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1. Untere Schranken fiir Komplexitat
2. Nichtdeterministische Komplexitat

3. Komplexitatsklassen



KOMPLEXITAT VON PROBLEMEN I

e Probleme haben unterschiedlich gute Losungen
— Suchen:  Lineare Suche O(n) — Binérsuche O(log,n)
— Sortieren: Bubblesort O(n?*) — Mergesort O(nx log, n)
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e Wie effizient kann ein Problem gelost werden?

— Gibt es untere Schranken fiir die Komplexitat von Losungen
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e Wann ist eine Losung gut genug?
— Ist ein Losungsalgorithmus optimal beziiglich Zeit-/Platzbedarf?
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— Suchen: Lineare Suche O(n) — Binérsuche O(log, n)
— Sortieren: Bubblesort O(n?*) — Mergesort O(nx log, n)

e Wie effizient kann ein Problem gelost werden?

— Gibt es untere Schranken fir die Komplexitat von Losungen

e Wann ist eine Losung gut genug?
— Ist ein Losungsalgorithmus optimal beziiglich Zeit-/Platzbedarf?

e Nachweis aufwendig

— Man muf3 iiber alle moglichen Algorithmen argumentieren
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KOMPLEXITAT VON SORTIERVERFAHREN I

Schneller als O(n*logon)?
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KOMPLEXITAT VON SORTIERVERFAHREN I

Schneller als O(n*logon)?

e Sortierverfahren miissen Elemente vergleichen
— Sonst kann die Anordnung der Elemente nicht garantiert werden
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KOMPLEXITAT VON SORTIERVERFAHREN I

Schneller als O(n*logy n)?

e Sortierverfahren miissen Elemente vergleichen
— Sonst kann die Anordnung der Elemente nicht garantiert werden
— Wieviel Vergleiche werden benotigt um aq..a, zu ordnen?
— Bestimme Anzahl der Vergleiche fiir den ungtinstigsten Fall

e Betrachte Entscheidungsbaum von Algorithmen
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a;<az

a;<—as aj<—as

— Innere Knoten entsprechen den durchgefithrten Vergleichen
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— Innere Knoten entsprechen den durchgefithrten Vergleichen
— Kanten markiert mit Vergleichergebnis (<,>)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITAT VON PROBLEMEN




KOMPLEXITAT VON SORTIERVERFAHREN I

Schneller als O(n*logy n)?

e Sortierverfahren miissen Elemente vergleichen
— Sonst kann die Anordnung der Elemente nicht garantiert werden
— Wieviel Vergleiche werden benotigt um aq..a, zu ordnen?
— Bestimme Anzahl der Vergleiche fiir den ungtinstigsten Fall

e Betrachte Entscheidungsbaum von Algorithmen

aasa a<—a a<—a aasa
16263 S(l 3>> S(l 3>> 1662063

ajas0as ajas0as ajazas a1as0as

— Innere Knoten entsprechen den durchgefithrten Vergleichen
— Kanten markiert mit Vergleichergebnis (<,>)
— Blatter sind resultierende Anordnung der Elemente
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KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘CLlCLQCLg‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum
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4
Sortieren ist in O(n * logs n)
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KOMPLEXITAT ANDERER PROBLEMSTELLUNGEN I

e Addition n-stelliger Zahlen
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e Berechnung von n!
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e Division n-stelliger Zahlen O(n?)
— Schriftliche Division bestimmt Ergebnis von links nach rechts

e Berechnung von n! O(n? x (logy n)?)
— Obergrenze: n-fache Multiplikation von n und n!: n * logy n x logy(n”

)
— Untergrenze: n/2-fach n/2+(n/2)l:  n/2xlogy(n/2) * n/4x(logy n — 2)
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e Berechnung von n! O(n? x (logy n)?)
— Obergrenze: n-fache Multiplikation von n und n!:  n * log, n * log,(n'"")
— Untergrenze: n/2-fach n/2+(n/2)l:  n/2xlogy(n/2) * n/4x(logy n — 2)

e Primzahltest bei n-stelliger Zahlen
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e Primzahltest bei n-stelliger Zahlen O(2")

— Teilbarkeit muf fur alle kleineren Zahlen getestet werden
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— Ergebnis gut fiir offene kryptographische Systeme (wahle n > 200)
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WEITERE PROBLEME MIT EXPONENTIELLER KOMPLEXITAT I

e Travelling Salesman (TSP)

Gegeben n Stadte, eine Kostentabelle von Kosten ¢;; um von Stadt ¢
nach j zu reisen und eine Kostenbeschrankung B. Gibt es eine
Rundreise durch alle n Stadte, deren Kosten unter B liegt?
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Rundreise durch alle n Stadte, deren Kosten unter B liegt?

