOTAL BERECHENBARE FUNKTIONEN SIND NICHT AUFZAHLBAR

Annahme: R, = {1 | ¢; total} ist aufzahlbar
- Dann gibt es eine berechenbare totale Funktion f mit range(f) = R,

- Dann lassen sich alle Funktionen aus R wie folgt in eine Tabelle eintragen

0 1 2 3 4
ero) | Pro)0)+1  @ro)(l) Pr(0)(2) ©r(0)(3) ©r(0)(4)
iy | erm0) e+ wr)(2) ©r(1)(3) ©r)(4)
©re) | Pre)0) o)1) @)+l e (3) ©r2)(4)
wrey | Pre)(0) pr3)(1) vre)(2) B+l wrE)4)

- Definiere eine neue Funktion h:N—N durch h(n) = ¢, (n)+1
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DIAGONALBEWEISE I11:
TOTAL BERECHENBARE FUNKTIONEN SIND NICHT AUFZAHLBAR

Annahme: R, = {1 | ¢; total} ist aufzahlbar
- Dann gibt es eine berechenbare totale Funktion f mit range(f) = R,

- Dann lassen sich alle Funktionen aus R wie folgt in eine Tabelle eintragen

0 1 2 3 4
ero) | Pro)0)+1  @ro)(l) Pr(0)(2) ©r(0)(3) ©r(0)(4)
iy | erm0) e+ wr)(2) ©r(1)(3) ©r)(4)
©re) | Pre)0) o)1) @)+l e (3) ©r2)(4)
wrey | Pre)(0) pr3)(1) vre)(2) B+l wrE)4)

- Definiere eine neue Funktion h:N—N durch h(n) = ¢, (n)+1
- h ist offensichtlich total und berechenbar, denn h(n) = u(f(n),n)+1
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DIAGONALBEWEISE I11:
TOTAL BERECHENBARE FUNKTIONEN SIND NICHT AUFZAHLBAR

Annahme: R, = {1 | ¢; total} ist aufzahlbar
- Dann gibt es eine berechenbare totale Funktion f mit range(f) = R,

- Dann lassen sich alle Funktionen aus R wie folgt in eine Tabelle eintragen

0 1 2 3 4
ero) | Pro)0)+1  @ro)(l) Pr(0)(2) ©r(0)(3) ©r(0)(4)
ey | erw0) e+ wr)(2) ©r(1)(3) ©r)(4)
Pre) | Pre)0) i) @re)2)+] 2)(3) ©r2)(4)
wrey | Pre)(0) pr3)(1) ©r(3)(2) (3)+1 ©(3)(4)

- Definiere eine neue Funktion h:N—N durch h(n) = ¢, (n)+1
- h ist offensichtlich total und berechenbar, denn h(n) = u(f(n),n)+1
- Also gibt es ein ¢ € R, mit h = ¢; und damit ein j eN mit i=f(j)
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DIAGONALBEWEISE I11:
TOTAL BERECHENBARE FUNKTIONEN SIND NICHT AUFZAHLBAR

Annahme: R, = {1 | ¢; total} ist aufzahlbar
- Dann gibt es eine berechenbare totale Funktion f mit range(f) = R,

- Dann lassen sich alle Funktionen aus R wie folgt in eine Tabelle eintragen

0 1 2 3 4
ero) | ero0)+L  wre)l) Pr(0)(2) ©r(0)(3) ©r(0)(4)
ey | erw0) e+ wr)(2) ©r(1)(3) ©r)(4)
Pre) | Pre)0) i) @re)2)+] 2)(3) ©r2)(4)
wrey | Pre)(0) pr3)(1) ©r(3)(2) (3)+1 ©(3)(4)

- Definiere eine neue Funktion h:N—N durch h(n) = ¢, (n)+1

- h ist offensichtlich total und berechenbar, denn h(n) = u(f(n),n)+1

- Also gibt es ein ¢ € R, mit h = ¢; und damit ein j eN mit i=f(j)

- Fiir dieses j gilt wr;y(j) = h(7) = @) (J)+1 v
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ANDERE UNLOSBARE PROBLEME MIT DIAGONALBEWEISEN

e Selbstanwendbarkeitsproblem:
- S ={1|pi(1)#L} unentscheidbar, aber aufzihlbar
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ANDERE UNLOSBARE PROBLEME MIT DIAGONALBEWEISEN

e Selbstanwendbarkeitsproblem:
- S ={1|pi(1)#L} unentscheidbar, aber aufzihlbar

e Entscheidungsproblem:
- E ={(2,7) | pi(g) = 1} unentscheidbar, aber aufzahlbar
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ANDERE UNLOSBARE PROBLEME MIT DIAGONALBEWEISEN

e Selbstanwendbarkeitsproblem:
- S ={1|pi(1)#L} unentscheidbar, aber aufzihlbar

e Entscheidungsproblem:
- E ={(2,7) | pi(g) = 1} unentscheidbar, aber aufzahlbar

e Monotone Funktionen:
—~ MON = {1 | Vk. p;(k) < p;(k+1)} nicht aufzahlbar
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ANDERE UNLOSBARE PROBLEME MIT DIAGONALBEWEISEN

e Selbstanwendbarkeitsproblem:
- S ={i|pi(2)#L} unentscheidbar, aber aufzihlbar

e Entscheidungsproblem:
-E ={(4,7) | pi(y) =1} unentscheidbar, aber aufzahlbar

e Monotone Funktionen:
—~ MON = {1 | Vk. p;(k) < pi(k+1)} nicht aufzahlbar

e Entscheidungsfunktionen:
~EF = {i| V3. ¢i(3){0,1}} nicht aufzahlbar
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MONOTONIEARGUMENTE I

e Ziel
— Zeige, daf3 eine Funktion f eine Eigenschaft P nicht besitzt

— z.B. primitiv rekursiv, berechenbar, maximale Komplexitéit (Rechenzeit)
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MONOTONIEARGUMENTE I

e Ziel
— Zeige, daf3 eine Funktion f eine Eigenschaft P nicht besitzt

— z.B. primitiv rekursiv, berechenbar, maximale Komplexitéit (Rechenzeit)

e Methodik
— Zeige dafl f starker wachst als jede Funktion mit Eigenschaft P

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 8 BEWEISTECHNIKEN FUR UNLOSBARE PROBEME




MONOTONIEARGUMENTE I

e Ziel
— Zeige, daf3 eine Funktion f eine Eigenschaft P nicht besitzt

— z.B. primitiv rekursiv, berechenbar, maximale Komplexitéit (Rechenzeit)

e Methodik
— Zeige dafl f starker wachst als jede Funktion mit Eigenschaft P

- Induktive Analyse des Wachstumsverhaltens von f

- Analyse des maximalen Wachstums von Funktionen mit Eigenschaft P
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MONOTONIEARGUMENTE I

e Ziel
— Zeige, daf3 eine Funktion f eine Eigenschaft P nicht besitzt

— z.B. primitiv rekursiv, berechenbar, maximale Komplexitéit (Rechenzeit)

e Methodik
— Zeige dafl f starker wachst als jede Funktion mit Eigenschaft P

- Induktive Analyse des Wachstumsverhaltens von f
- Analyse des maximalen Wachstums von Funktionen mit Eigenschaft P

— f kann also nicht selbst Eigenschaft P besitzen
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MONOTONIEARGUMENTE I

e Ziel
— Zeige, daf3 eine Funktion f eine Eigenschaft P nicht besitzt

— z.B. primitiv rekursiv, berechenbar, maximale Komplexitéit (Rechenzeit)

e Methodik
— Zeige dafl f starker wachst als jede Funktion mit Eigenschaft P

- Induktive Analyse des Wachstumsverhaltens von f
- Analyse des maximalen Wachstums von Funktionen mit Eigenschaft P

— f kann also nicht selbst Eigenschaft P besitzen

e Beispiele
— Die Ackermann Funktion ist nicht primitiv-rekursiv
— Die Busy-Beaver Funktion ist nicht berechenbar folgt

— Komplexitatsanalysen
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DASs Busy-BEAVER PROBLEM I

Biber stauen Bache, indem sie Holzstiicke in den Bach tragen. FleiBige Biber tragen
mehr Holzstlicke zusammen als faule. GroBere Biber konnen mehr leisten als kleine.

Die Busy-Beaver Funktion liefert die Lange der langsten ununterbrochenen Staumauer,
die ein Biber zusammentragen kann, ohne dal3 schon eine Teilmauer vorhanden war.
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DASs Busy-BEAVER PROBLEM I

Biber stauen Bache, indem sie Holzstiicke in den Bach tragen. FleiBige Biber tragen
mehr Holzstlicke zusammen als faule. GroBere Biber konnen mehr leisten als kleine.

Die Busy-Beaver Funktion liefert die Lange der langsten ununterbrochenen Staumauer,
die ein Biber zusammentragen kann, ohne dal3 schon eine Teilmauer vorhanden war.

e Beschreibe Biber durch Turingmaschinen

— Holzstiicke werden durch das Symbol | beschrieben
-7 ={L.n},{|},{],b},6,1,b) heiBt Busy-Beaver TM der Grofe n
— BBT(n) sei die Menge aller Busy-Beaver Turingmaschinen der Groie n
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DAS BUsY-BEAVER PROBLEM I

Biber stauen Bache, indem sie Holzstiicke in den Bach tragen. FleiBige Biber tragen
mehr Holzstlicke zusammen als faule. GroBere Biber konnen mehr leisten als kleine.

Die Busy-Beaver Funktion liefert die Lange der langsten ununterbrochenen Staumauer,
die ein Biber zusammentragen kann, ohne dal3 schon eine Teilmauer vorhanden war.

e Beschreibe Biber durch Turingmaschinen

— Holzstiicke werden durch das Symbol | beschrieben
-7 ={L.n},{|},{],b},6,1,b) heiBt Busy-Beaver TM der Grofe n
— BBT(n) sei die Menge aller Busy-Beaver Turingmaschinen der Groie n

e Beschreibe Produktivitat von Bibern
n wenn h(e) = |"
0 wenn 7 bei Eingabe € nicht halt

— Produktivitéit(7) = {
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DAS BUsY-BEAVER PROBLEM I

Biber stauen Bache, indem sie Holzstiicke in den Bach tragen. FleiBige Biber tragen
mehr Holzstlicke zusammen als faule. GroBere Biber konnen mehr leisten als kleine.

Die Busy-Beaver Funktion liefert die Lange der langsten ununterbrochenen Staumauer,
die ein Biber zusammentragen kann, ohne dal3 schon eine Teilmauer vorhanden war.

e Beschreibe Biber durch Turingmaschinen
— Holzstiicke werden durch das Symbol | beschrieben

-7 ={L.n},{|},{],b},6,1,b) heiBt Busy-Beaver TM der Grofe n
— BBT(n) sei die Menge aller Busy-Beaver Turingmaschinen der Groie n

e Beschreibe Produktivitat von Bibern
— Produktivitéit(7) = { n wenn fir(€) = |

0 wenn 7 bei Eingabe € nicht halt

e Beschreibe maximal mogliche Leistung von Bibern
— BB(n) = max {Produktivitat(r) | 7€BBT(n)}

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 9 BEWEISTECHNIKEN FUR UNLOSBARE PROBEME




DAS BUsY-BEAVER PROBLEM I

Biber stauen Bache, indem sie Holzstiicke in den Bach tragen. FleiBige Biber tragen
mehr Holzstlicke zusammen als faule. GroBere Biber konnen mehr leisten als kleine.

