
Theoretische Informatik II

Einheit 8.2

Abschätzung der Komplexität von Algorithmen

1. Suchverfahren

2. Sortieralgorithmen

Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexität von Algorithmen

Analyse konkreter Algorithmen

Obere Schranken für die Laufzeit

Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexität von Algorithmen

Analyse konkreter Algorithmen

Obere Schranken für die Laufzeit

• Analyse auf Ebene der Algorithmen

– Algorithmische Elementaroperationen gelten als ein Schritt

– Meist konstanter Expansionsfaktor bei Übersetzung in Maschinensprache

– +, -, *,/,. . . Einzelschritte, wenn Zahlengröße beschränkt (z.B. 64-bit)

Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexität von Algorithmen

Analyse konkreter Algorithmen

Obere Schranken für die Laufzeit

• Analyse auf Ebene der Algorithmen

– Algorithmische Elementaroperationen gelten als ein Schritt

– Meist konstanter Expansionsfaktor bei Übersetzung in Maschinensprache

– +, -, *,/,. . . Einzelschritte, wenn Zahlengröße beschränkt (z.B. 64-bit)

– Höherer Aufwand bei beliebig großen Zahlen

Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexität von Algorithmen

Analyse konkreter Algorithmen

Obere Schranken für die Laufzeit

• Analyse auf Ebene der Algorithmen

– Algorithmische Elementaroperationen gelten als ein Schritt

– Meist konstanter Expansionsfaktor bei Übersetzung in Maschinensprache

– +, -, *,/,. . . Einzelschritte, wenn Zahlengröße beschränkt (z.B. 64-bit)

– Höherer Aufwand bei beliebig großen Zahlen

• Analyse abstrakter sequentieller Algorithmen

– Asymptotische Komplexität ist unabhängig von Programmiersprache

Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexität von Algorithmen

Analyse konkreter Algorithmen

Obere Schranken für die Laufzeit

• Analyse auf Ebene der Algorithmen

– Algorithmische Elementaroperationen gelten als ein Schritt

– Meist konstanter Expansionsfaktor bei Übersetzung in Maschinensprache

– +, -, *,/,. . . Einzelschritte, wenn Zahlengröße beschränkt (z.B. 64-bit)

– Höherer Aufwand bei beliebig großen Zahlen

• Analyse abstrakter sequentieller Algorithmen

– Asymptotische Komplexität ist unabhängig von Programmiersprache

– Parallele/nichtdeterministische Maschinen haben evtl. bessere Laufzeit

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Algorithmen

Sequentielle Suche

Teste, ob eine Zahl x in einer Liste L vorkommt

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Algorithmen

Sequentielle Suche

Teste, ob eine Zahl x in einer Liste L vorkommt

• Durchsuche Liste L von links nach rechts
function searchseq(x,L) ≡

found := false;

for i = 1 to length(L) do

if L[i]=x then found:=true

od;

return found;

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Algorithmen

Sequentielle Suche

Teste, ob eine Zahl x in einer Liste L vorkommt

• Durchsuche Liste L von links nach rechts
function searchseq(x,L) ≡

found := false;

for i = 1 to length(L) do

if L[i]=x then found:=true

od;

return found;

Verfahren ist anwendbar auf beliebige Listen

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Algorithmen

Sequentielle Suche

Teste, ob eine Zahl x in einer Liste L vorkommt

• Durchsuche Liste L von links nach rechts
function searchseq(x,L) ≡

found := false;

for i = 1 to length(L) do

if L[i]=x then found:=true

od;

return found;

Verfahren ist anwendbar auf beliebige Listen

• Laufzeitanalyse
– Eine Operation für Initialisierung found:=false

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Algorithmen

Sequentielle Suche

Teste, ob eine Zahl x in einer Liste L vorkommt

• Durchsuche Liste L von links nach rechts
function searchseq(x,L) ≡

found := false;

for i = 1 to length(L) do

if L[i]=x then found:=true

od;

return found;

Verfahren ist anwendbar auf beliebige Listen

• Laufzeitanalyse
– Eine Operation für Initialisierung found:=false

– Je 2 Operationen pro Element von L in der for-Schleife

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Algorithmen

Sequentielle Suche

Teste, ob eine Zahl x in einer Liste L vorkommt

• Durchsuche Liste L von links nach rechts
function searchseq(x,L) ≡

found := false;

for i = 1 to length(L) do

if L[i]=x then found:=true

od;

return found;