e Cliquen-Problem (CLIQUE)
Gegeben ein Graph G = (V, F) der Groflie n und eine Zahl k < n. Gibt
es in G eine Clique (vollstandig verbundener Teilgraph) der Grofie k7
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Gegeben ein Graph G = (V, F) der Groflie n und eine Zahl k < n. Gibt
es in G eine Clique (vollstandig verbundener Teilgraph) der Grofie k7

e Erfiillbarkeitsproblem (SAT)

Ist eine aussagenlogische Formel in KNF der Grofie n erfullbar?
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WEITERE PROBLEME MIT EXPONENTIELLER KOMPLEXITAT I

e Travelling Salesman (TSP)

Gegeben n Stadte, eine Kostentabelle von Kosten ¢;; um von Stadt ¢
nach j zu reisen und eine Kostenbeschrankung B. Gibt es eine
Rundreise durch alle n Stadte, deren Kosten unter B liegt?

e Cliquen-Problem (CLIQUE)
Gegeben ein Graph G = (V, F) der Groflie n und eine Zahl k < n. Gibt
es in G eine Clique (vollstandig verbundener Teilgraph) der Grofie k7

e Erfiillbarkeitsproblem (SAT)

Ist eine aussagenlogische Formel in KNF der Grofie n erfullbar?

e Multiprozessor-Scheduling
Verteile n Prozesse derart auf eine Menge von Prozessoren, dafi die
Ressourcen der Rechner optimal genutzt werden.
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Minimiere Anzahl von Verpackungsbehaltern, um n verschieden grofie
Gegenstande zu transportieren.
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Bisher nur durch Testen aller Moglichkeiten losbar
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ENTSCHEIDUNGS- UND OPTIMIERUNGSPROBLEME

Viele Probleme erscheinen in mehreren Varianten
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— Bei Eingabe von x4, .., x,, berechne ein y, so dafl P(x1, .., x,,y) gilt

— Sortieren, Primfaktorzerlegung, Matrixmultiplikation, . ..

e Optimierungsprobleme
— Bei Eingabe von x4, .., x,, berechne das beste y mit P(x1, .., 2., y)

— Travelling Salesman, Clique, Binpacking, Multiprocessor Scheduling
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VARIANTEN DES CLIQUENPROBLEMS I

Gegeben ein Graph G = (V| E) und eine Zahl k& < |V/|. Eine k-Clique von
G ist ein vollstandig verbundener Teilgraph C' = (V,, E.) mit |V.| = k
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VARIANTEN DES CLIQUENPROBLEMS I

Gegeben ein Graph G = (V| E) und eine Zahl k& < |V/|. Eine k-Clique von
G ist ein vollstandig verbundener Teilgraph C' = (V,, E.) mit |V.| = k

e Eintscheidungsproblem

— “Gibt es eine Losung mit einem bestimmten Wert”
- CLIQUE: Gibt es in G eine Clique der Grofle k7
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- CLIQUE,:: Bestimme das grofite &, so dafi G eine k-Clique enthalt
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THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 KOMPLEXITAT VON PROBLEMEN




PROBLEMVARIANTEN VON CLIQUE SIND GLEICH SCHWER I

o Lose CLIQUE,,; mit CLIQUE

— Beginne mit k£ := |V| und teste ob es in G eine k-Clique gibt
— Reduziere k£ bis der Test erfolgreich ist und gebe k aus
— Zusatzaufwand ist linear in |V
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— Wiederhole dies iterativ fiir alle Kanten aus £
— Die resultierende Menge E. und die zugehorigen Ecken bilden die k,,+~Clique
— Zusatzaufwand ist linear in |F|
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Die Umkehrungen sind trivial
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4

Es reicht Entscheidungsprobleme zu analysieren
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VIELE SCHWERE PROBLEME HABEN LEICHTE ERFOLGSTESTS I

e Travelling Salesman: Fiir eine gegebene Rundreise 4;..4,, konnen
die Kosten ¢4, + ... ¢, In linearer Zeit berechnet und mit der
Kostenbeschrankung B verglichen werden
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e Cliquen-Problem: Ein gegebener Teilgraph der GroBe & kann in
polynomieller Zeit auf Vollstandigkeit tiberpruft werden
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VIELE SCHWERE PROBLEME HABEN LEICHTE ERFOLGSTESTS I

e Travelling Salesman: Fiir eine gegebene Rundreise i,..7,, konnen
die Kosten ¢4, + ... ¢, In linearer Zeit berechnet und mit der
Kostenbeschrankung B verglichen werden

e Cliquen-Problem: Ein gegebener Teilgraph der GroBe & kann in
polynomieller Zeit auf Vollstandigkeit tiberpriift werden
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ob eine gegebene Belegung der Variablen eine Formel erfullt

e Binpacking: Man kann in polynomieller Zeit testen, ob eine gegebene
Verteilung der Gegenstande in k Verpackungsbehalter pafit
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Verteilung der Gegenstande in k Verpackungsbehalter pafit

e Zusammengesetztheitstest: Man kann in quadratischer Zeit
testen, ob eine gegebene Zahl Teiler von z (also = keine Primzahl) ist

