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Komplexitatstheorie

1. Komplexitatsmafle
2. Komplexitat von Algorithmen (obere Schranken)

3. Komplexitat von Problemen (untere Schranken)

4. NP-Vollstandigkeit



KOMPLEXITATSTHEORIE

— WAS KANN MIT VERTRETBAREM AUFWAND GELOST WERDEN? —

e Berechenbarkeit alleine reicht nicht
— Losungen miissen effizient sein in praktischen Anwendungen
— Berechenbarkeit /Entscheidbarkeit 16st nur die Grundsatzfrage
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FRAGESTELLUNGEN DER KOMPLEXITATSTHEORIE I

e Asymptotisches Verhalten von Algorithmen
— Komplexitatsfunktion: Bedarf abhangig von der Grofle der Eingabe
— Abschatzung der Komplexitat grofler Probleme
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Komplexitatsmaifle

1. Zeit- und Platzkomplexitat
2. Asymptotische Analyse

3. Praktische Konsequenzen



7ZEIT- UND PLATZKOMPLEXITAT I

e Rechenzeit t,(w) vel. Kapitel 7.2

— Anzahl der Elementaroperationen von 7 bis Berechnung terminiert

— Abhangig von konkreter Eingabe w
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Analoge Mafle fir andere Berechnungsmodelle

einschlief3lich nichtdeterministischer Maschinen
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KOMPLEXITATSANALYSE EINER TURING-MASCHINE I

o7, = ({s,}. {1}, {b,1},6,,8,,b) mit 6,= s a|s a P
s, 1/s, 1 r
s, bls, 1 h
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VEREINFACHTE KOMPLEXITATSABSCHATZUNGEN I

e Genaue Betrachtungen sind unpraktikabel
— 7Zu muhsam bei nichttrivialen Algorithmen
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— Welches Maschinenmodell sollte der Standard sein?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITATSMASSE




VEREINFACHTE KOMPLEXITATSABSCHATZUNGEN I

e Genaue Betrachtungen sind unpraktikabel
— 7Zu muhsam bei nichttrivialen Algorithmen

— Zu abhangig von Programmierdetails und Maschinenmodell
— Welches Maschinenmodell sollte der Standard sein?

e Abschatzung der Komplexitat

— Nur asymptotisches Verhalten auf grofien Problemen ist interessant

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITATSMASSE




VEREINFACHTE KOMPLEXITATSABSCHATZUNGEN I

e Genaue Betrachtungen sind unpraktikabel
— 7Zu muhsam bei nichttrivialen Algorithmen

— Zu abhangig von Programmierdetails und Maschinenmodell
— Welches Maschinenmodell sollte der Standard sein?

e Abschatzung der Komplexitat
— Nur asymptotisches Verhalten auf grofien Problemen ist interessant

— Einheitskostenmodell: Vereinfachte Zahlung von Elementaroperationen

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITATSMASSE




VEREINFACHTE KOMPLEXITATSABSCHATZUNGEN I

e Genaue Betrachtungen sind unpraktikabel
— 7Zu muhsam bei nichttrivialen Algorithmen

— Zu abhangig von Programmierdetails und Maschinenmodell

— Welches Maschinenmodell sollte der Standard sein”?

e Abschatzung der Komplexitat
— Nur asymptotisches Verhalten auf grofien Problemen ist interessant
— Einheitskostenmodell: Vereinfachte Zahlung von Elementaroperationen
— Additive Konstanten werden nicht berticksichtigt

— Konstante Faktoren werden nicht berticksichtigt

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITATSMASSE




VEREINFACHTE KOMPLEXITATSABSCHATZUNGEN I

e Genaue Betrachtungen sind unpraktikabel

— 7Zu muhsam bei nichttrivialen Algorithmen

— Zu abhangig von Programmierdetails und Maschinenmodell

— Welches Maschinenmodell sollte der Standard sein”?

e Abschatzung der Komplexitat

— Nur asymptotisches Verhalten auf groffen Problemen ist interessant
— Einheitskostenmodell: Vereinfachte Zahlung von Elementaroperationen
— Additive Konstanten werden nicht berticksichtigt

— Konstante Faktoren werden nicht berticksichtigt

U

Analyse des wesentlichen

Laufzeitverhaltens /Speicherbedarfs
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ASYMPTOTISCHE ANALYSE I

e Asymptotischer Vergleich von Funktionen
— fo wachst schneller als f1, falls fi(n)< fo(n) fir alle n eN
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— Polynome: go(n)=co + ci*n + .. + cpxn™ g2 O(n™)
— Logarithmenfunktionen: g3(n)=logyn g3€O(logon)
— Fakultatsfunktion: g4(n)=n!=1%2%..xn g1eO(n")
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KOMPLEXITAT VON ALGORITHMEN I

e Asymptotischer Effizienzvergleich
— 71 ist schneller als o, falls time,, (n)< time.,(n) fir alle neN

