
Theoretische Informatik II

Einheit 8.4

NP-Vollständigkeit

1. Reduzierbarkeit und Vollständigkeit von Klassen

2. Der Satz von Cook

3. NP-vollständige Probleme

Theoretische Informatik II §8: Komplexitätstheorie 1 NP-Vollständige Probleme

Das P–NP Problem
Was tun, wenn ein Problem nicht effektiv lösbar zu sein scheint?

Nicht empfehlenswert

Theoretische Informatik II §8: Komplexitätstheorie 1 NP-Vollständige Probleme

Das P–NP Problem
Was tun, wenn ein Problem nicht effektiv lösbar zu sein scheint?

Extrem schwierig nachzuweisen, wenn überhaupt

Theoretische Informatik II §8: Komplexitätstheorie 1 NP-Vollständige Probleme

Das P–NP Problem
Was tun, wenn ein Problem nicht effektiv lösbar zu sein scheint?

Vielleicht der einzig mögliche Weg

Theoretische Informatik II §8: Komplexitätstheorie 2 NP-Vollständige Probleme

Das P–NP Problem

Gilt P=NP oder P6=NP ?

• Eines der wichtigsten offenen Probleme der TI
– Sind nichtdeterministisch lösbare Probleme effizient lösbar?

– Seit mehr als 30 Jahren ungeklärt, möglicherweise unlösbar

Theoretische Informatik II §8: Komplexitätstheorie 2 NP-Vollständige Probleme

Das P–NP Problem

Gilt P=NP oder P6=NP ?

• Eines der wichtigsten offenen Probleme der TI
– Sind nichtdeterministisch lösbare Probleme effizient lösbar?

– Seit mehr als 30 Jahren ungeklärt, möglicherweise unlösbar

• Mehr als 1000 algorithmische Probleme betroffen
– Suchprobleme (Travelling Salesman, . . .)

– Reihenfolgenprobleme (Scheduling, Binpacking, . . .)

– Graphenprobleme (Clique, Vertex cover, . . .) 7→ Operations Research

– Logische Probleme (Erfüllbarkeit, . . .) 7→ Model Checking, Hardwareverifikation

– Zahlenprobleme (Primzahltest, . . .) 7→ Kryptographie, IT Sicherheit

Theoretische Informatik II §8: Komplexitätstheorie 2 NP-Vollständige Probleme

Das P–NP Problem

Gilt P=NP oder P6=NP ?

• Eines der wichtigsten offenen Probleme der TI
– Sind nichtdeterministisch lösbare Probleme effizient lösbar?

– Seit mehr als 30 Jahren ungeklärt, möglicherweise unlösbar

• Mehr als 1000 algorithmische Probleme betroffen
– Suchprobleme (Travelling Salesman, . . .)

– Reihenfolgenprobleme (Scheduling, Binpacking, . . .)

– Graphenprobleme (Clique, Vertex cover, . . .) 7→ Operations Research

– Logische Probleme (Erfüllbarkeit, . . .) 7→ Model Checking, Hardwareverifikation

– Zahlenprobleme (Primzahltest, . . .) 7→ Kryptographie, IT Sicherheit

• Indizien sprechen gegen P=NP
– Zu viele NP-Probleme ohne bekannte polynomielle Lösung

– Mehr als 1000 äquivalente Probleme in der ‘schwersten Teilklasse’ von NP

Theoretische Informatik II §8: Komplexitätstheorie 3 NP-Vollständige Probleme

Wie analysiert man die Frage “P=NP oder P6=NP”?

Theoretische Informatik II §8: Komplexitätstheorie 3 NP-Vollständige Probleme

Wie analysiert man die Frage “P=NP oder P6=NP”?

• Untersuche die “schwierigsten” NP-Probleme

– Kann man eines davon effizient lösen?

– Wenn ja, dann gilt P=NP
– Wenn nein, dann gibt es ein Beispiel für P6=NP

Theoretische Informatik II §8: Komplexitätstheorie 3 NP-Vollständige Probleme

Wie analysiert man die Frage “P=NP oder P6=NP”?

