Theoretische Informatik 11

oVers,,
) ’q.'a{‘,

Einheit 8.3 . !a’
. I

Komplexitat von Problemen S

L
Od

1. Untere Schranken fiir Komplexitat
2. Nichtdeterministische Komplexitat

3. Komplexitatsklassen

KOMPLEXITAT VON PROBLEMEN I

e Probleme haben unterschiedlich gute Losungen
— Suchen: Lineare Suche O(n) — Binérsuche O(log,n)
— Sortieren: Bubblesort O(n?*) — Mergesort O(nx log, n)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 1 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON PROBLEMEN I

e Probleme haben unterschiedlich gute Losungen
— Suchen: Lineare Suche O(n) — Binérsuche O(log, n)
— Sortieren: Bubblesort O(n?*) — Mergesort O(nx log, n)

e Wie effizient kann ein Problem gelost werden?

— Gibt es untere Schranken fiir die Komplexitat von Losungen

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 1 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON PROBLEMEN I

e Probleme haben unterschiedlich gute Losungen
— Suchen: Lineare Suche O(n) — Binérsuche O(log, n)
— Sortieren: Bubblesort O(n?*) — Mergesort O(nx log, n)

e Wie effizient kann ein Problem gelost werden?

— Gibt es untere Schranken fir die Komplexitat von Losungen

e Wann ist eine Losung gut genug?
— Ist ein Losungsalgorithmus optimal beziiglich Zeit-/Platzbedarf?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 1 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON PROBLEMEN I

e Probleme haben unterschiedlich gute Losungen
— Suchen: Lineare Suche O(n) — Binérsuche O(log, n)
— Sortieren: Bubblesort O(n?*) — Mergesort O(nx log, n)

e Wie effizient kann ein Problem gelost werden?

— Gibt es untere Schranken fir die Komplexitat von Losungen

e Wann ist eine Losung gut genug?
— Ist ein Losungsalgorithmus optimal beziiglich Zeit-/Platzbedarf?

e Nachweis aufwendig

— Man muf3 iiber alle moglichen Algorithmen argumentieren

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 1 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN I

Schneller als O(n*logon)?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN I

Schneller als O(n*logon)?

e Sortierverfahren miissen Elemente vergleichen
— Sonst kann die Anordnung der Elemente nicht garantiert werden

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN I

Schneller als O(n*logon)?

e Sortierverfahren miissen Elemente vergleichen
— Sonst kann die Anordnung der Elemente nicht garantiert werden
— Wieviel Vergleiche werden benotigt um a;..a,, zu ordnen?
— Bestimme Anzahl der Vergleiche fiir den ungtinstigsten Fall

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN I

Schneller als O(n*logy n)?

e Sortierverfahren miissen Elemente vergleichen
— Sonst kann die Anordnung der Elemente nicht garantiert werden
— Wieviel Vergleiche werden benotigt um aq..a, zu ordnen?
— Bestimme Anzahl der Vergleiche fiir den ungtinstigsten Fall

e Betrachte Entscheidungsbaum von Algorithmen

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN I

Schneller als O(n*logy n)?

e Sortierverfahren miissen Elemente vergleichen
— Sonst kann die Anordnung der Elemente nicht garantiert werden
— Wieviel Vergleiche werden benotigt um aq..a, zu ordnen?
— Bestimme Anzahl der Vergleiche fiir den ungtinstigsten Fall

e Betrachte Entscheidungsbaum von Algorithmen

a;<az

a;<—as aj<—as

— Innere Knoten entsprechen den durchgefithrten Vergleichen

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN I

Schneller als O(n*logy n)?

e Sortierverfahren miissen Elemente vergleichen
— Sonst kann die Anordnung der Elemente nicht garantiert werden
— Wieviel Vergleiche werden benotigt um aq..a, zu ordnen?
— Bestimme Anzahl der Vergleiche fiir den ungtinstigsten Fall

e Betrachte Entscheidungsbaum von Algorithmen

— Innere Knoten entsprechen den durchgefithrten Vergleichen
— Kanten markiert mit Vergleichergebnis (<,>)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN I

Schneller als O(n*logy n)?

e Sortierverfahren miissen Elemente vergleichen
— Sonst kann die Anordnung der Elemente nicht garantiert werden
— Wieviel Vergleiche werden benotigt um aq..a, zu ordnen?
— Bestimme Anzahl der Vergleiche fiir den ungtinstigsten Fall

e Betrachte Entscheidungsbaum von Algorithmen

aasa a<—a a<—a aasa
16263 S(l 3>> S(l 3>> 1662063

ajas0as ajas0as ajazas a1as0as

— Innere Knoten entsprechen den durchgefithrten Vergleichen
— Kanten markiert mit Vergleichergebnis (<,>)
— Blatter sind resultierende Anordnung der Elemente

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘CLlCLQCLg‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘CLlCLQCLg‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum
— Konkrete Laufzeit des Algorithmus entspricht Lange des Astes

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘CLlCLgag‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum
— Konkrete Laufzeit des Algorithmus entspricht Lange des Astes
— Komplexitat des Algorithmus entspricht Tiefe des Entscheidungsbaumes

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘CLlCLQCLg‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum
— Konkrete Laufzeit des Algorithmus entspricht Lange des Astes
— Komplexitat des Algorithmus entspricht Tiefe des Entscheidungsbaumes
— Komplexitat von Sortieren = minimale Tiefe von Entscheidungsbaumen

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘alagag‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum
— Konkrete Laufzeit des Algorithmus entspricht Lange des Astes
— Komplexitat des Algorithmus entspricht Tiefe des Entscheidungsbaumes
— Komplexitat von Sortieren = minimale Tiefe von Entscheidungsbaumen

e Wie tief ist ein Entscheidungsbaum?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘alagag‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum
— Konkrete Laufzeit des Algorithmus entspricht Lange des Astes
— Komplexitat des Algorithmus entspricht Tiefe des Entscheidungsbaumes
— Komplexitat von Sortieren = minimale Tiefe von Entscheidungsbaumen

e Wie tief ist ein Entscheidungsbaum?
— Jeder Entscheidungsbaum fir hat aq..a,, hat n! Blatter

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘alagag‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum
— Konkrete Laufzeit des Algorithmus entspricht Lange des Astes
— Komplexitat des Algorithmus entspricht Tiefe des Entscheidungsbaumes
— Komplexitat von Sortieren = minimale Tiefe von Entscheidungsbaumen

e Wie tief ist ein Entscheidungsbaum?
— Jeder Entscheidungsbaum fir hat aq..a,, hat n! Blatter
— Ein bindrer Baum der Tiefe k hat maximal 2 Blatter

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘alagag‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum
— Konkrete Laufzeit des Algorithmus entspricht Lange des Astes
— Komplexitat des Algorithmus entspricht Tiefe des Entscheidungsbaumes
— Komplexitat von Sortieren = minimale Tiefe von Entscheidungsbaumen

e Wie tief ist ein Entscheidungsbaum?
— Jeder Entscheidungsbaum fir hat aq..a,, hat n! Blatter
— Ein bindrer Baum der Tiefe & hat maximal 2" Blitter
— Jeder Entscheidungsbaum hat mindestens Tiefe log, n!

