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Einheit 8.4

NP-Vollständigkeit

1. Reduzierbarkeit und Vollständigkeit von Klassen

2. Der Satz von Cook

3. NP-vollständige Probleme
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Das P–NP Problem
Was tun, wenn ein Problem nicht effektiv lösbar zu sein scheint?

Nicht empfehlenswert
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Das P–NP Problem
Was tun, wenn ein Problem nicht effektiv lösbar zu sein scheint?

Vielleicht der einzig mögliche Weg
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Gilt P=NP oder P6=NP ?

• Eines der wichtigsten offenen Probleme der TI
– Sind nichtdeterministisch lösbare Probleme effizient lösbar?

– Seit mehr als 30 Jahren ungeklärt, möglicherweise unlösbar
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– Graphenprobleme (Clique, Vertex cover, . . . ) 7→ Operations Research

– Logische Probleme (Erfüllbarkeit, . . . ) 7→ Model Checking, Hardwareverifikation

– Zahlenprobleme (Primzahltest, . . . ) 7→ Kryptographie, IT Sicherheit

• Indizien sprechen gegen P=NP
– Zu viele NP-Probleme ohne bekannte polynomielle Lösung

– Mehr als 1000 äquivalente Probleme in der ‘schwersten Teilklasse’ von NP
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• Untersuche die “schwierigsten” NP-Probleme

– Kann man eines davon effizient lösen?

– Wenn ja, dann gilt P=NP
– Wenn nein, dann gibt es ein Beispiel für P6=NP
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– Transformation der Lösung ist effizient
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– Kann man eines davon effizient lösen?

– Wenn ja, dann gilt P=NP
– Wenn nein, dann gibt es ein Beispiel für P6=NP
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– Jedes andere NP-Problem M ′ ist leichter als M
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– Transformation der Lösung ist effizient

⇓
Polynomielle Reduktion
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• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D



Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme
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Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

– Es gibt eine in polynomieller Zeit berechenbare totale Funktion f :X ∗→Y ∗

mit M=f−1(M)

– Schreibweise: M≤pM
′

• Reduzierbarkeit ≡ geringere Komplexität Lemma E

– M≤pM
′ ∧ M ′ ∈P ⇒ M ∈P

– M≤pM
′ ∧ M ′ ∈NP ⇒ M ∈NP

Beweis:

– χM(x)=1 ⇔ x ∈M



Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme
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Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

– Es gibt eine in polynomieller Zeit berechenbare totale Funktion f :X ∗→Y ∗

mit M=f−1(M)

– Schreibweise: M≤pM
′

• Reduzierbarkeit ≡ geringere Komplexität Lemma E

– M≤pM
′ ∧ M ′ ∈P ⇒ M ∈P
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Beweis:
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Wichtige Graphentheoretische Definitionen

• Ein (ungerichteter) Graph ist ein Paar G = (V, E), wobei V endliche Menge und

E ⊆ { {v, v′} | v, v′ ∈V ∧ v 6= v′ }.
Ein Graph ist darstellbar als Liste v1, ..., vn, {vi1, v

′
i1
}, ..., {vim, v′im}.
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• Die Größe |G| eines Graphen G = (V, E) ist die Anzahl |E| seiner Kanten.

• Der Komplementärgraph des Graphen G = (V, E) ist der Graph Gc = (V, Ec) mit

Ec = { {v, v′} | v, v′ ∈V }−E.



Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme
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• Eine Knotenüberdeckung (Vertex cover) des Graphen G = (V, E) ist eine Knotenmenge

V ′ ⊆ V mit der Eigenschaft ∀{v, v′} ∈E. v ∈V ′ ∨ v′ ∈V ′

• Ein Hamilton’scher Kreis im Graphen G = (V, E) ist ein Kreis, der nur aus Kanten aus E

besteht und jeden Knoten genau einmal berührt.