• Untersuche die “schwierigsten” NP-Probleme

– Kann man eines davon effizient lösen?

– Wenn ja, dann gilt P=NP
– Wenn nein, dann gibt es ein Beispiel für P6=NP

• Was heißt “M ist schwierigstes NP-Problem”?

– Jedes andere NP-Problem M ′ ist leichter als M

– Lösungen für M ′ können in Lösungen für M ′ umgewandelt werden

– Transformation der Lösung ist effizient

Theoretische Informatik II §8: Komplexitätstheorie 3 NP-Vollständige Probleme

Wie analysiert man die Frage “P=NP oder P6=NP”?

• Untersuche die “schwierigsten” NP-Probleme

– Kann man eines davon effizient lösen?

– Wenn ja, dann gilt P=NP
– Wenn nein, dann gibt es ein Beispiel für P6=NP

• Was heißt “M ist schwierigstes NP-Problem”?

– Jedes andere NP-Problem M ′ ist leichter als M

– Lösungen für M ′ können in Lösungen für M ′ umgewandelt werden

– Transformation der Lösung ist effizient

⇓
Polynomielle Reduktion

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

– Es gibt eine in polynomieller Zeit berechenbare totale Funktion f :X ∗→Y ∗

mit M=f−1(M)

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

– Es gibt eine in polynomieller Zeit berechenbare totale Funktion f :X ∗→Y ∗

mit M=f−1(M)

– Schreibweise: M≤pM
′

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

– Es gibt eine in polynomieller Zeit berechenbare totale Funktion f :X ∗→Y ∗

mit M=f−1(M)

– Schreibweise: M≤pM
′

• Reduzierbarkeit ≡ geringere Komplexität Lemma E

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

– Es gibt eine in polynomieller Zeit berechenbare totale Funktion f :X ∗→Y ∗

mit M=f−1(M)

– Schreibweise: M≤pM
′

• Reduzierbarkeit ≡ geringere Komplexität Lemma E

– M≤pM
′ ∧ M ′ ∈P ⇒ M ∈P

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

– Es gibt eine in polynomieller Zeit berechenbare totale Funktion f :X ∗→Y ∗

mit M=f−1(M)

– Schreibweise: M≤pM
′

• Reduzierbarkeit ≡ geringere Komplexität Lemma E

– M≤pM
′ ∧ M ′ ∈P ⇒ M ∈P

– M≤pM
′ ∧ M ′ ∈NP ⇒ M ∈NP

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

– Es gibt eine in polynomieller Zeit berechenbare totale Funktion f :X ∗→Y ∗

mit M=f−1(M)

– Schreibweise: M≤pM
′

• Reduzierbarkeit ≡ geringere Komplexität Lemma E

– M≤pM
′ ∧ M ′ ∈P ⇒ M ∈P

– M≤pM
′ ∧ M ′ ∈NP ⇒ M ∈NP

Beweis:

– χM(x)=1

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

– Es gibt eine in polynomieller Zeit berechenbare totale Funktion f :X ∗→Y ∗

mit M=f−1(M)

– Schreibweise: M≤pM
′

• Reduzierbarkeit ≡ geringere Komplexität Lemma E

– M≤pM
′ ∧ M ′ ∈P ⇒ M ∈P

– M≤pM
′ ∧ M ′ ∈NP ⇒ M ∈NP

Beweis:

– χM(x)=1 ⇔ x ∈M

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

– Es gibt eine in polynomieller Zeit berechenbare totale Funktion f :X ∗→Y ∗

mit M=f−1(M)

– Schreibweise: M≤pM
′

• Reduzierbarkeit ≡ geringere Komplexität Lemma E

– M≤pM
′ ∧ M ′ ∈P ⇒ M ∈P

– M≤pM
′ ∧ M ′ ∈NP ⇒ M ∈NP

Beweis:

– χM(x)=1 ⇔ x ∈M ⇔ f(x) ∈M ′

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

– Es gibt eine in polynomieller Zeit berechenbare totale Funktion f :X ∗→Y ∗

mit M=f−1(M)