— 71 ist asymptotisch schneller als 7, falls es ein ngeN gibt mit
time,, (n)<time,(n) fiir alle n>ny
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KOMPLEXITAT VON ALGORITHMEN I

e Asymptotischer Effizienzvergleich
— 71 ist schneller als o, falls time,, (n)< time.,(n) fir alle neN

— 71 ist asymptotisch schneller als 7, falls es ein ngeN gibt mit
time,, (n)<time,(n) fiir alle n>ny

e Komplexitat O(f)
— 7 hat Zeitkomplexitat O(f), falls time, € O(f)
— 7 hat Platzkomplexitiat O(f), falls space, € O( f)
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KOMPLEXITAT VON ALGORITHMEN I

e Asymptotischer Effizienzvergleich
— 71 ist schneller als o, falls time,, (n)< time.,(n) fir alle neN

— 71 1st asymptotisch schneller als 7, falls es ein ngeN gibt mit
time,, (n)<time,(n) fiir alle n>ny

e Komplexitat O(f)
— 7 hat Zeitkomplexitat O(f), falls time, € O(f)
— 7 hat Platzkomplexitiat O(f), falls space, € O( f)

e Komplexitatklassen
— 7 hat konstante (Zeit-)komplexitét, falls time, e O(1)
— 7 hat logarithmische Komplexitat, falls teme. € O(logon)
— 7 hat lineare Komplexitat, falls time, € O(n)
— 7 hat quadratische Komplexitat, falls time, e O(n?)
— 7 hat kubische Komplexitat, falls time, e O(n?)
— 7 hat polynomielle Komplexitit, falls time, € O(n") fiir ein keN
— 7 hat exponentielle Komplexitét, falls time, € O(Q”k) {];iir ein k eN

— 7 hat superexponentielle Komplexitit, falls time, e O(2%" ) fiir cin keN
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KOMPLEXITAT VON ALGORITHMEN I

e Asymptotischer Effizienzvergleich
— 71 ist schneller als o, falls time,, (n)< time.,(n) fir alle neN

— 71 1st asymptotisch schneller als 7, falls es ein ngeN gibt mit
time,, (n)<time,(n) fiir alle n>ny

e Komplexitat O(f)
— 7 hat Zeitkomplexitat O(f), falls time, € O(f)
— 7 hat Platzkomplexitiat O(f), falls space, € O( f)

e Komplexitatklassen
— 7 hat konstante (Zeit-)komplexitét, falls time, e O(1)
— 7 hat logarithmische Komplexitat, falls teme. € O(logon)
— 7 hat lineare Komplexitat, falls time, € O(n)
— 7 hat quadratische Komplexitat, falls time, e O(n?)
— 7 hat kubische Komplexitat, falls time, e O(n?)
— 7 hat polynomielle Komplexitat, falls time, € (’)(n’“) fir ein keN
— 7 hat exponentielle Komplexitat, falls time, € (’)(2" ) fur ein keN
— 7 hat superexponentielle Komplexitat, falls time, € (9(22n ) fiir ein keN

Analoge Klassen fiir Platzkomplexitat
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
GroBe n 10 20 30 40 50  60]...] 1000|1.000.000

Wachstum

log,n| 1ns

3n
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
GroBe n 10 20 30 40 50  60]...] 1000|1.000.000

Wachstum

log,n| 1ns 2ns

n
n2

n3

27’1,
3n
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
GroBe n 10 20 30 40 50  60]...] 1000|1.000.000

Wachstum

log,n| 1ns 2ns ans

n
n2

n3

27’1,
3n
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
GroBe n 10 20 30 40 50  60]...] 1000|1.000.000

Wachstum

log,n| 1ns 2ns ans 10ns

n
n2

n3

27’1,
3n
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
GroBe n 10 20 30 40 50  60]...] 1000|1.000.000

Wachstum
log,n| 1ns 2ns ans 10ns|  100ns

n
n2

n3

27’1,
3n
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
GroBe n 10 20 30 40 50  60]...] 1000|1.000.000

Wachstum
log,n| 1ns 2ns ans 10ns|  100ns

n 3ns
n2

n3

27’1,
3n
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor

Grofie n 10 20 30 40 50 60[...| 1000{1.000.000
Wachstum

log,n| 1ns 2ns ans 10ns|  100ns

n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns

2
3
on
qn
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 50 60[...| 1000{1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns| O6ns| 9ns| 12ns I5ns| 18ns 300ns|  300us
2
3
27’1,
3n
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 50 60[...| 1000{1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns| O6ns| 9ns| 12ns I5ns| 18ns 300ns|  300us
n?| 30ns
3
on
qn
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor

Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns|  6ns| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us
n3
on
qn
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501  60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns|  6ns| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n3
on
qn
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor

Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum

log,n| 1ns 2ns ans 10ns|  100ns

n| 3ns|  6ns| 9ns| 12ns 15ns| 18ns 300ns|  300us

n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s

n?| 300ns| 2.4us| 8.1us|19.2us 37.5us| 64us 300ms 9.5y
on
qn
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns|  6ns| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us 37.5us| 64us 300ms 9.5y
2" 300ns
qn
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns|  6ns| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us 37.5us| 64us 300ms 9.5y
2" 300ns| 300us
qn
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten aut 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns|  Ons| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms
9
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten aut 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns|  Ons| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms|  300s
9
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten aut 3.3 Ghz Prozessor

Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum

log,n| 1ns 2ns ans 10ns|  100ns

n| 3ns|  Ons| 9ns| 12ns 15ns| 18ns 300ns|  300us

n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s

n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y

2" 300ns| 300us|300ms|  300s 83.3h

9
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten aut 3.3 Ghz Prozessor

Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum

log,n| 1ns 2ns ans 10ns|  100ns

n| 3ns|  Ons| 9ns| 12ns 15ns| 18ns 300ns|  300us

n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s

n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y

2" 300ns| 300us|300ms|  300s 83.3h| 9.5y

9
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns|  Ons| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms|  300s 83.3h| 9.5y
3" 17.8us
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns|  Ons| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms|  300s 83.3h| 9.5y
M 17.8us|  1.1s
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns|  Ons| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300 s 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms|  300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns|  Ons| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300 s 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms|  300s 83.3h| 9.5y
3" 17.8us|  1.1s| 17.3h| 116y
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten aut 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns|  Ons| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms|  300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501  60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300 s 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
3" 17.8us|  1.1s| 17.3h| 116y|2.500.000.000y
Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?
logn n n? n’ 2" 3"

Problemsteigerung
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501  60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300 s 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
3" 17.8us|  1.1s| 17.3h| 116y|2.500.000.000y
Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?
logn n n? n’ 2" 3"

Problemsteigerung | 103%-fach
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 50/  60...| 1000|1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms|  300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y
Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?
logn n n? n’ 2" 3"
Problemsteigerung | 103"-fach | 1000-fach
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten aut 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms|  300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y

Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?

logn n n? n’ 2" 3"
Problemsteigerung |10°"-fach | 1000-fach| 31-fach
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 50/  60...| 1000|1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms|  300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y
Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?
logn n n? n’ 2" 3"
Problemsteigerung|103"-fach | 1000-fach| 31-fach| 10-fach
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 50/  60...| 1000|1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns|  Ons| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms|  300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y
Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?
logn n n? n’ 2" 3"
Problemsteigerung | 103"-fach |1000-fach| 31-fach| 10-fach| plus 10
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WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 50/  60...| 1000|1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns|  100ns
n| 3ns|  Ons| 9ns| 12ns 15ns| 18ns 300ns|  300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms|  300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y
Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?
logn n n? n’ 2" 3"
Problemsteigerung | 10°"-fach |1000-fach| 31-fach| 10-fach| plus 10| plus 6
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KOMPLEXITATKLASSEN — PRAKTISCHE AUSWIRKUNGEN I

e Grofle Probleme benotigen polynomielle Losungen
— Exponentielle Algorithmen sind fiir die Praxis unakzeptabel

— Auch innerhalb der polynomiellen Komplexitat gibt es grof3e Unterschiede
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— Exponentielle Algorithmen sind fiir die Praxis unakzeptabel

— Auch innerhalb der polynomiellen Komplexitat gibt es grof3e Unterschiede

e Bessere Hardware ist selten eine Losung
— Wenn Algorithmen schlecht sind, nutzt die beste Hardware wenig

— Es lohnt sich, in die Verbesserung von Algorithmen zu investieren
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e Bessere Hardware ist selten eine Losung
— Wenn Algorithmen schlecht sind, nutzt die beste Hardware wenig

— Es lohnt sich, in die Verbesserung von Algorithmen zu investieren

e Eis gibt noch ungeklarte Fragen
— Kann Parallelismus signifikante Effizienzsteigerung bewirken?

- z.B. von exponentieller auf polynomielle Zeit?
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— Es lohnt sich, in die Verbesserung von Algorithmen zu investieren

e Eis gibt noch ungeklarte Fragen
— Kann Parallelismus signifikante Effizienzsteigerung bewirken?

- z.B. von exponentieller auf polynomielle Zeit?

— Was ist der Zusammenhang zwischen Platzbedarf und Laufzeitverhalten

- Bisher nur grobe Abschatzungen bekannt
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