Theoretische Informatik 11

QWErs,,
N 4o

Einheit 8

\Od

s
m

Komplexitatstheorie

1. Komplexitatsmafle
2. Komplexitat von Algorithmen (obere Schranken)

3. Komplexitat von Problemen (untere Schranken)

4. NP-Vollstandigkeit

KOMPLEXITATSTHEORIE

— WAS KANN MIT VERTRETBAREM AUFWAND GELOST WERDEN? —

e Berechenbarkeit alleine reicht nicht
— Losungen miissen effizient sein in praktischen Anwendungen
— Berechenbarkeit /Entscheidbarkeit 16st nur die Grundsatzfrage

THEORETISCHE INFORMATIK II 1 §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSTHEORIE

— WAS KANN MIT VERTRETBAREM AUFWAND GELOST WERDEN? —

e Berechenbarkeit alleine reicht nicht
— Losungen miissen effizient sein in praktischen Anwendungen
— Berechenbarkeit /Entscheidbarkeit 16st nur die Grundsatzfrage

e Komplexitat: Analyse benotigter Resourcen
— Zeitbedarf des Algorithmus Time

— Speicherbedarf des Verfahrens (RAM, Harddisk) Space
— Netzzugriffe, Zugriff aut andere Medien

THEORETISCHE INFORMATIK II 1 §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSTHEORIE

— WAS KANN MIT VERTRETBAREM AUFWAND GELOST WERDEN? —

e Berechenbarkeit alleine reicht nicht
— Losungen miissen effizient sein in praktischen Anwendungen
— Berechenbarkeit /Entscheidbarkeit 16st nur die Grundsatzfrage

e Komplexitat: Analyse benotigter Resourcen
— Zeitbedarf des Algorithmus Time

— Speicherbedarf des Verfahrens (RAM, Harddisk) Space
— Netzzugriffe, Zugriff aut andere Medien

e Mefigrofle mufl unabhangig sein von
— Konkreter Hardware
— Konkreter Programmiersprache
— Optimierungstahigkeiten des Compilers
— Auswahl der Testdaten

THEORETISCHE INFORMATIK II 1 §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSTHEORIE

— WAS KANN MIT VERTRETBAREM AUFWAND GELOST WERDEN? —

e Berechenbarkeit alleine reicht nicht
— Losungen miissen effizient sein in praktischen Anwendungen
— Berechenbarkeit /Entscheidbarkeit 16st nur die Grundsatzfrage

e Komplexitat: Analyse benotigter Resourcen
— Zeitbedarf des Algorithmus Time

— Speicherbedarf des Verfahrens (RAM, Harddisk) Space
— Netzzugriffe, Zugriff aut andere Medien

e Mefigrofle mufl unabhangig sein von
— Konkreter Hardware
— Konkreter Programmiersprache
— Optimierungstahigkeiten des Compilers
— Auswahl der Testdaten

U

Abstrakte Komplexitatsmafle erforderlich

THEORETISCHE INFORMATIK II 1 §8: KOMPLEXITATSTHEORIE

FRAGESTELLUNGEN DER KOMPLEXITATSTHEORIE I

e Asymptotisches Verhalten von Algorithmen
— Komplexitatsfunktion: Bedarf abhangig von der Grofle der Eingabe
— Abschatzung der Komplexitat grofler Probleme

THEORETISCHE INFORMATIK II 2 §8: KOMPLEXITATSTHEORIE

FRAGESTELLUNGEN DER KOMPLEXITATSTHEORIE I

e Asymptotisches Verhalten von Algorithmen
— Komplexitatstunktion: Bedart abhangig von der Grofie der Eingabe
— Abschatzung der Komplexitat grofler Probleme

e Analyse konkreter Verfahren

— Maximaler Verbrauch im Einzelfall Worst case
Wichtig bei sicherheitskritischen Anwendungen

— Durchschnittlicher Bedarf im Langzeitverhalten Average case
Verlangt mathematisch schwierige statistische Analyse

THEORETISCHE INFORMATIK II 2 §8: KOMPLEXITATSTHEORIE

FRAGESTELLUNGEN DER KOMPLEXITATSTHEORIE I

e Asymptotisches Verhalten von Algorithmen
— Komplexitatstunktion: Bedart abhangig von der Grofie der Eingabe
— Abschatzung der Komplexitat grofler Probleme

e Analyse konkreter Verfahren

— Maximaler Verbrauch im Einzelfall Worst case
Wichtig bei sicherheitskritischen Anwendungen