– Schreibweise: M≤pM
′

• Reduzierbarkeit ≡ geringere Komplexität Lemma E

– M≤pM
′ ∧ M ′ ∈P ⇒ M ∈P

– M≤pM
′ ∧ M ′ ∈NP ⇒ M ∈NP

Beweis:

– χM(x)=1 ⇔ x ∈M ⇔ f(x) ∈M ′ ⇔ χM ′(f(x))=1

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

– Es gibt eine in polynomieller Zeit berechenbare totale Funktion f :X ∗→Y ∗

mit M=f−1(M)

– Schreibweise: M≤pM
′

• Reduzierbarkeit ≡ geringere Komplexität Lemma E

– M≤pM
′ ∧ M ′ ∈P ⇒ M ∈P

– M≤pM
′ ∧ M ′ ∈NP ⇒ M ∈NP

Beweis:

– χM(x)=1 ⇔ x ∈M ⇔ f(x) ∈M ′ ⇔ χM ′(f(x))=1 ⇔ (χM ′◦f)(x)=1

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Polynomielle Reduzierbarkeit

• M⊆X∗ polynomiell reduzierbar auf M ′⊆Y ∗
Definition D

– Es gibt eine in polynomieller Zeit berechenbare totale Funktion f :X ∗→Y ∗

mit M=f−1(M)

– Schreibweise: M≤pM
′

• Reduzierbarkeit ≡ geringere Komplexität Lemma E

– M≤pM
′ ∧ M ′ ∈P ⇒ M ∈P

– M≤pM
′ ∧ M ′ ∈NP ⇒ M ∈NP

Beweis:

– χM(x)=1 ⇔ x ∈M ⇔ f(x) ∈M ′ ⇔ χM ′(f(x))=1 ⇔ (χM ′◦f)(x)=1

– χM ′◦f ist in polynomieller Zeit berechenbar, wenn dies für χM ′ gilt

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Wichtige Graphentheoretische Definitionen

• Ein (ungerichteter) Graph ist ein Paar G = (V, E), wobei V endliche Menge und

E ⊆ { {v, v′} | v, v′ ∈V ∧ v 6= v′ }.
Ein Graph ist darstellbar als Liste v1, ..., vn, {vi1, v

′
i1
}, ..., {vim, v′im}.

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Wichtige Graphentheoretische Definitionen

• Ein (ungerichteter) Graph ist ein Paar G = (V, E), wobei V endliche Menge und

E ⊆ { {v, v′} | v, v′ ∈V ∧ v 6= v′ }.
Ein Graph ist darstellbar als Liste v1, ..., vn, {vi1, v

′
i1
}, ..., {vim, v′im}.

• Ein Graph H = (VH, EH) ist genau dann Subgraph des Graphen G = (V, E) (H v G), wenn

alle Ecken und Kanten von H auch Ecken bzw. Kanten in G sind:

(VH, EH) v (V, E) : ⇔ VH ⊆ V ∧ EH ⊆ E

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Wichtige Graphentheoretische Definitionen

• Ein (ungerichteter) Graph ist ein Paar G = (V, E), wobei V endliche Menge und

E ⊆ { {v, v′} | v, v′ ∈V ∧ v 6= v′ }.
Ein Graph ist darstellbar als Liste v1, ..., vn, {vi1, v

′
i1
}, ..., {vim, v′im}.

• Ein Graph H = (VH, EH) ist genau dann Subgraph des Graphen G = (V, E) (H v G), wenn

alle Ecken und Kanten von H auch Ecken bzw. Kanten in G sind:

(VH, EH) v (V, E) : ⇔ VH ⊆ V ∧ EH ⊆ E

• H = (VH, EH) ist isomorph zu G = (V, E) (kurz: H ∼= G), wenn die Graphen durch

Umbenennung (bijektive Abbildung h : V2→V) ineinander überführt werden können:

(VH, , EH ,) ∼= (V, E) : ⇔ ∃h : V →VH, .(h bijektiv ∧ EH = {{h(u), h(v)} | {u, v} ∈E})

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Wichtige Graphentheoretische Definitionen

• Ein (ungerichteter) Graph ist ein Paar G = (V, E), wobei V endliche Menge und

E ⊆ { {v, v′} | v, v′ ∈V ∧ v 6= v′ }.
Ein Graph ist darstellbar als Liste v1, ..., vn, {vi1, v

′
i1
}, ..., {vim, v′im}.