Verfahren ist anwendbar auf beliebige Listen

• Laufzeitanalyse
– Eine Operation für Initialisierung found:=false

– Je 2 Operationen pro Element von L in der for-Schleife

– Eine Operation für Ausgabe des Ergebnisses

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Algorithmen

Sequentielle Suche

Teste, ob eine Zahl x in einer Liste L vorkommt

• Durchsuche Liste L von links nach rechts
function searchseq(x,L) ≡

found := false;

for i = 1 to length(L) do

if L[i]=x then found:=true

od;

return found;

Verfahren ist anwendbar auf beliebige Listen

• Laufzeitanalyse
– Eine Operation für Initialisierung found:=false

– Je 2 Operationen pro Element von L in der for-Schleife

– Eine Operation für Ausgabe des Ergebnisses

– Insgesamt 2n+2 Schritte, wenn n die Größe der Liste L ist

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Algorithmen

Sequentielle Suche

Teste, ob eine Zahl x in einer Liste L vorkommt

• Durchsuche Liste L von links nach rechts
function searchseq(x,L) ≡

found := false;

for i = 1 to length(L) do

if L[i]=x then found:=true

od;

return found;

Verfahren ist anwendbar auf beliebige Listen

• Laufzeitanalyse
– Eine Operation für Initialisierung found:=false

– Je 2 Operationen pro Element von L in der for-Schleife

– Eine Operation für Ausgabe des Ergebnisses

– Insgesamt 2n+2 Schritte, wenn n die Größe der Liste L ist

7→ Sequentielle Suche ist in O(n)

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Algorithmen

Binäre Suche

Nur anwendbar, wenn Liste L geordnet ist

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Algorithmen

Binäre Suche

Nur anwendbar, wenn Liste L geordnet ist

• Teste mittleres Element; suche dann rechts oder links
function searchbin(x,L) ≡

function searchbound(x,L,left,right) ≡
if left>right then return false

else

mid := (left+right) div 2;

if x<L[mid] then searchbound(x,L,left,mid-1)

elseif x>L[mid] then searchbound(x,L,mid+1,right)

else return true

fi;
return searchbound(x,L,1,length(L))

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Algorithmen

Binäre Suche

Nur anwendbar, wenn Liste L geordnet ist

• Teste mittleres Element; suche dann rechts oder links
function searchbin(x,L) ≡

function searchbound(x,L,left,right) ≡
if left>right then return false

else

mid := (left+right) div 2;

if x<L[mid] then searchbound(x,L,left,mid-1)

elseif x>L[mid] then searchbound(x,L,mid+1,right)

else return true

fi;
return searchbound(x,L,1,length(L))

• Grobe Laufzeitanalyse

– Konstante Anzahl von Operationen pro Aufruf von searchbound

– Wie oft wird searchbound aufgerufen?

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Algorithmen

Binäre Suche – Analyse

function searchbin(x,L) ≡
function searchbound(x,L,left,right) ≡

if left>right then return false

else

mid := (left+right) div 2;

if x<L[mid] then searchbound(x,L,left,mid-1)

elseif x>L[mid] then searchbound(x,L,mid+1,right)

else return true

fi;
return searchbound(x,L,1,length(L))

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Algorithmen

Binäre Suche – Analyse

function searchbin(x,L) ≡
function searchbound(x,L,left,right) ≡

if left>right then return false

else

mid := (left+right) div 2;

if x<L[mid] then searchbound(x,L,left,mid-1)

elseif x>L[mid] then searchbound(x,L,mid+1,right)

else return true

fi;
return searchbound(x,L,1,length(L))

Abstand von left und right halbiert sich pro Aufruf (mit Abrundung)

Anzahl von Operationen pro Aufruf von searchbound ist eine Konstante k

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Algorithmen

Binäre Suche – Analyse

function searchbin(x,L) ≡
function searchbound(x,L,left,right) ≡

if left>right then return false

else

mid := (left+right) div 2;

if x<L[mid] then searchbound(x,L,left,mid-1)

elseif x>L[mid] then searchbound(x,L,mid+1,right)

else return true

fi;
return searchbound(x,L,1,length(L))

Abstand von left und right halbiert sich pro Aufruf (mit Abrundung)

Anzahl von Operationen pro Aufruf von searchbound ist eine Konstante k

Abstand zu Beginn ist n−1 (n ist die Größe der Liste L)

searchbound terminiert bei Erfolg oder wenn Abstand Null ist

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Algorithmen

Binäre Suche – Analyse

function searchbin(x,L) ≡
function searchbound(x,L,left,right) ≡

if left>right then return false

else

mid := (left+right) div 2;

if x<L[mid] then searchbound(x,L,left,mid-1)

elseif x>L[mid] then searchbound(x,L,mid+1,right)

else return true

fi;
return searchbound(x,L,1,length(L))