Die Busy-Beaver Funktion liefert die Lange der langsten ununterbrochenen Staumauer,
die ein Biber zusammentragen kann, ohne dal3 schon eine Teilmauer vorhanden war.

e Beschreibe Biber durch Turingmaschinen
— Holzstiicke werden durch das Symbol | beschrieben

-7 ={L.n},{|},{],b},6,1,b) heiBt Busy-Beaver TM der Grofe n
— BBT(n) sei die Menge aller Busy-Beaver Turingmaschinen der Groie n

e Beschreibe Produktivitat von Bibern
— Produktivitéit(7) = { n wenn fir(€) = |

0 wenn 7 bei Eingabe € nicht halt

e Beschreibe maximal mogliche Leistung von Bibern
— BB(n) = max {Produktivitat(r) | 7€BBT(n)}

Ist die Busy-Beaver Funktion berechenbar?
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Busy-BEAVER PROBLEM: INTUITIVE ANALYSE I

e Beispiel einer BBT(2) Maschine

5: / a/

V)

NN - | ®
O — T —|Q
N NN

H B~ RN
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Busy-BEAVER PROBLEM: INTUITIVE ANALYSE I

e Beispiel einer BBT(2) Maschine

o = " ad Arbeitsweise:

V)

NN - | ®
O — T —|Q
N NN

H B~ RN
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Busy-BEAVER PROBLEM: INTUITIVE ANALYSE I

e Beispiel einer BBT(2) Maschine
0 = "ad Arbeitsweise: b1b

V)

NN - | ®
O — T —|Q
N NN

H B~ RN
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Busy-BEAVER PROBLEM: INTUITIVE ANALYSE I

e Beispiel einer BBT(2) Maschine

0 = "ad Arbeitsweise: blb
— |26

V)

NN - | ®
O — T —|Q
N NN

H B~ RN
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e Beispiel einer BBT(2) Maschine
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— |26
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1 — bl
h
1

V)

— b2b|
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. : n|1]23] 4 5 6. ..
e BB(n) bekannt fiir kleine n:
114]6]13]>4098 | >6.4%10*
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. : n|1]23] 4 5 6. ..
e BB(n) bekannt fiir kleine n:
114]6]13]>4098 | >6.4%10*

e Vollstandige Analyse nicht moglich
~ [BBT(n)] ist (|S[#[T[x[{r, )T s (S|« {A}]) * (|S[[T]) = (4n)*"
IBBT(1)|=16, |BBT(2)|=4096, |BBT(3)|=2985984, ...

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 10 BEWEISTECHNIKEN FUR UNLOSBARE PROBEME




Busy-BEAVER PROBLEM: INTUITIVE ANALYSE I
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— Produktivitat ist 3 (4, wenn man alle Holzstiicke zéhlt)
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. : n|1]23] 4 5 6. ..
e BB(n) bekannt fiir kleine n:
114]6]13]>4098 | >6.4%10*

e Vollstandige Analyse nicht moglich
~ [BBT(n)] ist (|S[#[T[x[{r, )T s (S|« {A}]) * (|S[[T]) = (4n)*"
IBBT(1)|=16, |BBT(2)|=4096, |BBT(3)|=2985984, ...

— Anzahl moglicher Bandkonfigurationen einer TM ist unbegrenzt
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DAs Busy-BEAVER PROBLEM IST UNLOSBAR Satz L I

e BB ist streng monoton: :>j5 < BB(z)>BB(j)

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 11 BEWEISTECHNIKEN FUR UNLOSBARE PROBEME




DAs Busy-BEAVER PROBLEM IST UNLOSBAR Satz L I

e BB ist streng monoton: :>j5 < BB(z)>BB(j)
— Fiir alle n gilt BB(n+1)>BB(n)
- Schreibe in Zustand 1 ein | und beginne mit der BB(n)-Maschine
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DAs Busy-BEAVER PROBLEM IST UNLOSBAR Satz L I

e BB ist streng monoton: >3 < BB(2)>BB(j)
— Fiir alle n gilt BB(n+1)>BB(n)
- Schreibe in Zustand 1 ein | und beginne mit der BB(n)-Maschine
—i>j < BB(7)>BB(j) folgt nun durch Induktion tiber ¢ — j
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DAs Busy-BEAVER PROBLEM IST UNLOSBAR Satz L I

e BB ist streng monoton: >3 < BB(2)>BB(j)
— Fiir alle n gilt BB(n+1)>BB(n)
- Schreibe in Zustand 1 ein | und beginne mit der BB(n)-Maschine
—1>j5 < BB(i)>BB(j) folgt nun durch Induktion iiber ¢ — j

e Fiir alle n gilt: BB(n+8)>2n
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DAs Busy-BEAVER PROBLEM IST UNLOSBAR Satz L I

e BB ist streng monoton: >3 < BB(2)>BB(j)
— Fiir alle n gilt BB(n+1)>BB(n)
- Schreibe in Zustand 1 ein | und beginne mit der BB(n)-Maschine
—1>j5 < BB(i)>BB(j) folgt nun durch Induktion iiber ¢ — j

e Fiir alle n gilt: BB(n+8)>2n

— Mit n Zustanden kann man n Striche generieren
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—1>j5 < BB(i)>BB(j) folgt nun durch Induktion iiber ¢ — j

e Fiir alle n gilt: BB(n+8)>2n
— Mit n Zustanden kann man n Striche generieren
— Mit 8 Zustédnden kann man Striche verdoppeln (vgl 74 aus Kapitel 6.1)
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— Mit n Zustanden kann man n Striche generieren
— Mit 8 Zustédnden kann man Striche verdoppeln (vgl 74 aus Kapitel 6.1)

e BB berechenbar = BB(n+2k)> BB(BB(n)) fiir ein k
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— Mit 8 Zustédnden kann man Striche verdoppeln (vgl 74 aus Kapitel 6.1)

e BB berechenbar = BB(n+2k)> BB(BB(n)) fiir ein k
— Wiéhle k := Anzahl der Zustinde der TM tber I'={|, b}, die BB berechnet
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e BB berechenbar = BB(n+2k)> BB(BB(n)) fiir ein k
— Wiéhle k := Anzahl der Zustinde der TM tber I'={|, b}, die BB berechnet
— Mit n Zustanden generiere n Striche
— Mit k Zustédnden berechne jetzt BB(n)
— Mit witeren k Zustinden berechne BB(BB(n))
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—1>j5 < BB(i)>BB(j) folgt nun durch Induktion iiber ¢ — j

e Fiir alle n gilt: BB(n+8)>2n
— Mit n Zustanden kann man n Striche generieren
— Mit 8 Zustédnden kann man Striche verdoppeln (vgl 74 aus Kapitel 6.1)

e BB berechenbar = BB(n+2k)> BB(BB(n)) fiir ein k
— Wiéhle k := Anzahl der Zustinde der TM tber I'={|, b}, die BB berechnet
— Mit n Zustanden generiere n Striche
— Mit k Zustédnden berechne jetzt BB(n)
— Mit witeren k Zustinden berechne BB(BB(n))

e BB kann nicht berechenbar sein
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e BB ist streng monoton: >3 < BB(2)>BB(j)
— Fiir alle n gilt BB(n+1)>BB(n)
- Schreibe in Zustand 1 ein | und beginne mit der BB(n)-Maschine
—1>j5 < BB(i)>BB(j) folgt nun durch Induktion iiber ¢ — j

e Fiir alle n gilt: BB(n+8)>2n
— Mit n Zustanden kann man n Striche generieren
— Mit 8 Zustédnden kann man Striche verdoppeln (vgl 74 aus Kapitel 6.1)

e BB berechenbar = BB(n+2k)> BB(BB(n)) fiir ein k
— Wiéhle k := Anzahl der Zustinde der TM tber I'={|, b}, die BB berechnet
— Mit n Zustanden generiere n Striche
— Mit k Zustédnden berechne jetzt BB(n)
— Mit witeren k Zustinden berechne BB(BB(n))

e BB kann nicht berechenbar sein
— Sonst gibt es ein k, so daf fiir alle n: BB(n+8+42k) > BB(BB(n+8)) > BB(2n)
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DAs Busy-BEAVER PROBLEM IST UNLOSBAR Satz L I

e BB ist streng monoton: >3 < BB(2)>BB(j)
— Fiir alle n gilt BB(n+1)>BB(n)
- Schreibe in Zustand 1 ein | und beginne mit der BB(n)-Maschine
—1>j5 < BB(i)>BB(j) folgt nun durch Induktion iiber ¢ — j

e Fiir alle n gilt: BB(n+8)>2n
— Mit n Zustanden kann man n Striche generieren
— Mit 8 Zustédnden kann man Striche verdoppeln (vgl 74 aus Kapitel 6.1)

e BB berechenbar = BB(n+2k)> BB(BB(n)) fiir ein k
— Wiéhle k := Anzahl der Zustinde der TM tber I'={|, b}, die BB berechnet
— Mit n Zustanden generiere n Striche
— Mit k Zustédnden berechne jetzt BB(n)
— Mit witeren k Zustinden berechne BB(BB(n))

e BB kann nicht berechenbar sein
— Sonst gibt es ein k, so daf fiir alle n: BB(n+8+42k) > BB(BB(n+8)) > BB(2n)
— Fiir n=2k+9 widerspriache BB(4k+17) > BB(4k+18) der Monotonie J
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PROBLEMREDUKTION I

e Ziel: Wiederverwendung bekannter Ergebnisse

— Zur Losung eines Problems P bzw. zum Nachweis seiner Unlosbarkeit
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PROBLEMREDUKTION I

e Ziel: Wiederverwendung bekannter Ergebnisse
— Zur Losung eines Problems P bzw. zum Nachweis seiner Unlosbarkeit

— Unlosbar = unentscheidbar, nicht aufzahlbar, nicht in Zeit ¢ losbar, . ..
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— Unlosbar = unentscheidbar, nicht autzahlbar, nicht in Zeit ¢ losbar, . ..