(D.h. eine Permutation π : {1..n}→{1..n} mit ∀i < n. {vπ(i), vπ(i+1)} ∈E ∧ {vπ(n), vπ(1)} ∈E)



Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme
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Polynomielle Reduktion auf Graphenproblemen

• Cliquen Problem

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.
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CLIQUE = { (G, k) | G = (V, E) Graph ∧ (∃Vc⊆V . |Vc|≥k

∧ Vc is Clique in G) }



Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme
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V ′ Knotenüberdeckung von G

⇔ ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′

⇔ ∀{v, v′} ∈E. {v, v′}∩V ′ 6=∅
⇔ ∀v, v′ ∈V −V ′. {v, v′} 6∈E

⇔ ∀v, v′ ∈V −V ′. v 6=v′⇒{v, v′} ∈Ec := { {v, v′}⊆V | v 6=v′}−E

⇔ V −V ′ ist Clique im Komplementgraphen Gc = (V, Ec)

• Transformation der Probleme (Vertausche G und Gc)

(G, k) ∈CLIQUE

⇔ G hat Clique Vc der Mindestgröße k
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⇔ (Gc, |V |−k) ∈V C

Wähle f(G, k) := (Gc, |V |−k)

f in polynomieller Zeit berechenbar und CLIQUE = f−1(V C)
√



Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme
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NP-Vollständigkeit

• NP-hart: nicht leichter als NP

– M ′⊆X∗ ist NP-hart, wenn M≤pM
′ für alle M ∈NP

• NP-vollständig: das Schwierigste in NP

– M⊆X∗ ist NP-vollständig, wenn M ∈NP und M NP-hart

– Schreibweise: M ∈NPC
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– P=NP ⇔ ∃M ∈NPC.M ∈P Satz G

– Ist P=NP dann sind alle NP-vollständigen Probleme in P
– P6=NP ⇔ ∃M ∈NPC.M 6∈P
– Ist P6=NP dann sind alle NP-vollständigen Probleme nicht in P
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– Codiere mögliche Zustandsübergänge durch logische Formeln

– Problem: Können Zustandsübergänge so kombiniert werden,

daß Berechnung mit Ergebnis 1 codiert wird?

– Erfüllbarkeitsproblem der (Aussagen-)logik ist Kandidat für NPC
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– Jede Belegung ergibt den Wert 0

(x1 ∨ x2) ∧ (x1 ∨ x2)



Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme
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Theoretische Informatik II §8: Komplexitätstheorie 13 NP-Vollständige Probleme
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bis erfüllende Belegung gefunden ist
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– Es gibt 2n möglichen Belegungen von x1, ..xn

– Auswertung linear in Größe der Formel O(m ∗ n)
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Lösungsalgorithmen für das Erfüllbarkeitsproblem
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⇓

SAT ∈ NP
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Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme
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– Es werden nur polynomiell viele Literale und Klauseln benötigt

– Formel ist erfüllbar, wenn Konfigurationsübergänge zu Berechnung

zusammengesetzt werden können
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– τ wendet genau eine Zeile der Zustandsüberführungstabelle δ an
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Beschreibe Berechnung von hτ (w)

als KNF-Formel α(τ ,w) über diesen Variablen
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• Größe: O(p(n)) 2∗p(n)+3 Variablen

• Berechnungsaufwand: O(p(n)) Bestimmung von p(n)



Theoretische Informatik II §8: Komplexitätstheorie 19 NP-Vollständige Probleme
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Theoretische Informatik II §8: Komplexitätstheorie 19 NP-Vollständige Probleme
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• R ist in KNF Konjunktion von ∃
1
-Formeln
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Zustand, Kopfposition und Bandinhalt verträglich mit δ
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∧ (s̄t,i ∨ b̄t,1 ∨zt,k1) ∧ (s̄t,i ∨ b̄t,1 ∨at,i,j1)

∧ (s̄t,i ∨ b̄t,1 ∨zt+1,k′
1
) ∧ (s̄t,i ∨ b̄t,1 ∨at+1,k′

1
)

∧ (s̄t,i ∨ b̄t,1 ∨st+1,i+p)
...

∧ (s̄t,i ∨ b̄t,m ∨zt,km) ∧ (s̄t,i ∨ b̄t,m ∨at,i,jm)

∧ (s̄t,i ∨ b̄t,m ∨zt+1,k′
m
) ∧ (s̄t,i ∨ b̄t,m ∨at+1,k′

m
)

∧ (s̄t,i ∨ b̄t,m ∨st+1,i+p)
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in eine Konfigurationsfolge κ0,..,κp(n) umgerechnet werden

– Wegen der Formel R gibt es genau eine solche Konfigurationsfolge
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– Zeige, daß das Prüfverfahren polynomiell ist



Theoretische Informatik II §8: Komplexitätstheorie 24 NP-Vollständige Probleme
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Erfüllbarkeitsproblem mit 3 Literalen pro Klausel

