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1. Suchverfahren

2. Sortieralgorithmen



ANALYSE KONKRETER ALGORITHMEN I

Obere Schranken fur die Laufzeit
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ANALYSE KONKRETER ALGORITHMEN I

Obere Schranken fur die Laufzeit

e Analyse auf Ebene der Algorithmen
— Algorithmische Elementaroperationen gelten als ein Schritt

— Meist konstanter Expansionsfaktor bei Ubersetzung in Maschinensprache
—+, =, *,/.... Einzelschritte, wenn Zahlengrofie beschrénkt (z.B. 64-bit)
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ANALYSE KONKRETER ALGORITHMEN I

Obere Schranken fur die Laufzeit

e Analyse auf Ebene der Algorithmen
— Algorithmische Elementaroperationen gelten als ein Schritt
— Meist konstanter Expansionsfaktor bei Ubersetzung in Maschinensprache
—+, =, *,/.... Einzelschritte, wenn Zahlengrofie beschrénkt (z.B. 64-bit)
— Hoherer Aufwand bei beliebig grofien Zahlen

e Analyse abstrakter sequentieller Algorithmen
— Asymptotische Komplexitat ist unabhangig von Programmiersprache

— Parallele /nichtdeterministische Maschinen haben evtl. bessere Laufzeit
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SEQUENTIELLE SUCHE I

Teste, ob eine Zahl z in einer Liste L vorkommt
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SEQUENTIELLE SUCHE I

Teste, ob eine Zahl z in einer Liste L vorkommt

® Durchsuche Liste L von links nach rechts

function search,,(x,L) =
found := false;
for 1 = 1 to length(L) do
if L[i]l=x then found:=true
od;
return found;
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SEQUENTIELLE SUCHE I

Teste, ob eine Zahl z in einer Liste L vorkommt

® Durchsuche Liste L von links nach rechts

function search,,(x,L) =
found := false;
for 1 = 1 to length(L) do
if L[i]l=x then found:=true
od;
return found;

Verfahren ist anwendbar auf beliebige Listen

e Laufzeitanalyse
— Eine Operation fir Initialisierung found:=false
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— Eine Operation fir Initialisierung found:=false
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SEQUENTIELLE SUCHE I

Teste, ob eine Zahl z in einer Liste L vorkommt

® Durchsuche Liste . von links nach rechts

function search,,(x,L) =
found := false;
for 1 = 1 to length(L) do
if L[i]=x then found:=true
od;
return found;

Vertahren ist anwendbar auf beliebige Listen

e Laufzeitanalyse
— Eine Operation fir Initialisierung found:=false
— Je 2 Operationen pro Element von L in der for-Schleife
— Fine Operation fiir Ausgabe des Ergebnisses
— Insgesamt 2n+2 Schritte, wenn n die Grofie der Liste L ist
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SEQUENTIELLE SUCHE I

Teste, ob eine Zahl z in einer Liste L vorkommt

® Durchsuche Liste L von links nach rechts

function search,,(x,L) =
found := false;
for 1 = 1 to length(L) do
if L[i]l=x then found:=true
od;
return found;

Verfahren ist anwendbar auf beliebige Listen

e Laufzeitanalyse
— Eine Operation fir Initialisierung found:=false
— Je 2 Operationen pro Element von L in der for-Schleife
— Fine Operation fiir Ausgabe des Ergebnisses
— Insgesamt 2n-+2 Schritte, wenn n die Grofe der Liste L ist

— Sequentielle Suche ist in O(n)
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BINARE SUCHE I

Nur anwendbar, wenn Liste L geordnet ist

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON ALGORITHMEN



BINARE SUCHE I

Nur anwendbar, wenn Liste L geordnet ist

e Teste mittleres Element; suche dann rechts oder links

function searchy;,(x,L) =
function searchp,,,¢(x,L,left,right) =
if left>right then return false
else
mid := (left+right) div 2;
if x<L[mid] then searchy,,,¢(x,L,left,mid-1)
elseif x>L[mid] then searchj,,¢(x,L,mid+1,right)
else return true
fi;
return searchp,,,¢(x,L,1,length(L))
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BINARE SUCHE I

Nur anwendbar, wenn Liste L geordnet ist

e Teste mittleres Element; suche dann rechts oder links

function searchy;,(x,L) =
function searchp,,,¢(x,L,left,right) =
if left>right then return false
else
mid := (left+right) div 2;
if x<L[mid] then searchy,,,¢(x,L,left,mid-1)
elseif x>L[mid] then searchj,,¢(x,L,mid+1,right)
else return true
fi;
return searchp,,,¢(x,L,1,length(L))

e Grobe Laufzeitanalyse
— Konstante Anzahl von Operationen pro Aufruf von searchy, 4