• Ein Graph H = (VH, EH) ist genau dann Subgraph des Graphen G = (V, E) (H v G), wenn

alle Ecken und Kanten von H auch Ecken bzw. Kanten in G sind:

(VH, EH) v (V, E) : ⇔ VH ⊆ V ∧ EH ⊆ E

• H = (VH, EH) ist isomorph zu G = (V, E) (kurz: H ∼= G), wenn die Graphen durch

Umbenennung (bijektive Abbildung h : V2→V) ineinander überführt werden können:

(VH, , EH ,) ∼= (V, E) : ⇔ ∃h : V →VH, .(h bijektiv ∧ EH = {{h(u), h(v)} | {u, v} ∈E})
• Die Größe |G| eines Graphen G = (V, E) ist die Anzahl |E| seiner Kanten.

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Wichtige Graphentheoretische Definitionen

• Ein (ungerichteter) Graph ist ein Paar G = (V, E), wobei V endliche Menge und

E ⊆ { {v, v′} | v, v′ ∈V ∧ v 6= v′ }.
Ein Graph ist darstellbar als Liste v1, ..., vn, {vi1, v

′
i1
}, ..., {vim, v′im}.

• Ein Graph H = (VH, EH) ist genau dann Subgraph des Graphen G = (V, E) (H v G), wenn

alle Ecken und Kanten von H auch Ecken bzw. Kanten in G sind:

(VH, EH) v (V, E) : ⇔ VH ⊆ V ∧ EH ⊆ E

• H = (VH, EH) ist isomorph zu G = (V, E) (kurz: H ∼= G), wenn die Graphen durch

Umbenennung (bijektive Abbildung h : V2→V) ineinander überführt werden können:

(VH, , EH ,) ∼= (V, E) : ⇔ ∃h : V →VH, .(h bijektiv ∧ EH = {{h(u), h(v)} | {u, v} ∈E})
• Die Größe |G| eines Graphen G = (V, E) ist die Anzahl |E| seiner Kanten.

• Der Komplementärgraph des Graphen G = (V, E) ist der Graph Gc = (V, Ec) mit

Ec = { {v, v′} | v, v′ ∈V }−E.

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Wichtige Graphentheoretische Definitionen

• Ein (ungerichteter) Graph ist ein Paar G = (V, E), wobei V endliche Menge und

E ⊆ { {v, v′} | v, v′ ∈V ∧ v 6= v′ }.
Ein Graph ist darstellbar als Liste v1, ..., vn, {vi1, v

′
i1
}, ..., {vim, v′im}.

• Ein Graph H = (VH, EH) ist genau dann Subgraph des Graphen G = (V, E) (H v G), wenn

alle Ecken und Kanten von H auch Ecken bzw. Kanten in G sind:

(VH, EH) v (V, E) : ⇔ VH ⊆ V ∧ EH ⊆ E

• H = (VH, EH) ist isomorph zu G = (V, E) (kurz: H ∼= G), wenn die Graphen durch

Umbenennung (bijektive Abbildung h : V2→V) ineinander überführt werden können:

(VH, , EH ,) ∼= (V, E) : ⇔ ∃h : V →VH, .(h bijektiv ∧ EH = {{h(u), h(v)} | {u, v} ∈E})
• Die Größe |G| eines Graphen G = (V, E) ist die Anzahl |E| seiner Kanten.

• Der Komplementärgraph des Graphen G = (V, E) ist der Graph Gc = (V, Ec) mit

Ec = { {v, v′} | v, v′ ∈V }−E.

