
Theoretische Informatik II

Einheit 8.3

Komplexität von Problemen

1. Untere Schranken für Komplexität

2. Nichtdeterministische Komplexität

3. Komplexitätsklassen

Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexität von Problemen

Komplexität von Problemen

• Probleme haben unterschiedlich gute Lösungen

– Suchen: Lineare Suche O(n) — Binärsuche O(log2 n)

– Sortieren: Bubblesort O(n2) — Mergesort O(n∗ log2 n)

Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexität von Problemen

Komplexität von Problemen

• Probleme haben unterschiedlich gute Lösungen

– Suchen: Lineare Suche O(n) — Binärsuche O(log2 n)

– Sortieren: Bubblesort O(n2) — Mergesort O(n∗ log2 n)

• Wie effizient kann ein Problem gelöst werden?

– Gibt es untere Schranken für die Komplexität von Lösungen

Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexität von Problemen

Komplexität von Problemen

• Probleme haben unterschiedlich gute Lösungen

– Suchen: Lineare Suche O(n) — Binärsuche O(log2 n)

– Sortieren: Bubblesort O(n2) — Mergesort O(n∗ log2 n)

• Wie effizient kann ein Problem gelöst werden?

– Gibt es untere Schranken für die Komplexität von Lösungen

• Wann ist eine Lösung gut genug?

– Ist ein Lösungsalgorithmus optimal bezüglich Zeit-/Platzbedarf?

Theoretische Informatik II §8: Komplexitätstheorie 1 Komplexität von Problemen

Komplexität von Problemen

• Probleme haben unterschiedlich gute Lösungen

– Suchen: Lineare Suche O(n) — Binärsuche O(log2 n)

– Sortieren: Bubblesort O(n2) — Mergesort O(n∗ log2 n)

• Wie effizient kann ein Problem gelöst werden?

– Gibt es untere Schranken für die Komplexität von Lösungen

• Wann ist eine Lösung gut genug?

– Ist ein Lösungsalgorithmus optimal bezüglich Zeit-/Platzbedarf?

• Nachweis aufwendig

– Man muß über alle möglichen Algorithmen argumentieren

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Problemen

Komplexität von Sortierverfahren

Schneller als O(n∗ log2 n)?

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Problemen

Komplexität von Sortierverfahren

Schneller als O(n∗ log2 n)?

• Sortierverfahren müssen Elemente vergleichen
– Sonst kann die Anordnung der Elemente nicht garantiert werden

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Problemen

Komplexität von Sortierverfahren

Schneller als O(n∗ log2 n)?

• Sortierverfahren müssen Elemente vergleichen
– Sonst kann die Anordnung der Elemente nicht garantiert werden

– Wieviel Vergleiche werden benötigt um a1..an zu ordnen?

– Bestimme Anzahl der Vergleiche für den ungünstigsten Fall

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Problemen

Komplexität von Sortierverfahren

Schneller als O(n∗ log2 n)?

• Sortierverfahren müssen Elemente vergleichen
– Sonst kann die Anordnung der Elemente nicht garantiert werden

– Wieviel Vergleiche werden benötigt um a1..an zu ordnen?

– Bestimme Anzahl der Vergleiche für den ungünstigsten Fall

• Betrachte Entscheidungsbaum von Algorithmen

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Problemen

Komplexität von Sortierverfahren

Schneller als O(n∗ log2 n)?

• Sortierverfahren müssen Elemente vergleichen
– Sonst kann die Anordnung der Elemente nicht garantiert werden

– Wieviel Vergleiche werden benötigt um a1..an zu ordnen?

– Bestimme Anzahl der Vergleiche für den ungünstigsten Fall

• Betrachte Entscheidungsbaum von Algorithmen
a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

– Innere Knoten entsprechen den durchgeführten Vergleichen

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Problemen

Komplexität von Sortierverfahren

Schneller als O(n∗ log2 n)?

• Sortierverfahren müssen Elemente vergleichen
– Sonst kann die Anordnung der Elemente nicht garantiert werden

– Wieviel Vergleiche werden benötigt um a1..an zu ordnen?

– Bestimme Anzahl der Vergleiche für den ungünstigsten Fall

• Betrachte Entscheidungsbaum von Algorithmen
a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >

– Innere Knoten entsprechen den durchgeführten Vergleichen

– Kanten markiert mit Vergleichergebnis (≤,>)

Theoretische Informatik II §8: Komplexitätstheorie 2 Komplexität von Problemen

Komplexität von Sortierverfahren

Schneller als O(n∗ log2 n)?

• Sortierverfahren müssen Elemente vergleichen
– Sonst kann die Anordnung der Elemente nicht garantiert werden

– Wieviel Vergleiche werden benötigt um a1..an zu ordnen?

– Bestimme Anzahl der Vergleiche für den ungünstigsten Fall

• Betrachte Entscheidungsbaum von Algorithmen
a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >

a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

– Innere Knoten entsprechen den durchgeführten Vergleichen

– Kanten markiert mit Vergleichergebnis (≤,>)

– Blätter sind resultierende Anordnung der Elemente

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Problemen

Komplexität von Sortierverfahren (II)

a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >
a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

• Algorithmen entsprechen Entscheidungsbäumen
– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Problemen

Komplexität von Sortierverfahren (II)

a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >
a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

• Algorithmen entsprechen Entscheidungsbäumen
– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Problemen

Komplexität von Sortierverfahren (II)

a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >
a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

• Algorithmen entsprechen Entscheidungsbäumen
– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

– Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Problemen

Komplexität von Sortierverfahren (II)

a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >
a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

• Algorithmen entsprechen Entscheidungsbäumen
– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

– Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes

7→ Komplexität von Sortieren ≡ minimale Tiefe von Entscheidungsbäumen

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Problemen

Komplexität von Sortierverfahren (II)

a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >
a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

• Algorithmen entsprechen Entscheidungsbäumen
– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

– Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes

7→ Komplexität von Sortieren ≡ minimale Tiefe von Entscheidungsbäumen

• Wie tief ist ein Entscheidungsbaum?

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Problemen

Komplexität von Sortierverfahren (II)

a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >
a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

• Algorithmen entsprechen Entscheidungsbäumen
– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

– Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes

7→ Komplexität von Sortieren ≡ minimale Tiefe von Entscheidungsbäumen

• Wie tief ist ein Entscheidungsbaum?
– Jeder Entscheidungsbaum für hat a1..an hat n! Blätter

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Problemen

Komplexität von Sortierverfahren (II)

a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >
a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

• Algorithmen entsprechen Entscheidungsbäumen
– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

– Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes

7→ Komplexität von Sortieren ≡ minimale Tiefe von Entscheidungsbäumen

• Wie tief ist ein Entscheidungsbaum?
– Jeder Entscheidungsbaum für hat a1..an hat n! Blätter

– Ein binärer Baum der Tiefe k hat maximal 2k Blätter

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Problemen

Komplexität von Sortierverfahren (II)

a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >
a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

• Algorithmen entsprechen Entscheidungsbäumen
– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

– Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes

7→ Komplexität von Sortieren ≡ minimale Tiefe von Entscheidungsbäumen

• Wie tief ist ein Entscheidungsbaum?
– Jeder Entscheidungsbaum für hat a1..an hat n! Blätter

– Ein binärer Baum der Tiefe k hat maximal 2k Blätter

– Jeder Entscheidungsbaum hat mindestens Tiefe log2 n!