® Methodik zum Nachweis der Unlosbarkeit

— Transformiere P in ein anderes Problem P’. das als unlosbar bekannt ist
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— Zeige, daB jede Losung fiir P in eine Losung fiir P’ transformiert wiirde
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— P kann also nicht losbar sein

e Methodik zur Konstruktion einer Losung
— Transformiere ein anderes Problem P’, das als l1osbar bekannt ist, in P
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— Zeige, daB jede Losung fiir P in eine Losung fiir P’ transformiert wiirde

— P kann also nicht losbar sein

e Methodik zur Konstruktion einer Losung
— Transformiere ein anderes Problem P, das als losbar bekannt ist, in P
— Zeige, wie eine Losung fiir P’ in eine Losung fiir P transformiert wird
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— Zeige, daB jede Losung fiir P in eine Losung fiir P’ transformiert wiirde
— P kann also nicht losbar sein

e Methodik zur Konstruktion einer Losung

— Transformiere ein anderes Problem P, das als losbar bekannt ist, in P
— Zeige, wie eine Losung fiir P’ in eine Losung fiir P transformiert wird

e Hilfsmittel: Reduzierbarkeit P'<P Definition M
— P'<P, falls P'=f1(P)={x| f(x) e P} fur ein total-berechenbares f

— “P"ist reduzierbar auf P”
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— Transformiere ein anderes Problem P, das als losbar bekannt ist, in P
— Zeige, wie eine Losung fiir P’ in eine Losung fiir P transformiert wird

e Hilfsmittel: Reduzierbarkeit P'<P Definition M
— P'<P, falls P'=f1(P)={x| f(x) e P} fur ein total-berechenbares f
— “P’ st redumerbar auf P”  (Begriff gilt fiir Teilmengen von Zahlen, Worten, ... )
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BEWEISFUHRUNG DURCH REDUKTION I

e P/<P bedeutet “P’ ist leichter als P”
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BEWEISFUHRUNG DURCH REDUKTION I

e P/<P bedeutet “P’ ist leichter als P”

— Ist P losbar, dann kann P’ wie folgt gelost werden
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BEWEISFUHRUNG DURCH REDUKTION I

e P/<P bedeutet “P’ ist leichter als P”

— Ist P losbar, dann kann P’ wie folgt gelost werden
- Bei Eingabe z bestimme f(x) (f ist die Reduktionsfunktion)
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e P/<P bedeutet “P’ ist leichter als P”

— Ist P losbar, dann kann P’ wie folgt gelost werden
- Bei Eingabe z bestimme f(x) (f ist die Reduktionsfunktion)
- Lose f(x) mit der Losungsmethode fiir P
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— Ist P losbar, dann kann P’ wie folgt gelost werden
- Bei Eingabe z bestimme f(x) (f ist die Reduktionsfunktion)

- Lose f(x) mit der Losungsmethode fiir P
- Esgilt xe P' < f(x)e P, also iibertragt sich das Ergebnis
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BEWEISFUHRUNG DURCH REDUKTION I

e P/<P bedeutet “P’ ist leichter als P”

— Ist P losbar, dann kann P’ wie folgt gelost werden
- Bei Eingabe z bestimme f(x) (f ist die Reduktionsfunktion)

- Lose f(x) mit der Losungsmethode fiir P
- Esgilt xe P' < f(x)e P, also iibertragt sich das Ergebnis

e Aus P'<P und P entscheidbar folgt P’ entscheidbar
~ Ubertragung von Entscheidbarkeit: () = Xf_l(P)(a:) = X,(f(2))
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e P/<P bedeutet “P’ ist leichter als P”

— Ist P losbar, dann kann P’ wie folgt gelost werden
- Bei Eingabe z bestimme f(x) (f ist die Reduktionsfunktion)

- Lose f(x) mit der Losungsmethode fiir P
- Esgilt xe P' < f(x)e P, also iibertragt sich das Ergebnis

e Aus P'<P und P entscheidbar folgt P’ entscheidbar
~ Ubertragung von Entscheidbarkeit: () = Xf_l(P)(a:) = X,(f(2))

e Aus P'<P und P aufzihlbar folgt P’ aufzihlbar
~ Ubertragung von Aufzihlbarkeit: v (z) = wf_1<P)(:z:) =, (f(x))
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BEISPIELE VON PROBLEMREDUKTION I

oS = {i| pi()#£L} < H ={(i,n)|pi(n)#L}

“Das Selbstanwendbarkeitsproblem ist leichter als das Halteproblem”
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— Man kann auch H auf S reduzieren (aufwendig)
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oS = {i| pi()#£L} < H ={(i,n)|pi(n)#L}

“Das Selbstanwendbarkeitsproblem ist leichter als das Halteproblem”
~EsgiltieS< (i,1)e H.
— Wahle f(i) := (¢,2). Dann ist f total-berechenbar und S = f—1(H)

— Man kann auch H auf S reduzieren (aufwendig)

o H = {(i,n) | p;(n)=1} < PROG, = {i|p; =z}
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BEISPIELE VON PROBLEMREDUKTION I

S ={ilpi()£L} < H={(iyn)|pi(n)#L}
“Das Selbstanwendbarkeitsproblem ist leichter als das Halteproblem”
~EsgiltieS< (i,1)e H.
— Wahle f(i) := (¢,2). Dann ist f total-berechenbar und S = f—1(H)
— Man kann auch H auf S reduzieren (aufwendig)

o H ={(2,n)|p;(n)=_L} < PROG, ={i|p; =z}
~Esgilt (i,n)e H < VteN.d;(n)#t.
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o = {(i,n) | pi(n)=1} < PROG. = {i|p; = 2}
~Esgilt (i,n)e H < VteN.d;(n)#t.
—Da & ={(i,n,t)| D;(n) =t} entscheidbar ist, gibt es ein j mit

. . 1 falls (2,n,t)ed
gpj(z,n,t) - Xq)(z,n,t) - { 0 sonst< |
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—Da & ={(i,n,t)| D;(n) =t} entscheidbar ist, gibt es ein j mit

. . 1 falls (2,n,t)ed
gpj(z,n,t) - Xq)(z,n,t) - { 0 sonst< |

— Nach dem SMN Theorem gibt es eine total-berechenbare Funktion f
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— Nach dem SMN Theorem gibt es eine total-berechenbare Funktion f
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~EsgiltieS< (i,1)e H.
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~Esgilt (i,n)e H < VteN.d;(n)#t.
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. . 1 falls (2,n,t)ed
gpj(z,n,t) - Xq)(z,n,t) - { 0 sonst< |

— Nach dem SMN Theorem gibt es eine total-berechenbare Funktion f
mit ) (t) = (i, n, )
~ Esfolgt (i,n)e H & VteN.®j(n)#t & VteN.ps;,)(t)=0 & ©rin)=2
< f(i,n)e PROG,
also H = f1(PROG.)
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DAS PoOST’'SCHE KORRESPONDENZPROBLEM I

e Gegeben:
— Alphabet X, Menge von Wortpaaren {(uy,vy), .., (ug, vp)} in X+
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— Alphabet X, Menge von Wortpaaren {(uy,vy), .., (ug, vp)} in X+
— Eine Korrespondenz ist eine Indexfolge 71, .., 2, mit w;,..u;, = v;,..v;,

—{(u1,v1), .., (g, vgp) } heiBt 16sbar, wenn es eine Korrespondenz gibt
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DAS PoOST’'SCHE KORRESPONDENZPROBLEM I

e Gegeben:
— Alphabet X, Menge von Wortpaaren {(uy,vy), .., (ug, vp)} in X+
— Eine Korrespondenz ist eine Indexfolge 71, .., 2, mit w;,..u;, = v;,..v;,

—{(uy, v1), .., (ug, vg) } heift l6sbar, wenn es eine Korrespondenz gibt

e Post’sches Korrespondenzproblem, prazisiert

- PKP = {(ul,vl), ey (uk,vk) ‘ UZ',UZ'EX+AE|7;1, ,Zn Wiy Uj, — Uil“vin}
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—{(u1,v1), .., (g, vgp) } heiBt 16sbar, wenn es eine Korrespondenz gibt

e Post’sches Korrespondenzproblem, prazisiert
- PKP = {(ul, Ul), ey (U,k, ?}k) ‘ U;, Uy €X+ /\37;1, “es Zn WUjy o Wjy, = Uz'l..fUZ'n}
— Technisches Problem ohne direkte praktische Relevanz
— Ausgangspunkt fiir Beweise von Unentscheidbarkeiten auf Grammatiken
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e Post’sches Korrespondenzproblem, prazisiert
- PKP = {(ul, Ul), ey (U,k, ?}k) ‘ Uq;, U; €X+ /\E|’I;1, ey Zn Wiy Uj, — Uil“vin}
— Technisches Problem ohne direkte praktische Relevanz
— Ausgangspunkt fiir Beweise von Unentscheidbarkeiten auf Grammatiken

e Beispiele
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— Eine Korrespondenz ist eine Indexfolge 71, .., 2, mit w;,..u;, = v;,..v;,

—{(u1,v1), .., (g, vgp) } heiBt 16sbar, wenn es eine Korrespondenz gibt

e Post’sches Korrespondenzproblem, prazisiert
- PKP = {(ul, Ul), ey (U,k, Uk) ‘ Uq;, U; €X+ /\E|7;1, ey Zn Wiy Uj, — Uil“vin}
— Technisches Problem ohne direkte praktische Relevanz
— Ausgangspunkt fiir Beweise von Unentscheidbarkeiten auf Grammatiken

e Beispiele
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DAS PoOST’'SCHE KORRESPONDENZPROBLEM I

e Gegeben:
— Alphabet X, Menge von Wortpaaren {(uy,vy), .., (ug, vp)} in X+
— Eine Korrespondenz ist eine Indexfolge 71, .., 2, mit w;,..u;, = v;,..v;,

—{(u1,v1), .., (g, vgp) } heiBt 16sbar, wenn es eine Korrespondenz gibt

e Post’sches Korrespondenzproblem, prazisiert
- PKP = {(ul, Ul), ey (U,k, Uk) ‘ Uq;, U; €X+ /\E|7;1, ey Zn Wiy Uj, — Uil“vin}
— Technisches Problem ohne direkte praktische Relevanz
— Ausgangspunkt fiir Beweise von Unentscheidbarkeiten auf Grammatiken

e Beispiele
Losbar mit Korrespondenz 1323, denn uqususus = vqvzvovg = 101110011
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DAS PoOST’'SCHE KORRESPONDENZPROBLEM I

e Gegeben:
— Alphabet X, Menge von Wortpaaren {(uy,vy), .., (ug, vp)} in X+
— Eine Korrespondenz ist eine Indexfolge 71, .., 2, mit w;,..u;, = v;,..v;,

—{(u1,v1), .., (g, vgp) } heiBt 16sbar, wenn es eine Korrespondenz gibt

e Post’sches Korrespondenzproblem, prazisiert
- PKP = {(ul, Ul), ey (U,k, Uk) ‘ Uq;, U; €X+ /\E|7;1, ey Zn Wiy Uj, — Uil“vin}
— Technisches Problem ohne direkte praktische Relevanz
— Ausgangspunkt fiir Beweise von Unentscheidbarkeiten auf Grammatiken

e Beispiele
- Ky = {(1,101), (10,00), (011,11)}
Losbar mit Korrespondenz 1323, denn uqususus = vqvzvovg = 101110011
— Ky = {(1,10), (101,01)}
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DAS PoOST’'SCHE KORRESPONDENZPROBLEM I

e Gegeben:
— Alphabet X, Menge von Wortpaaren {(uy,vy), .., (ug, vp)} in X+
— Eine Korrespondenz ist eine Indexfolge 71, .., 2, mit w;,..u;, = v;,..v;,

