
Theoretische Informatik II

Einheit 8

Komplexitätstheorie

1. Komplexitätsmaße

2. Komplexität von Algorithmen (obere Schranken)

3. Komplexität von Problemen (untere Schranken)

4. NP-Vollständigkeit



Theoretische Informatik II 1 §8: Komplexitätstheorie

Komplexitätstheorie

– Was kann mit vertretbarem Aufwand gelöst werden? –

• Berechenbarkeit alleine reicht nicht
– Lösungen müssen effizient sein in praktischen Anwendungen

– Berechenbarkeit/Entscheidbarkeit löst nur die Grundsatzfrage



Theoretische Informatik II 1 §8: Komplexitätstheorie

Komplexitätstheorie

– Was kann mit vertretbarem Aufwand gelöst werden? –

• Berechenbarkeit alleine reicht nicht
– Lösungen müssen effizient sein in praktischen Anwendungen

– Berechenbarkeit/Entscheidbarkeit löst nur die Grundsatzfrage

• Komplexität: Analyse benötigter Resourcen
– Zeitbedarf des Algorithmus Time

– Speicherbedarf des Verfahrens (RAM, Harddisk) Space

– Netzzugriffe, Zugriff auf andere Medien



Theoretische Informatik II 1 §8: Komplexitätstheorie

Komplexitätstheorie

– Was kann mit vertretbarem Aufwand gelöst werden? –

• Berechenbarkeit alleine reicht nicht
– Lösungen müssen effizient sein in praktischen Anwendungen

– Berechenbarkeit/Entscheidbarkeit löst nur die Grundsatzfrage

• Komplexität: Analyse benötigter Resourcen
– Zeitbedarf des Algorithmus Time

– Speicherbedarf des Verfahrens (RAM, Harddisk) Space

– Netzzugriffe, Zugriff auf andere Medien

• Meßgröße muß unabhängig sein von
– Konkreter Hardware

– Konkreter Programmiersprache

– Optimierungsfähigkeiten des Compilers

– Auswahl der Testdaten



Theoretische Informatik II 1 §8: Komplexitätstheorie

Komplexitätstheorie

– Was kann mit vertretbarem Aufwand gelöst werden? –

• Berechenbarkeit alleine reicht nicht
– Lösungen müssen effizient sein in praktischen Anwendungen