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Problemen

Komplexität von Sortierverfahren (II)

a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >
a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

• Algorithmen entsprechen Entscheidungsbäumen
– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

– Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes

7→ Komplexität von Sortieren ≡ minimale Tiefe von Entscheidungsbäumen

• Wie tief ist ein Entscheidungsbaum?
– Jeder Entscheidungsbaum für hat a1..an hat n! Blätter

– Ein binärer Baum der Tiefe k hat maximal 2k Blätter

– Jeder Entscheidungsbaum hat mindestens Tiefe log2 n!

– log2 n! = log2(Π
n
i=1

i)

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Problemen

Komplexität von Sortierverfahren (II)

a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >
a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

• Algorithmen entsprechen Entscheidungsbäumen
– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

– Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes

7→ Komplexität von Sortieren ≡ minimale Tiefe von Entscheidungsbäumen

• Wie tief ist ein Entscheidungsbaum?
– Jeder Entscheidungsbaum für hat a1..an hat n! Blätter

– Ein binärer Baum der Tiefe k hat maximal 2k Blätter

– Jeder Entscheidungsbaum hat mindestens Tiefe log2 n!

– log2 n! = log2(Π
n
i=1

i) = Σn
i=1

log2 i

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Problemen

Komplexität von Sortierverfahren (II)

a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >
a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

• Algorithmen entsprechen Entscheidungsbäumen
– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

– Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes

7→ Komplexität von Sortieren ≡ minimale Tiefe von Entscheidungsbäumen

• Wie tief ist ein Entscheidungsbaum?
– Jeder Entscheidungsbaum für hat a1..an hat n! Blätter

– Ein binärer Baum der Tiefe k hat maximal 2k Blätter

– Jeder Entscheidungsbaum hat mindestens Tiefe log2 n!

– log2 n! = log2(Π
n
i=1

i) = Σn
i=1

log2 i ≥ Σn
i=n/2

log2(n/2)

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Problemen

Komplexität von Sortierverfahren (II)

a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >
a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

• Algorithmen entsprechen Entscheidungsbäumen
– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

– Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes

7→ Komplexität von Sortieren ≡ minimale Tiefe von Entscheidungsbäumen

• Wie tief ist ein Entscheidungsbaum?
– Jeder Entscheidungsbaum für hat a1..an hat n! Blätter

– Ein binärer Baum der Tiefe k hat maximal 2k Blätter

– Jeder Entscheidungsbaum hat mindestens Tiefe log2 n!

– log2 n! = log2(Π
n
i=1

i) = Σn
i=1

log2 i ≥ Σn
i=n/2

log2(n/2) = n/2∗(log2 n− 1)

Theoretische Informatik II §8: Komplexitätstheorie 3 Komplexität von Problemen

Komplexität von Sortierverfahren (II)

a1↔a2

a2↔a3 a2↔a3

a1↔a3 a1↔a3

≤ >

≤ > ≤ >

≤ > ≤ >
a1a2a3

a1a2a3 a1a2a3 a1a2a3 a1a2a3

a1a2a3

• Algorithmen entsprechen Entscheidungsbäumen
– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

– Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes

7→ Komplexität von Sortieren ≡ minimale Tiefe von Entscheidungsbäumen

• Wie tief ist ein Entscheidungsbaum?
– Jeder Entscheidungsbaum für hat a1..an hat n! Blätter

– Ein binärer Baum der Tiefe k hat maximal 2k Blätter

– Jeder Entscheidungsbaum hat mindestens Tiefe log2 n!

– log2 n! = log2(Π
n
i=1

i) = Σn
i=1

log2 i ≥ Σn
i=n/2

log2(n/2) = n/2∗(log2 n− 1)

⇓

Sortieren ist in O(n ∗ log2 n)

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Problemen

Komplexität anderer Problemstellungen

• Addition n-stelliger Zahlen

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Problemen

Komplexität anderer Problemstellungen

• Addition n-stelliger Zahlen O(n)
– Einstellige Addition von rechts nach links mit Übertrag

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Problemen

Komplexität anderer Problemstellungen

• Addition n-stelliger Zahlen O(n)
– Einstellige Addition von rechts nach links mit Übertrag

• Multiplikation n-stelliger Zahlen

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Problemen

Komplexität anderer Problemstellungen

• Addition n-stelliger Zahlen O(n)
– Einstellige Addition von rechts nach links mit Übertrag

• Multiplikation n-stelliger Zahlen O(n2)
– Jede Stelle muß mit jeder Stelle multipliziert werden

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Problemen

Komplexität anderer Problemstellungen

• Addition n-stelliger Zahlen O(n)
– Einstellige Addition von rechts nach links mit Übertrag

• Multiplikation n-stelliger Zahlen O(n2)
– Jede Stelle muß mit jeder Stelle multipliziert werden

• Division n-stelliger Zahlen

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Problemen

Komplexität anderer Problemstellungen

• Addition n-stelliger Zahlen O(n)
– Einstellige Addition von rechts nach links mit Übertrag

• Multiplikation n-stelliger Zahlen O(n2)
– Jede Stelle muß mit jeder Stelle multipliziert werden

• Division n-stelliger Zahlen O(n2)
– Schriftliche Division bestimmt Ergebnis von links nach rechts

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Problemen

Komplexität anderer Problemstellungen

• Addition n-stelliger Zahlen O(n)
– Einstellige Addition von rechts nach links mit Übertrag

• Multiplikation n-stelliger Zahlen O(n2)
– Jede Stelle muß mit jeder Stelle multipliziert werden

• Division n-stelliger Zahlen O(n2)
– Schriftliche Division bestimmt Ergebnis von links nach rechts

• Berechnung von n!

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Problemen

Komplexität anderer Problemstellungen

• Addition n-stelliger Zahlen O(n)
– Einstellige Addition von rechts nach links mit Übertrag

• Multiplikation n-stelliger Zahlen O(n2)
– Jede Stelle muß mit jeder Stelle multipliziert werden

• Division n-stelliger Zahlen O(n2)
– Schriftliche Division bestimmt Ergebnis von links nach rechts

• Berechnung von n! O(n2 ∗ (log2 n)2)
– Obergrenze: n-fache Multiplikation von n und n!: n ∗ log2 n ∗ log2(n

n)

– Untergrenze: n/2-fach n/2∗(n/2)!: n/2 ∗ log2(n/2) ∗ n/4∗(log2 n − 2)

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Problemen

Komplexität anderer Problemstellungen

• Addition n-stelliger Zahlen O(n)
– Einstellige Addition von rechts nach links mit Übertrag

• Multiplikation n-stelliger Zahlen O(n2)
– Jede Stelle muß mit jeder Stelle multipliziert werden

• Division n-stelliger Zahlen O(n2)
– Schriftliche Division bestimmt Ergebnis von links nach rechts

• Berechnung von n! O(n2 ∗ (log2 n)2)
– Obergrenze: n-fache Multiplikation von n und n!: n ∗ log2 n ∗ log2(n

n)

– Untergrenze: n/2-fach n/2∗(n/2)!: n/2 ∗ log2(n/2) ∗ n/4∗(log2 n − 2)

• Primzahltest bei n-stelliger Zahlen

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Problemen

Komplexität anderer Problemstellungen

• Addition n-stelliger Zahlen O(n)
– Einstellige Addition von rechts nach links mit Übertrag

• Multiplikation n-stelliger Zahlen O(n2)
– Jede Stelle muß mit jeder Stelle multipliziert werden

• Division n-stelliger Zahlen O(n2)
– Schriftliche Division bestimmt Ergebnis von links nach rechts

