
Theoretische Informatik II

Einheit 8

Komplexitätstheorie

1. Komplexitätsmaße

2. Komplexität von Algorithmen (obere Schranken)

3. Komplexität von Problemen (untere Schranken)

4. NP-Vollständigkeit
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• Berechenbarkeit alleine reicht nicht
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– Komplexitätsfunktion: Bedarf abhängig von der Größe der Eingabe
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– Abschätzung der Komplexität großer Probleme

• Analyse konkreter Verfahren

– Maximaler Verbrauch im Einzelfall Worst case

Wichtig bei sicherheitskritischen Anwendungen

– Durchschnittlicher Bedarf im Langzeitverhalten Average case

Verlangt mathematisch schwierige statistische Analyse

• Analyse von Problemen
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Theoretische Informatik II 2 §8: Komplexitätstheorie

Fragestellungen der Komplexitätstheorie

• Asymptotisches Verhalten von Algorithmen
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Komplexitätsmaße

1. Zeit- und Platzkomplexität

2. Asymptotische Analyse

3. Praktische Konsequenzen
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Komplexitätsanalyse einer Turing-Maschine

• τ 1 = ({s
0
}, {1}, {b,1}, δ

1
, s

0
, b) mit δ

1
= s a s′ a′ P

s
0
1 s

0
1 r

s
0
b s

0
1 h

• Mathematische Analyse:

– Anfangskonfiguration: α(1n) = (s
0
,fn,0), wobei fn(j) =

{

1 falls j ∈{0,..,n−1},

b sonst

– Nachfolgekonfigurationen: δ̂(s
0
,fn,j) =

{

(s
0
, fn, j+1) falls j ∈{0,..,n−1},

(s
0
, fn+1, n) falls j=n

– Terminierung: min{j | δ̂j(s
0
,fn,0)=(s

0
,fn,j) ∧ δ(s

0
,fn(j))=(s

0
,b,h)} = n

⇓

tτ1(1
n) = n+1 und timeτ1(n) = n+1 für alle n



Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexitätsmaße
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Analyse des wesentlichen

Laufzeitverhaltens/Speicherbedarfs
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Asymptotische Analyse

• Asymptotischer Vergleich von Funktionen
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– f2 wächst schneller als f1, falls f1(n)≤ f2(n) für alle n ∈N
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Asymptotische Analyse

• Asymptotischer Vergleich von Funktionen
– f2 wächst schneller als f1, falls f1(n)≤ f2(n) für alle n ∈N
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Asymptotische Analyse

• Asymptotischer Vergleich von Funktionen
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• Ordnung O(f) einer Funktion
– O(f) = {g : N→N | ∃n0, c.∀n≥n0. g(n)≤c∗f(n)}

– Alternativ: O(f) = {g : N→N | ∃k, c.∀n. g(n)≤k+c∗f(n)}

– Gängige Schreibweisen

· g=O(f) bedeutet g ∈O(f), O(f1)=O(f2) bedeutet O(f1)⊆O(f2)

· O(1)≡O(λn.1), O(n)≡O(λn.n), O(n2)≡O(λn.n2), . . .

• Ordnung konkreter Funktionen
– Konstante Funktion: g1(n)=k für alle n g1 ∈O(1)

– Polynome: g2(n)=c0 + c1∗n + .. + cm∗n
m g2 ∈O(nm)

– Logarithmenfunktionen: g3(n)=logbn g3 ∈O(log2n)

– Fakultätsfunktion: g4(n)=n!=1∗2∗..∗n g4 ∈O(nn)
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Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n

n2

n3

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße
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Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns

n2

n3

2n

3n



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße
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Rechenzeiten auf 3.3 Ghz Prozessor
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Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße
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Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s 17.3h 116y 2.500.000.000y

Wieviel mehr kann man in der gleichen Zeit berechnen,

wenn Computer um den Faktor 1000 schneller sind?

log
2
n n n2 n3 2n 3n

Problemsteigerung 10300-fach 1000-fach 31-fach 10-fach



Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexitätsmaße
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Größe n 10 20 30 40 50 60 . . . 1000 1.000.000

Wachstum

log
2
n 1ns 2ns 3ns 10ns 100ns

n 3ns 6ns 9ns 12ns 15ns 18ns 300ns 300µs

n2 30ns 120ns 270ns 480ns 750ns 1.1µs 300µs 300s

n3 300ns 2.4µs 8.1µs 19.2µs 37.5µs 64µs 300ms 9.5y

2n 300ns 300µs 300ms 300s 83.3h 9.5y

3n 17.8µs 1.1s 17.3h 116y 2.500.000.000y

Wieviel mehr kann man in der gleichen Zeit berechnen,

wenn Computer um den Faktor 1000 schneller sind?

log
2
n n n2 n3 2n 3n

Problemsteigerung 10300-fach 1000-fach 31-fach 10-fach plus 10 plus 6



Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexitätsmaße
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• Große Probleme benötigen polynomielle Lösungen

– Exponentielle Algorithmen sind für die Praxis unakzeptabel
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• Es gibt noch ungeklärte Fragen

– Kann Parallelismus signifikante Effizienzsteigerung bewirken?

· z.B. von exponentieller auf polynomielle Zeit?

– Was ist der Zusammenhang zwischen Platzbedarf und Laufzeitverhalten

· Bisher nur grobe Abschätzungen bekannt