—{(u1,v1), .., (g, vgp) } heiBt 16sbar, wenn es eine Korrespondenz gibt

e Post’sches Korrespondenzproblem, prazisiert
- PKP = {(ul, Ul), ey (U,k, Uk) ‘ Uq;, U; €X+ /\E|7;1, ey Zn Wiy Uj, — Uil“vin}
— Technisches Problem ohne direkte praktische Relevanz
— Ausgangspunkt fiir Beweise von Unentscheidbarkeiten auf Grammatiken

e Beispiele
- Ky = {(1,101), (10,00), (011,11)}
Losbar mit Korrespondenz 1323, denn uqususus = vqvzvovg = 101110011
— Ky = {(1,10), (101,01)}
Unlosbar: alle u; haben mehr Einsen als Nullen, die v; sind ausgewogen
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—{(u1,v1), .., (g, vgp) } heiBt 16sbar, wenn es eine Korrespondenz gibt

e Post’sches Korrespondenzproblem, prazisiert
- PKP = {(ul, Ul), ey (U,k, Uk) ‘ Uq;, U; €X+ /\E|7;1, ey Zn Wiy Uj, — Uil“vin}
— Technisches Problem ohne direkte praktische Relevanz
— Ausgangspunkt fiir Beweise von Unentscheidbarkeiten auf Grammatiken

e Beispiele
- Ky = {(1,101), (10,00), (011,11)}
Losbar mit Korrespondenz 1323, denn uqususus = vqvzvovg = 101110011
— Ky = {(1,10), (101,01)}
Unlosbar: alle u; haben mehr Einsen als Nullen, die v; sind ausgewogen
— K35 = {(001,0), (01,011), (01,101), (10,001)}
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DAS PoOST’'SCHE KORRESPONDENZPROBLEM I

e Gegeben:
— Alphabet X, Menge von Wortpaaren {(uy,vy), .., (ug, vp)} in X+
— Eine Korrespondenz ist eine Indexfolge 71, .., 2, mit w;,..u;, = v;,..v;,

—{(u1,v1), .., (g, vgp) } heiBt 16sbar, wenn es eine Korrespondenz gibt

e Post’sches Korrespondenzproblem, prazisiert
- PKP = {(ul, Ul), ey (U,k, Uk) ‘ Uq;, U; €X+ /\E|7;1, ey Zn Wiy Uj, — Uil“vin}
— Technisches Problem ohne direkte praktische Relevanz
— Ausgangspunkt fiir Beweise von Unentscheidbarkeiten auf Grammatiken

e Beispiele
- Ky = {(1,101), (10,00), (011,11)}
Losbar mit Korrespondenz 1323, denn uqususus = vqvzvovg = 101110011
— Ky = {(1,10), (101,01)}
Unlosbar: alle u; haben mehr Einsen als Nullen, die v; sind ausgewogen
— K35 = {(001,0), (01,011), (01,101), (10,001)}
Losbar mit 243442124343443442144213411344421211134341214421411341131131214113
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POST’SCHES KORRESPONDENZPROBLEM: AUFZAHLBARKEIT

e Aufzahlungsalgorithmus:
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POST’SCHES KORRESPONDENZPROBLEM: AUFZAHLBARKEIT

e Aufzahlungsalgorithmus:
— Eingabe: Wort w = {(uy,v1), .., (ug, vp)} € (X U {rry ) m nhys
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POST’SCHES KORRESPONDENZPROBLEM: AUFZAHLBARKEIT

e Aufzahlungsalgorithmus:
— Eingabe: Wort w = {(uy,v1), .., (ug, vp)} € (X U {rry ) m nhys

— Durch Klammerzahlung bestimme alle u; und v; und die Anzahl £
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POST’SCHES KORRESPONDENZPROBLEM: AUFZAHLBARKEIT

e Aufzahlungsalgorithmus:
— Eingabe: Wort w = {(uy,v1), .., (up, vg)} € (X U {"(r v v
— Durch Klammerzahlung bestimme alle u; und v; und die Anzahl £

— Zahle alle moglichen Indextolgen 4, .., %, mit ¢;<k aut

(Verwende Umkehrung der Standardtupelfunktion fiir Listen (i1, .., ,)*)
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POST’SCHES KORRESPONDENZPROBLEM: AUFZAHLBARKEIT

e Aufzahlungsalgorithmus:
— Eingabe: Wort w = {(uy,v1), .., (up, vg)} € (X U {"(r v v
— Durch Klammerzahlung bestimme alle u; und v; und die Anzahl £

— Zahle alle moglichen Indextolgen 44, .., %, mit ;<k aut

(Verwende Umkehrung der Standardtupelfunktion fiir Listen (i1, .., ,)*)
- Falls w;,..u;, = vy,..v;,, so akzeptiere w (Ausgabe 1)

- Ansonsten generiere die nachste Indextolge
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POST’SCHES KORRESPONDENZPROBLEM: AUFZAHLBARKEIT

e Aufzahlungsalgorithmus:
— Eingabe: Wort w = {(uy,v1), .., (up, vg)} € (X U {"(r v v
— Durch Klammerzahlung bestimme alle u; und v; und die Anzahl £

— Zahle alle moglichen Indextolgen 4, .., %, mit ¢;<k aut

(Verwende Umkehrung der Standardtupelfunktion fiir Listen (i1, .., ,)*)
- Falls w;,..u;, = vy,..v;,, so akzeptiere w (Ausgabe 1)

- Ansonsten generiere die nachste Indextolge

e Algorithmus berechnet ¥, .,
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POST’SCHES KORRESPONDENZPROBLEM: AUFZAHLBARKEIT

e Aufzahlungsalgorithmus:
— Eingabe: Wort w = {(uy,v1), .., (up, vg)} € (X U {"(r v v
— Durch Klammerzahlung bestimme alle u; und v; und die Anzahl £

— Zahle alle moglichen Indextolgen 44, .., %, mit ;<k aut

(Verwende Umkehrung der Standardtupelfunktion fiir Listen (i1, .., ,)*)
- Falls w;,..u;, = vy,..v;,, so akzeptiere w (Ausgabe 1)

- Ansonsten generiere die nachste Indextolge

e Algorithmus berechnet ¥, .,
~wePKP = Esgibt 11, ..,7, mit w;,..u;, = v;,..0;,
= Aufzdhlung endet bei (i1, ..,7,)* mit Ausgabe 1
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POST’SCHES KORRESPONDENZPROBLEM: AUFZAHLBARKEIT

e Aufzahlungsalgorithmus:
— Eingabe: Wort w = {(uy,v1), .., (up, vg)} € (X U {"(r v v
— Durch Klammerzahlung bestimme alle u; und v; und die Anzahl £

— Zahle alle moglichen Indextolgen 44, .., %, mit ;<k aut

(Verwende Umkehrung der Standardtupelfunktion fiir Listen (i1, .., ,)*)
- Falls w;,..u;, = vy,..v;,, so akzeptiere w (Ausgabe 1)

- Ansonsten generiere die nachste Indextolge

e Algorithmus berechnet ¥, .,
~wePKP = Esgibt 11, ..,7, mit w;,..u;, = v;,..0;,
= Aufzdhlung endet bei (i1, ..,7,)* mit Ausgabe 1
-~ w¢ PKP = Es gibt keine Korrespondenz

= Aufzahlung terminiert nicht, da Test niemals erfolgreich
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UNENTSCHEIDBARKEIT VON PKP Satz Q I

Beweis durch doppelte Reduktion

e Verwende eingeschrankte Version M PK P
-~ MPKP = {(uy,vy1), .., (ug, vg) | uj,v; e X

/\322, vy U ULy Wy, = Ulvw..?}in}
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UNENTSCHEIDBARKEIT VON PKP Satz Q I

Beweis durch doppelte Reduktion

e Verwende eingeschrankte Version M PK P
-~ MPKP = {(uy,vy1), .., (ug, vg) | uj,v; e X
/\Elig, “es Zn U Uy .- Uy, = Ulvw..?}in}

— Zeige: MPKP<PKP
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UNENTSCHEIDBARKEIT VON PKP Satz Q I

Beweis durch doppelte Reduktion

e Verwende eingeschrankte Version M PK P
-~ MPKP = {(uy,vy1), .., (ug, vg) | uj,v; e X
ATigy ey e UL, Uy, = V10;,.. 05 }
— Zeige: MPKP<PKP
— Zeige: M PK P ist trotz der Einschrankung unentscheidbar
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UNENTSCHEIDBARKEIT VON PKP Satz Q I

Beweis durch doppelte Reduktion

e Verwende eingeschrankte Version M PK P
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— Zeige, daf3 jede Turingmaschine 7 als MPKP beschrieben werden kann
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— Zeige, daf3 jede Turingmaschine 7 als MPKP beschrieben werden kann
+ (u1,v1) beschreibt die Erzeugung der Anfangskonfiguration

- Weitere Wortpaare entsprechen Konfigurationsiibergangen

(vgl Simulation von TM durch Typ-0 Grammatiken)
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Beweis durch doppelte Reduktion

e Verwende eingeschrankte Version M PK P
-~ MPKP = {(uy,vy1), .., (ug, vg) | uj,v; e X
ATigy ey e UL, Uy, = V10;,.. 05 }
— Zeige: MPKP<PKP
— Zeige: M PK P ist trotz der Einschrankung unentscheidbar

e Zeige: H<MPKP

— Zeige, daf3 jede Turingmaschine 7 als MPKP beschrieben werden kann
+ (u1,v1) beschreibt die Erzeugung der Anfangskonfiguration

- Weitere Wortpaare entsprechen Konfigurationsiibergangen

(vgl Simulation von TM durch Typ-0 Grammatiken)
— 7 halt, wenn das MPKP eine terminierende Berechnung beschreiben kann

— Korrespondenz bedeutet, dafl jedes Ergebnis eines Konfigurationsiibergangs
Anfangspunkt des nichsten Ubergangs ist
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MPKPLPKP I

e Abbildung f erzwingt erstes Wortpaar als Anfang
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MPKPLPKP I

e Abbildung f erzwingt erstes Wortpaar als Anfang
— Erweitere Alphabet X zu X' = X U {#,$}

— Modifiziere Worte w = a;...a,, zu w = a1 #as#...#a,,
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MPKPLPKP I

e Abbildung f erzwingt erstes Wortpaar als Anfang
— Erweitere Alphabet X zu X' = X U {#,$}
— Modifiziere Worte w = a;...a,, zu w = a1 #as#...#a,,
— Definiere Abbildung f durch
fAlur,v1), .., (ug, vp)} = \{(#dlﬁé, #01), @Zl#"r#ﬁll’ ..gﬁk#;#?fkl, @,jé@ }

(ullavll) (UIQ,Ué) (u;{;+1avll{;+1) (u;{;_}_Qavjl{;_}_Q)

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 18 BEWEISTECHNIKEN FUR UNLOSBARE PROBEME