– Berechenbarkeit/Entscheidbarkeit löst nur die Grundsatzfrage

• Komplexität: Analyse benötigter Resourcen
– Zeitbedarf des Algorithmus Time

– Speicherbedarf des Verfahrens (RAM, Harddisk) Space

– Netzzugriffe, Zugriff auf andere Medien

• Meßgröße muß unabhängig sein von
– Konkreter Hardware

– Konkreter Programmiersprache

– Optimierungsfähigkeiten des Compilers

– Auswahl der Testdaten

⇓

Abstrakte Komplexitätsmaße erforderlich



Theoretische Informatik II 2 §8: Komplexitätstheorie

Fragestellungen der Komplexitätstheorie

• Asymptotisches Verhalten von Algorithmen

– Komplexitätsfunktion: Bedarf abhängig von der Größe der Eingabe

– Abschätzung der Komplexität großer Probleme



Theoretische Informatik II 2 §8: Komplexitätstheorie

Fragestellungen der Komplexitätstheorie

• Asymptotisches Verhalten von Algorithmen

– Komplexitätsfunktion: Bedarf abhängig von der Größe der Eingabe

– Abschätzung der Komplexität großer Probleme

• Analyse konkreter Verfahren

– Maximaler Verbrauch im Einzelfall Worst case

Wichtig bei sicherheitskritischen Anwendungen

– Durchschnittlicher Bedarf im Langzeitverhalten Average case

Verlangt mathematisch schwierige statistische Analyse



Theoretische Informatik II 2 §8: Komplexitätstheorie

Fragestellungen der Komplexitätstheorie

• Asymptotisches Verhalten von Algorithmen

– Komplexitätsfunktion: Bedarf abhängig von der Größe der Eingabe

– Abschätzung der Komplexität großer Probleme

• Analyse konkreter Verfahren

– Maximaler Verbrauch im Einzelfall Worst case

Wichtig bei sicherheitskritischen Anwendungen

– Durchschnittlicher Bedarf im Langzeitverhalten Average case

Verlangt mathematisch schwierige statistische Analyse

• Analyse von Problemen

– Wie effizient ist die bestmögliche Lösung? Untere Schranken



Theoretische Informatik II 2 §8: Komplexitätstheorie

Fragestellungen der Komplexitätstheorie

• Asymptotisches Verhalten von Algorithmen

– Komplexitätsfunktion: Bedarf abhängig von der Größe der Eingabe

– Abschätzung der Komplexität großer Probleme

• Analyse konkreter Verfahren

– Maximaler Verbrauch im Einzelfall Worst case

Wichtig bei sicherheitskritischen Anwendungen

– Durchschnittlicher Bedarf im Langzeitverhalten Average case

Verlangt mathematisch schwierige statistische Analyse

• Analyse von Problemen

– Wie effizient ist die bestmögliche Lösung? Untere Schranken

– Wieviel kann durch Hardwaresteigerungen erreicht werden?

– Welche Verbesserung liefert Parallelität bzw. Nichtdeterminismus



Theoretische Informatik II 2 §8: Komplexitätstheorie

Fragestellungen der Komplexitätstheorie

• Asymptotisches Verhalten von Algorithmen

– Komplexitätsfunktion: Bedarf abhängig von der Größe der Eingabe

– Abschätzung der Komplexität großer Probleme

• Analyse konkreter Verfahren

– Maximaler Verbrauch im Einzelfall Worst case

Wichtig bei sicherheitskritischen Anwendungen

– Durchschnittlicher Bedarf im Langzeitverhalten Average case

Verlangt mathematisch schwierige statistische Analyse

• Analyse von Problemen

– Wie effizient ist die bestmögliche Lösung? Untere Schranken

– Wieviel kann durch Hardwaresteigerungen erreicht werden?

– Welche Verbesserung liefert Parallelität bzw. Nichtdeterminismus

– Welche Probleme sind gleich schwierig? Komplexitätsklassen



Theoretische Informatik II 2 §8: Komplexitätstheorie

Fragestellungen der Komplexitätstheorie

• Asymptotisches Verhalten von Algorithmen

– Komplexitätsfunktion: Bedarf abhängig von der Größe der Eingabe

– Abschätzung der Komplexität großer Probleme

• Analyse konkreter Verfahren

– Maximaler Verbrauch im Einzelfall Worst case

Wichtig bei sicherheitskritischen Anwendungen

– Durchschnittlicher Bedarf im Langzeitverhalten Average case

Verlangt mathematisch schwierige statistische Analyse

• Analyse von Problemen

– Wie effizient ist die bestmögliche Lösung? Untere Schranken

– Wieviel kann durch Hardwaresteigerungen erreicht werden?

– Welche Verbesserung liefert Parallelität bzw. Nichtdeterminismus

– Welche Probleme sind gleich schwierig? Komplexitätsklassen

– Gibt es Probleme, die nicht effizient lösbar sind?



Theoretische Informatik II

Einheit 7.1

Komplexitätsmaße

1. Zeit- und Platzkomplexität

2. Asymptotische Analyse

3. Praktische Konsequenzen



Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexitätsmaße

Zeit- und Platzkomplexität

• Rechenzeit tτ (w) vgl. Kapitel 7.2

– Anzahl der Elementaroperationen von τ bis Berechnung terminiert

– Abhängig von konkreter Eingabe w



Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexitätsmaße

Zeit- und Platzkomplexität

• Rechenzeit tτ (w) vgl. Kapitel 7.2

– Anzahl der Elementaroperationen von τ bis Berechnung terminiert

– Abhängig von konkreter Eingabe w

• Zeitkomplexität timeτ (n) = max{tτ(w) | |w|=n}

– Maximale Rechenzeit relativ zur Größe n der Eingabe (worst-case)



Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexitätsmaße

Zeit- und Platzkomplexität

• Rechenzeit tτ (w) vgl. Kapitel 7.2

– Anzahl der Elementaroperationen von τ bis Berechnung terminiert

– Abhängig von konkreter Eingabe w

• Zeitkomplexität timeτ (n) = max{tτ(w) | |w|=n}

– Maximale Rechenzeit relativ zur Größe n der Eingabe (worst-case)

• Speicherbedarf sτ (w)

– Anzahl der Bandzellen, die τ während der Berechnung aufsucht



Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexitätsmaße

Zeit- und Platzkomplexität

• Rechenzeit tτ (w) vgl. Kapitel 7.2

– Anzahl der Elementaroperationen von τ bis Berechnung terminiert

– Abhängig von konkreter Eingabe w

• Zeitkomplexität timeτ (n) = max{tτ(w) | |w|=n}

– Maximale Rechenzeit relativ zur Größe n der Eingabe (worst-case)

• Speicherbedarf sτ (w)

– Anzahl der Bandzellen, die τ während der Berechnung aufsucht

• Platzkomplexität spaceτ (n) = max{sτ(w) | |w|=n}

– Maximaler Speicherbedarf relativ zur Größe n der Eingabe (worst-case)



Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexitätsmaße

Zeit- und Platzkomplexität

• Rechenzeit tτ (w) vgl. Kapitel 7.2

– Anzahl der Elementaroperationen von τ bis Berechnung terminiert

– Abhängig von konkreter Eingabe w

• Zeitkomplexität timeτ (n) = max{tτ(w) | |w|=n}

– Maximale Rechenzeit relativ zur Größe n der Eingabe (worst-case)

• Speicherbedarf sτ (w)

– Anzahl der Bandzellen, die τ während der Berechnung aufsucht

• Platzkomplexität spaceτ (n) = max{sτ(w) | |w|=n}

– Maximaler Speicherbedarf relativ zur Größe n der Eingabe (worst-case)

Analoge Maße für andere Berechnungsmodelle

einschließlich nichtdeterministischer Maschinen



Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexitätsmaße

Komplexitätsanalyse einer Turing-Maschine

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h



Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexitätsmaße

Komplexitätsanalyse einer Turing-Maschine

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

• Mathematische Analyse:



Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexitätsmaße

Komplexitätsanalyse einer Turing-Maschine

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

• Mathematische Analyse:

– Anfangskonfiguration: α(1n) = (s
0
,fn,0), wobei fn(j) =

{

1 falls j ∈{0,..,n−1},

b sonst



Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexitätsmaße

Komplexitätsanalyse einer Turing-Maschine

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

• Mathematische Analyse:

– Anfangskonfiguration: α(1n) = (s
0
,fn,0), wobei fn(j) =

{

1 falls j ∈{0,..,n−1},

b sonst

– Nachfolgekonfigurationen: δ̂(s
0
,fn,j) =

{

(s
0
, fn, j+1) falls j ∈{0,..,n−1},

(s
0
, fn+1, n) falls j=n



Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexitätsmaße

Komplexitätsanalyse einer Turing-Maschine

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

• Mathematische Analyse:

– Anfangskonfiguration: α(1n) = (s
0
,fn,0), wobei fn(j) =

{

1 falls j ∈{0,..,n−1},

b sonst

– Nachfolgekonfigurationen: δ̂(s
0
,fn,j) =

{

(s
0
, fn, j+1) falls j ∈{0,..,n−1},

(s
0
, fn+1, n) falls j=n

– Terminierung: min{j | δ̂j(s
0
,fn,0)=(s

0
,fn,j) ∧ δ(s

0
,fn(j))=(s

0
,b,h)} = n



Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexitätsmaße

Komplexitätsanalyse einer Turing-Maschine

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

• Mathematische Analyse:

– Anfangskonfiguration: α(1n) = (s
0
,fn,0), wobei fn(j) =

{

1 falls j ∈{0,..,n−1},

b sonst

– Nachfolgekonfigurationen: δ̂(s
0
,fn,j) =

{

(s
0
, fn, j+1) falls j ∈{0,..,n−1},

(s
0
, fn+1, n) falls j=n

– Terminierung: min{j | δ̂j(s
0
,fn,0)=(s

0
,fn,j) ∧ δ(s

0
,fn(j))=(s

0
,b,h)} = n

⇓

tτ1(1
n) = n+1 und timeτ1(n) = n+1 für alle n



Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexitätsmaße

Vereinfachte Komplexitätsabschätzungen

• Genaue Betrachtungen sind unpraktikabel

– Zu mühsam bei nichttrivialen Algorithmen

– Zu abhängig von Programmierdetails und Maschinenmodell

– Welches Maschinenmodell sollte der Standard sein?



Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexitätsmaße

Vereinfachte Komplexitätsabschätzungen

• Genaue Betrachtungen sind unpraktikabel

– Zu mühsam bei nichttrivialen Algorithmen

– Zu abhängig von Programmierdetails und Maschinenmodell

– Welches Maschinenmodell sollte der Standard sein?

• Abschätzung der Komplexität

– Nur asymptotisches Verhalten auf großen Problemen ist interessant



Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexitätsmaße

Vereinfachte Komplexitätsabschätzungen

• Genaue Betrachtungen sind unpraktikabel

– Zu mühsam bei nichttrivialen Algorithmen

– Zu abhängig von Programmierdetails und Maschinenmodell

– Welches Maschinenmodell sollte der Standard sein?

• Abschätzung der Komplexität

– Nur asymptotisches Verhalten auf großen Problemen ist interessant

7→ Einheitskostenmodell: Vereinfachte Zählung von Elementaroperationen



Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexitätsmaße

Vereinfachte Komplexitätsabschätzungen

• Genaue Betrachtungen sind unpraktikabel

– Zu mühsam bei nichttrivialen Algorithmen

– Zu abhängig von Programmierdetails und Maschinenmodell

– Welches Maschinenmodell sollte der Standard sein?

• Abschätzung der Komplexität

– Nur asymptotisches Verhalten auf großen Problemen ist interessant

7→ Einheitskostenmodell: Vereinfachte Zählung von Elementaroperationen

7→ Additive Konstanten werden nicht berücksichtigt

7→ Konstante Faktoren werden nicht berücksichtigt



Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexitätsmaße

Vereinfachte Komplexitätsabschätzungen

• Genaue Betrachtungen sind unpraktikabel

– Zu mühsam bei nichttrivialen Algorithmen

– Zu abhängig von Programmierdetails und Maschinenmodell

– Welches Maschinenmodell sollte der Standard sein?

• Abschätzung der Komplexität

– Nur asymptotisches Verhalten auf großen Problemen ist interessant

7→ Einheitskostenmodell: Vereinfachte Zählung von Elementaroperationen

7→ Additive Konstanten werden nicht berücksichtigt

7→ Konstante Faktoren werden nicht berücksichtigt

⇓

Analyse des wesentlichen

Laufzeitverhaltens/Speicherbedarfs



Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexitätsmaße

Asymptotische Analyse

• Asymptotischer Vergleich von Funktionen
– f2 wächst schneller als f1, falls f1(n)≤ f2(n) für alle n ∈N



Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexitätsmaße

Asymptotische Analyse

• Asymptotischer Vergleich von Funktionen
– f2 wächst schneller als f1, falls f1(n)≤ f2(n) für alle n ∈N

– f2 wächst asymptotisch schneller als f1, falls es ein n0 ∈N gibt mit

f1(n)≤f2(n) für alle n≥n0



Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexitätsmaße

Asymptotische Analyse

• Asymptotischer Vergleich von Funktionen
– f2 wächst schneller als f1, falls f1(n)≤ f2(n) für alle n ∈N