• Eine Clique der Größe k im Graphen G = (V, E) ist eine vollständig verbundene Knotenmenge

V ′ ⊆ V mit |V | = k. (Dabei heißt vollständig verbunden: ∀v, v ′ ∈V ′. v 6= v′⇒{v, v′} ∈E)

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Wichtige Graphentheoretische Definitionen

• Ein (ungerichteter) Graph ist ein Paar G = (V, E), wobei V endliche Menge und

E ⊆ { {v, v′} | v, v′ ∈V ∧ v 6= v′ }.
Ein Graph ist darstellbar als Liste v1, ..., vn, {vi1, v

′
i1
}, ..., {vim, v′im}.

• Ein Graph H = (VH, EH) ist genau dann Subgraph des Graphen G = (V, E) (H v G), wenn

alle Ecken und Kanten von H auch Ecken bzw. Kanten in G sind:

(VH, EH) v (V, E) : ⇔ VH ⊆ V ∧ EH ⊆ E

• H = (VH, EH) ist isomorph zu G = (V, E) (kurz: H ∼= G), wenn die Graphen durch

Umbenennung (bijektive Abbildung h : V2→V) ineinander überführt werden können:

(VH, , EH ,) ∼= (V, E) : ⇔ ∃h : V →VH, .(h bijektiv ∧ EH = {{h(u), h(v)} | {u, v} ∈E})
• Die Größe |G| eines Graphen G = (V, E) ist die Anzahl |E| seiner Kanten.

• Der Komplementärgraph des Graphen G = (V, E) ist der Graph Gc = (V, Ec) mit

Ec = { {v, v′} | v, v′ ∈V }−E.

• Eine Clique der Größe k im Graphen G = (V, E) ist eine vollständig verbundene Knotenmenge

V ′ ⊆ V mit |V | = k. (Dabei heißt vollständig verbunden: ∀v, v ′ ∈V ′. v 6= v′⇒{v, v′} ∈E)

• Eine Knotenüberdeckung (Vertex cover) des Graphen G = (V, E) ist eine Knotenmenge

V ′ ⊆ V mit der Eigenschaft ∀{v, v′} ∈E. v ∈V ′ ∨ v′ ∈V ′

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Wichtige Graphentheoretische Definitionen

• Ein (ungerichteter) Graph ist ein Paar G = (V, E), wobei V endliche Menge und

E ⊆ { {v, v′} | v, v′ ∈V ∧ v 6= v′ }.
Ein Graph ist darstellbar als Liste v1, ..., vn, {vi1, v

′
i1
}, ..., {vim, v′im}.

• Ein Graph H = (VH, EH) ist genau dann Subgraph des Graphen G = (V, E) (H v G), wenn

alle Ecken und Kanten von H auch Ecken bzw. Kanten in G sind:

(VH, EH) v (V, E) : ⇔ VH ⊆ V ∧ EH ⊆ E

• H = (VH, EH) ist isomorph zu G = (V, E) (kurz: H ∼= G), wenn die Graphen durch

Umbenennung (bijektive Abbildung h : V2→V) ineinander überführt werden können:

(VH, , EH ,) ∼= (V, E) : ⇔ ∃h : V →VH, .(h bijektiv ∧ EH = {{h(u), h(v)} | {u, v} ∈E})
• Die Größe |G| eines Graphen G = (V, E) ist die Anzahl |E| seiner Kanten.

• Der Komplementärgraph des Graphen G = (V, E) ist der Graph Gc = (V, Ec) mit

Ec = { {v, v′} | v, v′ ∈V }−E.

• Eine Clique der Größe k im Graphen G = (V, E) ist eine vollständig verbundene Knotenmenge

V ′ ⊆ V mit |V | = k. (Dabei heißt vollständig verbunden: ∀v, v ′ ∈V ′. v 6= v′⇒{v, v′} ∈E)

• Eine Knotenüberdeckung (Vertex cover) des Graphen G = (V, E) ist eine Knotenmenge

V ′ ⊆ V mit der Eigenschaft ∀{v, v′} ∈E. v ∈V ′ ∨ v′ ∈V ′

• Ein Hamilton’scher Kreis im Graphen G = (V, E) ist ein Kreis, der nur aus Kanten aus E

besteht und jeden Knoten genau einmal berührt.