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘alagag‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum
— Konkrete Laufzeit des Algorithmus entspricht Lange des Astes
— Komplexitat des Algorithmus entspricht Tiefe des Entscheidungsbaumes
— Komplexitat von Sortieren = minimale Tiefe von Entscheidungsbaumen

e Wie tief ist ein Entscheidungsbaum?
— Jeder Entscheidungsbaum fir hat aq..a,, hat n! Blatter
— Ein bindrer Baum der Tiefe & hat maximal 2" Blitter
— Jeder Entscheidungsbaum hat mindestens Tiefe log, n!
—logy n! = logy (11 1)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘alagag‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum
— Konkrete Laufzeit des Algorithmus entspricht Lange des Astes
— Komplexitat des Algorithmus entspricht Tiefe des Entscheidungsbaumes
— Komplexitat von Sortieren = minimale Tiefe von Entscheidungsbaumen

e Wie tief ist ein Entscheidungsbaum?
— Jeder Entscheidungsbaum fir hat aq..a,, hat n! Blatter
— Ein bindrer Baum der Tiefe & hat maximal 2" Blitter
— Jeder Entscheidungsbaum hat mindestens Tiefe log, n!
= logy nl = logy(II2) = X4 logy @

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘CLlCLQCLg‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum
— Konkrete Laufzeit des Algorithmus entspricht Lange des Astes
— Komplexitat des Algorithmus entspricht Tiefe des Entscheidungsbaumes
— Komplexitat von Sortieren = minimale Tiefe von Entscheidungsbaumen

e Wie tief ist ein Entscheidungsbaum?
— Jeder Entscheidungsbaum fir hat aq..a,, hat n! Blatter
— Ein bindrer Baum der Tiefe & hat maximal 2" Blitter
— Jeder Entscheidungsbaum hat mindestens Tiefe log, n!
— logy nl = log,(IT} 1) = XiL, logy i > Z?’:n/z logy(n/2)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘alagag‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum
— Konkrete Laufzeit des Algorithmus entspricht Lange des Astes
— Komplexitat des Algorithmus entspricht Tiefe des Entscheidungsbaumes
— Komplexitat von Sortieren = minimale Tiefe von Entscheidungsbaumen

e Wie tief ist ein Entscheidungsbaum?
— Jeder Entscheidungsbaum fir hat aq..a,, hat n! Blatter
— Ein bindrer Baum der Tiefe & hat maximal 2" Blitter
— Jeder Entscheidungsbaum hat mindestens Tiefe log, n!
—logy nl =logy(ILiL i) = XL logy i > B »logy(n/2) = n/2x(logyn — 1)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON SORTIERVERFAHREN (II)

‘alagag‘ ‘alagag‘ ‘alagag‘ ‘alagag‘

e Algorithmen entsprechen Entscheidungsbaumen
— Abarbeitung fiir konkrete Eingaben entspricht einem Ast im Baum
— Konkrete Laufzeit des Algorithmus entspricht Lange des Astes
— Komplexitat des Algorithmus entspricht Tiefe des Entscheidungsbaumes
— Komplexitat von Sortieren = minimale Tiefe von Entscheidungsbaumen

e Wie tief ist ein Entscheidungsbaum?
— Jeder Entscheidungsbaum fir hat aq..a,, hat n! Blatter
— Ein bindrer Baum der Tiefe & hat maximal 2" Blitter
— Jeder Entscheidungsbaum hat mindestens Tiefe log, n!
—logy nl =logy(ILiL i) = XL logy i > B »logy(n/2) = n/2x(logyn — 1)

4
Sortieren ist in O(n * logs n)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT ANDERER PROBLEMSTELLUNGEN I

e Addition n-stelliger Zahlen

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT ANDERER PROBLEMSTELLUNGEN I

e Addition n-stelliger Zahlen O(n)
— Einstellige Addition von rechts nach links mit Ubertrag

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT ANDERER PROBLEMSTELLUNGEN I

e Addition n-stelliger Zahlen O(n)
— Einstellige Addition von rechts nach links mit Ubertrag

e Multiplikation n-stelliger Zahlen

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT ANDERER PROBLEMSTELLUNGEN I

e Addition n-stelliger Zahlen O(n)
— Einstellige Addition von rechts nach links mit Ubertrag
e Multiplikation n-stelliger Zahlen O(n?)

— Jede Stelle mufl mit jeder Stelle multipliziert werden

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT ANDERER PROBLEMSTELLUNGEN I

e Addition n-stelliger Zahlen O(n)
— Einstellige Addition von rechts nach links mit Ubertrag
e Multiplikation n-stelliger Zahlen O(n?)

— Jede Stelle mufl mit jeder Stelle multipliziert werden

e Division n-stelliger Zahlen

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT ANDERER PROBLEMSTELLUNGEN I

e Addition n-stelliger Zahlen O(n)
— Einstellige Addition von rechts nach links mit Ubertrag
e Multiplikation n-stelliger Zahlen O(n?)

— Jede Stelle mufl mit jeder Stelle multipliziert werden

e Division n-stelliger Zahlen O(n?)
— Schriftliche Division bestimmt Ergebnis von links nach rechts

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT ANDERER PROBLEMSTELLUNGEN I

e Addition n-stelliger Zahlen O(n)
— Einstellige Addition von rechts nach links mit Ubertrag
e Multiplikation n-stelliger Zahlen O(n?)

— Jede Stelle mufl mit jeder Stelle multipliziert werden

e Division n-stelliger Zahlen O(n?)
— Schriftliche Division bestimmt Ergebnis von links nach rechts

e Berechnung von n!

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT ANDERER PROBLEMSTELLUNGEN I

e Addition n-stelliger Zahlen O(n)
— Einstellige Addition von rechts nach links mit Ubertrag

e Multiplikation n-stelliger Zahlen O(n?)
— Jede Stelle mufl mit jeder Stelle multipliziert werden

e Division n-stelliger Zahlen O(n?)
— Schriftliche Division bestimmt Ergebnis von links nach rechts

e Berechnung von n! O(n? x (logy n)?)
— Obergrenze: n-fache Multiplikation von n und n!: n * logy n x logy(n”

)
— Untergrenze: n/2-fach n/2+(n/2)l: n/2xlogy(n/2) * n/4x(logy n — 2)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT ANDERER PROBLEMSTELLUNGEN I

e Addition n-stelliger Zahlen O(n)
— Einstellige Addition von rechts nach links mit Ubertrag

e Multiplikation n-stelliger Zahlen O(n?)
— Jede Stelle mufl mit jeder Stelle multipliziert werden

e Division n-stelliger Zahlen O(n?)
— Schriftliche Division bestimmt Ergebnis von links nach rechts

e Berechnung von n! O(n? x (logy n)?)
— Obergrenze: n-fache Multiplikation von n und n!: n * log, n * log,(n'"")
— Untergrenze: n/2-fach n/2+(n/2)l: n/2xlogy(n/2) * n/4x(logy n — 2)

e Primzahltest bei n-stelliger Zahlen

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT ANDERER PROBLEMSTELLUNGEN I

e Addition n-stelliger Zahlen O(n)
— Einstellige Addition von rechts nach links mit Ubertrag

e Multiplikation n-stelliger Zahlen O(n?)
— Jede Stelle mufl mit jeder Stelle multipliziert werden

e Division n-stelliger Zahlen O(n?)
— Schriftliche Division bestimmt Ergebnis von links nach rechts

e Berechnung von n! O(n? x (logy n)?)
— Obergrenze: n-fache Multiplikation von n und n!: n * log, n * log,(n'"")
— Untergrenze: n/2-fach n/2+(n/2)l: n/2xlogy(n/2) * n/4x(logy n — 2)

e Primzahltest bei n-stelliger Zahlen O(2")