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 KOMPLEXITAT VON PROBLEMEN




VIELE SCHWERE PROBLEME HABEN LEICHTE ERFOLGSTESTS I

e Travelling Salesman: Fiir eine gegebene Rundreise 4;..4,, konnen
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e Cliquen-Problem: Ein gegebener Teilgraph der GroBe & kann in
polynomieller Zeit auf Vollstandigkeit tiberpriift werden

e Erfullbarkeitsproblem: Man kann in polynomieller Zeit testen,
ob eine gegebene Belegung der Variablen eine Formel erfullt

e Binpacking: Man kann in polynomieller Zeit testen, ob eine gegebene
Verteilung der Gegenstande in k Verpackungsbehalter pafit

e Zusammengesetztheitstest: Man kann in quadratischer Zeit
testen, ob eine gegebene Zahl Teiler von z (also = keine Primzahl) ist

Nichtdeterministische Maschinen liefern polynomielle Losung
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NICHTDETERMINISTISCHE LOSBARKEIT Asteroth /Baier §2.3 |

e Nichtdeterministische Turingmaschine 7

— Komponenten S, X, I', s, b wie bei normaler Turingmaschine
— Zustandsuiberfithrungsfunktion 0:5xI" — S XIx{r.lh}
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e Nichtdeterministische Entscheidbarkeit
— 7 entscheidet McX* fallsweM < leh (w)

“Es gibt eine akzeptierende Berechnung fur w”
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“Es gibt eine akzeptierende Berechnung fur w”
minimale Lange einer akzep— falls we M

— Rechenzeit nt,(w) = ¢ tierenden Berechnung fiir w
0 sonst

\
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\
— Zeitkomplexitit ntime,(n) = max{nt.(w) | lw|=n}
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\
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— Platzkomplexitiat nspace.(n) analog definiert
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NICHTDETERMINISMUS ALS RATEN UND VERIFIZIEREN I

e Deterministische Turingmaschine mit Orakel
— Eingabe des Wortes w auf erstem Arbeitsband
— Phase 1: Orakel generiert Wort w’ auf zweitem Arbeitsband

— Phase 2: 7 verarbeitet w und w’ deterministisch
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— Rechenzeit ot (w) = min{t,(w,w") | h-(w,w") =1} (0 falls we M)
Orakel benotigt keine Rechenzeit zum Schreiben

— Zeitkomplexitat otime,(n) = max{ot;(w)| |lw|=n}
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— Phase 1: Orakel generiert Wort w’ auf zweitem Arbeitsband
— Phase 2: 7 verarbeitet w und w’ deterministisch
— 7 entscheidet McX™, falls Vw, w’.h.(w, w")#L
und we M < Jw'. h(w,w') =1
— Rechenzeit ot (w) = min{t,(w,w") | h-(w,w") =1} (0 falls we M)
Orakel benotigt keine Rechenzeit zum Schreiben

— Zeitkomplexitat otime,(n) = max{ot;(w)| |lw|=n}

e NTM’s und OTM’s sind aquivalent

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 KOMPLEXITAT VON PROBLEMEN




NICHTDETERMINISMUS ALS RATEN UND VERIFIZIEREN I

e Deterministische Turingmaschine mit Orakel
— Eingabe des Wortes w auf erstem Arbeitsband
— Phase 1: Orakel generiert Wort w’ auf zweitem Arbeitsband
— Phase 2: 7 verarbeitet w und w’ deterministisch
— 7 entscheidet McX™, falls Vw, w’.h.(w, w")#L
und we M < Jw'. h(w,w') =1
— Rechenzeit ot (w) = min{t,(w,w") | h-(w,w") =1} (0 falls we M)
Orakel benotigt keine Rechenzeit zum Schreiben

— Zeitkomplexitat otime,(n) = max{ot;(w)| |lw|=n}

e NTM’s und OTM’s sind aquivalent
— OTM kann Berechnungsfolge der NTM raten und deterministisch ausfithren