(D.h. eine Permutation π : {1..n}→{1..n} mit ∀i < n. {vπ(i), vπ(i+1)} ∈E ∧ {vπ(n), vπ(1)} ∈E)

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Wichtige Graphentheoretische Definitionen

• Ein (ungerichteter) Graph ist ein Paar G = (V, E), wobei V endliche Menge und

E ⊆ { {v, v′} | v, v′ ∈V ∧ v 6= v′ }.
Ein Graph ist darstellbar als Liste v1, ..., vn, {vi1, v

′
i1
}, ..., {vim, v′im}.

• Ein Graph H = (VH, EH) ist genau dann Subgraph des Graphen G = (V, E) (H v G), wenn

alle Ecken und Kanten von H auch Ecken bzw. Kanten in G sind:

(VH, EH) v (V, E) : ⇔ VH ⊆ V ∧ EH ⊆ E

• H = (VH, EH) ist isomorph zu G = (V, E) (kurz: H ∼= G), wenn die Graphen durch

Umbenennung (bijektive Abbildung h : V2→V) ineinander überführt werden können:

(VH, , EH ,) ∼= (V, E) : ⇔ ∃h : V →VH, .(h bijektiv ∧ EH = {{h(u), h(v)} | {u, v} ∈E})
• Die Größe |G| eines Graphen G = (V, E) ist die Anzahl |E| seiner Kanten.

• Der Komplementärgraph des Graphen G = (V, E) ist der Graph Gc = (V, Ec) mit

Ec = { {v, v′} | v, v′ ∈V }−E.

• Eine Clique der Größe k im Graphen G = (V, E) ist eine vollständig verbundene Knotenmenge

V ′ ⊆ V mit |V | = k. (Dabei heißt vollständig verbunden: ∀v, v ′ ∈V ′. v 6= v′⇒{v, v′} ∈E)

• Eine Knotenüberdeckung (Vertex cover) des Graphen G = (V, E) ist eine Knotenmenge

V ′ ⊆ V mit der Eigenschaft ∀{v, v′} ∈E. v ∈V ′ ∨ v′ ∈V ′

• Ein Hamilton’scher Kreis im Graphen G = (V, E) ist ein Kreis, der nur aus Kanten aus E

besteht und jeden Knoten genau einmal berührt.

(D.h. eine Permutation π : {1..n}→{1..n} mit ∀i < n. {vπ(i), vπ(i+1)} ∈E ∧ {vπ(n), vπ(1)} ∈E)

• Ein gerichteter Graph ist ein Paar G = (V, E), wobei V endliche Menge und E ⊆ V ×V .

Ein Hamilton’scher Kreis im gerichteten Graphen G = (V, E) ist ein gerichteter Kreis, der

nur aus Kanten aus E besteht und jeden Knoten genau einmal berührt.

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Polynomielle Reduktion auf Graphenproblemen

• Cliquen Problem

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es in G eine Clique der Größe k?

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Polynomielle Reduktion auf Graphenproblemen

• Cliquen Problem

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es in G eine Clique der Größe k?

CLIQUE = { (G, k) | G = (V, E) Graph ∧ (∃Vc⊆V . |Vc|≥k

∧ Vc is Clique in G) }

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Polynomielle Reduktion auf Graphenproblemen

• Cliquen Problem

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es in G eine Clique der Größe k?

CLIQUE = { (G, k) | G = (V, E) Graph ∧ (∃Vc⊆V . |Vc|≥k

∧ Vc is Clique in G) }

• Vertex Cover Problem

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es eine Teilmenge V ′⊆V mit höchstens k Elementen,

so daß aus jeder Kante in G mindestens eine Ecke in V ′ liegt?

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Polynomielle Reduktion auf Graphenproblemen

• Cliquen Problem

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es in G eine Clique der Größe k?