– f2 wächst asymptotisch schneller als f1, falls es ein n0 ∈N gibt mit

f1(n)≤f2(n) für alle n≥n0

• Ordnung O(f) einer Funktion
– O(f) = {g : N→N | ∃n0, c.∀n≥n0. g(n)≤c∗f(n)}

– Alternativ: O(f) = {g : N→N | ∃k, c.∀n. g(n)≤k+c∗f(n)}



Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexitätsmaße

Asymptotische Analyse

• Asymptotischer Vergleich von Funktionen
– f2 wächst schneller als f1, falls f1(n)≤ f2(n) für alle n ∈N

– f2 wächst asymptotisch schneller als f1, falls es ein n0 ∈N gibt mit

f1(n)≤f2(n) für alle n≥n0

• Ordnung O(f) einer Funktion
– O(f) = {g : N→N | ∃n0, c.∀n≥n0. g(n)≤c∗f(n)}

– Alternativ: O(f) = {g : N→N | ∃k, c.∀n. g(n)≤k+c∗f(n)}

– Gängige Schreibweisen

· g=O(f) bedeutet g ∈O(f), O(f1)=O(f2) bedeutet O(f1)⊆O(f2)



Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexitätsmaße

Asymptotische Analyse

• Asymptotischer Vergleich von Funktionen
– f2 wächst schneller als f1, falls f1(n)≤ f2(n) für alle n ∈N

– f2 wächst asymptotisch schneller als f1, falls es ein n0 ∈N gibt mit

f1(n)≤f2(n) für alle n≥n0

• Ordnung O(f) einer Funktion
– O(f) = {g : N→N | ∃n0, c.∀n≥n0. g(n)≤c∗f(n)}

– Alternativ: O(f) = {g : N→N | ∃k, c.∀n. g(n)≤k+c∗f(n)}

– Gängige Schreibweisen

· g=O(f) bedeutet g ∈O(f), O(f1)=O(f2) bedeutet O(f1)⊆O(f2)

· O(1)≡O(λn.1), O(n)≡O(λn.n), O(n2)≡O(λn.n2), . . .



Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexitätsmaße

Asymptotische Analyse

• Asymptotischer Vergleich von Funktionen
– f2 wächst schneller als f1, falls f1(n)≤ f2(n) für alle n ∈N

– f2 wächst asymptotisch schneller als f1, falls es ein n0 ∈N gibt mit

f1(n)≤f2(n) für alle n≥n0

• Ordnung O(f) einer Funktion
– O(f) = {g : N→N | ∃n0, c.∀n≥n0. g(n)≤c∗f(n)}

– Alternativ: O(f) = {g : N→N | ∃k, c.∀n. g(n)≤k+c∗f(n)}

– Gängige Schreibweisen

· g=O(f) bedeutet g ∈O(f), O(f1)=O(f2) bedeutet O(f1)⊆O(f2)

· O(1)≡O(λn.1), O(n)≡O(λn.n), O(n2)≡O(λn.n2), . . .

• Ordnung konkreter Funktionen
– Konstante Funktion: g1(n)=k für alle n



Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexitätsmaße

Asymptotische Analyse

• Asymptotischer Vergleich von Funktionen
– f2 wächst schneller als f1, falls f1(n)≤ f2(n) für alle n ∈N

– f2 wächst asymptotisch schneller als f1, falls es ein n0 ∈N gibt mit

f1(n)≤f2(n) für alle n≥n0

• Ordnung O(f) einer Funktion
– O(f) = {g : N→N | ∃n0, c.∀n≥n0. g(n)≤c∗f(n)}

– Alternativ: O(f) = {g : N→N | ∃k, c.∀n. g(n)≤k+c∗f(n)}

– Gängige Schreibweisen

· g=O(f) bedeutet g ∈O(f), O(f1)=O(f2) bedeutet O(f1)⊆O(f2)

· O(1)≡O(λn.1), O(n)≡O(λn.n), O(n2)≡O(λn.n2), . . .