• Berechnung von n! O(n2 ∗ (log2 n)2)
– Obergrenze: n-fache Multiplikation von n und n!: n ∗ log2 n ∗ log2(n

n)

– Untergrenze: n/2-fach n/2∗(n/2)!: n/2 ∗ log2(n/2) ∗ n/4∗(log2 n − 2)

• Primzahltest bei n-stelliger Zahlen O(2n)
– Teilbarkeit muß für alle kleineren Zahlen getestet werden

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Problemen

Komplexität anderer Problemstellungen

• Addition n-stelliger Zahlen O(n)
– Einstellige Addition von rechts nach links mit Übertrag

• Multiplikation n-stelliger Zahlen O(n2)
– Jede Stelle muß mit jeder Stelle multipliziert werden

• Division n-stelliger Zahlen O(n2)
– Schriftliche Division bestimmt Ergebnis von links nach rechts

• Berechnung von n! O(n2 ∗ (log2 n)2)
– Obergrenze: n-fache Multiplikation von n und n!: n ∗ log2 n ∗ log2(n

n)

– Untergrenze: n/2-fach n/2∗(n/2)!: n/2 ∗ log2(n/2) ∗ n/4∗(log2 n − 2)

• Primzahltest bei n-stelliger Zahlen O(2n)
– Teilbarkeit muß für alle kleineren Zahlen getestet werden

– Untere Schranke O(2n) nicht bewiesen 7→ NP-Vollständigkeit

Theoretische Informatik II §8: Komplexitätstheorie 4 Komplexität von Problemen

Komplexität anderer Problemstellungen

• Addition n-stelliger Zahlen O(n)
– Einstellige Addition von rechts nach links mit Übertrag

• Multiplikation n-stelliger Zahlen O(n2)
– Jede Stelle muß mit jeder Stelle multipliziert werden

• Division n-stelliger Zahlen O(n2)
– Schriftliche Division bestimmt Ergebnis von links nach rechts

• Berechnung von n! O(n2 ∗ (log2 n)2)
– Obergrenze: n-fache Multiplikation von n und n!: n ∗ log2 n ∗ log2(n

n)

– Untergrenze: n/2-fach n/2∗(n/2)!: n/2 ∗ log2(n/2) ∗ n/4∗(log2 n − 2)

• Primzahltest bei n-stelliger Zahlen O(2n)
– Teilbarkeit muß für alle kleineren Zahlen getestet werden

– Untere Schranke O(2n) nicht bewiesen 7→ NP-Vollständigkeit

– Ergebnis gut für offene kryptographische Systeme (wähle n > 200)

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Problemen

Weitere Probleme mit exponentieller Komplexität

• Travelling Salesman (TSP)
Gegeben n Städte, eine Kostentabelle von Kosten cij um von Stadt i
nach j zu reisen und eine Kostenbeschränkung B. Gibt es eine
Rundreise durch alle n Städte, deren Kosten unter B liegt?

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Problemen

Weitere Probleme mit exponentieller Komplexität

• Travelling Salesman (TSP)
Gegeben n Städte, eine Kostentabelle von Kosten cij um von Stadt i
nach j zu reisen und eine Kostenbeschränkung B. Gibt es eine
Rundreise durch alle n Städte, deren Kosten unter B liegt?

• Cliquen-Problem (CLIQUE)
Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k ≤ n. Gibt
es in G eine Clique (vollständig verbundener Teilgraph) der Größe k?

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Problemen

Weitere Probleme mit exponentieller Komplexität

• Travelling Salesman (TSP)
Gegeben n Städte, eine Kostentabelle von Kosten cij um von Stadt i
nach j zu reisen und eine Kostenbeschränkung B. Gibt es eine
Rundreise durch alle n Städte, deren Kosten unter B liegt?

• Cliquen-Problem (CLIQUE)
Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k ≤ n. Gibt
es in G eine Clique (vollständig verbundener Teilgraph) der Größe k?

• Erfüllbarkeitsproblem (SAT)
Ist eine aussagenlogische Formel in KNF der Größe n erfüllbar?

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Problemen

Weitere Probleme mit exponentieller Komplexität

• Travelling Salesman (TSP)
Gegeben n Städte, eine Kostentabelle von Kosten cij um von Stadt i
nach j zu reisen und eine Kostenbeschränkung B. Gibt es eine
Rundreise durch alle n Städte, deren Kosten unter B liegt?

• Cliquen-Problem (CLIQUE)
Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k ≤ n. Gibt
es in G eine Clique (vollständig verbundener Teilgraph) der Größe k?

• Erfüllbarkeitsproblem (SAT)
Ist eine aussagenlogische Formel in KNF der Größe n erfüllbar?

• Multiprozessor-Scheduling
Verteile n Prozesse derart auf eine Menge von Prozessoren, daß die
Ressourcen der Rechner optimal genutzt werden.

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Problemen

Weitere Probleme mit exponentieller Komplexität

• Travelling Salesman (TSP)
Gegeben n Städte, eine Kostentabelle von Kosten cij um von Stadt i
nach j zu reisen und eine Kostenbeschränkung B. Gibt es eine
Rundreise durch alle n Städte, deren Kosten unter B liegt?

• Cliquen-Problem (CLIQUE)
Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k ≤ n. Gibt
es in G eine Clique (vollständig verbundener Teilgraph) der Größe k?

• Erfüllbarkeitsproblem (SAT)
Ist eine aussagenlogische Formel in KNF der Größe n erfüllbar?

• Multiprozessor-Scheduling
Verteile n Prozesse derart auf eine Menge von Prozessoren, daß die
Ressourcen der Rechner optimal genutzt werden.

• Binpacking
Minimiere Anzahl von Verpackungsbehältern, um n verschieden große
Gegenstände zu transportieren.

Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Problemen

Weitere Probleme mit exponentieller Komplexität

• Travelling Salesman (TSP)
Gegeben n Städte, eine Kostentabelle von Kosten cij um von Stadt i
nach j zu reisen und eine Kostenbeschränkung B. Gibt es eine
Rundreise durch alle n Städte, deren Kosten unter B liegt?

• Cliquen-Problem (CLIQUE)
Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k ≤ n. Gibt
es in G eine Clique (vollständig verbundener Teilgraph) der Größe k?

• Erfüllbarkeitsproblem (SAT)
Ist eine aussagenlogische Formel in KNF der Größe n erfüllbar?

• Multiprozessor-Scheduling
Verteile n Prozesse derart auf eine Menge von Prozessoren, daß die
Ressourcen der Rechner optimal genutzt werden.

• Binpacking
Minimiere Anzahl von Verpackungsbehältern, um n verschieden große
Gegenstände zu transportieren.

Bisher nur durch Testen aller Möglichkeiten lösbar

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Problemen

Entscheidungs- und Optimierungsprobleme

Viele Probleme erscheinen in mehreren Varianten

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Problemen

Entscheidungs- und Optimierungsprobleme

Viele Probleme erscheinen in mehreren Varianten

• Entscheidungsprobleme

– Teste ob eine Eingabe x1, .., xn eine bestimmte Eigenschaft P erfüllt

– Suchen in Listen, Primzahltests, Travelling Salesman, Clique . . .

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Problemen

Entscheidungs- und Optimierungsprobleme

Viele Probleme erscheinen in mehreren Varianten

• Entscheidungsprobleme

– Teste ob eine Eingabe x1, .., xn eine bestimmte Eigenschaft P erfüllt

– Suchen in Listen, Primzahltests, Travelling Salesman, Clique . . .