CLIQUE = { (G, k) | G = (V, E) Graph ∧ (∃Vc⊆V . |Vc|≥k

∧ Vc is Clique in G) }

• Vertex Cover Problem

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es eine Teilmenge V ′⊆V mit höchstens k Elementen,

so daß aus jeder Kante in G mindestens eine Ecke in V ′ liegt?

V C = { (G, k) | G Graph ∧ (∃V ′⊆V . |V ′|≤k

∧ V ′ ist Knotenüberdeckung von G) }

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

V ′ Knotenüberdeckung von G

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

V ′ Knotenüberdeckung von G

⇔ ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

V ′ Knotenüberdeckung von G

⇔ ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′

⇔ ∀{v, v′} ∈E. {v, v′}∩V ′ 6=∅

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

V ′ Knotenüberdeckung von G

⇔ ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′

⇔ ∀{v, v′} ∈E. {v, v′}∩V ′ 6=∅
⇔ ∀v, v′ ∈V −V ′. {v, v′} 6∈E

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

V ′ Knotenüberdeckung von G

⇔ ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′

⇔ ∀{v, v′} ∈E. {v, v′}∩V ′ 6=∅
⇔ ∀v, v′ ∈V −V ′. {v, v′} 6∈E

⇔ ∀v, v′ ∈V −V ′. v 6=v′⇒{v, v′} ∈Ec := { {v, v′}⊆V | v 6=v′}−E

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

V ′ Knotenüberdeckung von G

⇔ ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′

⇔ ∀{v, v′} ∈E. {v, v′}∩V ′ 6=∅
⇔ ∀v, v′ ∈V −V ′. {v, v′} 6∈E

⇔ ∀v, v′ ∈V −V ′. v 6=v′⇒{v, v′} ∈Ec := { {v, v′}⊆V | v 6=v′}−E

⇔ V −V ′ ist Clique im Komplementgraphen Gc = (V, Ec)

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

V ′ Knotenüberdeckung von G

⇔ ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′

⇔ ∀{v, v′} ∈E. {v, v′}∩V ′ 6=∅
⇔ ∀v, v′ ∈V −V ′. {v, v′} 6∈E

⇔ ∀v, v′ ∈V −V ′. v 6=v′⇒{v, v′} ∈Ec := { {v, v′}⊆V | v 6=v′}−E

⇔ V −V ′ ist Clique im Komplementgraphen Gc = (V, Ec)

• Transformation der Probleme (Vertausche G und Gc)

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

V ′ Knotenüberdeckung von G

⇔ ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′

⇔ ∀{v, v′} ∈E. {v, v′}∩V ′ 6=∅
⇔ ∀v, v′ ∈V −V ′. {v, v′} 6∈E

⇔ ∀v, v′ ∈V −V ′. v 6=v′⇒{v, v′} ∈Ec := { {v, v′}⊆V | v 6=v′}−E

⇔ V −V ′ ist Clique im Komplementgraphen Gc = (V, Ec)

• Transformation der Probleme (Vertausche G und Gc)

(G, k) ∈CLIQUE

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

V ′ Knotenüberdeckung von G

⇔ ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′

⇔ ∀{v, v′} ∈E. {v, v′}∩V ′ 6=∅
⇔ ∀v, v′ ∈V −V ′. {v, v′} 6∈E

⇔ ∀v, v′ ∈V −V ′. v 6=v′⇒{v, v′} ∈Ec := { {v, v′}⊆V | v 6=v′}−E

⇔ V −V ′ ist Clique im Komplementgraphen Gc = (V, Ec)

• Transformation der Probleme (Vertausche G und Gc)

(G, k) ∈CLIQUE

⇔ G hat Clique Vc der Mindestgröße k

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

V ′ Knotenüberdeckung von G

⇔ ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′

⇔ ∀{v, v′} ∈E. {v, v′}∩V ′ 6=∅
⇔ ∀v, v′ ∈V −V ′. {v, v′} 6∈E

⇔ ∀v, v′ ∈V −V ′. v 6=v′⇒{v, v′} ∈Ec := { {v, v′}⊆V | v 6=v′}−E

⇔ V −V ′ ist Clique im Komplementgraphen Gc = (V, Ec)