• Ordnung konkreter Funktionen
– Konstante Funktion: g1(n)=k für alle n g1 ∈O(1)

– Polynome: g2(n)=c0 + c1∗n + .. + cm∗n
m



Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexitätsmaße

Asymptotische Analyse

• Asymptotischer Vergleich von Funktionen
– f2 wächst schneller als f1, falls f1(n)≤ f2(n) für alle n ∈N

– f2 wächst asymptotisch schneller als f1, falls es ein n0 ∈N gibt mit

f1(n)≤f2(n) für alle n≥n0

• Ordnung O(f) einer Funktion
– O(f) = {g : N→N | ∃n0, c.∀n≥n0. g(n)≤c∗f(n)}

– Alternativ: O(f) = {g : N→N | ∃k, c.∀n. g(n)≤k+c∗f(n)}

– Gängige Schreibweisen

· g=O(f) bedeutet g ∈O(f), O(f1)=O(f2) bedeutet O(f1)⊆O(f2)

· O(1)≡O(λn.1), O(n)≡O(λn.n), O(n2)≡O(λn.n2), . . .

• Ordnung konkreter Funktionen
– Konstante Funktion: g1(n)=k für alle n g1 ∈O(1)

– Polynome: g2(n)=c0 + c1∗n + .. + cm∗n
m g2 ∈O(nm)

– Logarithmenfunktionen: g3(n)=logbn



Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexitätsmaße

Asymptotische Analyse

• Asymptotischer Vergleich von Funktionen
– f2 wächst schneller als f1, falls f1(n)≤ f2(n) für alle n ∈N

– f2 wächst asymptotisch schneller als f1, falls es ein n0 ∈N gibt mit

f1(n)≤f2(n) für alle n≥n0

• Ordnung O(f) einer Funktion
– O(f) = {g : N→N | ∃n0, c.∀n≥n0. g(n)≤c∗f(n)}

– Alternativ: O(f) = {g : N→N | ∃k, c.∀n. g(n)≤k+c∗f(n)}

– Gängige Schreibweisen

· g=O(f) bedeutet g ∈O(f), O(f1)=O(f2) bedeutet O(f1)⊆O(f2)

· O(1)≡O(λn.1), O(n)≡O(λn.n), O(n2)≡O(λn.n2), . . .

• Ordnung konkreter Funktionen
– Konstante Funktion: g1(n)=k für alle n g1 ∈O(1)

– Polynome: g2(n)=c0 + c1∗n + .. + cm∗n
m g2 ∈O(nm)

– Logarithmenfunktionen: g3(n)=logbn g3 ∈O(log2n)

– Fakultätsfunktion: g4(n)=n!=1∗2∗..∗n



Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexitätsmaße

Asymptotische Analyse

• Asymptotischer Vergleich von Funktionen
– f2 wächst schneller als f1, falls f1(n)≤ f2(n) für alle n ∈N

– f2 wächst asymptotisch schneller als f1, falls es ein n0 ∈N gibt mit

f1(n)≤f2(n) für alle n≥n0

• Ordnung O(f) einer Funktion
– O(f) = {g : N→N | ∃n0, c.∀n≥n0. g(n)≤c∗f(n)}

– Alternativ: O(f) = {g : N→N | ∃k, c.∀n. g(n)≤k+c∗f(n)}

– Gängige Schreibweisen

· g=O(f) bedeutet g ∈O(f), O(f1)=O(f2) bedeutet O(f1)⊆O(f2)

· O(1)≡O(λn.1), O(n)≡O(λn.n), O(n2)≡O(λn.n2), . . .

• Ordnung konkreter Funktionen
– Konstante Funktion: g1(n)=k für alle n g1 ∈O(1)

– Polynome: g2(n)=c0 + c1∗n + .. + cm∗n
m g2 ∈O(nm)

– Logarithmenfunktionen: g3(n)=logbn g3 ∈O(log2n)

– Fakultätsfunktion: g4(n)=n!=1∗2∗..∗n g4 ∈O(nn)



Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexitätsmaße

Komplexität von Algorithmen

• Asymptotischer Effizienzvergleich
– τ1 ist schneller als τ2, falls timeτ1

(n)≤ timeτ2
(n) für alle n ∈N

– τ1 ist asymptotisch schneller als τ2, falls es ein n0 ∈N gibt mit
timeτ1

(n)≤timeτ2
(n) für alle n≥n0



Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexitätsmaße

Komplexität von Algorithmen

• Asymptotischer Effizienzvergleich
– τ1 ist schneller als τ2, falls timeτ1

(n)≤ timeτ2
(n) für alle n ∈N

– τ1 ist asymptotisch schneller als τ2, falls es ein n0 ∈N gibt mit
timeτ1

(n)≤timeτ2
(n) für alle n≥n0

• Komplexität O(f)
– τ hat Zeitkomplexität O(f), falls timeτ ∈O(f)

– τ hat Platzkomplexität O(f), falls spaceτ ∈O(f)



Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexitätsmaße

Komplexität von Algorithmen

• Asymptotischer Effizienzvergleich
– τ1 ist schneller als τ2, falls timeτ1

(n)≤ timeτ2
(n) für alle n ∈N

– τ1 ist asymptotisch schneller als τ2, falls es ein n0 ∈N gibt mit
timeτ1

(n)≤timeτ2
(n) für alle n≥n0

• Komplexität O(f)
– τ hat Zeitkomplexität O(f), falls timeτ ∈O(f)

– τ hat Platzkomplexität O(f), falls spaceτ ∈O(f)

• Komplexitätklassen
– τ hat konstante (Zeit-)komplexität, falls timeτ ∈O(1)

– τ hat logarithmische Komplexität, falls timeτ ∈O(log2n)

– τ hat lineare Komplexität, falls timeτ ∈O(n)

– τ hat quadratische Komplexität, falls timeτ ∈O(n2)

– τ hat kubische Komplexität, falls timeτ ∈O(n3)

– τ hat polynomielle Komplexität, falls timeτ ∈O(nk) für ein k ∈N

– τ hat exponentielle Komplexität, falls timeτ ∈O(2nk
) für ein k ∈N

– τ hat superexponentielle Komplexität, falls timeτ ∈O(22nk

) für ein k ∈N

...



Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexitätsmaße

Komplexität von Algorithmen

• Asymptotischer Effizienzvergleich
– τ1 ist schneller als τ2, falls timeτ1

(n)≤ timeτ2
(n) für alle n ∈N

– τ1 ist asymptotisch schneller als τ2, falls es ein n0 ∈N gibt mit
timeτ1

(n)≤timeτ2
(n) für alle n≥n0

• Komplexität O(f)
– τ hat Zeitkomplexität O(f), falls timeτ ∈O(f)

– τ hat Platzkomplexität O(f), falls spaceτ ∈O(f)

• Komplexitätklassen
– τ hat konstante (Zeit-)komplexität, falls timeτ ∈O(1)

– τ hat logarithmische Komplexität, falls timeτ ∈O(log2n)

– τ hat lineare Komplexität, falls timeτ ∈O(n)

– τ hat quadratische Komplexität, falls timeτ ∈O(n2)

– τ hat kubische Komplexität, falls timeτ ∈O(n3)

– τ hat polynomielle Komplexität, falls timeτ ∈O(nk) für ein k ∈N

– τ hat exponentielle Komplexität, falls timeτ ∈O(2nk
) für ein k ∈N

– τ hat superexponentielle Komplexität, falls timeτ ∈O(22nk

) für ein k ∈N

... Analoge Klassen für Platzkomplexität



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns

n

n2

n3

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns

n

n2

n3

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns

n

n2

n3

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns

n

n2

n3

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n

n2

n3

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns

n2

n3

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns

n2

n3

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2

n3

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns

n3

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs

n3

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s 17.3h



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s 17.3h 116y



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s 17.3h 116y 2.500.000.000y



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s 17.3h 116y 2.500.000.000y

Wieviel mehr kann man in der gleichen Zeit berechnen,

wenn Computer um den Faktor 1000 schneller sind?

log
2
n n n2 n3 2n 3n

Problemsteigerung



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s 17.3h 116y 2.500.000.000y

Wieviel mehr kann man in der gleichen Zeit berechnen,

wenn Computer um den Faktor 1000 schneller sind?