— Teilbarkeit muf fur alle kleineren Zahlen getestet werden

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT ANDERER PROBLEMSTELLUNGEN I

e Addition n-stelliger Zahlen O(n)
— Einstellige Addition von rechts nach links mit Ubertrag

e Multiplikation n-stelliger Zahlen O(n?)
— Jede Stelle mufl mit jeder Stelle multipliziert werden

e Division n-stelliger Zahlen O(n?)
— Schriftliche Division bestimmt Ergebnis von links nach rechts

e Berechnung von n! O(n? x (logy n)?)
— Obergrenze: n-fache Multiplikation von n und n!: n * log, n * log,(n'"")
— Untergrenze: n/2-fach n/2+(n/2)l: n/2xlogy(n/2) * n/4x(logy n — 2)

e Primzahltest bei n-stelliger Zahlen O(2")
— Teilbarkeit muf fur alle kleineren Zahlen getestet werden
— Untere Schranke O(2") nicht bewiesen — NP-Vollstandigkeit

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT ANDERER PROBLEMSTELLUNGEN I

e Addition n-stelliger Zahlen O(n)
— Einstellige Addition von rechts nach links mit Ubertrag

e Multiplikation n-stelliger Zahlen O(n?)
— Jede Stelle mufl mit jeder Stelle multipliziert werden

e Division n-stelliger Zahlen O(n?)
— Schriftliche Division bestimmt Ergebnis von links nach rechts

e Berechnung von n! O(n? x (logy n)?)
— Obergrenze: n-fache Multiplikation von n und n!: n * log, n * log,(n'"")
— Untergrenze: n/2-fach n/2+(n/2)l: n/2xlogy(n/2) * n/4x(logy n — 2)

e Primzahltest bei n-stelliger Zahlen O(2")
— Teilbarkeit muf fur alle kleineren Zahlen getestet werden
— Untere Schranke O(2") nicht bewiesen — NP-Vollstandigkeit

— Ergebnis gut fiir offene kryptographische Systeme (wahle n > 200)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 KOMPLEXITAT VON PROBLEMEN

WEITERE PROBLEME MIT EXPONENTIELLER KOMPLEXITAT I

e Travelling Salesman (TSP)

Gegeben n Stadte, eine Kostentabelle von Kosten ¢;; um von Stadt ¢
nach j zu reisen und eine Kostenbeschrankung B. Gibt es eine
Rundreise durch alle n Stadte, deren Kosten unter B liegt?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE) KOMPLEXITAT VON PROBLEMEN

WEITERE PROBLEME MIT EXPONENTIELLER KOMPLEXITAT I

e Travelling Salesman (TSP)

Gegeben n Stadte, eine Kostentabelle von Kosten ¢;; um von Stadt ¢
nach j zu reisen und eine Kostenbeschrankung B. Gibt es eine
Rundreise durch alle n Stadte, deren Kosten unter B liegt?

e Cliquen-Problem (CLIQUE)
Gegeben ein Graph G = (V, F) der Groflie n und eine Zahl k < n. Gibt
es in G eine Clique (vollstandig verbundener Teilgraph) der Grofie k7

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE) KOMPLEXITAT VON PROBLEMEN

WEITERE PROBLEME MIT EXPONENTIELLER KOMPLEXITAT I

e Travelling Salesman (TSP)

Gegeben n Stadte, eine Kostentabelle von Kosten ¢;; um von Stadt ¢
nach j zu reisen und eine Kostenbeschrankung B. Gibt es eine
Rundreise durch alle n Stadte, deren Kosten unter B liegt?

e Cliquen-Problem (CLIQUE)
Gegeben ein Graph G = (V, F) der Groflie n und eine Zahl k < n. Gibt
es in G eine Clique (vollstandig verbundener Teilgraph) der Grofie k7

e Erfiillbarkeitsproblem (SAT)

Ist eine aussagenlogische Formel in KNF der Grofie n erfullbar?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE) KOMPLEXITAT VON PROBLEMEN

WEITERE PROBLEME MIT EXPONENTIELLER KOMPLEXITAT I

e Travelling Salesman (TSP)

Gegeben n Stadte, eine Kostentabelle von Kosten ¢;; um von Stadt ¢
nach j zu reisen und eine Kostenbeschrankung B. Gibt es eine
Rundreise durch alle n Stadte, deren Kosten unter B liegt?

e Cliquen-Problem (CLIQUE)
Gegeben ein Graph G = (V, F) der Groflie n und eine Zahl k < n. Gibt
es in G eine Clique (vollstandig verbundener Teilgraph) der Grofie k7

e Erfiillbarkeitsproblem (SAT)

Ist eine aussagenlogische Formel in KNF der Grofie n erfullbar?

e Multiprozessor-Scheduling
Verteile n Prozesse derart auf eine Menge von Prozessoren, dafi die
Ressourcen der Rechner optimal genutzt werden.

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE) KOMPLEXITAT VON PROBLEMEN

WEITERE PROBLEME MIT EXPONENTIELLER KOMPLEXITAT I

e Travelling Salesman (TSP)

Gegeben n Stadte, eine Kostentabelle von Kosten ¢;; um von Stadt ¢
nach j zu reisen und eine Kostenbeschrankung B. Gibt es eine
Rundreise durch alle n Stadte, deren Kosten unter B liegt?

e Cliquen-Problem (CLIQUE)
Gegeben ein Graph G = (V, F) der Groflie n und eine Zahl k < n. Gibt
es in G eine Clique (vollstandig verbundener Teilgraph) der Grofie k7

e Erfiillbarkeitsproblem (SAT)

Ist eine aussagenlogische Formel in KNF der Grofie n erfullbar?

e Multiprozessor-Scheduling
Verteile n Prozesse derart auf eine Menge von Prozessoren, dafi die
Ressourcen der Rechner optimal genutzt werden.

e Binpacking
Minimiere Anzahl von Verpackungsbehaltern, um n verschieden grofie
Gegenstande zu transportieren.

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE) KOMPLEXITAT VON PROBLEMEN

WEITERE PROBLEME MIT EXPONENTIELLER KOMPLEXITAT I

e Travelling Salesman (TSP)

Gegeben n Stadte, eine Kostentabelle von Kosten ¢;; um von Stadt ¢
nach j zu reisen und eine Kostenbeschrankung B. Gibt es eine
Rundreise durch alle n Stadte, deren Kosten unter B liegt?

e Cliquen-Problem (CLIQUE)
Gegeben ein Graph G = (V, F) der Groflie n und eine Zahl k < n. Gibt
es in G eine Clique (vollstandig verbundener Teilgraph) der Grofie k7

e Erfiillbarkeitsproblem (SAT)

Ist eine aussagenlogische Formel in KNF der Grofie n erfullbar?

e Multiprozessor-Scheduling
Verteile n Prozesse derart auf eine Menge von Prozessoren, dafi die
Ressourcen der Rechner optimal genutzt werden.

e Binpacking
Minimiere Anzahl von Verpackungsbehaltern, um n verschieden grofie
Gegenstande zu transportieren.