— Wie oft wird searchy,,,q aufgerufen?
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BINARE SUCHE — ANALYSE I

function searchy;,(x,L) =
function searchj,,¢(x,L,1left,right) =
1f left>right then return false
else
mid := (left+right) div 2;
if x<L[mid] then searchy,,,;(x,L,left,mid-1)
elseif x>L[mid] then searchp,¢(x,L,mid+1,right)
else return true
fi;
return searchy,,,¢(x,L,1,length(L))
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BINARE SUCHE — ANALYSE I

function searchy;,(x,L) =
function searchj,,¢(x,L,1left,right) =
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else
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elseif x>L[mid] then searchp,¢(x,L,mid+1,right)
else return true
fi;
return searchp,,q(x,L,1,1length(L))

Abstand von left und right halbiert sich pro Aufruf (mit Abrundung)

Anzahl von Operationen pro Aufruf von searchy,,,q ist eine Konstante k
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BINARE SUCHE — ANALYSE I

function searchy;,(x,L) =
function searchj,,¢(x,L,1left,right) =
1f left>right then return false
else
mid := (left+right) div 2;
if x<L[mid] then searchy,,,;(x,L,left,mid-1)
elseif x>L[mid] then searchp,¢(x,L,mid+1,right)
else return true
fi;
return searchp,,q(x,L,1,1length(L))

Abstand von left und right halbiert sich pro Aufruf (mit Abrundung)
Anzahl von Operationen pro Aufruf von searchy,,,q ist eine Konstante k
Abstand zu Beginn ist n—1 (n ist die GroBe der Liste L)

searchy,,,q terminiert bei Erfolg oder wenn Abstand Null ist

Losung der Gleichung time(n) = k+time(|n/2|) ist time(n) = k xlog,n
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BINARE SUCHE — ANALYSE I

function searchy;,(x,L) =
function searchj,,¢(x,L,1left,right) =
1f left>right then return false
else
mid := (left+right) div 2;
if x<L[mid] then searchy,,,;(x,L,left,mid-1)
elseif x>L[mid] then searchp,¢(x,L,mid+1,right)
else return true
fi;
return searchy,,,¢(x,L,1,length(L))

Abstand von left und right halbiert sich pro Aufruf (mit Abrundung)
Anzahl von Operationen pro Aufruf von searchy,,,q ist eine Konstante k
Abstand zu Beginn ist n—1 (n ist die GroBe der Liste L)

searchy,,,q terminiert bei Erfolg oder wenn Abstand Null ist

Losung der Gleichung time(n) = k+time(|n/2|) ist time(n) = k xlog,n

U
Binare Suche ist in O(logy n)
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SORTIERVERFAHREN I

e Ordne Elemente in aufsteigender Reihenfolge
— Geordnete Listen unterstiitzen effizienten Zugriff auf Elemente

— Eine der haufigsten Operationen in der Programmierung
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e Ordne Elemente in aufsteigender Reihenfolge
— Geordnete Listen unterstiitzen effizienten Zugriff auf Elemente

— Eine der haufigsten Operationen in der Programmierung

® Viele Verfahren bekannt

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 KOMPLEXITAT VON ALGORITHMEN




SORTIERVERFAHREN I

e Ordne Elemente in aufsteigender Reihenfolge
— Geordnete Listen unterstiitzen effizienten Zugriff auf Elemente

— Eine der haufigsten Operationen in der Programmierung

® Viele Verfahren bekannt

— Insertion Sort: Einfiigen des Listenanfangs in geordnete Teilliste
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SORTIERVERFAHREN I

e Ordne Elemente in aufsteigender Reihenfolge
— Geordnete Listen unterstiitzen effizienten Zugriff auf Elemente

— Eine der haufigsten Operationen in der Programmierung

® Viele Verfahren bekannt

— Insertion Sort: Einfiigen des Listenanfangs in geordnete Teilliste

— Selection Sort: Auswahl des jeweils kleinsten Elements als Listenanfang
— Bubblesort: Austauschen benachbarter Elemente

— Quicksort: Aufteilung nach Grofie, Sortieren der entstehenden Teillisten
— Mergesort: Aufteilen in Teillisten, Sortieren und Mischen der Teillisten

— Mergesort (II): Identifizieren und Mischen geordneter Teillisten
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SORTIERVERFAHREN I

e Ordne Elemente in aufsteigender Reihenfolge
— Geordnete Listen unterstiitzen effizienten Zugriff auf Elemente