— Durchschnittlicher Bedarf im Langzeitverhalten Average case
Verlangt mathematisch schwierige statistische Analyse

e Analyse von Problemen
— Wie effizient ist die bestmogliche Losung? Untere Schranken

THEORETISCHE INFORMATIK II 2 §8: KOMPLEXITATSTHEORIE

FRAGESTELLUNGEN DER KOMPLEXITATSTHEORIE I

e Asymptotisches Verhalten von Algorithmen
— Komplexitatstunktion: Bedart abhangig von der Grofie der Eingabe
— Abschatzung der Komplexitat grofler Probleme

e Analyse konkreter Verfahren

— Maximaler Verbrauch im Einzelfall Worst case
Wichtig bei sicherheitskritischen Anwendungen

— Durchschnittlicher Bedarf im Langzeitverhalten Average case
Verlangt mathematisch schwierige statistische Analyse

e Analyse von Problemen
— Wie effizient ist die bestmogliche Losung? Untere Schranken
— Wieviel kann durch Hardwaresteigerungen erreicht werden?

— Welche Verbesserung liefert Parallelitat bzw. Nichtdeterminismus

THEORETISCHE INFORMATIK II 2 §8: KOMPLEXITATSTHEORIE

FRAGESTELLUNGEN DER KOMPLEXITATSTHEORIE I

e Asymptotisches Verhalten von Algorithmen
— Komplexitatstunktion: Bedart abhangig von der Grofie der Eingabe
— Abschatzung der Komplexitat grofler Probleme

e Analyse konkreter Verfahren

— Maximaler Verbrauch im Einzelfall Worst case
Wichtig bei sicherheitskritischen Anwendungen

— Durchschnittlicher Bedarf im Langzeitverhalten Average case
Verlangt mathematisch schwierige statistische Analyse

e Analyse von Problemen
— Wie effizient ist die bestmogliche Losung? Untere Schranken
— Wieviel kann durch Hardwaresteigerungen erreicht werden?
— Welche Verbesserung liefert Parallelitat bzw. Nichtdeterminismus

— Welche Probleme sind gleich schwierig? Komplexitatsklassen

THEORETISCHE INFORMATIK II 2 §8: KOMPLEXITATSTHEORIE

FRAGESTELLUNGEN DER KOMPLEXITATSTHEORIE I

e Asymptotisches Verhalten von Algorithmen
— Komplexitatstunktion: Bedart abhangig von der Grofie der Eingabe
— Abschatzung der Komplexitat grofler Probleme

e Analyse konkreter Verfahren

— Maximaler Verbrauch im Einzelfall Worst case
Wichtig bei sicherheitskritischen Anwendungen

— Durchschnittlicher Bedarf im Langzeitverhalten Average case
Verlangt mathematisch schwierige statistische Analyse

e Analyse von Problemen
— Wie effizient ist die bestmogliche Losung? Untere Schranken
— Wieviel kann durch Hardwaresteigerungen erreicht werden?
— Welche Verbesserung liefert Parallelitat bzw. Nichtdeterminismus
— Welche Probleme sind gleich schwierig? Komplexitatsklassen

— Gibt es Probleme, die nicht effizient losbar sind?

THEORETISCHE INFORMATIK II 2 §8: KOMPLEXITATSTHEORIE

Theoretische Informatik 11

AVErg,
\30 7 gq?;'

Einheit 7.1 A

Aod

o 5
%em
.
.

Komplexitatsmaifle

1. Zeit- und Platzkomplexitat
2. Asymptotische Analyse

3. Praktische Konsequenzen

7ZEIT- UND PLATZKOMPLEXITAT I

e Rechenzeit t,(w) vel. Kapitel 7.2

— Anzahl der Elementaroperationen von 7 bis Berechnung terminiert

— Abhangig von konkreter Eingabe w

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 1 KOMPLEXITATSMASSE

7ZEIT- UND PLATZKOMPLEXITAT I

® Rechenzeit t-(w) vgl. Kapitel 7.2

— Anzahl der Elementaroperationen von 7 bis Berechnung terminiert

— Abhangig von konkreter Eingabe w

e Zeitkomplexitat time,(n) = max{t-(w) | |lw|=n}

— Maximale Rechenzeit relativ zur Groe n der Eingabe (worst-case)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 1 KOMPLEXITATSMASSE

7ZEIT- UND PLATZKOMPLEXITAT I

® Rechenzeit t-(w) vgl. Kapitel 7.2

— Anzahl der Elementaroperationen von 7 bis Berechnung terminiert

— Abhangig von konkreter Eingabe w

e Zeitkomplexitat time,(n) = max{t-(w) | |lw|=n}

— Maximale Rechenzeit relativ zur Groe n der Eingabe (worst-case)

e Speicherbedarf s, (w)