log
2
n n n2 n3 2n 3n

Problemsteigerung 10300-fach



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s 17.3h 116y 2.500.000.000y

Wieviel mehr kann man in der gleichen Zeit berechnen,

wenn Computer um den Faktor 1000 schneller sind?

log
2
n n n2 n3 2n 3n

Problemsteigerung 10300-fach 1000-fach



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s 17.3h 116y 2.500.000.000y

Wieviel mehr kann man in der gleichen Zeit berechnen,

wenn Computer um den Faktor 1000 schneller sind?

log
2
n n n2 n3 2n 3n

Problemsteigerung 10300-fach 1000-fach 31-fach



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s 17.3h 116y 2.500.000.000y

Wieviel mehr kann man in der gleichen Zeit berechnen,

wenn Computer um den Faktor 1000 schneller sind?

log
2
n n n2 n3 2n 3n

Problemsteigerung 10300-fach 1000-fach 31-fach 10-fach



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s 17.3h 116y 2.500.000.000y

Wieviel mehr kann man in der gleichen Zeit berechnen,

wenn Computer um den Faktor 1000 schneller sind?

log
2
n n n2 n3 2n 3n

Problemsteigerung 10300-fach 1000-fach 31-fach 10-fach plus 10



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße

Wie schnell wächst Rechenzeit mit der Größe der Eingabe?

Rechenzeiten auf 3.3 Ghz Prozessor

Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s 17.3h 116y 2.500.000.000y

Wieviel mehr kann man in der gleichen Zeit berechnen,

wenn Computer um den Faktor 1000 schneller sind?

log
2
n n n2 n3 2n 3n

Problemsteigerung 10300-fach 1000-fach 31-fach 10-fach plus 10 plus 6



Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexitätsmaße

Komplexitätklassen – Praktische Auswirkungen

• Große Probleme benötigen polynomielle Lösungen

– Exponentielle Algorithmen sind für die Praxis unakzeptabel

– Auch innerhalb der polynomiellen Komplexität gibt es große Unterschiede



Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexitätsmaße

Komplexitätklassen – Praktische Auswirkungen

• Große Probleme benötigen polynomielle Lösungen

– Exponentielle Algorithmen sind für die Praxis unakzeptabel

– Auch innerhalb der polynomiellen Komplexität gibt es große Unterschiede

• Bessere Hardware ist selten eine Lösung

– Wenn Algorithmen schlecht sind, nützt die beste Hardware wenig

– Es lohnt sich, in die Verbesserung von Algorithmen zu investieren



Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexitätsmaße

Komplexitätklassen – Praktische Auswirkungen

• Große Probleme benötigen polynomielle Lösungen

– Exponentielle Algorithmen sind für die Praxis unakzeptabel

– Auch innerhalb der polynomiellen Komplexität gibt es große Unterschiede

• Bessere Hardware ist selten eine Lösung

– Wenn Algorithmen schlecht sind, nützt die beste Hardware wenig

– Es lohnt sich, in die Verbesserung von Algorithmen zu investieren

• Es gibt noch ungeklärte Fragen

– Kann Parallelismus signifikante Effizienzsteigerung bewirken?

· z.B. von exponentieller auf polynomielle Zeit?



Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexitätsmaße

Komplexitätklassen – Praktische Auswirkungen

• Große Probleme benötigen polynomielle Lösungen

– Exponentielle Algorithmen sind für die Praxis unakzeptabel

– Auch innerhalb der polynomiellen Komplexität gibt es große Unterschiede

• Bessere Hardware ist selten eine Lösung

– Wenn Algorithmen schlecht sind, nützt die beste Hardware wenig

– Es lohnt sich, in die Verbesserung von Algorithmen zu investieren

• Es gibt noch ungeklärte Fragen

– Kann Parallelismus signifikante Effizienzsteigerung bewirken?

· z.B. von exponentieller auf polynomielle Zeit?

– Was ist der Zusammenhang zwischen Platzbedarf und Laufzeitverhalten

· Bisher nur grobe Abschätzungen bekannt