3SAT

= {k1, ..km | ∀i≤m. ∃zij ∈{x1, x1, ..., xn, xn}. ki = zi1 ∨zi2 ∨zi3

∧ ∃a1, ..an ∈{0,1}. ∀j≤m. a1, ..an erfüllt kj }
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Das Cliquen Problem ist NP-vollständig Def K/ Satz L
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Das Cliquen Problem ist NP-vollständig Def K/ Satz L
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Korrektheit der Transformation

Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
Setze f(F ) := (GF , m) mit GF := (V, E), wobei

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Es sei f(F ) ∈CLIQUE

Dann hat GF eine m-Clique Vc



Theoretische Informatik II §8: Komplexitätstheorie 28 NP-Vollständige Probleme
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genau einen Knoten und keine zwei Knoten in Vc sind komplementär (zij 6=zi′j′)

Eine Belegung der zugehörigen zij mit 1 erfüllt alle Klauseln ki von F
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⇓

3SAT ≤p CLIQUE
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• V C ∈ NP:

– Rate eine Kantenmenge V ′⊆V



Theoretische Informatik II §8: Komplexitätstheorie 29 NP-Vollständige Probleme
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• V C ∈ NP:

– Rate eine Kantenmenge V ′⊆V
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• Knapsack: (Rucksack-Bepackung) 3SAT ≤p KP

– Gegeben n Objekte mit Gewichten g1, ..., gn und Nutzwerten a1, ...an

– Rucksack mit Gewichtsschranke G, Minimalnutzwert A.

– Gibt es eine Bepackung mit Mindestnutzen A und Maximalgewicht G?

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Partitionsproblem KP ≤p PART

– Gegeben n Objekte mit Wert b1, ..., bn.

– Gibt es eine Aufteilung der Objekte in zwei gleichwertige Stapel?



Theoretische Informatik II §8: Komplexitätstheorie 32 NP-Vollständige Probleme
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– Kann man alle Objekte in den Behältern unterbringen?
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– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es eine Färbung von V mit k verschiedenen Farben,
so daß verbundene Konten verschieden Farben haben?
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– Gibt es eine Färbung von V mit k verschiedenen Farben,
so daß verbundene Konten verschieden Farben haben?

GC = { (G, k) |G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v)}

• Multiprozessor-Scheduling MSP =̂ BPP

– Gegeben n Prozesse ji mit Laufzeit t(ji), m Prozessoren, Deadline tD.

– Gibt es eine Verteilung der Prozesse auf die Prozessoren,
so daß bei Startzeit t0 alle Prozesse vor der Zeit tD beendet sind?



Theoretische Informatik II §8: Komplexitätstheorie 33 NP-Vollständige Probleme
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• Graph Coloring 3SAT ≤p GC

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.
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– Gegeben eine k×k Matrix A und einen Vektor ~b ∈Z
k

– Gibt es ein ~x ∈Z
k, welches das lineare Ungleichungssystem A ∗ ~x≥~b löst?

• Zusammengesetztheit (vermutlich nicht NP-vollständig)

– Gegeben eine n-stellige Zahl x ∈N

– Gibt es zwei natürliche Zahlen p und q mit x = p∗q?
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Codierung einer Formel als Rucksackproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3



Theoretische Informatik II §8: Komplexitätstheorie 35 NP-Vollständige Probleme
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Codierung einer Formel als Rucksackproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

A = 444 1111

a1 = 100 1000 b1 = 011 1000 c1 = 100 0000 d1 = 200 0000
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a3 = 100 0010 b3 = 001 0010 c3 = 001 0000 d3 = 002 0000

a4 = 000 0001 b4 = 010 0001

(1, 1, 0, 0) ist erfüllende Belegung

a1 + a2 + b3 + b4 + c1 + c3 + d1 + d2 + d3 = A
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Korrektheit der Transformation

· aj: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj : Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci: Stelle m+i ist 1, sonst 0 di: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal



Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme
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7→ Da ki erfüllt wird, haben die Stellen i≤n einen Wert aus {1..3}



Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme
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Für j≤n wähle aj falls xj=1 und bj sonst

7→ In der Summe haben alle Stellen m+j den Wert 1
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7→ Da ki erfüllt wird, haben die Stellen i≤n einen Wert aus {1..3}
Die Stellen i≤n können mit ci und di zu 4 ergänzt werden Also f(F ) ∈KP

Gilt f(F ) ∈KP , so gibt es eine Bepackung die genau den Wert A ergibt
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NP-vollständigkeit des Färbbarkeitsproblems

GC = { (G, k) | G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v) }

Zeige 3SAT≤pGC
– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Färbungsproblem f(F ) ≡ (G, 3) wie folgt