— Anzahl der Bandzellen, die 7 wahrend der Berechnung aufsucht

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 1 KOMPLEXITATSMASSE

7ZEIT- UND PLATZKOMPLEXITAT I

® Rechenzeit t-(w) vgl. Kapitel 7.2

— Anzahl der Elementaroperationen von 7 bis Berechnung terminiert

— Abhangig von konkreter Eingabe w

e Zeitkomplexitat time,(n) = max{t-(w) | |lw|=n}

— Maximale Rechenzeit relativ zur Groe n der Eingabe (worst-case)

e Speicherbedarf s, (w)

— Anzahl der Bandzellen, die 7 wahrend der Berechnung aufsucht

e Platzkomplexitiat spacer(n) = max{s,(w) | |lw|=n}

— Maximaler Speicherbedarf relativ zur Grofie n der Eingabe (worst-case)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 1 KOMPLEXITATSMASSE

7ZEIT- UND PLATZKOMPLEXITAT I

® Rechenzeit t-(w) vgl. Kapitel 7.2

— Anzahl der Elementaroperationen von 7 bis Berechnung terminiert

— Abhangig von konkreter Eingabe w

e Zeitkomplexitat time,(n) = max{t-(w) | |lw|=n}

— Maximale Rechenzeit relativ zur Groe n der Eingabe (worst-case)

e Speicherbedarf s, (w)

— Anzahl der Bandzellen, die 7 wahrend der Berechnung aufsucht

e Platzkomplexitiat spacer(n) = max{s,(w) | |lw|=n}

— Maximaler Speicherbedarf relativ zur Grofie n der Eingabe (worst-case)

Analoge Mafle fir andere Berechnungsmodelle

einschlief3lich nichtdeterministischer Maschinen

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 1 KOMPLEXITATSMASSE

KOMPLEXITATSANALYSE EINER TURING-MASCHINE I

o7, = ({s,}. {1}, {b,1},6,,8,,b) mit 6,= s a|s a P
s, 1/s, 1 r
s, bls, 1 h

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITATSMASSE

KOMPLEXITATSANALYSE EINER TURING-MASCHINE

o7, = ({s,}. {1}, {b,1},6,,8,,b) mit 6,= s a|s a P
s, 1/s, 1 r
s, bls, 1 h

e Mathematische Analyse:

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITATSMASSE

KOMPLEXITATSANALYSE EINER TURING-MASCHINE

o7, = ({s,}. {1}, {b,1},6,,8,,b) mit 6,= s a|s a P
s, 1/s, 1 r
s, bls, 1 h

e Mathematische Analyse:
1 falls j€{0,..n—1},
b sonst

— Anfangskonfiguration: a(1") = (s,.[n.0), wobei f,(j) = {

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITATSMASSE

KOMPLEXITATSANALYSE EINER TURING-MASCHINE

o7, = ({s,}. {1}, {b,1},6,,8,,b) mit 6,= s a|s a P
s, 1/s, 1 r
s, bls, 1 h

e Mathematische Analyse:
1 falls j€{0,..n—1},
b sonst

— Anfangskonfiguration: a(1") = (s,.[n.0), wobei f,(j) = {

(sys fun.g+1) falls j€{0,..,n—1},

— Nachfolgekonfigurationen: 5(So;fn;j> = { (s, f) falls j
S0 n+1, M alls J=n

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITATSMASSE

KOMPLEXITATSANALYSE EINER TURING-MASCHINE

o7, = ({s,}. {1}, {b,1},6,,8,,b) mit 6,= s a|s a P
s, 1/s, 1 r
s, bls, 1 h

e Mathematische Analyse:
— Anfangskonfiguration: a(1") = (s,.[n.0), wobei f,(j) = { 1 falls j€{0,...,n—1},
b sonst
(sys fun.g+1) falls j€{0,..,n—1},
(S()a fn+17 n) falls]:n