— Eine der haufigsten Operationen in der Programmierung

® Viele Verfahren bekannt

— Insertion Sort: Einfiigen des Listenanfangs in geordnete Teilliste

— Selection Sort: Auswahl des jeweils kleinsten Elements als Listenanfang
— Bubblesort: Austauschen benachbarter Elemente

— Quicksort: Aufteilung nach Grofie, Sortieren der entstehenden Teillisten
— Mergesort: Aufteilen in Teillisten, Sortieren und Mischen der Teillisten

— Mergesort (II): Identifizieren und Mischen geordneter Teillisten

Auswahl des ‘besten’ Verfahrens hangt von Grofle des Problems ab
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

9|7 ,/8 2,15 |6

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

9| 7,/8]2 1|5 |6

Elemente steigen wie Blasen auf, bis sie auf groflere treften

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITAT VON ALGORITHMEN




BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

7,982 |1|5 |6

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

7819121 |5 /|6

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

7,812 ]9|1|5 )6

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

7,812 ]19|5)|6

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

7,821 5|96

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

7,821,569

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

7,821,569

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

7,821,569

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

7,281,569

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

7,218,569

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

7,215,869

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

7,215,639

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

71211156389

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

271156389

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

21|75 ,6]38]|9

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

21|57 ,6]38]|9

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

211 /5]6,|7]38]|9

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

21156 ,7]38]|9

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

11256789

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

11256789

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

112656789

Elemente steigen wie Blasen auf, bis sie auf groflere treften

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITAT VON ALGORITHMEN




BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

11256789

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

11256 7|89

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

11256789

Elemente steigen wie Blasen auf, bis sie auf groflere treften

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITAT VON ALGORITHMEN




BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

1125|6789

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT I

Fortlautender Vergleich benachbarter Elemente
Austausch bei falscher Reihenfolge

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jI1>L[j+1] then
aux := L[j];
L[jl := L[j+1];
L[j+1] := aux
fi
od
od

e Beispiel einer Sortierung mit Bubblesort

1125|6789 v/

Elemente steigen wie Blasen auf, bis sie auf groflere treften
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BUBBLESORT - LAUFZEITANALYSE I

function bubblesort (L)

for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jl>L[j+1] then
aux := L[j];
L[] := L[j+1];
L[j+1] := aux
fi
od
od

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE

KOMPLEXITAT VON ALGORITHMEN




BUBBLESORT - LAUFZEITANALYSE I

function bubblesort(L) =

for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jl>L[j+1] then
aux := L[j];
L[] := L[j+1];
L[j+1] := aux
fi
od
od

e Feste Anzahl von Operationen im Schleifenrumpf
— Vergleich benachbarter Elemente

— gof. Austauch unter Verwendung einer Hilfsvariablen
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KOMPLEXITAT VON ALGORITHMEN




BUBBLESORT - LAUFZEITANALYSE I

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jl>L[j+1] then
aux := L[j];
L[] := L[j+1];
L[j+1] := aux
fi
od
od

e Feste Anzahl von Operationen im Schleifenrumpf
— Vergleich benachbarter Elemente
— got. Austauch unter Verwendung einer Hilfsvariablen

e Anzahl Schleifen abhangig von Listengrofie n
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BUBBLESORT - LAUFZEITANALYSE I

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jl>L[j+1] then
aux := L[j];
L[] := L[j+1];
L[j+1] := aux
fi
od
od

e Feste Anzahl von Operationen im Schleifenrumpf
— Vergleich benachbarter Elemente
— got. Austauch unter Verwendung einer Hilfsvariablen

e Anzahl Schleifen abhangig von Listengrofie n
— Innere Schleife wird jeweils genau upper-mal durchlaufen
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BUBBLESORT - LAUFZEITANALYSE I

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jl>L[j+1] then
aux := L[j];
L[] := L[j+1];
L[j+1] := aux
fi
od
od

e Feste Anzahl von Operationen im Schleifenrumpf
— Vergleich benachbarter Elemente
— got. Austauch unter Verwendung einer Hilfsvariablen

e Anzahl Schleifen abhangig von Listengrofie n
— Innere Schleife wird jeweils genau upper-mal durchlaufen
— Insgesamt n-1 + n-2 + ... + 2 + 1 = n*(n-1)/2 Durchlaufe
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BUBBLESORT - LAUFZEITANALYSE I

function bubblesort(L) =
for upper = length(L)-1 downto 1 do
for j = 1 to upper do
if L[jl>L[j+1] then
aux := L[j];
L[] := L[j+1];
L[j+1] := aux
fi
od
od

e Feste Anzahl von Operationen im Schleifenrumpf
— Vergleich benachbarter Elemente
— got. Austauch unter Verwendung einer Hilfsvariablen

e Anzahl Schleifen abhangig von Listengrofie n
— Innere Schleife wird jeweils genau upper-mal durchlaufen
— Insgesamt n-1 + n-2 + ... + 2 + 1 = n*(n-1)/2 Durchlaufe