• Berechnungsprobleme

– Bei Eingabe von x1, .., xn berechne ein y, so daß P (x1, .., xn, y) gilt

– Sortieren, Primfaktorzerlegung, Matrixmultiplikation, . . .

Theoretische Informatik II §8: Komplexitätstheorie 6 Komplexität von Problemen

Entscheidungs- und Optimierungsprobleme

Viele Probleme erscheinen in mehreren Varianten

• Entscheidungsprobleme

– Teste ob eine Eingabe x1, .., xn eine bestimmte Eigenschaft P erfüllt

– Suchen in Listen, Primzahltests, Travelling Salesman, Clique . . .

• Berechnungsprobleme

– Bei Eingabe von x1, .., xn berechne ein y, so daß P (x1, .., xn, y) gilt

– Sortieren, Primfaktorzerlegung, Matrixmultiplikation, . . .

• Optimierungsprobleme

– Bei Eingabe von x1, .., xn berechne das beste y mit P (x1, .., xn, y)

– Travelling Salesman, Clique, Binpacking, Multiprocessor Scheduling

Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexität von Problemen

Varianten des Cliquenproblems

Gegeben ein Graph G = (V, E) und eine Zahl k ≤ |V |. Eine k-Clique von

G ist ein vollständig verbundener Teilgraph C = (Vc, Ec) mit |Vc| = k

Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexität von Problemen

Varianten des Cliquenproblems

Gegeben ein Graph G = (V, E) und eine Zahl k ≤ |V |. Eine k-Clique von

G ist ein vollständig verbundener Teilgraph C = (Vc, Ec) mit |Vc| = k

• Entscheidungsproblem

– “Gibt es eine Lösung mit einem bestimmten Wert”

· CLIQUE: Gibt es in G eine Clique der Größe k?

Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexität von Problemen

Varianten des Cliquenproblems

Gegeben ein Graph G = (V, E) und eine Zahl k ≤ |V |. Eine k-Clique von

G ist ein vollständig verbundener Teilgraph C = (Vc, Ec) mit |Vc| = k

• Entscheidungsproblem

– “Gibt es eine Lösung mit einem bestimmten Wert”

· CLIQUE: Gibt es in G eine Clique der Größe k?

• Berechnungsproblem

– Bestimme eine konkrete Lösung mit einem bestimmten Wert

· CLIQUE
2
: Bestimme eine Clique C⊆G der Größe k

Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexität von Problemen

Varianten des Cliquenproblems

Gegeben ein Graph G = (V, E) und eine Zahl k ≤ |V |. Eine k-Clique von

G ist ein vollständig verbundener Teilgraph C = (Vc, Ec) mit |Vc| = k

• Entscheidungsproblem

– “Gibt es eine Lösung mit einem bestimmten Wert”

· CLIQUE: Gibt es in G eine Clique der Größe k?

• Berechnungsproblem

– Bestimme eine konkrete Lösung mit einem bestimmten Wert

· CLIQUE
2
: Bestimme eine Clique C⊆G der Größe k

• Optimierungsprobleme

– Bestimme den Wert einer optimalen Lösung

· CLIQUEopt: Bestimme das größte k, so daß G eine k-Clique enthält

Theoretische Informatik II §8: Komplexitätstheorie 7 Komplexität von Problemen

Varianten des Cliquenproblems

Gegeben ein Graph G = (V, E) und eine Zahl k ≤ |V |. Eine k-Clique von

G ist ein vollständig verbundener Teilgraph C = (Vc, Ec) mit |Vc| = k

• Entscheidungsproblem

– “Gibt es eine Lösung mit einem bestimmten Wert”

· CLIQUE: Gibt es in G eine Clique der Größe k?

• Berechnungsproblem

– Bestimme eine konkrete Lösung mit einem bestimmten Wert

· CLIQUE
2
: Bestimme eine Clique C⊆G der Größe k

• Optimierungsprobleme

– Bestimme den Wert einer optimalen Lösung

· CLIQUEopt: Bestimme das größte k, so daß G eine k-Clique enthält

– Berechne die optimale Lösung

· CLIQUEopt2: Bestimme eine Clique C⊆G mit maximaler Größe k

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Problemen

Problemvarianten von Clique sind gleich schwer

• Löse CLIQUEopt mit CLIQUE
– Beginne mit k := |V | und teste ob es in G eine k-Clique gibt

– Reduziere k bis der Test erfolgreich ist und gebe k aus

– Zusatzaufwand ist linear in |V |

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Problemen

Problemvarianten von Clique sind gleich schwer

• Löse CLIQUEopt mit CLIQUE
– Beginne mit k := |V | und teste ob es in G eine k-Clique gibt

– Reduziere k bis der Test erfolgreich ist und gebe k aus

– Zusatzaufwand ist linear in |V |

• Löse CLIQUEopt2 mit CLIQUEopt
– Bestimme kopt für G und beginne mit Ec := E

– Wähle Kante e ∈E und teste ob es in (V, Ec−{e}) eine kopt-Clique gibt

– Ist dies der Fall, so setze Ec := Ec−{e}

– Wiederhole dies iterativ für alle Kanten aus E

– Die resultierende Menge Ec und die zugehörigen Ecken bilden die kopt-Clique

– Zusatzaufwand ist linear in |E|

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Problemen

Problemvarianten von Clique sind gleich schwer

• Löse CLIQUEopt mit CLIQUE
– Beginne mit k := |V | und teste ob es in G eine k-Clique gibt

– Reduziere k bis der Test erfolgreich ist und gebe k aus

– Zusatzaufwand ist linear in |V |

• Löse CLIQUEopt2 mit CLIQUEopt
– Bestimme kopt für G und beginne mit Ec := E

– Wähle Kante e ∈E und teste ob es in (V, Ec−{e}) eine kopt-Clique gibt

– Ist dies der Fall, so setze Ec := Ec−{e}

– Wiederhole dies iterativ für alle Kanten aus E

– Die resultierende Menge Ec und die zugehörigen Ecken bilden die kopt-Clique

– Zusatzaufwand ist linear in |E|

Löse analog CLIQUE2 mit CLIQUE

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Problemen

Problemvarianten von Clique sind gleich schwer

• Löse CLIQUEopt mit CLIQUE
– Beginne mit k := |V | und teste ob es in G eine k-Clique gibt

– Reduziere k bis der Test erfolgreich ist und gebe k aus

– Zusatzaufwand ist linear in |V |

• Löse CLIQUEopt2 mit CLIQUEopt
– Bestimme kopt für G und beginne mit Ec := E

– Wähle Kante e ∈E und teste ob es in (V, Ec−{e}) eine kopt-Clique gibt

– Ist dies der Fall, so setze Ec := Ec−{e}

– Wiederhole dies iterativ für alle Kanten aus E

– Die resultierende Menge Ec und die zugehörigen Ecken bilden die kopt-Clique

– Zusatzaufwand ist linear in |E|

Löse analog CLIQUE2 mit CLIQUE

Die Umkehrungen sind trivial

Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Problemen

Problemvarianten von Clique sind gleich schwer

• Löse CLIQUEopt mit CLIQUE
– Beginne mit k := |V | und teste ob es in G eine k-Clique gibt