Abstand von left und right halbiert sich pro Aufruf (mit Abrundung)

Anzahl von Operationen pro Aufruf von searchbound ist eine Konstante k

Abstand zu Beginn ist n−1 (n ist die Größe der Liste L)

searchbound terminiert bei Erfolg oder wenn Abstand Null ist

Lösung der Gleichung time(n) = k+time(bn/2c) ist time(n) = k ∗ log2 n

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Algorithmen

Binäre Suche – Analyse

function searchbin(x,L) ≡
function searchbound(x,L,left,right) ≡

if left>right then return false

else

mid := (left+right) div 2;

if x<L[mid] then searchbound(x,L,left,mid-1)

elseif x>L[mid] then searchbound(x,L,mid+1,right)

else return true

fi;
return searchbound(x,L,1,length(L))

Abstand von left und right halbiert sich pro Aufruf (mit Abrundung)

Anzahl von Operationen pro Aufruf von searchbound ist eine Konstante k

Abstand zu Beginn ist n−1 (n ist die Größe der Liste L)

searchbound terminiert bei Erfolg oder wenn Abstand Null ist

Lösung der Gleichung time(n) = k+time(bn/2c) ist time(n) = k ∗ log2 n

⇓

Binäre Suche ist in O(log2 n)

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Algorithmen

Sortierverfahren

• Ordne Elemente in aufsteigender Reihenfolge

– Geordnete Listen unterstützen effizienten Zugriff auf Elemente

– Eine der häufigsten Operationen in der Programmierung

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Algorithmen

Sortierverfahren

• Ordne Elemente in aufsteigender Reihenfolge

– Geordnete Listen unterstützen effizienten Zugriff auf Elemente

– Eine der häufigsten Operationen in der Programmierung

• Viele Verfahren bekannt

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Algorithmen

Sortierverfahren

• Ordne Elemente in aufsteigender Reihenfolge

– Geordnete Listen unterstützen effizienten Zugriff auf Elemente

– Eine der häufigsten Operationen in der Programmierung

• Viele Verfahren bekannt

– Insertion Sort: Einfügen des Listenanfangs in geordnete Teilliste

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Algorithmen

Sortierverfahren

• Ordne Elemente in aufsteigender Reihenfolge

– Geordnete Listen unterstützen effizienten Zugriff auf Elemente

– Eine der häufigsten Operationen in der Programmierung

• Viele Verfahren bekannt

– Insertion Sort: Einfügen des Listenanfangs in geordnete Teilliste

– Selection Sort: Auswahl des jeweils kleinsten Elements als Listenanfang

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Algorithmen

Sortierverfahren

• Ordne Elemente in aufsteigender Reihenfolge

– Geordnete Listen unterstützen effizienten Zugriff auf Elemente

– Eine der häufigsten Operationen in der Programmierung

• Viele Verfahren bekannt

– Insertion Sort: Einfügen des Listenanfangs in geordnete Teilliste

– Selection Sort: Auswahl des jeweils kleinsten Elements als Listenanfang

– Bubblesort: Austauschen benachbarter Elemente

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Algorithmen

Sortierverfahren

• Ordne Elemente in aufsteigender Reihenfolge

– Geordnete Listen unterstützen effizienten Zugriff auf Elemente

– Eine der häufigsten Operationen in der Programmierung

• Viele Verfahren bekannt

– Insertion Sort: Einfügen des Listenanfangs in geordnete Teilliste

– Selection Sort: Auswahl des jeweils kleinsten Elements als Listenanfang

– Bubblesort: Austauschen benachbarter Elemente

– Quicksort: Aufteilung nach Größe, Sortieren der entstehenden Teillisten

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Algorithmen

Sortierverfahren

• Ordne Elemente in aufsteigender Reihenfolge

– Geordnete Listen unterstützen effizienten Zugriff auf Elemente

– Eine der häufigsten Operationen in der Programmierung

• Viele Verfahren bekannt

– Insertion Sort: Einfügen des Listenanfangs in geordnete Teilliste

– Selection Sort: Auswahl des jeweils kleinsten Elements als Listenanfang

– Bubblesort: Austauschen benachbarter Elemente

– Quicksort: Aufteilung nach Größe, Sortieren der entstehenden Teillisten

– Mergesort: Aufteilen in Teillisten, Sortieren und Mischen der Teillisten

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Algorithmen

Sortierverfahren

• Ordne Elemente in aufsteigender Reihenfolge

– Geordnete Listen unterstützen effizienten Zugriff auf Elemente

– Eine der häufigsten Operationen in der Programmierung

• Viele Verfahren bekannt

– Insertion Sort: Einfügen des Listenanfangs in geordnete Teilliste

– Selection Sort: Auswahl des jeweils kleinsten Elements als Listenanfang

– Bubblesort: Austauschen benachbarter Elemente

– Quicksort: Aufteilung nach Größe, Sortieren der entstehenden Teillisten

– Mergesort: Aufteilen in Teillisten, Sortieren und Mischen der Teillisten

– Mergesort (II): Identifizieren und Mischen geordneter Teillisten