MPKPLPKP I

e Abbildung f erzwingt erstes Wortpaar als Anfang
— Erweitere Alphabet X zu X' = X U {#,$}
— Modifiziere Worte w = a;...a,, zu w = a1 #as#...#a,,
— Definiere Abbildung f durch
fAlur,v1), .., (ug, vp)} = \{(#dlﬁé, #01), &121#‘;#1312, ..gdk#;#?f@, @,ﬁ@ }

(ullavll) (UIQ,Ué) (u;{;+1avll{;+1) (u;{;_}_Qavjl{;_}_Q)

e Zeige Kc MPKP < f(K)ePKP
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e Abbildung f erzwingt erstes Wortpaar als Anfang
— Erweitere Alphabet X zu X' = X U {#,$}
— Modifiziere Worte w = a;...a,, zu w = a1 #as#...#a,,
— Definiere Abbildung f durch
fAlur,v1), .., (ug, vp)} = \{(#dlﬁé, #01), &121#‘;#1312, ..gdk#;#?f@, @,ﬁ@ }

(ullavll) (UIQ,Ué) (u;{;+1avll{;+1) (u;{;_}_Qavjl{;_}_Q)

e Zeige Kc MPKP < f(K)ePKP
- KeMPKP
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MPKPLPKP I

e Abbildung f erzwingt erstes Wortpaar als Anfang

— Erweitere Alphabet X zu X' = X U {#,$}

— Modifiziere Worte w = aj...a,, zu w = a1#as#...#a,

— Definiere Abbildung f durch

flur, v1), o (ur, o) } = {(FFanE, #01), (Ui, #01), - (Ur#f, #01), (5, #3) }
(1)) (1)) (g the) (o)

e Zeige Kc MPKP < f(K)ePKP

-~ KeMPKP = Esgibt i9,..,7, mit wju;,..w;, = v1v;,..0,
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e Zeige Kc MPKP < f(K)ePKP

-~ KeMPKP = Esgibt i9,..,7, mit wju;,..w;, = v1v;,..0,

= L H . Hu $ = Hoy Hu #. Hu H#S
i A S = 0, 4
uy “§2+1 U1 “R2 v “§2+1 Vi1 U2
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e Zeige Kc MPKP < f(K)ePKP

-~ KeMPKP = Esgibt i9,..,7, mit wju;,..w;, = v1v;,..0,

= Uizt um# U S = #u ﬁg@# #, H#S,

Ul

/ )
ul Z2+1 Uip41 h+2 12+1 zn+1 k:+2

= 1,i9+1, .., i,+1, k+2 10st f(K) also f(K)e PKP
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e Abbildung f erzwingt erstes Wortpaar als Anfang

— Erweitere Alphabet X zu X' = X U {#,$}

— Modifiziere Worte w = a;...a,, zu w = a1 #as#...#a,,

— Definiere Abbildung f durch
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(vh0) (1) th) (ko)

e Zeige Kc MPKP < f(K)ePKP

-~ KeMPKP = Esgibt i9,..,7, mit wju;,..w;, = v1v;,..0,

= Uizt um# U S = #u ﬁg@# #, H#S,

Ul

/ )
ul Z2+1 Uip41 h+2 12+1 zn+1 k:+2

= 1,00+1, .., 0,41, k42 10st f(K) also f(K)e PKP
- f(K)ePKP = Esgibt i1, .., i, mit ) .u} =] .1
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e Abbildung f erzwingt erstes Wortpaar als Anfang

— Erweitere Alphabet X zu X' = X U {#,$}

— Modifiziere Worte w = a;...a,, zu w = a1 #as#...#a,,

— Definiere Abbildung f durch

flur, v1), o (ur, o) } = {(FFanE, #01), (Ui, #01), - (Ur#f, #01), (5, #3) }
() (uh5) W1 hir) (0t

e Zeige Kc MPKP < f(K)ePKP

-~ KeMPKP = Esgibt i9,..,7, mit wju;,..w;, = v1v;,..0,

= Uizt um# U S = #u ﬁg@;# #, H#S,

Ul

/ u!
ul 12+1 Uip+1 k42 12+1 Vit Ukt

= 1,i0+1, .., i,+1, k+2 16st f(K) also f(K)e PKP
- f(K)e PKP = Esgibt iy, ..,4, mit w.u; =v;.v;

= i1=1, da nur u}, v] dasselbe Anfangssymbol haben

in=k+2, da nur uj_ ,, v}, dasselbe Endsymbol haben
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= 1dg—1, iy 1—116st K also K e MPKP y
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H<MPKP: TRANSFORMATION I

Transformiere ein Halteproblem 7,w in ein MPKP K
Sei 7 = (5, X,I',0,50,b), we X*. Bestimme K := f(7,w) wie folgt
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Transformiere ein Halteproblem 7,w in ein MPKP K
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— Wihle Alphabet Y := TUSU{#} fir das MPKP
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H<MPKP: TRANSFORMATION I

Transformiere ein Halteproblem 7,w in ein MPKP K
Sei 7 = (5, X,I',0,50,b), we X*. Bestimme K := f(7,w) wie folgt

— Wihle Alphabet Y := TUSU{#} fir das MPKP
— Erzeuge Anfangskonfiguration in (uy, v1) = (#, #sow#)

BEWEISTECHNIKEN FUR UNLOSBARE PROBEME
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H<MPKP: TRANSFORMATION I

Transformiere ein Halteproblem 7,w in ein MPKP K
Sei T = (9, X,I',0,s0,b), we X*. Bestimme K := f(7,w) wie folgt

— Wihle Alphabet Y := TUSU{#} fir das MPKP
— Erzeuge Anfangskonfiguration in (uy, v1) = (#, #sow#)

— Beschreibe Konfigurationsiibergange durch Wortpaare

(sa, as) fir §(s,a) = (s',d’,r)
- (s#, a' s'#) fiir 6(s,b) = (s',a’,7)
- (dsa, s'"da') fir del’ und (s, a) = (s',a’,1)
(#sa, #5ba) fir 6(s,a) = (s',ad’,1)
(ds#, sda #) fir del” und d(s,b) = (s',a’,r)
- (sa, gra’) fir §(s,a) = (s',d’, h)
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- (sa, gra’) fir §(s,a) = (s',d’, h)

— Erginze “Kopierregeln” (a,a) fir alle a e TU{#}

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 19 BEWEISTECHNIKEN FUR UNLOSBARE PROBEME




H<MPKP: TRANSFORMATION I

Transformiere ein Halteproblem 7,w in ein MPKP K
Sei T = (9, X,I',0,s0,b), we X*. Bestimme K := f(7,w) wie folgt

— Wihle Alphabet Y := TUSU{#} fir das MPKP
— Erzeuge Anfangskonfiguration in (uy, vq) := (#, #sow#)

— Beschreibe Konfigurationsiibergange durch Wortpaare

(sa, as) fir §(s,a) = (s',d’,r)
- (s#, a' s'#) fiir 6(s,b) = (s',a’,7)
- (dsa, s'"da') fir del’ und (s, a) = (s',a’,1)
(#sa, #5ba) fir 6(s,a) = (s',ad’,1)
(ds#, sda #) fir del” und d(s,b) = (s',a’,r)
- (sa, gra’) fir §(s,a) = (s',d’, h)

— Ergénze “Kopierregeln” (a,a) fir alle a eTU{#}
— Erganze “Loschregeln” (a gy, gr) und (gr a, q5) fir alle a e’
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— Erginze “Kopierregeln” (a,a) fir alle a e TU{#}
— Erganze “Loschregeln” (a gy, gr) und (gr a, q5) fir alle a e’
— Ergénze “Abschlufiregel” (g # #, #)
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H<MPKP: KORREKTHEIT DER TRANSFORMATION f I

Zeige hr(w)#1 = f(r,w)e MPKP
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H<MPKP: KORREKTHEIT DER TRANSFORMATION f I

Zeige hr(w)#1 = f(r,w)e MPKP
— Wegen h,(w)#L gibt es eine Konfigurationsfolge
Ko=SoW — K1 ...— Ki=Tp..To S Yo--Yp mit d(_, ) = (s, 40, h)
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H<MPKP: KORREKTHEIT DER TRANSFORMATION f I

Zeige hr(w)#1 = f(r,w)e MPKP

— Wegen h,(w)#L gibt es eine Konfigurationsfolge
Ko=SoW — K1 ...— Ki=Tpm..ToSYo.-Yn mit d(_, ) = (s, yo, h)

— Mit Uberfithrungs- und Kopierregeln bauen wir folgendes Wortpaar auf
c U = HSQWHRIFE . . FHRFHET,. . L1
U = FSQWIERITE - - FERFHE T - T120, ¢f Yo--YnFFE T T1
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H<MPKP: KORREKTHEIT DER TRANSFORMATION f I

Zeige hr(w)#L1 = f(r,w)e MPKP

— Wegen h,(w)#L gibt es eine Konfigurationsfolge
Ko=SoW — K1 ...— Ki=Tpm..ToSYo.-Yn mit d(_, ) = (s, yo, h)

— Mit Uberfihrungs- und Kopierregeln bauen wir folgendes Wortpaar auf
c U = HSQWHRIFE . . FHRFHET,. . L1
C U = FSQWHRIF - - - HRAFF L T180, 4f Yo--YnFF T L1

— Mit der Loschregel (z¢qy, qf) erzeugen wir daraus

 FESQWFERITE - . . FRFF L. . T120 ¢
) #SOw#’%l# s #Ht#fm--x1$0 qf yO--yn#fm--x1Qf
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H<MPKP: KORREKTHEIT DER TRANSFORMATION f I

Zeige hr(w)#L1 = f(r,w)e MPKP
— Wegen h,(w)#L gibt es eine Konfigurationsfolge
Ko=SoW — K1 ...— Ki=Tpm..ToSYo.-Yn mit d(_, ) = (s, yo, h)
— Mit Uberfihrungs- und Kopierregeln bauen wir folgendes Wortpaar auf
c U = HSQWHRIFE . . FHRFHET,. . L1
U = FSQWHRAH - . FEF T L1200, f Y0 -YnFF T T1
— Mit der Loschregel (z¢qy, qf) erzeugen wir daraus
 FESQWFERITE - . . FRFF L. . T120 ¢
) #SOw#’%l# R #Ht#x'm--xlf() Qf yO--yn#x'm--x1Qf
— Mit den Kopierregeln bekommen wir
C FSQWHKIFF -« - HEHF T .- T1X qf Yo--YnFt
C FESQWHRIFE - . FRF T D100 G Y0  YnFTom--T1GF Yo- - YnFF
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H<MPKP: KORREKTHEIT DER TRANSFORMATION f I