– Reduziere k bis der Test erfolgreich ist und gebe k aus

– Zusatzaufwand ist linear in |V |

• Löse CLIQUEopt2 mit CLIQUEopt
– Bestimme kopt für G und beginne mit Ec := E

– Wähle Kante e ∈E und teste ob es in (V, Ec−{e}) eine kopt-Clique gibt

– Ist dies der Fall, so setze Ec := Ec−{e}

– Wiederhole dies iterativ für alle Kanten aus E

– Die resultierende Menge Ec und die zugehörigen Ecken bilden die kopt-Clique

– Zusatzaufwand ist linear in |E|

Löse analog CLIQUE2 mit CLIQUE

Die Umkehrungen sind trivial

⇓

Es reicht Entscheidungsprobleme zu analysieren

Theoretische Informatik II §8: Komplexitätstheorie 9 Komplexität von Problemen

Viele schwere Probleme haben leichte Erfolgstests

• Travelling Salesman: Für eine gegebene Rundreise i1..in können

die Kosten ci1i2 + . . . cini1 in linearer Zeit berechnet und mit der

Kostenbeschränkung B verglichen werden

Theoretische Informatik II §8: Komplexitätstheorie 9 Komplexität von Problemen

Viele schwere Probleme haben leichte Erfolgstests

• Travelling Salesman: Für eine gegebene Rundreise i1..in können

die Kosten ci1i2 + . . . cini1 in linearer Zeit berechnet und mit der

Kostenbeschränkung B verglichen werden

• Cliquen-Problem: Ein gegebener Teilgraph der Größe k kann in

polynomieller Zeit auf Vollständigkeit überprüft werden

Theoretische Informatik II §8: Komplexitätstheorie 9 Komplexität von Problemen

Viele schwere Probleme haben leichte Erfolgstests

• Travelling Salesman: Für eine gegebene Rundreise i1..in können

die Kosten ci1i2 + . . . cini1 in linearer Zeit berechnet und mit der

Kostenbeschränkung B verglichen werden

• Cliquen-Problem: Ein gegebener Teilgraph der Größe k kann in

polynomieller Zeit auf Vollständigkeit überprüft werden

• Erfüllbarkeitsproblem: Man kann in polynomieller Zeit testen,

ob eine gegebene Belegung der Variablen eine Formel erfüllt

Theoretische Informatik II §8: Komplexitätstheorie 9 Komplexität von Problemen

Viele schwere Probleme haben leichte Erfolgstests

• Travelling Salesman: Für eine gegebene Rundreise i1..in können

die Kosten ci1i2 + . . . cini1 in linearer Zeit berechnet und mit der

Kostenbeschränkung B verglichen werden

• Cliquen-Problem: Ein gegebener Teilgraph der Größe k kann in

polynomieller Zeit auf Vollständigkeit überprüft werden

• Erfüllbarkeitsproblem: Man kann in polynomieller Zeit testen,

ob eine gegebene Belegung der Variablen eine Formel erfüllt

• Binpacking: Man kann in polynomieller Zeit testen, ob eine gegebene

Verteilung der Gegenstände in k Verpackungsbehälter paßt

Theoretische Informatik II §8: Komplexitätstheorie 9 Komplexität von Problemen

Viele schwere Probleme haben leichte Erfolgstests

• Travelling Salesman: Für eine gegebene Rundreise i1..in können

die Kosten ci1i2 + . . . cini1 in linearer Zeit berechnet und mit der

Kostenbeschränkung B verglichen werden

• Cliquen-Problem: Ein gegebener Teilgraph der Größe k kann in

polynomieller Zeit auf Vollständigkeit überprüft werden

• Erfüllbarkeitsproblem: Man kann in polynomieller Zeit testen,

ob eine gegebene Belegung der Variablen eine Formel erfüllt

• Binpacking: Man kann in polynomieller Zeit testen, ob eine gegebene

Verteilung der Gegenstände in k Verpackungsbehälter paßt

• Zusammengesetztheitstest: Man kann in quadratischer Zeit

testen, ob eine gegebene Zahl Teiler von x (also x keine Primzahl) ist

Theoretische Informatik II §8: Komplexitätstheorie 9 Komplexität von Problemen

Viele schwere Probleme haben leichte Erfolgstests

• Travelling Salesman: Für eine gegebene Rundreise i1..in können

die Kosten ci1i2 + . . . cini1 in linearer Zeit berechnet und mit der

Kostenbeschränkung B verglichen werden

• Cliquen-Problem: Ein gegebener Teilgraph der Größe k kann in

polynomieller Zeit auf Vollständigkeit überprüft werden

• Erfüllbarkeitsproblem: Man kann in polynomieller Zeit testen,

ob eine gegebene Belegung der Variablen eine Formel erfüllt

• Binpacking: Man kann in polynomieller Zeit testen, ob eine gegebene

Verteilung der Gegenstände in k Verpackungsbehälter paßt

• Zusammengesetztheitstest: Man kann in quadratischer Zeit

testen, ob eine gegebene Zahl Teiler von x (also x keine Primzahl) ist

Nichtdeterministische Maschinen liefern polynomielle Lösung

Theoretische Informatik II §8: Komplexitätstheorie 10 Komplexität von Problemen

Nichtdeterministische Lösbarkeit Asteroth/Baier §2.3

• Nichtdeterministische Turingmaschine τ

– Komponenten S, X , Γ, s0, b wie bei normaler Turingmaschine

– Zustandsüberführungsfunktion δ:S×Γ → 2S×Γ×{r,l,h}

Theoretische Informatik II §8: Komplexitätstheorie 10 Komplexität von Problemen

Nichtdeterministische Lösbarkeit Asteroth/Baier §2.3

• Nichtdeterministische Turingmaschine τ

– Komponenten S, X , Γ, s0, b wie bei normaler Turingmaschine

– Zustandsüberführungsfunktion δ:S×Γ → 2S×Γ×{r,l,h}

– Nachfolgekonfigurationsfunktion δ̂:Kτ→2Kτ

Theoretische Informatik II §8: Komplexitätstheorie 10 Komplexität von Problemen

Nichtdeterministische Lösbarkeit Asteroth/Baier §2.3

• Nichtdeterministische Turingmaschine τ

– Komponenten S, X , Γ, s0, b wie bei normaler Turingmaschine

– Zustandsüberführungsfunktion δ:S×Γ → 2S×Γ×{r,l,h}

– Nachfolgekonfigurationsfunktion δ̂:Kτ→2Kτ

– Semantik hτ :X
∗→2Γ∗

hτ(w) = ⊥, wenn δ̂ unendliche Konfigurationsfolgen ermöglicht

Theoretische Informatik II §8: Komplexitätstheorie 10 Komplexität von Problemen

Nichtdeterministische Lösbarkeit Asteroth/Baier §2.3

• Nichtdeterministische Turingmaschine τ

– Komponenten S, X , Γ, s0, b wie bei normaler Turingmaschine

– Zustandsüberführungsfunktion δ:S×Γ → 2S×Γ×{r,l,h}

– Nachfolgekonfigurationsfunktion δ̂:Kτ→2Kτ

– Semantik hτ :X
∗→2Γ∗

hτ(w) = ⊥, wenn δ̂ unendliche Konfigurationsfolgen ermöglicht

– Keine Erweiterung des Berechenbarkeitsbegriffs

Theoretische Informatik II §8: Komplexitätstheorie 10 Komplexität von Problemen

Nichtdeterministische Lösbarkeit Asteroth/Baier §2.3

• Nichtdeterministische Turingmaschine τ

– Komponenten S, X , Γ, s0, b wie bei normaler Turingmaschine

– Zustandsüberführungsfunktion δ:S×Γ → 2S×Γ×{r,l,h}

– Nachfolgekonfigurationsfunktion δ̂:Kτ→2Kτ

– Semantik hτ :X
∗→2Γ∗

hτ(w) = ⊥, wenn δ̂ unendliche Konfigurationsfolgen ermöglicht

– Keine Erweiterung des Berechenbarkeitsbegriffs

• Nichtdeterministische Entscheidbarkeit

– τ entscheidet M⊆X∗, falls w ∈M ⇔ 1 ∈hτ(w)