-~ Terminierung; min{j | 8/(sy.fu0)=(8,.fud) A 3(8,.fali)=(s,:b:0)} = 1

— Nachfolgekonfigurationen: 4 (8¢ fnd) = {

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITATSMASSE

KOMPLEXITATSANALYSE EINER TURING-MASCHINE

o7, = ({s,}. {1}, {b,1},6,,8,,b) mit 6,= s a|s a P
s, 1/s, 1 r
s, bls, 1 h

e Mathematische Analyse:
1 falls j€{0,..n—1},
b sonst

— Anfangskonfiguration: a(1") = (s,.[n.0), wobei f,(j) = {

(sys fun.g+1) falls j€{0,..,n—1},
(S()a fn+17 n) falls]:n

-~ Terminierung; min{j | 8/(sy.fu0)=(8,.fud) A 3(8,.fali)=(s,:b:0)} = 1

U

tr(1") = n4+1 und timer (n) = n+1 fiir alle n

— Nachfolgekonfigurationen: 4 (8¢ fnd) = {

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITATSMASSE

VEREINFACHTE KOMPLEXITATSABSCHATZUNGEN I

e Genaue Betrachtungen sind unpraktikabel
— 7Zu muhsam bei nichttrivialen Algorithmen

— Zu abhangig von Programmierdetails und Maschinenmodell
— Welches Maschinenmodell sollte der Standard sein?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITATSMASSE

VEREINFACHTE KOMPLEXITATSABSCHATZUNGEN I

e Genaue Betrachtungen sind unpraktikabel
— 7Zu muhsam bei nichttrivialen Algorithmen

— Zu abhangig von Programmierdetails und Maschinenmodell
— Welches Maschinenmodell sollte der Standard sein?

e Abschatzung der Komplexitat

— Nur asymptotisches Verhalten auf grofien Problemen ist interessant

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITATSMASSE

VEREINFACHTE KOMPLEXITATSABSCHATZUNGEN I

e Genaue Betrachtungen sind unpraktikabel
— 7Zu muhsam bei nichttrivialen Algorithmen

— Zu abhangig von Programmierdetails und Maschinenmodell
— Welches Maschinenmodell sollte der Standard sein?

e Abschatzung der Komplexitat
— Nur asymptotisches Verhalten auf grofien Problemen ist interessant

— Einheitskostenmodell: Vereinfachte Zahlung von Elementaroperationen

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITATSMASSE

VEREINFACHTE KOMPLEXITATSABSCHATZUNGEN I

e Genaue Betrachtungen sind unpraktikabel
— 7Zu muhsam bei nichttrivialen Algorithmen

— Zu abhangig von Programmierdetails und Maschinenmodell

— Welches Maschinenmodell sollte der Standard sein”?

e Abschatzung der Komplexitat
— Nur asymptotisches Verhalten auf grofien Problemen ist interessant
— Einheitskostenmodell: Vereinfachte Zahlung von Elementaroperationen
— Additive Konstanten werden nicht berticksichtigt

— Konstante Faktoren werden nicht berticksichtigt

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITATSMASSE

VEREINFACHTE KOMPLEXITATSABSCHATZUNGEN I

e Genaue Betrachtungen sind unpraktikabel

— 7Zu muhsam bei nichttrivialen Algorithmen

— Zu abhangig von Programmierdetails und Maschinenmodell

— Welches Maschinenmodell sollte der Standard sein”?

e Abschatzung der Komplexitat

— Nur asymptotisches Verhalten auf groffen Problemen ist interessant
— Einheitskostenmodell: Vereinfachte Zahlung von Elementaroperationen
— Additive Konstanten werden nicht berticksichtigt

— Konstante Faktoren werden nicht berticksichtigt

U

Analyse des wesentlichen

Laufzeitverhaltens /Speicherbedarfs

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITATSMASSE

ASYMPTOTISCHE ANALYSE I

e Asymptotischer Vergleich von Funktionen
— fo wachst schneller als f1, falls fi(n)< fo(n) fir alle n eN

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITATSMASSE

ASYMPTOTISCHE ANALYSE I

e Asymptotischer Vergleich von Funktionen

— fo wachst schneller als f1, falls fi(n)< fo(n) fir alle n eN
— f5 wachst asymptotisch schneller als f7, falls es ein ngeN gibt mit
fi(n)<fa(n) fir alle n>ny

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITATSMASSE

ASYMPTOTISCHE ANALYSE I

e Asymptotischer Vergleich von Funktionen

— fo wachst schneller als f1, falls fi(n)< fo(n) fir alle n eN
— fy wachst asymptotisch schneller als f7, falls es ein ngeN gibt mit
fi(n)<fa(n) fir alle n>ny

e Ordnung O(f) einer Funktion
- O(f) = {9 : N=N|3dng, c. V'n>ng. g(n)<cxf(n)}
— Alternativ: O(f) ={g : N=N |3k, c.Vn. g(n)<k+cxf(n)}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITATSMASSE

ASYMPTOTISCHE ANALYSE I

e Asymptotischer Vergleich von Funktionen

— fo wachst schneller als f1, falls fi(n)< fo(n) fir alle n eN
— fy wachst asymptotisch schneller als f7, falls es ein ngeN gibt mit
fi(n)<fa(n) fir alle n>ny

e Ordnung O(f) einer Funktion
- O(f) = {9 : N=N|3dng, c. V'n>ng. g(n)<cxf(n)}
— Alternativ: O(f) ={g : N=N |3k, c.Vn. g(n)<k+cxf(n)}
— Gangige Schreibweisen

- g=0O(f) bedeutet g O(f), O(f1)=0O(f2) bedeutet O(f;)cO(f>)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITATSMASSE

ASYMPTOTISCHE ANALYSE I

e Asymptotischer Vergleich von Funktionen
— fo wichst schneller als fi, falls fi(n)< fo(n) fiir alle neN
— fy wachst asymptotisch schneller als f7, falls es ein ngeN gibt mit

fi(n)<fa(n) fir alle n>ny

e Ordnung O(f) einer Funktion
- O(f) = {9 : N=N|3dng, c. V'n>ng. g(n)<cxf(n)}
— Alternativ: O(f) ={g : N=N |3k, c.Vn. g(n)<k+cxf(n)}
— Gangige Schreibweisen
- g=0(f) bedeutet g O(f), O(f1)=0O(f2) bedeutet O(f1)cO(f2)
- O0(1)=0(An.1), On)=0(n.n), On*)=0(An.n?), ...

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITATSMASSE

ASYMPTOTISCHE ANALYSE I

e Asymptotischer Vergleich von Funktionen

— fo wachst schneller als f1, falls fi(n)< fo(n) fir alle n eN
— fy wachst asymptotisch schneller als f7, falls es ein ngeN gibt mit
fi(n)<fa(n) fir alle n>ny

e Ordnung O(f) einer Funktion
- O(f) = {9 : N=N|3dng, c. V'n>ng. g(n)<cxf(n)}
— Alternativ: O(f) = {g : N=N |3k, c.Vn. g(n)<k+cxf(n)}
— Gangige Schreibweisen
- g=0(f) bedeutet g O(f), O(f1)=0O(f2) bedeutet O(f1)cO(f2)
- O0(1)=0(An.1), On)=0(n.n), On*)=0(An.n?), ...

e Ordnung konkreter Funktionen
— Konstante Funktion: g;(n)=Fk fiir alle n

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITATSMASSE

ASYMPTOTISCHE ANALYSE I

e Asymptotischer Vergleich von Funktionen
— fo wachst schneller als f1, falls fi(n)< fo(n) fir alle n eN
— fy wachst asymptotisch schneller als f7, falls es ein ngeN gibt mit

fi(n)<fa(n) fir alle n>ny

e Ordnung O(f) einer Funktion
- O(f) = {9 : N=N|3dng, c. V'n>ng. g(n)<cxf(n)}
— Alternativ: O(f) = {g : N=N |3k, c.Vn. g(n)<k+cxf(n)}
— Gangige Schreibweisen
- g=0(f) bedeutet g O(f), O(f1)=0O(f2) bedeutet O(f1)cO(f2)
- O0(1)=0(An.1), On)=0(n.n), On*)=0(An.n?), ...

e Ordnung konkreter Funktionen
— Konstante Funktion: g;(n)=Fk fiir alle n g1€0O(1)
— Polynome: gs(n)=cy + c1xn + .. + ¢ xn™

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITATSMASSE

ASYMPTOTISCHE ANALYSE I

e Asymptotischer Vergleich von Funktionen
— fo wachst schneller als f1, falls fi(n)< fo(n) fir alle n eN
— fy wachst asymptotisch schneller als f7, falls es ein ngeN gibt mit

fi(n)<fa(n) fir alle n>ny

e Ordnung O(f) einer Funktion
- O(f) = {9 : N=N|3dng, c. V'n>ng. g(n)<cxf(n)}
— Alternativ: O(f) = {g : N=N |3k, c.Vn. g(n)<k+cxf(n)}
— Gangige Schreibweisen

- g=0O(f) bedeutet g O(f), O(f1)=0O(f2) bedeutet O(f;)cO(f>)
- O0(1)=0(An.1), On)=0(n.n), On*)=0(An.n?), ...