Bisher nur durch Testen aller Moglichkeiten losbar

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE) KOMPLEXITAT VON PROBLEMEN

ENTSCHEIDUNGS- UND OPTIMIERUNGSPROBLEME

Viele Probleme erscheinen in mehreren Varianten

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITAT VON PROBLEMEN

ENTSCHEIDUNGS- UND OPTIMIERUNGSPROBLEME

Viele Probleme erscheinen in mehreren Varianten

e Entscheidungsprobleme
— Teste ob eine Eingabe x1, .., x,, eine bestimmte Eigenschaft P erfullt

— Suchen in Listen, Primzahltests, Travelling Salesman, Clique . ..

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITAT VON PROBLEMEN

ENTSCHEIDUNGS- UND OPTIMIERUNGSPROBLEME

Viele Probleme erscheinen in mehreren Varianten

e Entscheidungsprobleme
— Teste ob eine Eingabe x1, .., x,, eine bestimmte Eigenschaft P erfullt

— Suchen in Listen, Primzahltests, Travelling Salesman, Clique . ..

e Berechnungsprobleme
— Bei Eingabe von x4, .., x,, berechne ein y, so dafl P(x1, .., x,,y) gilt

— Sortieren, Primfaktorzerlegung, Matrixmultiplikation, . ..

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITAT VON PROBLEMEN

ENTSCHEIDUNGS- UND OPTIMIERUNGSPROBLEME

Viele Probleme erscheinen in mehreren Varianten

e Entscheidungsprobleme
— Teste ob eine Eingabe x1, .., x,, eine bestimmte Eigenschaft P erfullt

— Suchen in Listen, Primzahltests, Travelling Salesman, Clique . ..

e Berechnungsprobleme
— Bei Eingabe von x4, .., x,, berechne ein y, so dafl P(x1, .., x,,y) gilt

— Sortieren, Primfaktorzerlegung, Matrixmultiplikation, . ..

e Optimierungsprobleme
— Bei Eingabe von x4, .., x,, berechne das beste y mit P(x1, .., 2., y)

— Travelling Salesman, Clique, Binpacking, Multiprocessor Scheduling

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 KOMPLEXITAT VON PROBLEMEN

VARIANTEN DES CLIQUENPROBLEMS I

Gegeben ein Graph G = (V| E) und eine Zahl k& < |V/|. Eine k-Clique von
G ist ein vollstandig verbundener Teilgraph C' = (V,, E.) mit |V.| = k

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 KOMPLEXITAT VON PROBLEMEN

VARIANTEN DES CLIQUENPROBLEMS I

Gegeben ein Graph G = (V| E) und eine Zahl k& < |V/|. Eine k-Clique von
G ist ein vollstandig verbundener Teilgraph C' = (V,, E.) mit |V.| = k

e Eintscheidungsproblem

— “Gibt es eine Losung mit einem bestimmten Wert”
- CLIQUE: Gibt es in G eine Clique der Grofle k7

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 KOMPLEXITAT VON PROBLEMEN

VARIANTEN DES CLIQUENPROBLEMS I

Gegeben ein Graph G = (V, E) und eine Zahl & < |V|. Eine k-Clique von
G ist ein vollstandig verbundener Teilgraph C' = (V,, E.) mit |V.| = k

e Eintscheidungsproblem

— “Gibt es eine Losung mit einem bestimmten Wert”
- CLIQUE: Gibt es in G eine Clique der Grofle k7

e Berechnungsproblem

— Bestimme eine konkrete Losung mit einem bestimmten Wert

- CLIQUE,; Bestimme eine Clique CcG der Grofie £

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 KOMPLEXITAT VON PROBLEMEN

VARIANTEN DES CLIQUENPROBLEMS I

Gegeben ein Graph G = (V, E) und eine Zahl & < |V|. Eine k-Clique von
G ist ein vollstandig verbundener Teilgraph C' = (V,, E.) mit |V.| = k

e Eintscheidungsproblem

— “Gibt es eine Losung mit einem bestimmten Wert”
- CLIQUE: Gibt es in G eine Clique der Grofle k7

e Berechnungsproblem

— Bestimme eine konkrete Losung mit einem bestimmten Wert

- CLIQUE,; Bestimme eine Clique CcG der Grofie £

e Optimierungsprobleme

— Bestimme den Wert einer optimalen Losung
- CLIQUE,:: Bestimme das grofite &, so dafi G eine k-Clique enthalt

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 KOMPLEXITAT VON PROBLEMEN

VARIANTEN DES CLIQUENPROBLEMS I

Gegeben ein Graph G = (V, E) und eine Zahl & < |V|. Eine k-Clique von
G ist ein vollstandig verbundener Teilgraph C' = (V,, E.) mit |V.| = k

e Eintscheidungsproblem

— “Gibt es eine Losung mit einem bestimmten Wert”
- CLIQUE: Gibt es in G eine Clique der Grofle k7

e Berechnungsproblem

— Bestimme eine konkrete Losung mit einem bestimmten Wert

- CLIQUE,; Bestimme eine Clique CcG der Grofie £

e Optimierungsprobleme
— Bestimme den Wert einer optimalen Losung
- CLIQUE,:: Bestimme das grofite &, so dafi G eine k-Clique enthalt
— Berechne die optimale Losung
- CLIQUE,,: Bestimme eine Clique C'cG mit maximaler Grofie &

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 KOMPLEXITAT VON PROBLEMEN

PROBLEMVARIANTEN VON CLIQUE SIND GLEICH SCHWER I

o Lose CLIQUE,,; mit CLIQUE

— Beginne mit k£ := |V| und teste ob es in G eine k-Clique gibt
— Reduziere k£ bis der Test erfolgreich ist und gebe k aus
— Zusatzaufwand ist linear in |V

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 KOMPLEXITAT VON PROBLEMEN

PROBLEMVARIANTEN VON CLIQUE SIND GLEICH SCHWER I

o Lose CLIQUE,,; mit CLIQUE

— Beginne mit k£ := |V| und teste ob es in G eine k-Clique gibt
— Reduziere k bis der Test erfolgreich ist und gebe k aus
— Zusatzaufwand ist linear in |V/|

e Lose CLIQUE,,;, mit CLIQUE,,;
— Bestimme £, fiir G und beginne mit £, := £
— Wihle Kante e € E und teste ob es in (V, E.—{e}) eine k,,-Clique gibt
— Ist dies der Fall, so setze E. .= E.—{e}
— Wiederhole dies iterativ fiir alle Kanten aus £
— Die resultierende Menge E. und die zugehorigen Ecken bilden die k,,+~Clique
— Zusatzaufwand ist linear in |F|

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 KOMPLEXITAT VON PROBLEMEN

PROBLEMVARIANTEN VON CLIQUE SIND GLEICH SCHWER I

o Lose CLIQUE,,; mit CLIQUE

— Beginne mit k£ := |V| und teste ob es in G eine k-Clique gibt
— Reduziere k bis der Test erfolgreich ist und gebe k aus
— Zusatzaufwand ist linear in |V/|

e Lose CLIQUE,,;, mit CLIQUE,,;
— Bestimme £, fiir G und beginne mit £, := £
— Wihle Kante e € E und teste ob es in (V, E.—{e}) eine k,,-Clique gibt
— Ist dies der Fall, so setze E. .= E.—{e}
— Wiederhole dies iterativ fiir alle Kanten aus £
— Die resultierende Menge E. und die zugehorigen Ecken bilden die k,,+~Clique
— Zusatzaufwand ist linear in |F|