“Es gibt eine akzeptierende Berechnung für w”

Theoretische Informatik II §8: Komplexitätstheorie 10 Komplexität von Problemen

Nichtdeterministische Lösbarkeit Asteroth/Baier §2.3

• Nichtdeterministische Turingmaschine τ

– Komponenten S, X , Γ, s0, b wie bei normaler Turingmaschine

– Zustandsüberführungsfunktion δ:S×Γ → 2S×Γ×{r,l,h}

– Nachfolgekonfigurationsfunktion δ̂:Kτ→2Kτ

– Semantik hτ :X
∗→2Γ∗

hτ(w) = ⊥, wenn δ̂ unendliche Konfigurationsfolgen ermöglicht

– Keine Erweiterung des Berechenbarkeitsbegriffs

• Nichtdeterministische Entscheidbarkeit

– τ entscheidet M⊆X∗, falls w ∈M ⇔ 1 ∈hτ(w)

“Es gibt eine akzeptierende Berechnung für w”

– Rechenzeit ntτ(w) =











minimale Länge einer akzep– falls w ∈M
tierenden Berechnung für w
0 sonst

Theoretische Informatik II §8: Komplexitätstheorie 10 Komplexität von Problemen

Nichtdeterministische Lösbarkeit Asteroth/Baier §2.3

• Nichtdeterministische Turingmaschine τ

– Komponenten S, X , Γ, s0, b wie bei normaler Turingmaschine

– Zustandsüberführungsfunktion δ:S×Γ → 2S×Γ×{r,l,h}

– Nachfolgekonfigurationsfunktion δ̂:Kτ→2Kτ

– Semantik hτ :X
∗→2Γ∗

hτ(w) = ⊥, wenn δ̂ unendliche Konfigurationsfolgen ermöglicht

– Keine Erweiterung des Berechenbarkeitsbegriffs

• Nichtdeterministische Entscheidbarkeit

– τ entscheidet M⊆X∗, falls w ∈M ⇔ 1 ∈hτ(w)

“Es gibt eine akzeptierende Berechnung für w”

– Rechenzeit ntτ(w) =











minimale Länge einer akzep– falls w ∈M
tierenden Berechnung für w
0 sonst

– Zeitkomplexität ntimeτ(n) = max{ntτ(w) | |w|=n}

Theoretische Informatik II §8: Komplexitätstheorie 10 Komplexität von Problemen

Nichtdeterministische Lösbarkeit Asteroth/Baier §2.3

• Nichtdeterministische Turingmaschine τ

– Komponenten S, X , Γ, s0, b wie bei normaler Turingmaschine

– Zustandsüberführungsfunktion δ:S×Γ → 2S×Γ×{r,l,h}

– Nachfolgekonfigurationsfunktion δ̂:Kτ→2Kτ

– Semantik hτ :X
∗→2Γ∗

hτ(w) = ⊥, wenn δ̂ unendliche Konfigurationsfolgen ermöglicht

– Keine Erweiterung des Berechenbarkeitsbegriffs

• Nichtdeterministische Entscheidbarkeit

– τ entscheidet M⊆X∗, falls w ∈M ⇔ 1 ∈hτ(w)

“Es gibt eine akzeptierende Berechnung für w”

– Rechenzeit ntτ(w) =











minimale Länge einer akzep– falls w ∈M
tierenden Berechnung für w
0 sonst

– Zeitkomplexität ntimeτ(n) = max{ntτ(w) | |w|=n}

– Platzkomplexität nspaceτ(n) analog definiert

Theoretische Informatik II §8: Komplexitätstheorie 11 Komplexität von Problemen

Nichtdeterminismus als Raten und Verifizieren

• Deterministische Turingmaschine mit Orakel

– Eingabe des Wortes w auf erstem Arbeitsband

– Phase 1: Orakel generiert Wort w′ auf zweitem Arbeitsband

– Phase 2: τ verarbeitet w und w′ deterministisch

Theoretische Informatik II §8: Komplexitätstheorie 11 Komplexität von Problemen

Nichtdeterminismus als Raten und Verifizieren

• Deterministische Turingmaschine mit Orakel

– Eingabe des Wortes w auf erstem Arbeitsband

– Phase 1: Orakel generiert Wort w′ auf zweitem Arbeitsband

– Phase 2: τ verarbeitet w und w′ deterministisch

– τ entscheidet M⊆X∗, falls ∀w,w′.hτ(w,w′)6=⊥

und w ∈M ⇔ ∃w′. hτ(w,w′) = 1

Theoretische Informatik II §8: Komplexitätstheorie 11 Komplexität von Problemen

Nichtdeterminismus als Raten und Verifizieren

• Deterministische Turingmaschine mit Orakel

– Eingabe des Wortes w auf erstem Arbeitsband

– Phase 1: Orakel generiert Wort w′ auf zweitem Arbeitsband

– Phase 2: τ verarbeitet w und w′ deterministisch

– τ entscheidet M⊆X∗, falls ∀w,w′.hτ(w,w′)6=⊥

und w ∈M ⇔ ∃w′. hτ(w,w′) = 1

– Rechenzeit otτ(w) = min{tτ(w,w′) |hτ(w,w′) = 1} (0 falls w 6∈M)

Orakel benötigt keine Rechenzeit zum Schreiben

Theoretische Informatik II §8: Komplexitätstheorie 11 Komplexität von Problemen

Nichtdeterminismus als Raten und Verifizieren

• Deterministische Turingmaschine mit Orakel

– Eingabe des Wortes w auf erstem Arbeitsband

– Phase 1: Orakel generiert Wort w′ auf zweitem Arbeitsband

– Phase 2: τ verarbeitet w und w′ deterministisch

– τ entscheidet M⊆X∗, falls ∀w,w′.hτ(w,w′)6=⊥

und w ∈M ⇔ ∃w′. hτ(w,w′) = 1

– Rechenzeit otτ(w) = min{tτ(w,w′) |hτ(w,w′) = 1} (0 falls w 6∈M)

Orakel benötigt keine Rechenzeit zum Schreiben

– Zeitkomplexität otimeτ(n) = max{otτ(w) | |w|=n}

Theoretische Informatik II §8: Komplexitätstheorie 11 Komplexität von Problemen

Nichtdeterminismus als Raten und Verifizieren

• Deterministische Turingmaschine mit Orakel

– Eingabe des Wortes w auf erstem Arbeitsband

– Phase 1: Orakel generiert Wort w′ auf zweitem Arbeitsband

– Phase 2: τ verarbeitet w und w′ deterministisch

– τ entscheidet M⊆X∗, falls ∀w,w′.hτ(w,w′)6=⊥

und w ∈M ⇔ ∃w′. hτ(w,w′) = 1

– Rechenzeit otτ(w) = min{tτ(w,w′) |hτ(w,w′) = 1} (0 falls w 6∈M)

