
Theoretische Informatik II

Einheit 8.3

Komplexität von Problemen

1. Untere Schranken für Komplexität

2. Nichtdeterministische Komplexität

3. Komplexitätsklassen
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– Sortieren: Bubblesort O(n2) — Mergesort O(n∗ log2 n)

• Wie effizient kann ein Problem gelöst werden?
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• Wann ist eine Lösung gut genug?

– Ist ein Lösungsalgorithmus optimal bezüglich Zeit-/Platzbedarf?

• Nachweis aufwendig

– Man muß über alle möglichen Algorithmen argumentieren
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– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

– Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes

7→ Komplexität von Sortieren ≡ minimale Tiefe von Entscheidungsbäumen
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– Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum

– Konkrete Laufzeit des Algorithmus entspricht Länge des Astes

– Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes

7→ Komplexität von Sortieren ≡ minimale Tiefe von Entscheidungsbäumen
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⇓

Sortieren ist in O(n ∗ log2 n)
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Theoretische Informatik II §8: Komplexitätstheorie 5 Komplexität von Problemen

Weitere Probleme mit exponentieller Komplexität

• Travelling Salesman (TSP)
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es in G eine Clique (vollständig verbundener Teilgraph) der Größe k?
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es in G eine Clique (vollständig verbundener Teilgraph) der Größe k?
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– Sortieren, Primfaktorzerlegung, Matrixmultiplikation, . . .

• Optimierungsprobleme

– Bei Eingabe von x1, .., xn berechne das beste y mit P (x1, .., xn, y)

– Travelling Salesman, Clique, Binpacking, Multiprocessor Scheduling
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· CLIQUEopt: Bestimme das größte k, so daß G eine k-Clique enthält
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G ist ein vollständig verbundener Teilgraph C = (Vc, Ec) mit |Vc| = k

• Entscheidungsproblem

– “Gibt es eine Lösung mit einem bestimmten Wert”
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• Berechnungsproblem

– Bestimme eine konkrete Lösung mit einem bestimmten Wert

· CLIQUE
2
: Bestimme eine Clique C⊆G der Größe k

• Optimierungsprobleme

– Bestimme den Wert einer optimalen Lösung

· CLIQUEopt: Bestimme das größte k, so daß G eine k-Clique enthält

– Berechne die optimale Lösung

· CLIQUEopt2: Bestimme eine Clique C⊆G mit maximaler Größe k
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• Löse CLIQUEopt mit CLIQUE
– Beginne mit k := |V | und teste ob es in G eine k-Clique gibt

– Reduziere k bis der Test erfolgreich ist und gebe k aus

– Zusatzaufwand ist linear in |V |



Theoretische Informatik II §8: Komplexitätstheorie 8 Komplexität von Problemen

Problemvarianten von Clique sind gleich schwer
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– Ist dies der Fall, so setze Ec := Ec−{e}

– Wiederhole dies iterativ für alle Kanten aus E

– Die resultierende Menge Ec und die zugehörigen Ecken bilden die kopt-Clique

– Zusatzaufwand ist linear in |E|

Löse analog CLIQUE2 mit CLIQUE

Die Umkehrungen sind trivial

⇓

Es reicht Entscheidungsprobleme zu analysieren
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• Erfüllbarkeitsproblem: Man kann in polynomieller Zeit testen,

ob eine gegebene Belegung der Variablen eine Formel erfüllt

• Binpacking: Man kann in polynomieller Zeit testen, ob eine gegebene

Verteilung der Gegenstände in k Verpackungsbehälter paßt

• Zusammengesetztheitstest: Man kann in quadratischer Zeit

testen, ob eine gegebene Zahl Teiler von x (also x keine Primzahl) ist

Nichtdeterministische Maschinen liefern polynomielle Lösung



Theoretische Informatik II §8: Komplexitätstheorie 10 Komplexität von Problemen

Nichtdeterministische Lösbarkeit Asteroth/Baier §2.3

• Nichtdeterministische Turingmaschine τ

– Komponenten S, X , Γ, s0, b wie bei normaler Turingmaschine
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• Deterministische Turingmaschine mit Orakel

– Eingabe des Wortes w auf erstem Arbeitsband

– Phase 1: Orakel generiert Wort w′ auf zweitem Arbeitsband

– Phase 2: τ verarbeitet w und w′ deterministisch
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• NP:
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– Multiprozessor-Scheduling, Binpacking, Zusammengesetztheitstest

• EXPTIME:

– Travelling Salesman, Cliquen-Problem, Erfüllbarkeitsproblem

– Multiprozessor-Scheduling, Binpacking, Primzahltest

• Komplexitätsklassenhierarchie

LOGTIME ⊆ NLOGTIME ⊆ LOGSPACE ⊆ NLOGSPACE

⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE

⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE ⊆ . . .

– Es wird vermutet, daß alle Inklusionen echt sind