Lose analog CLIQUE, mit CLIQUE

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 KOMPLEXITAT VON PROBLEMEN

PROBLEMVARIANTEN VON CLIQUE SIND GLEICH SCHWER I

e Lése CLIQUE,,; mit CLIQUE
— Beginne mit k£ := |V| und teste ob es in G eine k-Clique gibt
— Reduziere k bis der Test erfolgreich ist und gebe k aus
— Zusatzaufwand ist linear in |V/|

e Lose CLIQUE);, mit CLIQUE,,;
— Bestimme £, fiir G und beginne mit £, := £
— Wihle Kante e € E und teste ob es in (V, E.—{e}) eine k,,-Clique gibt
— Ist dies der Fall, so setze E. .= E.—{e}
— Wiederhole dies iterativ fir alle Kanten aus E

— Die resultierende Menge E. und die zugehorigen Ecken bilden die k,,+~Clique
— Zusatzaufwand ist linear in |F|

Lose analog CLIQUE, mit CLIQUE

Die Umkehrungen sind trivial

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 KOMPLEXITAT VON PROBLEMEN

PROBLEMVARIANTEN VON CLIQUE SIND GLEICH SCHWER I

e Lése CLIQUE,,; mit CLIQUE
— Beginne mit k£ := |V| und teste ob es in G eine k-Clique gibt
— Reduziere k bis der Test erfolgreich ist und gebe k aus
— Zusatzaufwand ist linear in |V/|

e Lose CLIQUE);, mit CLIQUE,,;
— Bestimme £, fiir G und beginne mit £, := £
— Wihle Kante e € E und teste ob es in (V, E.—{e}) eine k,,-Clique gibt
— Ist dies der Fall, so setze E. .= E.—{e}
— Wiederhole dies iterativ fir alle Kanten aus E

— Die resultierende Menge E. und die zugehorigen Ecken bilden die k,,+~Clique
— Zusatzaufwand ist linear in |F|

Lose analog CLIQUE, mit CLIQUE

Die Umkehrungen sind trivial

4

Es reicht Entscheidungsprobleme zu analysieren

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 KOMPLEXITAT VON PROBLEMEN

VIELE SCHWERE PROBLEME HABEN LEICHTE ERFOLGSTESTS I

e Travelling Salesman: Fiir eine gegebene Rundreise 4;..4,, konnen
die Kosten ¢4, + ... ¢, In linearer Zeit berechnet und mit der
Kostenbeschrankung B verglichen werden

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 KOMPLEXITAT VON PROBLEMEN

VIELE SCHWERE PROBLEME HABEN LEICHTE ERFOLGSTESTS I

e Travelling Salesman: Fiir eine gegebene Rundreise 4;..4,, konnen
die Kosten ¢4, + ... ¢, In linearer Zeit berechnet und mit der
Kostenbeschrankung B verglichen werden

e Cliquen-Problem: Ein gegebener Teilgraph der GroBe & kann in
polynomieller Zeit auf Vollstandigkeit tiberpruft werden

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 KOMPLEXITAT VON PROBLEMEN

VIELE SCHWERE PROBLEME HABEN LEICHTE ERFOLGSTESTS I

e Travelling Salesman: Fiir eine gegebene Rundreise 4;..4,, konnen
die Kosten ¢4, + ... ¢, In linearer Zeit berechnet und mit der
Kostenbeschrankung B verglichen werden

e Cliquen-Problem: Ein gegebener Teilgraph der GroBe & kann in
polynomieller Zeit auf Vollstandigkeit tiberpriift werden

e Erfullbarkeitsproblem: Man kann in polynomieller Zeit testen,
ob eine gegebene Belegung der Variablen eine Formel erfullt

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 KOMPLEXITAT VON PROBLEMEN

VIELE SCHWERE PROBLEME HABEN LEICHTE ERFOLGSTESTS I

e Travelling Salesman: Fiir eine gegebene Rundreise i,..7,, konnen
die Kosten ¢4, + ... ¢, In linearer Zeit berechnet und mit der
Kostenbeschrankung B verglichen werden

e Cliquen-Problem: Ein gegebener Teilgraph der GroBe & kann in
polynomieller Zeit auf Vollstandigkeit tiberpriift werden

e Erfullbarkeitsproblem: Man kann in polynomieller Zeit testen,
ob eine gegebene Belegung der Variablen eine Formel erfullt

e Binpacking: Man kann in polynomieller Zeit testen, ob eine gegebene
Verteilung der Gegenstande in k Verpackungsbehalter pafit

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 KOMPLEXITAT VON PROBLEMEN

VIELE SCHWERE PROBLEME HABEN LEICHTE ERFOLGSTESTS I

e Travelling Salesman: Fiir eine gegebene Rundreise i,..7,, konnen
die Kosten ¢4, + ... ¢, In linearer Zeit berechnet und mit der
Kostenbeschrankung B verglichen werden

e Cliquen-Problem: Ein gegebener Teilgraph der GroBe & kann in
polynomieller Zeit auf Vollstandigkeit tiberpriift werden

e Erfullbarkeitsproblem: Man kann in polynomieller Zeit testen,
ob eine gegebene Belegung der Variablen eine Formel erfullt

e Binpacking: Man kann in polynomieller Zeit testen, ob eine gegebene
Verteilung der Gegenstande in k Verpackungsbehalter pafit

e Zusammengesetztheitstest: Man kann in quadratischer Zeit
testen, ob eine gegebene Zahl Teiler von z (also = keine Primzahl) ist

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 KOMPLEXITAT VON PROBLEMEN

VIELE SCHWERE PROBLEME HABEN LEICHTE ERFOLGSTESTS I

e Travelling Salesman: Fiir eine gegebene Rundreise 4;..4,, konnen
die Kosten ¢4, + ... ¢, In linearer Zeit berechnet und mit der
Kostenbeschrankung B verglichen werden

e Cliquen-Problem: Ein gegebener Teilgraph der GroBe & kann in
polynomieller Zeit auf Vollstandigkeit tiberpriift werden

e Erfullbarkeitsproblem: Man kann in polynomieller Zeit testen,
ob eine gegebene Belegung der Variablen eine Formel erfullt

e Binpacking: Man kann in polynomieller Zeit testen, ob eine gegebene
Verteilung der Gegenstande in k Verpackungsbehalter pafit

e Zusammengesetztheitstest: Man kann in quadratischer Zeit
testen, ob eine gegebene Zahl Teiler von z (also = keine Primzahl) ist

Nichtdeterministische Maschinen liefern polynomielle Losung

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISTISCHE LOSBARKEIT Asteroth /Baier §2.3 |

e Nichtdeterministische Turingmaschine 7

— Komponenten S, X, I', s, b wie bei normaler Turingmaschine
— Zustandsuiberfithrungsfunktion 0:5xI" — S XIx{r.lh}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISTISCHE LOSBARKEIT [Asteroth/Baier §2.3

e Nichtdeterministische Turingmaschine 7

— Komponenten S, X, I', s, b wie bei normaler Turingmaschine
— Zustandstiberfilhrungsfunktion 0:5 xI" — S XTx{r,lh}
— Nachfolgekonfigurationsfunktion 0: K, —2k