Orakel benötigt keine Rechenzeit zum Schreiben

– Zeitkomplexität otimeτ(n) = max{otτ(w) | |w|=n}

• NTM’s und OTM’s sind äquivalent

Theoretische Informatik II §8: Komplexitätstheorie 11 Komplexität von Problemen

Nichtdeterminismus als Raten und Verifizieren

• Deterministische Turingmaschine mit Orakel

– Eingabe des Wortes w auf erstem Arbeitsband

– Phase 1: Orakel generiert Wort w′ auf zweitem Arbeitsband

– Phase 2: τ verarbeitet w und w′ deterministisch

– τ entscheidet M⊆X∗, falls ∀w,w′.hτ(w,w′)6=⊥

und w ∈M ⇔ ∃w′. hτ(w,w′) = 1

– Rechenzeit otτ(w) = min{tτ(w,w′) |hτ(w,w′) = 1} (0 falls w 6∈M)

Orakel benötigt keine Rechenzeit zum Schreiben

– Zeitkomplexität otimeτ(n) = max{otτ(w) | |w|=n}

• NTM’s und OTM’s sind äquivalent

– OTM kann Berechnungsfolge der NTM raten und deterministisch ausführen

Theoretische Informatik II §8: Komplexitätstheorie 11 Komplexität von Problemen

Nichtdeterminismus als Raten und Verifizieren

• Deterministische Turingmaschine mit Orakel

– Eingabe des Wortes w auf erstem Arbeitsband

– Phase 1: Orakel generiert Wort w′ auf zweitem Arbeitsband

– Phase 2: τ verarbeitet w und w′ deterministisch

– τ entscheidet M⊆X∗, falls ∀w,w′.hτ(w,w′)6=⊥

und w ∈M ⇔ ∃w′. hτ(w,w′) = 1

– Rechenzeit otτ(w) = min{tτ(w,w′) |hτ(w,w′) = 1} (0 falls w 6∈M)

Orakel benötigt keine Rechenzeit zum Schreiben

– Zeitkomplexität otimeτ(n) = max{otτ(w) | |w|=n}

• NTM’s und OTM’s sind äquivalent

– OTM kann Berechnungsfolge der NTM raten und deterministisch ausführen

– NTM kann alle Berechnungsfolgen der OTM “parallel” ausführen

Theoretische Informatik II §8: Komplexitätstheorie 11 Komplexität von Problemen

Nichtdeterminismus als Raten und Verifizieren

• Deterministische Turingmaschine mit Orakel

– Eingabe des Wortes w auf erstem Arbeitsband

– Phase 1: Orakel generiert Wort w′ auf zweitem Arbeitsband

– Phase 2: τ verarbeitet w und w′ deterministisch

– τ entscheidet M⊆X∗, falls ∀w,w′.hτ(w,w′)6=⊥

und w ∈M ⇔ ∃w′. hτ(w,w′) = 1

– Rechenzeit otτ(w) = min{tτ(w,w′) |hτ(w,w′) = 1} (0 falls w 6∈M)

Orakel benötigt keine Rechenzeit zum Schreiben

– Zeitkomplexität otimeτ(n) = max{otτ(w) | |w|=n}

• NTM’s und OTM’s sind äquivalent

– OTM kann Berechnungsfolge der NTM raten und deterministisch ausführen

– NTM kann alle Berechnungsfolgen der OTM “parallel” ausführen

– Rechenzeit ist identisch

Theoretische Informatik II §8: Komplexitätstheorie 12 Komplexität von Problemen

Komplexität von (Entscheidungs-)Problemen

• Zeitkomplexität
– Eine Menge M hat Zeitkomplexität O(f),

falls es eine DTM τ mit timeτ ∈O(f) gibt, die M entscheidet.

Theoretische Informatik II §8: Komplexitätstheorie 12 Komplexität von Problemen

Komplexität von (Entscheidungs-)Problemen

• Zeitkomplexität
– Eine Menge M hat Zeitkomplexität O(f),

falls es eine DTM τ mit timeτ ∈O(f) gibt, die M entscheidet.

– DTIME(f) = {M |M hat Zeitkomplexität O(f) }

Theoretische Informatik II §8: Komplexitätstheorie 12 Komplexität von Problemen

Komplexität von (Entscheidungs-)Problemen

• Zeitkomplexität
– Eine Menge M hat Zeitkomplexität O(f),

falls es eine DTM τ mit timeτ ∈O(f) gibt, die M entscheidet.

– DTIME(f) = {M |M hat Zeitkomplexität O(f) }

– Eine Menge M hat nichtdeterministische Zeitkomplexität O(f),
falls es eine NTM τ mit ntimeτ ∈O(f) gibt, die M entscheidet.

Theoretische Informatik II §8: Komplexitätstheorie 12 Komplexität von Problemen

Komplexität von (Entscheidungs-)Problemen

• Zeitkomplexität
– Eine Menge M hat Zeitkomplexität O(f),

falls es eine DTM τ mit timeτ ∈O(f) gibt, die M entscheidet.

– DTIME(f) = {M |M hat Zeitkomplexität O(f) }

– Eine Menge M hat nichtdeterministische Zeitkomplexität O(f),
falls es eine NTM τ mit ntimeτ ∈O(f) gibt, die M entscheidet.

– NTIME(f) = {M |M hat nichtdeterministische Zeitkomplexität O(f)}

Theoretische Informatik II §8: Komplexitätstheorie 12 Komplexität von Problemen

Komplexität von (Entscheidungs-)Problemen

• Zeitkomplexität
– Eine Menge M hat Zeitkomplexität O(f),

falls es eine DTM τ mit timeτ ∈O(f) gibt, die M entscheidet.

– DTIME(f) = {M |M hat Zeitkomplexität O(f) }

– Eine Menge M hat nichtdeterministische Zeitkomplexität O(f),
falls es eine NTM τ mit ntimeτ ∈O(f) gibt, die M entscheidet.

– NTIME(f) = {M |M hat nichtdeterministische Zeitkomplexität O(f)}

• Platzkomplexität
– Eine Menge M hat Platzkomplexität O(f),

falls es eine DTM τ mit spaceτ ∈O(f) gibt, die M entscheidet.

Theoretische Informatik II §8: Komplexitätstheorie 12 Komplexität von Problemen

Komplexität von (Entscheidungs-)Problemen

• Zeitkomplexität
– Eine Menge M hat Zeitkomplexität O(f),

falls es eine DTM τ mit timeτ ∈O(f) gibt, die M entscheidet.

– DTIME(f) = {M |M hat Zeitkomplexität O(f) }

– Eine Menge M hat nichtdeterministische Zeitkomplexität O(f),
falls es eine NTM τ mit ntimeτ ∈O(f) gibt, die M entscheidet.

– NTIME(f) = {M |M hat nichtdeterministische Zeitkomplexität O(f)}

• Platzkomplexität
– Eine Menge M hat Platzkomplexität O(f),

falls es eine DTM τ mit spaceτ ∈O(f) gibt, die M entscheidet.

– DSPACE(f) = {M |M hat Platzkomplexität O(f) }

Theoretische Informatik II §8: Komplexitätstheorie 12 Komplexität von Problemen

Komplexität von (Entscheidungs-)Problemen

• Zeitkomplexität
– Eine Menge M hat Zeitkomplexität O(f),

falls es eine DTM τ mit timeτ ∈O(f) gibt, die M entscheidet.

– DTIME(f) = {M |M hat Zeitkomplexität O(f) }

– Eine Menge M hat nichtdeterministische Zeitkomplexität O(f),
falls es eine NTM τ mit ntimeτ ∈O(f) gibt, die M entscheidet.