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Algorithmen

Sortierverfahren

• Ordne Elemente in aufsteigender Reihenfolge

– Geordnete Listen unterstützen effizienten Zugriff auf Elemente

– Eine der häufigsten Operationen in der Programmierung

• Viele Verfahren bekannt

– Insertion Sort: Einfügen des Listenanfangs in geordnete Teilliste

– Selection Sort: Auswahl des jeweils kleinsten Elements als Listenanfang

– Bubblesort: Austauschen benachbarter Elemente

– Quicksort: Aufteilung nach Größe, Sortieren der entstehenden Teillisten

– Mergesort: Aufteilen in Teillisten, Sortieren und Mischen der Teillisten

– Mergesort (II): Identifizieren und Mischen geordneter Teillisten

Auswahl des ‘besten’ Verfahrens hängt von Größe des Problems ab

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

9 7 8 2 1 5 6

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

9 7 8 2 1 5 6

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

7 9 8 2 1 5 6

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

7 8 9 2 1 5 6

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

7 8 2 9 1 5 6

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

7 8 2 1 9 5 6

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

7 8 2 1 5 9 6

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

7 8 2 1 5 6 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

7 8 2 1 5 6 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

7 8 2 1 5 6 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

7 2 8 1 5 6 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

7 2 1 8 5 6 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

7 2 1 5 8 6 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

7 2 1 5 6 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

7 2 1 5 6 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

2 7 1 5 6 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

2 1 7 5 6 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

2 1 5 7 6 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

2 1 5 6 7 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

2 1 5 6 7 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

1 2 5 6 7 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

1 2 5 6 7 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

1 2 5 6 7 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

1 2 5 6 7 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

1 2 5 6 7 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

1 2 5 6 7 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

1 2 5 6 7 8 9

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Algorithmen

Bubblesort

Fortlaufender Vergleich benachbarter Elemente

Austausch bei falscher Reihenfolge

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od
od

• Beispiel einer Sortierung mit Bubblesort

1 2 5 6 7 8 9
√

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexität von Algorithmen

Bubblesort - Laufzeitanalyse

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od

od

Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexität von Algorithmen

Bubblesort - Laufzeitanalyse

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od

od

• Feste Anzahl von Operationen im Schleifenrumpf
– Vergleich benachbarter Elemente

– ggf. Austauch unter Verwendung einer Hilfsvariablen

Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexität von Algorithmen

Bubblesort - Laufzeitanalyse

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od

od

• Feste Anzahl von Operationen im Schleifenrumpf
– Vergleich benachbarter Elemente

– ggf. Austauch unter Verwendung einer Hilfsvariablen

• Anzahl Schleifen abhängig von Listengröße n

Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexität von Algorithmen

Bubblesort - Laufzeitanalyse

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od

od

• Feste Anzahl von Operationen im Schleifenrumpf
– Vergleich benachbarter Elemente

– ggf. Austauch unter Verwendung einer Hilfsvariablen

• Anzahl Schleifen abhängig von Listengröße n

– Innere Schleife wird jeweils genau upper-mal durchlaufen

Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexität von Algorithmen

Bubblesort - Laufzeitanalyse

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od

od

• Feste Anzahl von Operationen im Schleifenrumpf
– Vergleich benachbarter Elemente

– ggf. Austauch unter Verwendung einer Hilfsvariablen

• Anzahl Schleifen abhängig von Listengröße n

– Innere Schleife wird jeweils genau upper-mal durchlaufen

– Insgesamt n-1 + n-2 + + 2 + 1 = n*(n-1)/2 Durchläufe

Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexität von Algorithmen

Bubblesort - Laufzeitanalyse

function bubblesort(L) ≡
for upper = length(L)-1 downto 1 do

for j = 1 to upper do

if L[j]>L[j+1] then

aux := L[j];

