
Theoretische Informatik II

Einheit 8.2

Abschätzung der Komplexität von Algorithmen

1. Suchverfahren

2. Sortieralgorithmen
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– Höherer Aufwand bei beliebig großen Zahlen



Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexität von Algorithmen

Analyse konkreter Algorithmen

Obere Schranken für die Laufzeit

• Analyse auf Ebene der Algorithmen

– Algorithmische Elementaroperationen gelten als ein Schritt

– Meist konstanter Expansionsfaktor bei Übersetzung in Maschinensprache
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– Höherer Aufwand bei beliebig großen Zahlen

• Analyse abstrakter sequentieller Algorithmen

– Asymptotische Komplexität ist unabhängig von Programmiersprache

– Parallele/nichtdeterministische Maschinen haben evtl. bessere Laufzeit
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• Grobe Laufzeitanalyse

– Konstante Anzahl von Operationen pro Aufruf von searchbound

– Wie oft wird searchbound aufgerufen?
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function searchbound(x,L,left,right) ≡

if left>right then return false

else
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⇓

Binäre Suche ist in O(log2 n)
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– Insertion Sort: Einfügen des Listenanfangs in geordnete Teilliste

– Selection Sort: Auswahl des jeweils kleinsten Elements als Listenanfang



Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Algorithmen

Sortierverfahren

• Ordne Elemente in aufsteigender Reihenfolge

– Geordnete Listen unterstützen effizienten Zugriff auf Elemente
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– Eine der häufigsten Operationen in der Programmierung

• Viele Verfahren bekannt
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L[j+1] := aux
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od
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– Innere Schleife wird jeweils genau upper-mal durchlaufen



Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexität von Algorithmen

Bubblesort - Laufzeitanalyse

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od

od

• Feste Anzahl von Operationen im Schleifenrumpf
– Vergleich benachbarter Elemente

– ggf. Austauch unter Verwendung einer Hilfsvariablen

• Anzahl Schleifen abhängig von Listengröße n
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Bubblesort - Laufzeitanalyse

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od

od

• Feste Anzahl von Operationen im Schleifenrumpf
– Vergleich benachbarter Elemente

– ggf. Austauch unter Verwendung einer Hilfsvariablen

• Anzahl Schleifen abhängig von Listengröße n

– Innere Schleife wird jeweils genau upper-mal durchlaufen

– Insgesamt n-1 + n-2 + .... + 2 + 1 = n*(n-1)/2 Durchläufe

⇓

Bubblesort ist in O(n2)



Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)
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• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6



Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)
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9 7 8 2 1 5 6



Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)
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– Länge der Läufe wächst – Anzahl halbiert sich

• Wiederhole bis Folge geordnet

7 8 9 1 2 5 6

1 2 5



Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)
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9 7 8 2 1 5 6

7 8 9 1 2 5 6
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Analyse des Verfahrens

• Abstrakte Skizze reicht für Laufzeitanalyse

• Verschmelzen ist in O(n)

– Folge wird jeweils komplett durchlaufen

• Verschmelzen halbiert Anzahl der Läufe

– Je zwei Läufe werden zu einem gemischt

– Nach maximal log
2
n Verschmelzungen bleibt ein einziger Lauf übrig

d.h. die Liste ist sortiert

⇓

Sortieren durch Verschmelzen ist in O(n ∗ log2 n)