– NTIME(f) = {M |M hat nichtdeterministische Zeitkomplexität O(f)}

• Platzkomplexität
– Eine Menge M hat Platzkomplexität O(f),

falls es eine DTM τ mit spaceτ ∈O(f) gibt, die M entscheidet.

– DSPACE(f) = {M |M hat Platzkomplexität O(f) }

– Eine Menge M hat nichtdeterministische Platzkomplexität O(f),
falls es eine NTM τ mit nspaceτ ∈O(f) gibt, die M entscheidet.

Theoretische Informatik II §8: Komplexitätstheorie 12 Komplexität von Problemen

Komplexität von (Entscheidungs-)Problemen

• Zeitkomplexität
– Eine Menge M hat Zeitkomplexität O(f),

falls es eine DTM τ mit timeτ ∈O(f) gibt, die M entscheidet.

– DTIME(f) = {M |M hat Zeitkomplexität O(f) }

– Eine Menge M hat nichtdeterministische Zeitkomplexität O(f),
falls es eine NTM τ mit ntimeτ ∈O(f) gibt, die M entscheidet.

– NTIME(f) = {M |M hat nichtdeterministische Zeitkomplexität O(f)}

• Platzkomplexität
– Eine Menge M hat Platzkomplexität O(f),

falls es eine DTM τ mit spaceτ ∈O(f) gibt, die M entscheidet.

– DSPACE(f) = {M |M hat Platzkomplexität O(f) }

– Eine Menge M hat nichtdeterministische Platzkomplexität O(f),
falls es eine NTM τ mit nspaceτ ∈O(f) gibt, die M entscheidet.

– NSPACE(f) = {M |M hat nichtdeterministische Platzkomplexität O(f)}

Theoretische Informatik II §8: Komplexitätstheorie 12 Komplexität von Problemen

Komplexität von (Entscheidungs-)Problemen

• Zeitkomplexität
– Eine Menge M hat Zeitkomplexität O(f),

falls es eine DTM τ mit timeτ ∈O(f) gibt, die M entscheidet.

– DTIME(f) = {M |M hat Zeitkomplexität O(f) }

– Eine Menge M hat nichtdeterministische Zeitkomplexität O(f),
falls es eine NTM τ mit ntimeτ ∈O(f) gibt, die M entscheidet.

– NTIME(f) = {M |M hat nichtdeterministische Zeitkomplexität O(f)}

• Platzkomplexität
– Eine Menge M hat Platzkomplexität O(f),

falls es eine DTM τ mit spaceτ ∈O(f) gibt, die M entscheidet.

– DSPACE(f) = {M |M hat Platzkomplexität O(f) }

– Eine Menge M hat nichtdeterministische Platzkomplexität O(f),
falls es eine NTM τ mit nspaceτ ∈O(f) gibt, die M entscheidet.

– NSPACE(f) = {M |M hat nichtdeterministische Platzkomplexität O(f)}

Konkrete Analysen werden mit abstrakten deterministischen oder

nichtdeterministischen Algorithmen durchgeführt

Theoretische Informatik II §8: Komplexitätstheorie 13 Komplexität von Problemen

Wichtige Komplexitätsklassen

• P =
⋃

k DTIME(nk) : Effiziente Lösbarkeit

– Menge der in polynomieller Zeit lösbaren Probleme

Theoretische Informatik II §8: Komplexitätstheorie 13 Komplexität von Problemen

Wichtige Komplexitätsklassen

• P =
⋃

k DTIME(nk) : Effiziente Lösbarkeit

– Menge der in polynomieller Zeit lösbaren Probleme

• NP =
⋃

k NTIME(nk) :

– Menge der nichtdeterministisch in polynomieller Zeit lösbaren Probleme

Theoretische Informatik II §8: Komplexitätstheorie 13 Komplexität von Problemen

Wichtige Komplexitätsklassen

• P =
⋃

k DTIME(nk) : Effiziente Lösbarkeit

– Menge der in polynomieller Zeit lösbaren Probleme

• NP =
⋃

k NTIME(nk) :

– Menge der nichtdeterministisch in polynomieller Zeit lösbaren Probleme

• Weitere Zeitkomplexitätsklassen
– EXPTIME =

⋃

k DTIME(2nk
)

– NEXPTIME =
⋃

k NTIME(2nk
)

– LOGTIME = DTIME(log2 n)

– NLOGTIME = NTIME(log2 n)

Theoretische Informatik II §8: Komplexitätstheorie 13 Komplexität von Problemen

Wichtige Komplexitätsklassen

• P =
⋃

k DTIME(nk) : Effiziente Lösbarkeit

– Menge der in polynomieller Zeit lösbaren Probleme

• NP =
⋃

k NTIME(nk) :

– Menge der nichtdeterministisch in polynomieller Zeit lösbaren Probleme

• Weitere Zeitkomplexitätsklassen
– EXPTIME =

⋃

k DTIME(2nk
)

– NEXPTIME =
⋃

k NTIME(2nk
)

– LOGTIME = DTIME(log2 n)

– NLOGTIME = NTIME(log2 n)

• Platzkomplexitätsklassen
– LOGSPACE = DSPACE(log2 n)

– NLOGSPACE = NSPACE(log2 n)

– PSPACE =
⋃

k DSPACE(nk)

– NPSPACE =
⋃

k NSPACE(nk)

– EXPSPACE =
⋃

k DSPACE(2nk
)

– EXPSPACE =
⋃

k NSPACE(2nk
)

Theoretische Informatik II §8: Komplexitätstheorie 14 Komplexität von Problemen

Beispiele für Komplexitätsklassen

• P:

– Arithmetische Operationen, Sortieren, Matrixmultiplikation, . . .

Theoretische Informatik II §8: Komplexitätstheorie 14 Komplexität von Problemen

Beispiele für Komplexitätsklassen

• P:

– Arithmetische Operationen, Sortieren, Matrixmultiplikation, . . .

• NP:

– Travelling Salesman, Cliquen-Problem, Erfüllbarkeitsproblem

– Multiprozessor-Scheduling, Binpacking, Zusammengesetztheitstest

Theoretische Informatik II §8: Komplexitätstheorie 14 Komplexität von Problemen

Beispiele für Komplexitätsklassen

• P:

– Arithmetische Operationen, Sortieren, Matrixmultiplikation, . . .

• NP:

– Travelling Salesman, Cliquen-Problem, Erfüllbarkeitsproblem

– Multiprozessor-Scheduling, Binpacking, Zusammengesetztheitstest

• EXPTIME:

– Travelling Salesman, Cliquen-Problem, Erfüllbarkeitsproblem

– Multiprozessor-Scheduling, Binpacking, Primzahltest

Theoretische Informatik II §8: Komplexitätstheorie 14 Komplexität von Problemen

Beispiele für Komplexitätsklassen

• P:

– Arithmetische Operationen, Sortieren, Matrixmultiplikation, . . .

• NP:

– Travelling Salesman, Cliquen-Problem, Erfüllbarkeitsproblem

– Multiprozessor-Scheduling, Binpacking, Zusammengesetztheitstest

• EXPTIME:

– Travelling Salesman, Cliquen-Problem, Erfüllbarkeitsproblem

– Multiprozessor-Scheduling, Binpacking, Primzahltest

• Komplexitätsklassenhierarchie

LOGTIME ⊆ NLOGTIME ⊆ LOGSPACE ⊆ NLOGSPACE

⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE

⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE ⊆ . . .

– Es wird vermutet, daß alle Inklusionen echt sind