e Ordnung konkreter Funktionen
— Konstante Funktion: g;(n)=Fk fiir alle n g1€0O(1)
— Polynome: go(n)=co + ci*n + .. + cpxn™ g2 O(n™)
— Logarithmenfunktionen: g3(n)=logyn

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITATSMASSE

ASYMPTOTISCHE ANALYSE I

e Asymptotischer Vergleich von Funktionen
— fo wachst schneller als f1, falls fi(n)< fo(n) fir alle n eN
— fy wachst asymptotisch schneller als f7, falls es ein ngeN gibt mit

fi(n)<fa(n) fir alle n>ny

e Ordnung O(f) einer Funktion
- O(f) = {9 : N=N|3dng, c. V'n>ng. g(n)<cxf(n)}
— Alternativ: O(f) = {g : N=N |3k, c.Vn. g(n)<k+cxf(n)}
— Gangige Schreibweisen
- g=0(f) bedeutet g O(f), O(f1)=0O(f2) bedeutet O(f1)cO(f2)
- O0(1)=0(An.1), On)=0(n.n), On*)=0(An.n?), ...

e Ordnung konkreter Funktionen

— Konstante Funktion: g;(n)=Fk fiir alle n g1€0O(1)
— Polynome: go(n)=co + ci*n + .. + cpxn™ g2 O(n™)
— Logarithmenfunktionen: gs(n)=logyn g3€O(logan)

— Fakultatsfunktion: g4(n)=n!=1%2%..xn

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITATSMASSE

ASYMPTOTISCHE ANALYSE I

e Asymptotischer Vergleich von Funktionen
— fo wachst schneller als f1, falls fi(n)< fo(n) fir alle n eN
— f5 wachst asymptotisch schneller als f7, falls es ein ngeN gibt mit
fi(n)<fa(n) fir alle n>ny

e Ordnung O(f) einer Funktion
- O(f) = {9 : N=N|3dng, c. V'n>ng. g(n)<cxf(n)}
— Alternativ: O(f) = {g : N=N |3k, c.Vn. g(n)<k+cxf(n)}
— Gangige Schreibweisen
- g=0(f) bedeutet g O(f), O(f1)=0O(f2) bedeutet O(f1)cO(f2)
- O0(1)=0(An.1), On)=0(n.n), On*)=0(An.n?), ...

e Ordnung konkreter Funktionen

— Konstante Funktion: g;(n)=Fk fiir alle n g1€0O(1)
— Polynome: go(n)=co + ci*n + .. + cpxn™ g2 O(n™)
— Logarithmenfunktionen: g3(n)=logyn g3€O(logon)
— Fakultatsfunktion: g4(n)=n!=1%2%..xn g1eO(n")

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITATSMASSE

KOMPLEXITAT VON ALGORITHMEN I

e Asymptotischer Effizienzvergleich
— 71 ist schneller als o, falls time,, (n)< time.,(n) fir alle neN

— 71 ist asymptotisch schneller als 7, falls es ein ngeN gibt mit
time,, (n)<time,(n) fiir alle n>ny

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 KOMPLEXITATSMASSE

KOMPLEXITAT VON ALGORITHMEN I

e Asymptotischer Effizienzvergleich
— 71 ist schneller als o, falls time,, (n)< time.,(n) fir alle neN

— 71 ist asymptotisch schneller als 7, falls es ein ngeN gibt mit
time,, (n)<time,(n) fiir alle n>ny

e Komplexitat O(f)
— 7 hat Zeitkomplexitat O(f), falls time, € O(f)
— 7 hat Platzkomplexitiat O(f), falls space, € O(f)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 KOMPLEXITATSMASSE

KOMPLEXITAT VON ALGORITHMEN I

e Asymptotischer Effizienzvergleich
— 71 ist schneller als o, falls time,, (n)< time.,(n) fir alle neN

— 71 1st asymptotisch schneller als 7, falls es ein ngeN gibt mit
time,, (n)<time,(n) fiir alle n>ny

e Komplexitat O(f)
— 7 hat Zeitkomplexitat O(f), falls time, € O(f)
— 7 hat Platzkomplexitiat O(f), falls space, € O(f)

e Komplexitatklassen
— 7 hat konstante (Zeit-)komplexitét, falls time, e O(1)
— 7 hat logarithmische Komplexitat, falls teme. € O(logon)
— 7 hat lineare Komplexitat, falls time, € O(n)
— 7 hat quadratische Komplexitat, falls time, e O(n?)
— 7 hat kubische Komplexitat, falls time, e O(n?)
— 7 hat polynomielle Komplexitit, falls time, € O(n") fiir ein keN
— 7 hat exponentielle Komplexitét, falls time, € O(Q”k) {];iir ein k eN