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISTISCHE LOSBARKEIT [Asteroth/Baier §2.3

e Nichtdeterministische Turingmaschine 7
— Komponenten S, X, I', s, b wie bei normaler Turingmaschine
— Zustandstiberfilhrungsfunktion 0:5 xI" — S XTx{r,lh}
— Nachfolgekonfigurationsfunktion 0: K, —2k
— Semantik hT:X*—>2r*
h-(w) = L, wenn 6 unendliche Konfigurationsfolgen ermoglicht

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISTISCHE LOSBARKEIT Asteroth /Baier §2.3 |

e Nichtdeterministische Turingmaschine 7
— Komponenten S, X, I', s, b wie bei normaler Turingmaschine
— Zustandstiberfilhrungsfunktion 0:5 xI" — S XTx{r,lh}
— Nachfolgekonfigurationsfunktion 0: K, —2k
— Semantik hT:X*—>2F*
h-(w) = L, wenn 6 unendliche Konfigurationsfolgen ermoglicht

— Keine Erweiterung des Berechenbarkeitsbegriffs

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISTISCHE LOSBARKEIT [Asteroth/Baier §2.3

e Nichtdeterministische Turingmaschine 7
— Komponenten S, X, I', s, b wie bei normaler Turingmaschine
— Zustandstiberfilhrungsfunktion 0:5 xI" — S XTx{r,lh}
— Nachfolgekonfigurationsfunktion 0: K, —2k
— Semantik hT:X*—>2r*
h-(w) = L, wenn 6 unendliche Konfigurationsfolgen ermoglicht

— Keine Erweiterung des Berechenbarkeitsbegriffs

e Nichtdeterministische Entscheidbarkeit
— 7 entscheidet McX* fallsweM < leh (w)

“Es gibt eine akzeptierende Berechnung fur w”

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISTISCHE LOSBARKEIT [Asteroth/Baier §2.3

e Nichtdeterministische Turingmaschine 7
— Komponenten S, X, I', s, b wie bei normaler Turingmaschine
— Zustandstiberfilhrungsfunktion 0:5 xI" — S XTx{r,lh}
— Nachtolgekonfigurationstfunktion 0: K, —2k
— Semantik hT:X*—>2r*
h-(w) = L, wenn & unendliche Konfigurationsfolgen ermoglicht

— Keine Erweiterung des Berechenbarkeitsbegriffs

e Nichtdeterministische Entscheidbarkeit
— 7 entscheidet McX* fallsweM < leh (w)

“Es gibt eine akzeptierende Berechnung fur w”
minimale Lange einer akzep— falls we M

— Rechenzeit nt,(w) = ¢ tierenden Berechnung fiir w
0 sonst

\

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISTISCHE LOSBARKEIT [Asteroth/Baier §2.3

e Nichtdeterministische Turingmaschine 7
— Komponenten S, X, I', s, b wie bei normaler Turingmaschine
— Zustandstiberfilhrungsfunktion 0:5 xI" — S XTx{r,lh}
— Nachtolgekonfigurationstfunktion 0: K, —2k
— Semantik hT:X*—>2r*
h-(w) = L, wenn & unendliche Konfigurationsfolgen ermoglicht

— Keine Erweiterung des Berechenbarkeitsbegriffs

e Nichtdeterministische Entscheidbarkeit
— 7 entscheidet McX* fallsweM < leh (w)

“Es gibt eine akzeptierende Berechnung fur w”
minimale Lange einer akzep— falls we M

— Rechenzeit nt,(w) = ¢ tierenden Berechnung fiir w
0 sonst

\
— Zeitkomplexitit ntime,(n) = max{nt.(w) | lw|=n}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISTISCHE LOSBARKEIT [Asteroth/Baier §2.3

e Nichtdeterministische Turingmaschine 7
— Komponenten S, X, I', s, b wie bei normaler Turingmaschine
— Zustandstiberfilhrungsfunktion 0:5 xI" — S XTx{r,lh}
— Nachtolgekonfigurationstfunktion 0: K, —2k
— Semantik hT:X*—>2r*
h-(w) = L, wenn & unendliche Konfigurationsfolgen ermoglicht

— Keine Erweiterung des Berechenbarkeitsbegriffs

e Nichtdeterministische Entscheidbarkeit
— 7 entscheidet McX* fallsweM < leh (w)

“Es gibt eine akzeptierende Berechnung fur w”
minimale Lange einer akzep— falls we M

— Rechenzeit nt,(w) = ¢ tierenden Berechnung fiir w
0 sonst

\
— Zeitkomplexitit ntime,(n) = max{nt.(w) | lw|=n}

— Platzkomplexitiat nspace.(n) analog definiert

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISMUS ALS RATEN UND VERIFIZIEREN I

e Deterministische Turingmaschine mit Orakel
— Eingabe des Wortes w auf erstem Arbeitsband
— Phase 1: Orakel generiert Wort w’ auf zweitem Arbeitsband

— Phase 2: 7 verarbeitet w und w’ deterministisch

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISMUS ALS RATEN UND VERIFIZIEREN I

e Deterministische Turingmaschine mit Orakel
— Eingabe des Wortes w auf erstem Arbeitsband
— Phase 1: Orakel generiert Wort w’ auf zweitem Arbeitsband
— Phase 2: 7 verarbeitet w und w’ deterministisch

— 7 entscheidet McX™, falls Vw, w’.h.(w, w")#L
und we M < Jw'. h(w,w') =1

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISMUS ALS RATEN UND VERIFIZIEREN I

e Deterministische Turingmaschine mit Orakel
— Eingabe des Wortes w auf erstem Arbeitsband
— Phase 1: Orakel generiert Wort w’ auf zweitem Arbeitsband
— Phase 2: 7 verarbeitet w und w’ deterministisch
— 7 entscheidet McX™, falls Vw, w’.h.(w, w")#L
und we M < Jw'. h(w,w') =1
— Rechenzeit ot (w) = min{t,(w,w") | h-(w,w") =1} (0 falls we M)
Orakel benotigt keine Rechenzeit zum Schreiben

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISMUS ALS RATEN UND VERIFIZIEREN I

e Deterministische Turingmaschine mit Orakel
— Eingabe des Wortes w auf erstem Arbeitsband
— Phase 1: Orakel generiert Wort w’ auf zweitem Arbeitsband
— Phase 2: 7 verarbeitet w und w’ deterministisch
— 7 entscheidet McX™, falls Vw, w’.h.(w, w")#L
und we M < Jw'. h(w,w') =1
— Rechenzeit ot (w) = min{t,(w,w") | h-(w,w") =1} (0 falls we M)
Orakel benotigt keine Rechenzeit zum Schreiben