L[j] := L[j+1];

L[j+1] := aux

fi

od

od

• Feste Anzahl von Operationen im Schleifenrumpf
– Vergleich benachbarter Elemente

– ggf. Austauch unter Verwendung einer Hilfsvariablen

• Anzahl Schleifen abhängig von Listengröße n

– Innere Schleife wird jeweils genau upper-mal durchlaufen

– Insgesamt n-1 + n-2 + + 2 + 1 = n*(n-1)/2 Durchläufe

⇓

Bubblesort ist in O(n2)

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9 1

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9 1 2

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9 1 2 5

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9 1 2 5 6

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9 1 2 5 6

– Länge der Läufe wächst – Anzahl halbiert sich

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9 1 2 5 6

– Länge der Läufe wächst – Anzahl halbiert sich

• Wiederhole bis Folge geordnet

7 8 9 1 2 5 6

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9 1 2 5 6

– Länge der Läufe wächst – Anzahl halbiert sich

• Wiederhole bis Folge geordnet

7 8 9 1 2 5 6

1

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9 1 2 5 6

– Länge der Läufe wächst – Anzahl halbiert sich

• Wiederhole bis Folge geordnet

7 8 9 1 2 5 6

1 2

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9 1 2 5 6

– Länge der Läufe wächst – Anzahl halbiert sich

• Wiederhole bis Folge geordnet

7 8 9 1 2 5 6

1 2 5

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9 1 2 5 6

– Länge der Läufe wächst – Anzahl halbiert sich

• Wiederhole bis Folge geordnet

7 8 9 1 2 5 6

1 2 5 6

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9 1 2 5 6

– Länge der Läufe wächst – Anzahl halbiert sich

• Wiederhole bis Folge geordnet

7 8 9 1 2 5 6

1 2 5 6 7

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9 1 2 5 6

– Länge der Läufe wächst – Anzahl halbiert sich

• Wiederhole bis Folge geordnet

7 8 9 1 2 5 6

1 2 5 6 7 8

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Algorithmen

Sortieren schneller als O(n2)

• Identifiziere Läufe, d.h. geordnete Teilfolgen

9 7 8 2 1 5 6

• Verschmelze Läufe zu neuen Läufen

9 7 8 2 1 5 6

7 8 9 1 2 5 6

– Länge der Läufe wächst – Anzahl halbiert sich

• Wiederhole bis Folge geordnet

7 8 9 1 2 5 6

1 2 5 6 7 8 9

– Liste ist eine einzige (komplett) geordnete Teilfolge
√

Theoretische Informatik II §8: Komplexitätstheorie 9 Komplexität von Algorithmen

Analyse des Verfahrens

• Abstrakte Skizze reicht für Laufzeitanalyse

Theoretische Informatik II §8: Komplexitätstheorie 9 Komplexität von Algorithmen

Analyse des Verfahrens

• Abstrakte Skizze reicht für Laufzeitanalyse

• Verschmelzen ist in O(n)

– Folge wird jeweils komplett durchlaufen

Theoretische Informatik II §8: Komplexitätstheorie 9 Komplexität von Algorithmen

Analyse des Verfahrens

• Abstrakte Skizze reicht für Laufzeitanalyse

• Verschmelzen ist in O(n)

– Folge wird jeweils komplett durchlaufen

• Verschmelzen halbiert Anzahl der Läufe

– Je zwei Läufe werden zu einem gemischt

Theoretische Informatik II §8: Komplexitätstheorie 9 Komplexität von Algorithmen

Analyse des Verfahrens

• Abstrakte Skizze reicht für Laufzeitanalyse

• Verschmelzen ist in O(n)

– Folge wird jeweils komplett durchlaufen

• Verschmelzen halbiert Anzahl der Läufe

– Je zwei Läufe werden zu einem gemischt

– Nach maximal log
2
n Verschmelzungen bleibt ein einziger Lauf übrig

d.h. die Liste ist sortiert

Theoretische Informatik II §8: Komplexitätstheorie 9 Komplexität von Algorithmen

Analyse des Verfahrens

• Abstrakte Skizze reicht für Laufzeitanalyse

• Verschmelzen ist in O(n)

– Folge wird jeweils komplett durchlaufen

• Verschmelzen halbiert Anzahl der Läufe

– Je zwei Läufe werden zu einem gemischt

– Nach maximal log
2
n Verschmelzungen bleibt ein einziger Lauf übrig

d.h. die Liste ist sortiert

⇓

Sortieren durch Verschmelzen ist in O(n ∗ log2 n)