— 7 hat superexponentielle Komplexitit, falls time, e O(2%") fiir cin keN

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 KOMPLEXITATSMASSE

KOMPLEXITAT VON ALGORITHMEN I

e Asymptotischer Effizienzvergleich
— 71 ist schneller als o, falls time,, (n)< time.,(n) fir alle neN

— 71 1st asymptotisch schneller als 7, falls es ein ngeN gibt mit
time,, (n)<time,(n) fiir alle n>ny

e Komplexitat O(f)
— 7 hat Zeitkomplexitat O(f), falls time, € O(f)
— 7 hat Platzkomplexitiat O(f), falls space, € O(f)

e Komplexitatklassen
— 7 hat konstante (Zeit-)komplexitét, falls time, e O(1)
— 7 hat logarithmische Komplexitat, falls teme. € O(logon)
— 7 hat lineare Komplexitat, falls time, € O(n)
— 7 hat quadratische Komplexitat, falls time, e O(n?)
— 7 hat kubische Komplexitat, falls time, e O(n?)
— 7 hat polynomielle Komplexitat, falls time, € (’)(n’“) fir ein keN
— 7 hat exponentielle Komplexitat, falls time, € (’)(2") fur ein keN
— 7 hat superexponentielle Komplexitat, falls time, € (9(22n) fiir ein keN

Analoge Klassen fiir Platzkomplexitat

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
GroBe n 10 20 30 40 50 60]...] 1000|1.000.000

Wachstum

log,n| 1ns

3n

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
GroBe n 10 20 30 40 50 60]...] 1000|1.000.000

Wachstum

log,n| 1ns 2ns

n
n2

n3

27’1,
3n

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
GroBe n 10 20 30 40 50 60]...] 1000|1.000.000

Wachstum

log,n| 1ns 2ns ans

n
n2

n3

27’1,
3n

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
GroBe n 10 20 30 40 50 60]...] 1000|1.000.000

Wachstum

log,n| 1ns 2ns ans 10ns

n
n2

n3

27’1,
3n

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
GroBe n 10 20 30 40 50 60]...] 1000|1.000.000

Wachstum
log,n| 1ns 2ns ans 10ns| 100ns

n
n2

n3

27’1,
3n

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
GroBe n 10 20 30 40 50 60]...] 1000|1.000.000

Wachstum
log,n| 1ns 2ns ans 10ns| 100ns

n 3ns
n2

n3

27’1,
3n

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor

Grofie n 10 20 30 40 50 60[...| 1000{1.000.000
Wachstum

log,n| 1ns 2ns ans 10ns| 100ns

n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns

2
3
on
qn

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 50 60[...| 1000{1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| O6ns| 9ns| 12ns I5ns| 18ns 300ns| 300us
2
3
27’1,
3n

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 50 60[...| 1000{1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| O6ns| 9ns| 12ns I5ns| 18ns 300ns| 300us
n?| 30ns
3
on
qn

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor

Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us
n3
on
qn

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n3
on
qn

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor

Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum

log,n| 1ns 2ns ans 10ns| 100ns

n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns| 300us

n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s

n?| 300ns| 2.4us| 8.1us|19.2us 37.5us| 64us 300ms 9.5y
on
qn

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us 37.5us| 64us 300ms 9.5y
2" 300ns
qn

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us 37.5us| 64us 300ms 9.5y
2" 300ns| 300us
qn

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten aut 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| Ons| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms
9

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten aut 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| Ons| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s
9

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten aut 3.3 Ghz Prozessor

Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum

log,n| 1ns 2ns ans 10ns| 100ns

n| 3ns| Ons| 9ns| 12ns 15ns| 18ns 300ns| 300us

n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s

n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y

2" 300ns| 300us|300ms| 300s 83.3h

9

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten aut 3.3 Ghz Prozessor

Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum

log,n| 1ns 2ns ans 10ns| 100ns

n| 3ns| Ons| 9ns| 12ns 15ns| 18ns 300ns| 300us

n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s

n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y

2" 300ns| 300us|300ms| 300s 83.3h| 9.5y

9

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| Ons| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
3" 17.8us

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| Ons| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
M 17.8us| 1.1s

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| Ons| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300 s 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| Ons| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300 s 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten aut 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| Ons| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300 s 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y
Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?
logn n n? n’ 2" 3"

Problemsteigerung

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300 s 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y
Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?
logn n n? n’ 2" 3"