— Zeitkomplexitat otime,(n) = max{ot;(w)| |lw|=n}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISMUS ALS RATEN UND VERIFIZIEREN I

e Deterministische Turingmaschine mit Orakel
— Eingabe des Wortes w auf erstem Arbeitsband
— Phase 1: Orakel generiert Wort w’ auf zweitem Arbeitsband
— Phase 2: 7 verarbeitet w und w’ deterministisch
— 7 entscheidet McX™, falls Vw, w’.h.(w, w")#L
und we M < Jw'. h(w,w') =1
— Rechenzeit ot (w) = min{t,(w,w") | h-(w,w") =1} (0 falls we M)
Orakel benotigt keine Rechenzeit zum Schreiben

— Zeitkomplexitat otime,(n) = max{ot;(w)| |lw|=n}

e NTM’s und OTM’s sind aquivalent

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISMUS ALS RATEN UND VERIFIZIEREN I

e Deterministische Turingmaschine mit Orakel
— Eingabe des Wortes w auf erstem Arbeitsband
— Phase 1: Orakel generiert Wort w’ auf zweitem Arbeitsband
— Phase 2: 7 verarbeitet w und w’ deterministisch
— 7 entscheidet McX™, falls Vw, w’.h.(w, w")#L
und we M < Jw'. h(w,w') =1
— Rechenzeit ot (w) = min{t,(w,w") | h-(w,w") =1} (0 falls we M)
Orakel benotigt keine Rechenzeit zum Schreiben

— Zeitkomplexitat otime,(n) = max{ot;(w)| |lw|=n}

e NTM’s und OTM’s sind aquivalent
— OTM kann Berechnungsfolge der NTM raten und deterministisch ausfithren

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISMUS ALS RATEN UND VERIFIZIEREN I

e Deterministische Turingmaschine mit Orakel
— Eingabe des Wortes w auf erstem Arbeitsband
— Phase 1: Orakel generiert Wort w’ auf zweitem Arbeitsband
— Phase 2: 7 verarbeitet w und w’ deterministisch
— 7 entscheidet McX™, falls Vw, w’.h.(w, w")#L
und we M < Jw'. h(w,w') =1
— Rechenzeit ot (w) = min{t,(w,w") | h-(w,w") =1} (0 falls we M)
Orakel benotigt keine Rechenzeit zum Schreiben

— Zeitkomplexitat otime,(n) = max{ot;(w)| |lw|=n}

e NTM’s und OTM’s sind aquivalent
— OTM kann Berechnungsfolge der NTM raten und deterministisch ausfithren

— NTM kann alle Berechnungsfolgen der OTM “parallel” ausfithren

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 KOMPLEXITAT VON PROBLEMEN

NICHTDETERMINISMUS ALS RATEN UND VERIFIZIEREN I

e Deterministische Turingmaschine mit Orakel
— Eingabe des Wortes w auf erstem Arbeitsband
— Phase 1: Orakel generiert Wort w’ auf zweitem Arbeitsband
— Phase 2: 7 verarbeitet w und w’ deterministisch
— 7 entscheidet McX™, falls Vw, w’.h.(w, w")#L
und we M < Jw'. h(w,w') =1
— Rechenzeit ot (w) = min{t,(w,w") | h-(w,w") =1} (0 falls we M)
Orakel benotigt keine Rechenzeit zum Schreiben

— Zeitkomplexitat otime,(n) = max{ot;(w)| |lw|=n}

e NTM’s und OTM’s sind aquivalent
— OTM kann Berechnungsfolge der NTM raten und deterministisch ausfithren

— NTM kann alle Berechnungsfolgen der OTM “parallel” ausfithren

— Rechenzeit ist identisch

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON (ENTSCHEIDUNGS-)PROBLEMEN

e Zeitkomplexitat

— Eine Menge M hat Zeitkomplexitat O(f),
falls es eine DTM 7 mit time, € O(f) gibt, die M entscheidet.

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON (ENTSCHEIDUNGS-)PROBLEMEN

e Zeitkomplexitat

— Eine Menge M hat Zeitkomplexitat O(f),
falls es eine DTM 7 mit time, € O(f) gibt, die M entscheidet.

-~ DTIME(f) = {M | M hat Zeitkomplexitiat O(f) }

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON (ENTSCHEIDUNGS-)PROBLEMEN

e Zeitkomplexitat

— Eine Menge M hat Zeitkomplexitat O(f),
falls es eine DTM 7 mit time, € O(f) gibt, die M entscheidet.

-~ DTIME(f) = {M | M hat Zeitkomplexitiat O(f) }

— Eine Menge M hat nichtdeterministische Zeitkomplexitdat O(f),
falls es eine NTM 7 mit ntime, € O(f) gibt, die M entscheidet.

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON (ENTSCHEIDUNGS-)PROBLEMEN

e Zeitkomplexitat

— Eine Menge M hat Zeitkomplexitat O(f),
falls es eine DTM 7 mit time, € O(f) gibt, die M entscheidet.

-~ DTIME(f) = {M | M hat Zeitkomplexitiat O(f) }

— Eine Menge M hat nichtdeterministische Zeitkomplexitdat O(f),
falls es eine NTM 7 mit ntime, € O(f) gibt, die M entscheidet.

~ NTIME(f) = {M | M hat nichtdeterministische Zeitkomplexitat O(f)}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON (ENTSCHEIDUNGS-)PROBLEMEN

e Zeitkomplexitat

— Eine Menge M hat Zeitkomplexitat O(f),
falls es eine DTM 7 mit time, € O(f) gibt, die M entscheidet.

-~ DTIME(f) = {M | M hat Zeitkomplexitiat O(f) }

— Eine Menge M hat nichtdeterministische Zeitkomplexitiat O(f),
falls es eine NTM 7 mit ntime, € O(f) gibt, die M entscheidet.

~ NTIME(f) = {M | M hat nichtdeterministische Zeitkomplexitat O(f)}

e Platzkomplexitat

— Eine Menge M hat Platzkomplexitat O(f),
falls es eine DTM 7 mit space, € O(f) gibt, die M entscheidet.

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON (ENTSCHEIDUNGS-)PROBLEMEN

e Zeitkomplexitat

— Eine Menge M hat Zeitkomplexitat O(f),
falls es eine DTM 7 mit time, € O(f) gibt, die M entscheidet.

-~ DTIME(f) = {M | M hat Zeitkomplexitiat O(f) }

— Eine Menge M hat nichtdeterministische Zeitkomplexitiat O(f),
falls es eine NTM 7 mit ntime, € O(f) gibt, die M entscheidet.

~ NTIME(f) = {M | M hat nichtdeterministische Zeitkomplexitat O(f)}

e Platzkomplexitat

— Eine Menge M hat Platzkomplexitat O(f),
falls es eine DTM 7 mit space, € O(f) gibt, die M entscheidet.

-~ DSPACE(f) = {M | M hat Platzkomplexitat O(f) }

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON (ENTSCHEIDUNGS-)PROBLEMEN

e Zeitkomplexitat

— Eine Menge M hat Zeitkomplexitat O(f),
falls es eine DTM 7 mit time, € O(f) gibt, die M entscheidet.

-~ DTIME(f) = {M | M hat Zeitkomplexitiat O(f) }

— Eine Menge M hat nichtdeterministische Zeitkomplexitiat O(f),
falls es eine NTM 7 mit ntime, € O(f) gibt, die M entscheidet.