Zeige h-(w)#.1l = f(r,w)e MPKP
— Wegen h,(w)#L gibt es eine Konfigurationsfolge
Ko=SoW — K1 ...— Ki=Tp..To S Yo--Yp mit d(_, ) = (s, 40, h)
— Mit Uberfihrungs- und Kopierregeln bauen wir folgendes Wortpaar auf
c U = HSQWHRIFE . . FHRFHET,. . L1
C U = FSQWHRIF - - - HRAFF L T180, 4f Yo--YnFF T L1
— Mit der Loschregel (z¢qy, qf) erzeugen wir daraus
 FESQWFERITE - . . FRFF L. . T120 ¢
) #SOw#’%l# R #lit#$m..$1l’0 Qf yO--yn#$m--x1Qf
— Mit den Kopierregeln bekommen wir
C HSQWHRIFE -« - FERAF L - X100 4 Yo YT
 FESQWHRIFE - - HRAF T L1T0 Gf Yoo -YnFFTm-- 214 Yo- - YnHF
— Mit den Losch- und Kopierregeln ergibt sich
CFFSQWH HL - T1Gf Yo--YnFFTm--T2Gf Yo YnFF - - - #Hf YnFF
CFESOWHE HTm--L1Gf Yo -YnFF T --L2Gf Yo--YnTF - - - FAf YnHFqfHF
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— Mit Uberfihrungs- und Kopierregeln bauen wir folgendes Wortpaar auf
c U = HSQWHRIFE . . FHRFHET,. . L1
C U = FSQWHRIF - - - HRAFF L T180, 4f Yo--YnFF T L1
— Mit der Loschregel (z¢qy, qf) erzeugen wir daraus
 FESQWFERITE - . . FRFF L. . T120 ¢
) #SOw#’%l# R #lit#$m..$1l’0 Qf yO--yn#$m--x1Qf
— Mit den Kopierregeln bekommen wir
C HSQWHRIFE -« - FERAF L - X100 4 Yo YT
 FESQWHRIFE - - HRAF T L1T0 Gf Yoo -YnFFTm-- 214 Yo- - YnHF
— Mit den Losch- und Kopierregeln ergibt sich

CHFSQWHE L. Ly T1qf Y0--YnFETm--L2GF Yo -YnTFE - - - F-AF YnFF
- FESQWFHE .. Ly T1Gf Y0 -YnFETm--T2G Yo YnTFF - - - FQF YnFrq 7
— Mit der Abschlufiregel ergibt sich schlieflich
S FESQWHE . ... F L T1GF Yo YnFF Tim--T2G 7 Yo YnFE - - - T4 f YnFr A 77
CHFSQWHE L. F LT T1GF Yo -YnFFTm--T2GF Yo YnFE - - - T4 f YnFr A 77 v
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H<MPKP: KORREKTHEIT DER TRANSFORMATION f (II)

Zeige hr(w)#1 < f(r,w)e MPKP
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H<MPKP: KORREKTHEIT DER TRANSFORMATION f (II)

Zeige hr(w)#1l < f(r,w)e MPKP
— Es gelte f(r,w)e MPKP

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 21 BEWEISTECHNIKEN FUR UNLOSBARE PROBEME




H<MPKP: KORREKTHEIT DER TRANSFORMATION f (II)

Zeige hr(w)#1l < f(r,w)e MPKP
— Es gelte f(r,w)e MPKP

— Also gibt es 19, .., %, mit wju,,..u;, = v1v;,..0;,
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H<MPKP: KORREKTHEIT DER TRANSFORMATION f (II)

Zeige hr(w)#1l < f(r,w)e MPKP
— Es gelte f(r,w)e MPKP

— Also gibt es 19, .., %, mit wju,,..u;, = v1v;,..0;,

— U Ui, u;, Muld mit #spw# beginnen und mit g # # enden

BEWEISTECHNIKEN FUR UNLOSBARE PROBEME
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H<MPKP: KORREKTHEIT DER TRANSFORMATION f (II)

Zeige hr(w)#1l < f(r,w)e MPKP
— Es gelte f(r,w)e MPKP

— Also gibt es 19, .., %, mit wju,,..u;, = v1v;,..0;,
— U Ui, u;, Muld mit #spw# beginnen und mit g # # enden

— Wegen der Uberfithrungsregeln gilt #HUj,=V1, FUL=Viy , ...
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H<MPKP: KORREKTHEIT DER TRANSFORMATION f (II)

Zeige hr(w)#1l < f(r,w)e MPKP
— Es gelte f(r,w)e MPKP

— Also gibt es 19, .., %, mit wju,,..u;, = v1v;,..0;,

— U Ui, u;, Muld mit #spw# beginnen und mit g # # enden

— Wegen der Uberfithrungsregeln gilt #HUj,=V1, FUL=Viy , ...

— Aus der Korrespondenz konnen wir daher eine Konfigurationsfolge

Ko=SoW — ... — Ky=Tp,..Lo S Yo.-Yn konstruieren mit d(_, ) = (s, o, h)
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H<MPKP: KORREKTHEIT DER TRANSFORMATION f (II)

Zeige hr(w)#1l < f(r,w)e MPKP
— Es gelte f(r,w)e MPKP

— Also glbt €S iQ, “es Zn mit UL Uy .- Uj, = V14, ..Uy,
— U Ui, u;, Muld mit #spw# beginnen und mit g # # enden
— Wegen der Uberfithrungsregeln gilt #HUj,=V1, FUL=Viy , ...

— Aus der Korrespondenz konnen wir daher eine Konfigurationsfolge

Ko=SoW — ... — Ky=Tp,..Lo S Yo.-Yn konstruieren mit d(_, ) = (s, o, h)

— Also halt 7 bei Eingabe w
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H<MPKP: KORREKTHEIT DER TRANSFORMATION f (II)

Zeige hr(w)#1l < f(r,w)e MPKP
— Es gelte f(r,w)e MPKP

— Also gibt es 19, .., %, mit wju,,..u;, = v1v;,..0;,

— U Ui, u;, Muld mit #spw# beginnen und mit g # # enden

— Wegen der Uberfithrungsregeln gilt #HUj,=V1, FUL=Viy , ...

— Aus der Korrespondenz konnen wir daher eine Konfigurationsfolge
Ko=SoW — ... — Ky=Tp,..Lo S Yo.-Yn konstruieren mit d(_, ) = (s, o, h)

— Also halt 7 bei Eingabe w v

Es folgt H<MPKP, also ist M PK P unentscheidbar

BEWEISTECHNIKEN FUR UNLOSBARE PROBEME
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UNENTSCHEIDBARKEITEN AUF (GRAMMATIKEN Satze S/ T |

Fiir kontextfreie Grammatiken G, G’ sind

die folgende Probleme unentscheidbar

.L(G)NL(G') =0

. L(G) N L(G") unendlich
. L(G) N L(G") kontextfrei
. L(G) € L(G")

. L(G) = L(G’)

. L(G) = X~

. G mehrdeutig

. L(G) kontextfrei

. L(G) regular

. L(G) € DPDA

© 00 N O O k= W N -

[
o
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BEWEIS VON UNENTSCHEIDBARKEITEN I

Reduktion auf das Post’sche Korrespondenzproblem

e Transformiere ein PKP in Grammatiken G und G’
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BEWEIS VON UNENTSCHEIDBARKEITEN I

Reduktion auf das Post’sche Korrespondenzproblem

e Transformiere ein PKP in Grammatiken G und G’
— Gegeben K = {(uy,v1), .., (ug, vg) } iber X =40, 1}
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BEWEIS VON UNENTSCHEIDBARKEITEN I

Reduktion auf das Post’sche Korrespondenzproblem

e Transformiere ein PKP in Grammatiken G und G’
— Gegeben K = {(uy,v1), .., (ug, vg) } iber X =40, 1}
— Wiéhle Terminalalphabet := {0,1,$, a1, .., a;}
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BEWEIS VON UNENTSCHEIDBARKEITEN I

Reduktion auf das Post’sche Korrespondenzproblem

e Transformiere ein PKP in Grammatiken G und G’
— Gegeben K = {(uy,v1), .., (ug, vg) } iber X =40, 1}
— Wiéhle Terminalalphabet := {0,1,$, a1, .., a;}
— Konstruiere G := S—A$B,
A—a1Auy, ... A—aAuy, A—ajuy, ... A—aiuy
B—viBay, ... B—vi.Ba,, B—viaq,... B—vLa
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BEWEIS VON UNENTSCHEIDBARKEITEN I

Reduktion auf das Post’sche Korrespondenzproblem

e Transformiere ein PKP in Grammatiken G und G’

— Gegeben K = {(uy,v1), .., (ug, vg) } iber X =40, 1}

— Wiéhle Terminalalphabet := {0,1,$, a1, .., a;}

— Konstruiere G := S—A$B,
A—a1Auy, ... A—aAuy, A—ajuy, ... A—aiuy
B—viBay, ... B—vi.Ba,, B—viaq,... B—vLa

— Dann gilt L(G) = {a,,..a;,u;,..w;, $U; . 05a,..aj, | iy, <k}

— Konstruiere G/ := S—a;Saq, .., S—apSa, S—T,
T—0T0, T—1T1, T—$,
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A—a1Auy, ... A—aAuy, A—ajuy, ... A—aiuy
B—viBay, ... B—vi.Ba,, B—viaq,... B—vLa

— Dann gilt L(G) = {a,,..a;,u;,..w;, $U; . 05a,..aj, | iy, <k}

— Konstruiere G/ := S—a;Saq, .., S—apSa, S—T,
T—0T0, T—1T1, T—$,

— Dann gilt L(G) ={ww$uv | ue{ay,..,ap}*,ve{0,1}*}
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BEWEIS VON UNENTSCHEIDBARKEITEN I

Reduktion auf das Post’sche Korrespondenzproblem

e Transformiere ein PKP in Grammatiken G und G’

— Gegeben K = {(uy,v1), .., (ug, vg) } iber X =40, 1}

— Wiéhle Terminalalphabet := {0,1,$, a1, .., a;}
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A—a1Auy, ... A—aAuy, A—ajuy, ... A—aiuy
B—viBay, ... B—vi.Ba,, B—viaq,... B—vLa

— Dann gilt L(G) = {a,,..a;,u;,..w;, $U; . 05a,..aj, | iy, <k}

— Konstruiere G/ := S—a;Saq, .., S—apSa, S—T,
T—0T0, T—1T1, T—$,

— Dann gilt L(G) ={ww$uv | ue{ay,..,ap}*,ve{0,1}*}

e L(G)NL(G")=0 ist unentscheidbar
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T—0T0, T—1T1, T—$,

— Dann gilt L(G) ={ww$uv | ue{ay,..,ap}*,ve{0,1}*}

e L(G)NL(G")=0 ist unentscheidbar
— Folgt direkt aus K e PKP < L(G)NL(G")#() Y
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— Konstruiere G/ := S—a;Saq, .., S—apSa, S—T,
T—0T0, T—1T1, T—$,

— Dann gilt L(G) ={ww$uv | ue{ay,..,ap}*,ve{0,1}*}

e L(G)NL(G")=0 ist unentscheidbar
— Folgt direkt aus K e PKP < L(G)NL(G")#() Y

e L(G)NL(G") unendlich ist unentscheidbar
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BEWEIS VON UNENTSCHEIDBARKEITEN I

Reduktion auf das Post’sche Korrespondenzproblem

e Transformiere ein PKP in Grammatiken G und G’