Problemsteigerung | 103%-fach

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 50/ 60...| 1000|1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y
Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?
logn n n? n’ 2" 3"
Problemsteigerung | 103"-fach | 1000-fach

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten aut 3.3 Ghz Prozessor
Grofie n 10 20 30 40 501 60[...] 1000/1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y

Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?

logn n n? n’ 2" 3"
Problemsteigerung |10°"-fach | 1000-fach| 31-fach

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 50/ 60...| 1000|1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| 6ns| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y
Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?
logn n n? n’ 2" 3"
Problemsteigerung|103"-fach | 1000-fach| 31-fach| 10-fach

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 50/ 60...| 1000|1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| Ons| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y
Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?
logn n n? n’ 2" 3"
Problemsteigerung | 103"-fach |1000-fach| 31-fach| 10-fach| plus 10

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

WIE SCHNELL WACHST RECHENZEIT MIT DER (GROSSE DER EINGABE? I

Rechenzeiten auf 3.3 Ghz Prozessor
Grofie n 10 20 30 40 50/ 60...| 1000|1.000.000
Wachstum
log,n| 1ns 2ns ans 10ns| 100ns
n| 3ns| Ons| 9ns| 12ns 15ns| 18ns 300ns| 300us
n?| 30ns| 120ns| 270ns| 480ns 750ns|1.1us 300us 300s
n?| 300ns| 2.4us| 8.1us|19.2us S7.5us| 64us 300ms 9.5y
2" 300ns| 300us|300ms| 300s 83.3h| 9.5y
3" 17.8us| 1.1s| 17.3h| 116y|2.500.000.000y
Wieviel mehr kann man in der gleichen Zeit berechnen,
wenn Computer um den Faktor 1000 schneller sind?
logn n n? n’ 2" 3"
Problemsteigerung | 10°"-fach |1000-fach| 31-fach| 10-fach| plus 10| plus 6

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITATSMASSE

KOMPLEXITATKLASSEN — PRAKTISCHE AUSWIRKUNGEN I

e Grofle Probleme benotigen polynomielle Losungen
— Exponentielle Algorithmen sind fiir die Praxis unakzeptabel

— Auch innerhalb der polynomiellen Komplexitat gibt es grof3e Unterschiede

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 KOMPLEXITATSMASSE

KOMPLEXITATKLASSEN — PRAKTISCHE AUSWIRKUNGEN I

e Grofle Probleme benotigen polynomielle Losungen
— Exponentielle Algorithmen sind fiir die Praxis unakzeptabel

— Auch innerhalb der polynomiellen Komplexitat gibt es grof3e Unterschiede

e Bessere Hardware ist selten eine Losung
— Wenn Algorithmen schlecht sind, nutzt die beste Hardware wenig

— Es lohnt sich, in die Verbesserung von Algorithmen zu investieren

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 KOMPLEXITATSMASSE

KOMPLEXITATKLASSEN — PRAKTISCHE AUSWIRKUNGEN I

e Grofle Probleme benotigen polynomielle Losungen
— Exponentielle Algorithmen sind fiir die Praxis unakzeptabel

— Auch innerhalb der polynomiellen Komplexitat gibt es grof3e Unterschiede

e Bessere Hardware ist selten eine Losung
— Wenn Algorithmen schlecht sind, nutzt die beste Hardware wenig

— Es lohnt sich, in die Verbesserung von Algorithmen zu investieren

e Eis gibt noch ungeklarte Fragen
— Kann Parallelismus signifikante Effizienzsteigerung bewirken?

- z.B. von exponentieller auf polynomielle Zeit?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 KOMPLEXITATSMASSE

KOMPLEXITATKLASSEN — PRAKTISCHE AUSWIRKUNGEN I

e Grofle Probleme benotigen polynomielle Losungen
— Exponentielle Algorithmen sind fiir die Praxis unakzeptabel

— Auch innerhalb der polynomiellen Komplexitat gibt es grof3e Unterschiede

e Bessere Hardware ist selten eine Losung
— Wenn Algorithmen schlecht sind, nutzt die beste Hardware wenig

— Es lohnt sich, in die Verbesserung von Algorithmen zu investieren

e Eis gibt noch ungeklarte Fragen
— Kann Parallelismus signifikante Effizienzsteigerung bewirken?

- z.B. von exponentieller auf polynomielle Zeit?

— Was ist der Zusammenhang zwischen Platzbedarf und Laufzeitverhalten

- Bisher nur grobe Abschatzungen bekannt

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 KOMPLEXITATSMASSE