· Teilgraph für Codierung der Variablenbelegung

Wähle Vvar = {u, x1, ..., xn}
und Evar = {{u, x1}, {u, x1}, {x1, x1}, ..{u, xn}, {u, xn}, {xn, xn}}

Bei 3-Färbbarkeit erhalten xi und xi verschiedene Farben aus 0 oder 1

· Teilgraph für Codierung der Klauseln

Wähle Vk = {v, a1, b1, c1, y1, z1, .., am, bm, cm, ym, zm}
und Ek = {{v, y1}, {v, z1}, {a1, y1}, {a1, z1}, {b1, y1}, {c1, z1}, {b1, c1},

...{v, ym}, ..{bm, cm}, {u, v}}
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Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj
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Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Die anderen 4 Knoten bilden eine Kette und werden abwechselnd gefärbt

Also f(F ) ∈GC

• Ist f(F ) ∈GC dann ist o.B.d.A. fv(u) = 2 und fv(v) = 0



Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme
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Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Die anderen 4 Knoten bilden eine Kette und werden abwechselnd gefärbt

Also f(F ) ∈GC

• Ist f(F ) ∈GC dann ist o.B.d.A. fv(u) = 2 und fv(v) = 0

Wähle Belegung der xi entsprechend der Färbung von xi
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Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Die anderen 4 Knoten bilden eine Kette und werden abwechselnd gefärbt

Also f(F ) ∈GC

• Ist f(F ) ∈GC dann ist o.B.d.A. fv(u) = 2 und fv(v) = 0

Wähle Belegung der xi entsprechend der Färbung von xi
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Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Die anderen 4 Knoten bilden eine Kette und werden abwechselnd gefärbt

Also f(F ) ∈GC

• Ist f(F ) ∈GC dann ist o.B.d.A. fv(u) = 2 und fv(v) = 0

Wähle Belegung der xi entsprechend der Färbung von xi
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– Die Menge der gültigen Formeln ist in co−NP (Komplement von SAT )

– Das Primzahlproblem liegt in co−NP
– Das Primzahlproblem liegt auch in NP Reischuk, 313–315

– Ist ein co−NP Problem L NP-vollständig, so gilt NP = co−NP
Es würde folgen: L′ ≤p L ∈NP für jedes L′ ∈co−NP

– Das Zusammengesetztheitsproblem ist vermutlich nicht NP-vollständig
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In-Place Acceptance Asteroth/Baier §4.5
– Gegeben DTM τ und w ∈X∗: Gilt hτ(w) = 1 und sτ(w)≤|w|?
QBF: Ist eine gegebene quantifizierte boole’sche Formel wahr? Reischuk §6.4.4

Wie kann man unhandhabbare Probleme angehen?



Theoretische Informatik II §8: Komplexitätstheorie 41 Komplexitätsklassen
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LOGTIME in logarithmischer Zeit lösbar

NLOGTIME nichtdeterministisch in logarithmischer Zeit lösbar

P in polynomieller Zeit lösbar

NP nichtdeterministisch in polynomieller Zeit lösbar

NPC NP-vollständige Probleme

NPI NP-unvollständige Probleme: NP - NPC - P
co−NP Komplement in NP
EXPTIME in exponentieller Zeit lösbar

NEXPTIME nichtdeterministisch in exponentieller Zeit lösbar

• Platzkomplexitätsklassen
LOGSPACE mit logarithmischem Platzverbrauch lösbar

NLOGSPACE nichtdeterministisch mit logarithmischem Platzverbrauch lösbar

PSPACE mit polynomiellem Platzverbrauch lösbar

NPSPACE nichtdeterministisch mit polynomiellem Platzverbrauch lösbar

EXPSPACE mit exponentiellem Platzverbrauch lösbar
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Sprachklassenhierarchie
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Wichtige Vertreter verschiedener Klassen

• Isomorphie ungerichteter Graphen NPI
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• Minimale äquivalente Schaltkreise NP-hart, nicht in NP (“Σ2”)

– Bestimme optimale Größe einer Schaltung

• Quantifizierte boole’sche Formeln PSPACE-vollständig

– Gültigkeit aussagenlogischer Formeln mit boole’schen Quantoren

• Strategische Spiele PSPACE-vollständig

– Details in Garey/Johnson Seite 254ff

• TSP∗: Bestimmung aller Rundreisen mit gegebenen Kosten

– Unrealistische Problemstellung: zu viele Lösungen EXPSPACE