— Gegeben K = {(uy,v1), .., (ug, vg) } iber X =40, 1}

— Wiéhle Terminalalphabet := {0,1,$, a1, .., a;}

— Konstruiere G := S—A$B,
A—a1Auy, ... A—aAuy, A—ajuy, ... A—aiuy
B—viBay, ... B—vi.Ba,, B—viaq,... B—vLa

— Dann gilt L(G) = {a,,..a;,u;,..w;, $U; . 05a,..aj, | iy, <k}

— Konstruiere G/ := S—a;Saq, .., S—apSa, S—T,
T—0T0, T—1T1, T—$,

— Dann gilt L(G) ={ww$uv | ue{ay,..,a;}*,ve{0,1}*}

e L(G)NL(G")=0 ist unentscheidbar
— Folgt direkt aus K e PKP < L(G)NL(G")#() Y

e L(G)NL(G") unendlich ist unentscheidbar

= Bs gilt wy, o u, = vip05, = Wi, Wi W, = V05 Vg =
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BEWEIS VON UNENTSCHEIDBARKEITEN I

Reduktion auf das Post’sche Korrespondenzproblem

e Transformiere ein PKP in Grammatiken G und G’

— Gegeben K = {(uy,v1), .., (ug, vg) } iber X =40, 1}

— Wiéhle Terminalalphabet := {0,1,$, a1, .., a;}

— Konstruiere G := S—A$B,
A—a1Auy, ... A—aAuy, A—ajuy, ... A—aiuy
B—viBay, ... B—vi.Ba,, B—viaq,... B—vLa

— Dann gilt L(G) = {a,,..a;,u;,..w;, $U; . 05a,..aj, | iy, <k}

— Konstruiere G/ := S—a;Saq, .., S—apSa, S—T,
T—0T0, T—1T1, T—$,

— Dann gilt L(G) ={ww$uv | ue{ay,..,a;}*,ve{0,1}*}

e L(G)NL(G")=0 ist unentscheidbar
— Folgt direkt aus K e PKP < L(G)NL(G")#() Y

e L(G)NL(G") unendlich ist unentscheidbar
— Es gllt Wiy - Ui, = Uy U4, = Wiy Wi, Uiy U, = U4 U5, VgV, =
— Es folgt K e PKP < L(G)NL(G’) unendlich .
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PROBLEMREDUKTION MIT ABSCHLUSSEIGENSCHAFTEN I

e Ziel: Wiederverwendung bekannter Ergebnisse
— Zur Losung eines Problems P bzw. zum Nachweis seiner Unlosbarkeit

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 24 BEWEISTECHNIKEN FUR UNLOSBARE PROBEME




PROBLEMREDUKTION MIT ABSCHLUSSEIGENSCHAFTEN I

e Ziel: Wiederverwendung bekannter Ergebnisse
— Zur Losung eines Problems P bzw. zum Nachweis seiner Unlosbarkeit

e Methodik

— Zeige, daf Losung fiir P ein unlosbares Problem P’ 16sen wiirde
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PROBLEMREDUKTION MIT ABSCHLUSSEIGENSCHAFTEN I

e Ziel: Wiederverwendung bekannter Ergebnisse
— Zur Losung eines Problems P bzw. zum Nachweis seiner Unlosbarkeit

e Methodik

— Zeige, daf Losung fiir P ein unlosbares Problem P’ 16sen wiirde
— Zeige, wie Losung eines bekannten Problems P’ zur Losung von P’ fiihrt
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PROBLEMREDUKTION MIT ABSCHLUSSEIGENSCHAFTEN I

e Ziel: Wiederverwendung bekannter Ergebnisse
— Zur Losung eines Problems P bzw. zum Nachweis seiner Unlosbarkeit

e Methodik

— Zeige, dal Losung fiir P ein unlosbares Problem P’ 16sen wiirde
— Zeige, wie Losung eines bekannten Problems P’ zur Losung von P’ fiihrt

e Hilfsmittel: Abschlufleigenschaften
— M, M’ entscheidbar, dann auch MUM', MnM', M\M', M, f~YM)
— M, M’ aufzahlbar, dann auch MUM', MNM', g(M), g (M)
— M entscheidbar < M und M aufzihlbar
— Reduzierbarkeit ist ein besonders machtiger Spezialfall
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PROBLEMREDUKTION MIT ABSCHLUSSEIGENSCHAFTEN I

e Ziel: Wiederverwendung bekannter Ergebnisse
— Zur Losung eines Problems P bzw. zum Nachweis seiner Unlosbarkeit

e Methodik

— Zeige, dal Losung fiir P ein unlosbares Problem P’ 16sen wiirde
— Zeige, wie Losung eines bekannten Problems P’ zur Losung von P’ fiihrt

e Hilfsmittel: Abschlufleigenschaften
— M, M’ entscheidbar, dann auch MUM', MnM', M\M', M, f~YM)
— M, M’ aufzahlbar, dann auch MUM', MNM', g(M), g (M)
— M entscheidbar < M und M aufzihlbar
— Reduzierbarkeit ist ein besonders machtiger Spezialfall

e Umkehrung der Abschlufleigenschaften
— M nicht entscheidbar = M nicht entscheidbar
— M aufzihlbar, nicht entscheidbar = M weder aufzihlbar noch entscheidbar
— M entscheidbar, M UM’ nicht entscheidbar = M’ nicht entscheidbar
— M entscheidbar, M\ M’ nicht entscheidbar = M’ nicht entscheidbar
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RESULTATE AUS ABSCHLUSSEIGENSCHAFTEN I

o {(i,mn) | p;(n)=_L} ist nicht aufziahlbar Satz J.b
—{(i,n) | pi(n)=1} ist das Komplement von H = {(i,n) | ¢;(n)#L}

— H ist aufzahlbar aber unentscheidbar, also kann H nicht aufzihlbar sein
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RESULTATE AUS ABSCHLUSSEIGENSCHAFTEN I

o {(z,m) | p;(n)=_L} ist nicht aufziahlbar Satz J.b
—{(i,n) | pi(n)=1} ist das Komplement von H = {(i,n) | ¢;(n)#L}

— H ist aufzahlbar aber unentscheidbar, also kann H nicht aufzihlbar sein

o {1|p;(1)=_L} ist nicht aufzihlbar
—{i| (@)=L} ist das Komplement von S = {i|¢;(i)#L}

— S ist aufzihlbar aber unentscheidbar, also kann S nicht aufzihlbar sein
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RESULTATE AUS ABSCHLUSSEIGENSCHAFTEN I

o {(z,m) | p;(n)=_L} ist nicht aufziahlbar Satz J.b
—{(i,n) | pi(n)=1} ist das Komplement von H = {(i,n) | ¢;(n)#L}

— H ist aufzahlbar aber unentscheidbar, also kann H nicht aufzihlbar sein

o {1|p;(1)=_L} ist nicht aufzihlbar
—{i ] p;(i)=1L} ist das Komplement von S = {i | p;(i)#L}

— S ist aufzihlbar aber unentscheidbar, also kann S nicht aufzihlbar sein

e PROG, = {1 | p; = z} ist nicht aufzihlbar
~ Es gilt H<PROG. und H ist nicht aufzihlbar
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RESULTATE AUS ABSCHLUSSEIGENSCHAFTEN I

o {(z,m) | p;(n)=_L} ist nicht aufziahlbar Satz J.b
—{(i,n) | pi(n)=1} ist das Komplement von H = {(i,n) | ¢;(n)#L}

— H ist aufzahlbar aber unentscheidbar, also kann H nicht aufzihlbar sein

o {1|p;(1)=_L} ist nicht aufzihlbar
—{i ] p;(i)=1L} ist das Komplement von S = {i | p;(i)#L}

— S ist aufzihlbar aber unentscheidbar, also kann S nicht aufzihlbar sein

e PROG, = {1 | p; = z} ist nicht aufzihlbar
~ Es gilt H<PROG. und H ist nicht aufzihlbar

e PF, = {i|y; partiell} ist unentscheidbar
— PF, ist das Komplement von R, = {7 | ¢; total}
— R, ist nicht aufzahlbar, also kann PF,, = 72_@ nicht entscheidbar sein
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WELCHE VERIFIKATIONSPROBLEME SIND ENTSCHEIDBAR? I

e Halteproblem

— Kann man von einem beliebigen Programm entscheiden,
ob es bei bestimmten Eingaben halt oder nicht?

— Bereits als unentscheidbar nachgewiesen
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WELCHE VERIFIKATIONSPROBLEME SIND ENTSCHEIDBAR? I

e Halteproblem

— Kann man von einem beliebigen Programm entscheiden,
ob es bei bestimmten Eingaben halt oder nicht?

— Bereits als unentscheidbar nachgewiesen

e Korrektheitsproblem

— Kann man von einem beliebigen Programm entscheiden,
ob es eine bestimmte Funktion berechnet oder nicht?

— Fiir die Nullfunktion bereits als unentscheidbar nachgewiesen
— Gilt ahnliches fiir andere Funktionen?
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WELCHE VERIFIKATIONSPROBLEME SIND ENTSCHEIDBAR? I

e Halteproblem

— Kann man von einem beliebigen Programm entscheiden,
ob es bei bestimmten Eingaben halt oder nicht?

— Bereits als unentscheidbar nachgewiesen

e Korrektheitsproblem

— Kann man von einem beliebigen Programm entscheiden,
ob es eine bestimmte Funktion berechnet oder nicht?

— Fiir die Nullfunktion bereits als unentscheidbar nachgewiesen
— Gilt ahnliches fiir andere Funktionen?

e Spezifikationsproblem

— Kann man von einem beliebigen Programm entscheiden,
ob es eine gegebene Spezfikation erfiillt oder nicht?
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WELCHE VERIFIKATIONSPROBLEME SIND ENTSCHEIDBAR? I

e Halteproblem

— Kann man von einem beliebigen Programm entscheiden,
ob es bei bestimmten Eingaben halt oder nicht?

— Bereits als unentscheidbar nachgewiesen

e Korrektheitsproblem

— Kann man von einem beliebigen Programm entscheiden,
ob es eine bestimmte Funktion berechnet oder nicht?

— Fiir die Nullfunktion bereits als unentscheidbar nachgewiesen
— Gilt ahnliches fiir andere Funktionen?

e Spezifikationsproblem

— Kann man von einem beliebigen Programm entscheiden,
ob es eine gegebene Spezfikation erfiillt oder nicht?

° Aquivalenzproblem

— Kann man entscheiden, ob zwei beliebige Programme die gleiche
Funktion berechnen oder nicht?
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WELCHE VERIFIKATIONSPROBLEME SIND ENTSCHEIDBAR? I

e Halteproblem

— Kann man von einem beliebigen Programm entscheiden,
ob es bei bestimmten Eingaben halt oder nicht?

— Bereits als unentscheidbar nachgewiesen

e Korrektheitsproblem

— Kann man von einem beliebigen Programm entscheiden,
ob es eine bestimmte Funktion berechnet oder nicht?

— Fiir die Nullfunktion bereits als unentscheidbar nachgewiesen
— Gilt ahnliches fiir andere Funktionen?

e Spezifikationsproblem

— Kann man von einem beliebigen Programm entscheiden,
ob es eine gegebene Spezfikation erfiillt oder nicht?