U
Bubblesort ist in O(n?)
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

9178|2156
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
9178|2156
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
9178|2156
-
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
9178|2156
718
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
91718|2|1/5|6
71819
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
9178|2156
71891
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
91718|2|1/5/6
7189|112
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
91718|2|1/5|6
71819/1|25

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 KOMPLEXITAT VON ALGORITHMEN




SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
91718|2|1/5/6
718/911|2|5|6
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
91718|2|1/5/6

71819/1(2|5|6
— Lange der Laufe wachst — Anzahl halbiert sich
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
91718|2|1/5/6

71819/1(2|5|6
— Lange der Laufe wachst — Anzahl halbiert sich

e Wiederhole bis Folge geordnet

718191256
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
91718|2|1/5/6

71819/1(2|5|6
— Lange der Laufe wachst — Anzahl halbiert sich

e Wiederhole bis Folge geordnet

718191256
1
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
91718|2|1/5/6

71819/1(2|5|6
— Lange der Laufe wachst — Anzahl halbiert sich

e Wiederhole bis Folge geordnet

718191256
112
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
91718|2|1/5/6

71819/1(2|5|6
— Lange der Laufe wachst — Anzahl halbiert sich

e Wiederhole bis Folge geordnet

718191256
112|5
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
91718|2|1/5/6

71819/1(2|5|6
— Lange der Laufe wachst — Anzahl halbiert sich

e Wiederhole bis Folge geordnet

718191256
112/5]6
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
91718|2|1/5/6

71819/1(2|5|6
— Lange der Laufe wachst — Anzahl halbiert sich

e Wiederhole bis Folge geordnet

71819/1/2/56
112|567
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

917182156

® Verschmelze Laufe zu neuen Laufen
91718|2|1/5/6

71819/1(2|5|6
— Lange der Laufe wachst — Anzahl halbiert sich

e Wiederhole bis Folge geordnet

718191256
112|5/6|7|8
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SORTIEREN SCHNELLER ALS O(n?)

e Identifiziere Laufe, d.h. geordnete Teilfolgen

9

7

3

2

1

5

6

® Verschmelze Laufe zu neuen Laufen

9

7

3

2

1

5

6

7

3

9

1

2

5

6

— Lange der Laufe wachst — Anzahl halbiert sich

e Wiederhole bis Folge geordnet

7

3

9

1

2

5

6

1

2

5

6

-

3

9

— Liste ist eine einzige (komplett) geordnete Teilfolge v

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE
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ANALYSE DES VERFAHRENS I

e Abstrakte Skizze reicht fur Laufzeitanalyse
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ANALYSE DES VERFAHRENS I

e Abstrakte Skizze reicht fur Laufzeitanalyse

e Verschmelzen ist in O(n)

— Folge wird jeweils komplett durchlaufen
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ANALYSE DES VERFAHRENS I

e Abstrakte Skizze reicht fur Laufzeitanalyse

e Verschmelzen ist in O(n)

— Folge wird jeweils komplett durchlaufen

® Verschmelzen halbiert Anzahl der Laufe

— Je zwei Laufe werden zu einem gemischt
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ANALYSE DES VERFAHRENS I

e Abstrakte Skizze reicht fur Laufzeitanalyse

e Verschmelzen ist in O(n)

— Folge wird jeweils komplett durchlaufen

e Verschmelzen halbiert Anzahl der Laufe
— Je zwei Laufe werden zu einem gemischt

— Nach maximal log, n Verschmelzungen bleibt ein einziger Lauf iibrig
d.h. die Liste ist sortiert
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ANALYSE DES VERFAHRENS I

e Abstrakte Skizze reicht fur Laufzeitanalyse

e Verschmelzen ist in O(n)

— Folge wird jeweils komplett durchlaufen

e Verschmelzen halbiert Anzahl der Laufe
— Je zwei Laufe werden zu einem gemischt

— Nach maximal log, n Verschmelzungen bleibt ein einziger Lauf iibrig
d.h. die Liste ist sortiert

U

Sortieren durch Verschmelzen ist in O(n * logy n)
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