~ NTIME(f) = {M | M hat nichtdeterministische Zeitkomplexitat O(f)}

e Platzkomplexitat

— Eine Menge M hat Platzkomplexitat O(f),
falls es eine DTM 7 mit space, € O(f) gibt, die M entscheidet.

-~ DSPACE(f) = {M | M hat Platzkomplexitat O(f) }

— Eine Menge M hat nichtdeterministische Platzkomplexitat O(f),
falls es eine NTM 7 mit nspace, € O(f) gibt, die M entscheidet.

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON (ENTSCHEIDUNGS-)PROBLEMEN

e Zeitkomplexitat

— Eine Menge M hat Zeitkomplexitat O(f),
falls es eine DTM 7 mit time, € O(f) gibt, die M entscheidet.

-~ DTIME(f) = {M | M hat Zeitkomplexitiat O(f) }

— Eine Menge M hat nichtdeterministische Zeitkomplexitiat O(f),
falls es eine NTM 7 mit ntime, € O(f) gibt, die M entscheidet.

~ NTIME(f) = {M | M hat nichtdeterministische Zeitkomplexitat O(f)}

e Platzkomplexitat

— Eine Menge M hat Platzkomplexitat O(f),
falls es eine DTM 7 mit space, € O(f) gibt, die M entscheidet.

-~ DSPACE(f) = {M | M hat Platzkomplexitat O(f) }

— Eine Menge M hat nichtdeterministische Platzkomplexitat O(f),
falls es eine NTM 7 mit nspace, € O(f) gibt, die M entscheidet.

~ NSPACE(f) = {M | M hat nichtdeterministische Platzkomplexitat O(f)}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 KOMPLEXITAT VON PROBLEMEN

KOMPLEXITAT VON (ENTSCHEIDUNGS-)PROBLEMEN

e Zeitkomplexitat

— Eine Menge M hat Zeitkomplexitat O(f),
falls es eine DTM 7 mit time, € O(f) gibt, die M entscheidet.

-~ DTIME(f) = {M | M hat Zeitkomplexitiat O(f) }

— Eine Menge M hat nichtdeterministische Zeitkomplexitdat O(f),
falls es eine NTM 7 mit ntime, € O(f) gibt, die M entscheidet.

~ NTIME(f) = {M | M hat nichtdeterministische Zeitkomplexitat O(f)}

e Platzkomplexitat

— Eine Menge M hat Platzkomplexitat O(f),
falls es eine DTM 7 mit space, € O(f) gibt, die M entscheidet.

—~ DSPACE(f) = {M | M hat Platzkomplexitit O(f) }

— Eine Menge M hat nichtdeterministische Platzkomplexitat O(f),
falls es eine NTM 7 mit nspace, € O(f) gibt, die M entscheidet.

~ NSPACE(f) = {M | M hat nichtdeterministische Platzkomplexitat O(f)}

Konkrete Analysen werden mit abstrakten deterministischen oder

nichtdeterministischen Algorithmen durchgefihrt

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 KOMPLEXITAT VON PROBLEMEN

WICHTIGE KOMPLEXITATSKLASSEN I

o P = |J, DTIME(n*) : Effiziente Losbarkeit

— Menge der in polynomieller Zeit losbaren Probleme

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 13 KOMPLEXITAT VON PROBLEMEN

WICHTIGE KOMPLEXITATSKLASSEN I

o P = |J, DTIME(n¥) : Effiziente Losbarkeit

— Menge der in polynomieller Zeit losbaren Probleme

e NP = J, NTIME(nF) :

— Menge der nichtdeterministisch in polynomieller Zeit losbaren Probleme

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 13 KOMPLEXITAT VON PROBLEMEN

WICHTIGE KOMPLEXITATSKLASSEN I

o P = |J, DTIME(n¥) : Effiziente Losbarkeit

— Menge der in polynomieller Zeit 1osbaren Probleme

e NP = J. NTIME(n") :
— Menge der nichtdeterministisch in polynomieller Zeit losbaren Probleme

e Weitere Zeitkomplexitatsklassen
- EXPTIME =\, DTIME(2")
- NEXPTIME =|J, NTIME(2")
~ LOGTIME = DTIME(log,n)
-~ NLOGTIME = NTIME(log,n)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 13 KOMPLEXITAT VON PROBLEMEN

WICHTIGE KOMPLEXITATSKLASSEN I

o P = |J, DTIME(n¥) : Effiziente Losbarkeit

— Menge der in polynomieller Zeit 1osbaren Probleme

e NP = J. NTIME(n") :
— Menge der nichtdeterministisch in polynomieller Zeit losbaren Probleme

e Weitere Zeitkomplexitatsklassen
- EXPTIME =\, DTIME(2")
- NEXPTIME =|J, NTIME(2")
-~ LOGTIME = DTIM E(logyn)
-~ NLOGTIME = NTIME(log,n)

e Platzkomplexitatsklassen
-~ LOGSPACE = DSPACE(logyn)
-~ NLOGSPACE = NSPACE((logyn)
- PSPACE =\, DSPACE(n*)
- NPSPACE =/, NSPACE(n")
- EXPSPACE =\J, DSPACE(2")
- EXPSPACE =/, NSPACE(2")

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 13 KOMPLEXITAT VON PROBLEMEN

BEISPIELE FUR KOMPLEXITATSKLASSEN I

o P:

— Arithmetische Operationen, Sortieren, Matrixmultiplikation, ...

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 14 KOMPLEXITAT VON PROBLEMEN

BEISPIELE FUR KOMPLEXITATSKLASSEN I

o P:

— Arithmetische Operationen, Sortieren, Matrixmultiplikation, ...

o N P:

— Travelling Salesman, Cliquen-Problem, Erfullbarkeitsproblem

— Multiprozessor-Scheduling, Binpacking, Zusammengesetztheitstest

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 14 KOMPLEXITAT VON PROBLEMEN

BEISPIELE FUR KOMPLEXITATSKLASSEN I

o P:

— Arithmetische Operationen, Sortieren, Matrixmultiplikation, ...

o N P:

— Travelling Salesman, Cliquen-Problem, Erfullbarkeitsproblem

— Multiprozessor-Scheduling, Binpacking, Zusammengesetztheitstest

e FXPITIME:

— Travelling Salesman, Cliquen-Problem, Erfullbarkeitsproblem

— Multiprozessor-Scheduling, Binpacking, Primzahltest

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 14 KOMPLEXITAT VON PROBLEMEN

BEISPIELE FUR KOMPLEXITATSKLASSEN I

o P:

— Arithmetische Operationen, Sortieren, Matrixmultiplikation, ...

o N P:

— Travelling Salesman, Cliquen-Problem, Erfullbarkeitsproblem

— Multiprozessor-Scheduling, Binpacking, Zusammengesetztheitstest

e FXPITIME:

— Travelling Salesman, Cliquen-Problem, Erfullbarkeitsproblem

— Multiprozessor-Scheduling, Binpacking, Primzahltest

e Komplexitatsklassenhierarchie
LOGTIME c NLOGTIME < LOGSPACE ¢c NLOGSPACE
cPcNPcPSPACE c NPSPACE
c EXPTIME c NEXPTIME ¢c EXPSPACE ¢ ...

— Es wird vermutet, daf} alle Inklusionen echt sind

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 14 KOMPLEXITAT VON PROBLEMEN