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 KOMPLEXITAT VON PROBLEMEN




NICHTDETERMINISMUS ALS RATEN UND VERIFIZIEREN I

e Deterministische Turingmaschine mit Orakel
— Eingabe des Wortes w auf erstem Arbeitsband
— Phase 1: Orakel generiert Wort w’ auf zweitem Arbeitsband
— Phase 2: 7 verarbeitet w und w’ deterministisch
— 7 entscheidet McX™, falls Vw, w’.h.(w, w")#L
und we M < Jw'. h(w,w') =1
— Rechenzeit ot (w) = min{t,(w,w") | h-(w,w") =1} (0 falls we M)
Orakel benotigt keine Rechenzeit zum Schreiben

— Zeitkomplexitat otime,(n) = max{ot;(w)| |lw|=n}

e NTM’s und OTM’s sind aquivalent
— OTM kann Berechnungsfolge der NTM raten und deterministisch ausfithren

— NTM kann alle Berechnungsfolgen der OTM “parallel” ausfithren

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 KOMPLEXITAT VON PROBLEMEN




NICHTDETERMINISMUS ALS RATEN UND VERIFIZIEREN I

e Deterministische Turingmaschine mit Orakel
— Eingabe des Wortes w auf erstem Arbeitsband
— Phase 1: Orakel generiert Wort w’ auf zweitem Arbeitsband
— Phase 2: 7 verarbeitet w und w’ deterministisch
— 7 entscheidet McX™, falls Vw, w’.h.(w, w")#L
und we M < Jw'. h(w,w') =1
— Rechenzeit ot (w) = min{t,(w,w") | h-(w,w") =1} (0 falls we M)
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e NTM’s und OTM’s sind aquivalent
— OTM kann Berechnungsfolge der NTM raten und deterministisch ausfithren

— NTM kann alle Berechnungsfolgen der OTM “parallel” ausfithren

— Rechenzeit ist identisch
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KOMPLEXITAT VON (ENTSCHEIDUNGS-)PROBLEMEN

e Zeitkomplexitat

— Eine Menge M hat Zeitkomplexitat O( f),
falls es eine DTM 7 mit time, € O(f) gibt, die M entscheidet.
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e Platzkomplexitat

— Eine Menge M hat Platzkomplexitat O(f),
falls es eine DTM 7 mit space, € O(f) gibt, die M entscheidet.
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— Eine Menge M hat Platzkomplexitat O(f),
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Konkrete Analysen werden mit abstrakten deterministischen oder

nichtdeterministischen Algorithmen durchgefihrt
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WICHTIGE KOMPLEXITATSKLASSEN I

o P = |J, DTIME(n*) : Effiziente Losbarkeit

— Menge der in polynomieller Zeit losbaren Probleme
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e NP = J, NTIME(nF) :

— Menge der nichtdeterministisch in polynomieller Zeit losbaren Probleme
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o P = |J, DTIME(n¥) : Effiziente Losbarkeit

— Menge der in polynomieller Zeit 1osbaren Probleme

e NP = J. NTIME(n") :
— Menge der nichtdeterministisch in polynomieller Zeit losbaren Probleme

e Weitere Zeitkomplexitatsklassen
- EXPTIME =\, DTIME(2")
- NEXPTIME =|J, NTIME(2")
~ LOGTIME = DTIME(log,n)
-~ NLOGTIME = NTIME(log,n)
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- EXPTIME =\, DTIME(2")
- NEXPTIME =|J, NTIME(2")
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e Platzkomplexitatsklassen
-~ LOGSPACE = DSPACE(logyn)
-~ NLOGSPACE = NSPACE((logyn)
- PSPACE =\, DSPACE(n*)
- NPSPACE =/, NSPACE(n")
- EXPSPACE =\J, DSPACE(2")
- EXPSPACE =/, NSPACE(2")
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BEISPIELE FUR KOMPLEXITATSKLASSEN I

o P:

— Arithmetische Operationen, Sortieren, Matrixmultiplikation, ...
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o N P:

— Travelling Salesman, Cliquen-Problem, Erfullbarkeitsproblem

— Multiprozessor-Scheduling, Binpacking, Zusammengesetztheitstest
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— Multiprozessor-Scheduling, Binpacking, Zusammengesetztheitstest

e FXPITIME:

— Travelling Salesman, Cliquen-Problem, Erfullbarkeitsproblem
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e Komplexitatsklassenhierarchie
LOGTIME c NLOGTIME < LOGSPACE ¢c NLOGSPACE
cPcNPcPSPACE c NPSPACE
c EXPTIME c NEXPTIME ¢c EXPSPACE ¢ ...

— Es wird vermutet, daf} alle Inklusionen echt sind
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