° Aquivalenzproblem

— Kann man entscheiden, ob zwei beliebige Programme die gleiche
Funktion berechnen oder nicht?

Gibt es eine allgemeine Antwort?
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft

berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft

berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar
Beweis durch Reduktion auf S = {7 | ¢;(2)#L}
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft

berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}
— Betrachte g = Az. L
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft
berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}

— Betrachte g = Az. L
— Falls g ¢ P, so wahle h € P beliebig und definiere

Wi, x) = { Tf”’) iilrllzt%(i#L

BEWEISTECHNIKEN FUR UNLOSBARE PROBEME
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft
berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}

— Betrachte g = Az. L
— Falls g ¢ P, so wahle h € P beliebig und definiere

Wi, z) = { Tx) iilrllzt%(i#L

— Dann ist A’ berechenbar und nach dem SMN Theorem gibt es ein
total-berechenbares f mit h'(i, z) = v ()

BEWEISTECHNIKEN FUR UNLOSBARE PROBEME
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft
berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}
— Betrachte g = Az. L
— Falls g ¢ P, so wahle h € P beliebig und definiere
. h(z) falls ¢;(i)#L
/ _
Wi, ) = { 1 sonst

— Dann ist A’ berechenbar und nach dem SMN Theorem gibt es ein
total-berechenbares f mit h'(i, z) = v ()
— Es folgt: 1€.5
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft
berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}
— Betrachte g = Az. L
— Falls g ¢ P, so wahle h € P beliebig und definiere
. h(z) falls ¢;(i)#L
/ _
Wi, ) = { 1 sonst

— Dann ist A’ berechenbar und nach dem SMN Theorem gibt es ein
total-berechenbares f mit h'(i, z) = v ()
~Esfolgt: ieS = Va.psq(x)=h(z)
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft
berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}
— Betrachte g = Az. L
— Falls g ¢ P, so wahle h € P beliebig und definiere
. h(z) falls ¢;(i)#L
/ _
Wi, ) = { 1 sonst

— Dann ist A’ berechenbar und nach dem SMN Theorem gibt es ein
total-berechenbares f mit h'(i, z) = v ()
~Esfolgt: ieS = Va.pg(z)=h(zr) = ¢ry=heP
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft
berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}
— Betrachte g = Az. L
— Falls g ¢ P, so wahle h € P beliebig und definiere
. h(z) falls ¢;(i)#L
/ _
Wi, ) = { 1 sonst

— Dann ist A’ berechenbar und nach dem SMN Theorem gibt es ein
total-berechenbares f mit h'(i, z) = v ()
~Esfolgt: ieS = Vr.pp(z)=h(z) = @py=heP = f(i)eLlp
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft
berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}
— Betrachte g = Az. L
— Falls g ¢ P, so wahle h € P beliebig und definiere

. h(z) falls ¢;(i)#L
/ _
Pili, ) = { 1 sonst
— Dann ist A’ berechenbar und nach dem SMN Theorem gibt es ein
total-berechenbares f mit h'(i, z) = v ()
~Esfolgt: ieS = Vr.pp(z)=h(z) = @py=heP = f(i)eLlp
1 ¢S
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft
berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}
— Betrachte g = Az. L
— Falls g ¢ P, so wahle h € P beliebig und definiere

. h(z) falls ¢;(i)#L
/ _
Pili, ) = { 1 sonst
— Dann ist A’ berechenbar und nach dem SMN Theorem gibt es ein
total-berechenbares f mit h'(i, z) = v ()
~Esfolgt: ieS = Vr.pp(z)=h(z) = @py=heP = f(i)eLlp
1¢S = V. gpf(i)(z)zj_
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft
berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}
— Betrachte g = Az. L
— Falls g ¢ P, so wahle h € P beliebig und definiere

. h(z) falls ¢;(i)#L
/ _
Pili, ) = { 1 sonst
— Dann ist A’ berechenbar und nach dem SMN Theorem gibt es ein
total-berechenbares f mit h'(i, z) = v ()
~Esfolgt: ieS = Vr.pp(z)=h(z) = @py=heP = f(i)eLlp
1¢S = V. gpf(i)(z)zj_ — gpf(z-)zg%P
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft
berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}
— Betrachte g = Az. L
— Falls g ¢ P, so wahle h € P beliebig und definiere

. h(z) falls ¢;(i)#L
/ _
Pili, ) = { 1 sonst
— Dann ist A’ berechenbar und nach dem SMN Theorem gibt es ein
total-berechenbares f mit h'(i, z) = v ()
~Esfolgt: ieS = Vr.pp(z)=h(z) = @py=heP = f(i)eLlp
1¢S = V. gpf(i)(z)zj_ — gpf(z-)zg%P = f(i)¢Lp
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft
berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}
— Betrachte g = Az. L
— Falls g ¢ P, so wahle h € P beliebig und definiere
. h(z) falls ¢;(i)#L
/ _
Wi, ) = { 1 sonst

— Dann ist A’ berechenbar und nach dem SMN Theorem gibt es ein
total-berechenbares f mit h'(i, z) = v ()
~Esfolgt: ieS = Vr.pp(z)=h(z) = @py=heP = f(i)eLlp
1¢S = V. gpf(z-)(x)zj_ — gpf(z-)zg%P = f(i)¢Lp
— Insgesamt i€ S < f(i)eLp, also S<P
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft
berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}
— Betrachte g = Az. L
— Falls g ¢ P, so wahle h € P beliebig und definiere
. h(z) falls ¢;(i)#L
/ _
Wi, ) = { 1 sonst

— Dann ist A’ berechenbar und nach dem SMN Theorem gibt es ein
total-berechenbares f mit h'(i, z) = v ()
~Esfolgt: ieS = Vr.pp(z)=h(z) = @py=heP = f(i)eLlp
1¢S = V. gpf(z-)(x)zj_ — gpf(z-)zg%P = f(i)¢Lp
— Insgesamt i€ S < f(i)eLp, also S<P
— Da .S unentscheidbar ist, muf$ dies auch fir P gelten v
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DER SATZ VON RICE Satz O I

Keine nichttriviale extensionale Eigenschaft
berechenbarer Funktionen ist entscheidbar

Fir 0#PC7T,, ist Lp = {i| ¢; € P} nicht entscheidbar

Beweis durch Reduktion auf S = {7 | ¢;(2)#L}
— Betrachte g = Az. L
— Falls g ¢ P, so wahle h € P beliebig und definiere
. h(z) falls ¢;(i)#L
/ _
Wi, ) = { 1 sonst

— Dann ist A’ berechenbar und nach dem SMN Theorem gibt es ein
total-berechenbares f mit h'(i, z) = v ()
~Esfolgt: ieS = Vr.pp(z)=h(z) = @py=heP = f(i)eLlp
1¢S = V. gpf(z-)(x)zj_ — gpf(z-)zg%P = f(i)¢Lp
— Insgesamt i€ S < f(i)eLp, also S<P
— Da .S unentscheidbar ist, muf$ dies auch fir P gelten v

— Falls g €S wilhle ein beliebiges h ¢ S und zeige so S<P v
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ANWENDUNGEN DES SATZES VON RICE I

e MON = {i | Vk. p;(k) < ¢;(k+1)}

— Monotone Funktionen sind unentscheidbar
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ANWENDUNGEN DES SATZES VON RICE I

e MON = {i | Vk. p;(k) < ¢;(k+1)}

— Monotone Funktionen sind unentscheidbar

o EF = {i | Vj. ¢;(j) €{0,1}}

— Entscheidungsfunktionen sind unentscheidbar
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ANWENDUNGEN DES SATZES VON RICE I

e MON = {i | Vk. p;(k) < ¢;(k+1)}

— Monotone Funktionen sind unentscheidbar

o EF = {i | Vj. ¢;(j) €{0,1}}

— Entscheidungstunktionen sind unentscheidbar

e PROG spec = {1 | ; erfiillt Spezifikation spec}

— Allgemeines Spezifikationsproblem ist unentscheidbar
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ANWENDUNGEN DES SATZES VON RICE I

e MON = {i | Vk. p;(k) < ¢;(k+1)}

— Monotone Funktionen sind unentscheidbar

o EF = {i | Vj. ¢;(j) €{0,1}}

— Entscheidungstunktionen sind unentscheidbar

e PROG spec = {1 | ; erfiillt Spezifikation spec}

— Allgemeines Spezifikationsproblem ist unentscheidbar
e PROGy = {i | ¢; = f}

— Korrektheitsproblem ist unentscheidbar

THEORETISCHE INFORMATIK II §7: ELEMENTARE BERECHENBARKEITSTHEORIE 28 BEWEISTECHNIKEN FUR UNLOSBARE PROBEME




ANWENDUNGEN DES SATZES VON RICE I

e MON = {i | Vk. p;(k) < ¢;(k+1)}

— Monotone Funktionen sind unentscheidbar

o EF = {i | Vj. ¢;(j) €{0,1}}

— Entscheidungstunktionen sind unentscheidbar

e PROG spec = {1 | ; erfiillt Spezifikation spec}

— Allgemeines Spezifikationsproblem ist unentscheidbar
e PROGy = {i | ¢; = f}

— Korrektheitsproblem ist unentscheidbar

e EQ = {(3,J) | vi = #j}

— Aquivalenzproblem ist unentscheidbar
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ANWENDUNGEN DES SATZES VON RICE I

e MON = {i | Vk. p;(k) < ¢;(k+1)}

— Monotone Funktionen sind unentscheidbar

o EF = {i | Vj. ¢;(j) €{0,1}}

— Entscheidungstunktionen sind unentscheidbar

e PROG spec = {1 | ; erfiillt Spezifikation spec}

— Allgemeines Spezifikationsproblem ist unentscheidbar
e PROGy = {i | ¢; = f}

— Korrektheitsproblem ist unentscheidbar

e EQ = {(3,J) | vi = #j}

— Aquivalenzproblem ist unentscheidbar

e RG = {(4,7) | j €crange(p;)}

— Bildbereiche sind unentscheidbar
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ANWENDUNGEN DES SATZES VON RICE I

e MON = {i | Vk. p;(k) < ¢;(k+1)}
— Monotone Funktionen sind unentscheidbar

o EF = {i | Vj. ¢;(j) €{0,1}}

— Entscheidungsfunktionen sind unentscheidbar

e PROG spec = {1 | ; erfiillt Spezifikation spec}

— Allgemeines Spezifikationsproblem ist unentscheidbar
e PROGy = {i | ¢; = f}

— Korrektheitsproblem ist unentscheidbar

e EQ = {(3,J) | vi = #j}

— Aquivalenzproblem ist unentscheidbar

e RG = {(4,7) | j €crange(p;)}

— Bildbereiche sind unentscheidbar

Keine Programmeigenschaft kann getestet werden
Beweise miussen von Hand gefiihrt werden

Rechnerunterstiitzung nur in Spezialfallen moglich
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