• Transformation der Probleme (Vertausche G und Gc)

(G, k) ∈CLIQUE

⇔ G hat Clique Vc der Mindestgröße k

⇔ Gc hat Knotenüberdeckung V ′ = V −Vc der Maximalgröße |V |−k

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

V ′ Knotenüberdeckung von G

⇔ ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′

⇔ ∀{v, v′} ∈E. {v, v′}∩V ′ 6=∅
⇔ ∀v, v′ ∈V −V ′. {v, v′} 6∈E

⇔ ∀v, v′ ∈V −V ′. v 6=v′⇒{v, v′} ∈Ec := { {v, v′}⊆V | v 6=v′}−E

⇔ V −V ′ ist Clique im Komplementgraphen Gc = (V, Ec)

• Transformation der Probleme (Vertausche G und Gc)

(G, k) ∈CLIQUE

⇔ G hat Clique Vc der Mindestgröße k

⇔ Gc hat Knotenüberdeckung V ′ = V −Vc der Maximalgröße |V |−k

⇔ (Gc, |V |−k) ∈V C

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

V ′ Knotenüberdeckung von G

⇔ ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′

⇔ ∀{v, v′} ∈E. {v, v′}∩V ′ 6=∅
⇔ ∀v, v′ ∈V −V ′. {v, v′} 6∈E

⇔ ∀v, v′ ∈V −V ′. v 6=v′⇒{v, v′} ∈Ec := { {v, v′}⊆V | v 6=v′}−E

⇔ V −V ′ ist Clique im Komplementgraphen Gc = (V, Ec)

• Transformation der Probleme (Vertausche G und Gc)

(G, k) ∈CLIQUE

⇔ G hat Clique Vc der Mindestgröße k

⇔ Gc hat Knotenüberdeckung V ′ = V −Vc der Maximalgröße |V |−k

⇔ (Gc, |V |−k) ∈V C

Wähle f(G, k) := (Gc, |V |−k)

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften

V ′ Knotenüberdeckung von G

⇔ ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′

⇔ ∀{v, v′} ∈E. {v, v′}∩V ′ 6=∅
⇔ ∀v, v′ ∈V −V ′. {v, v′} 6∈E

⇔ ∀v, v′ ∈V −V ′. v 6=v′⇒{v, v′} ∈Ec := { {v, v′}⊆V | v 6=v′}−E

⇔ V −V ′ ist Clique im Komplementgraphen Gc = (V, Ec)

• Transformation der Probleme (Vertausche G und Gc)

(G, k) ∈CLIQUE

⇔ G hat Clique Vc der Mindestgröße k

⇔ Gc hat Knotenüberdeckung V ′ = V −Vc der Maximalgröße |V |−k

⇔ (Gc, |V |−k) ∈V C

Wähle f(G, k) := (Gc, |V |−k)

f in polynomieller Zeit berechenbar und CLIQUE = f−1(V C)
√

Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme

NP-Vollständigkeit

• NP-hart: nicht leichter als NP

Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme

NP-Vollständigkeit

• NP-hart: nicht leichter als NP

– M ′⊆X∗ ist NP-hart, wenn M≤pM
′ für alle M ∈NP

Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme

NP-Vollständigkeit

• NP-hart: nicht leichter als NP

– M ′⊆X∗ ist NP-hart, wenn M≤pM
′ für alle M ∈NP

• NP-vollständig: das Schwierigste in NP

Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme

NP-Vollständigkeit

• NP-hart: nicht leichter als NP

– M ′⊆X∗ ist NP-hart, wenn M≤pM
′ für alle M ∈NP

• NP-vollständig: das Schwierigste in NP

– M⊆X∗ ist NP-vollständig, wenn M ∈NP und M NP-hart

Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme

NP-Vollständigkeit

• NP-hart: nicht leichter als NP

– M ′⊆X∗ ist NP-hart, wenn M≤pM
′ für alle M ∈NP

• NP-vollständig: das Schwierigste in NP

– M⊆X∗ ist NP-vollständig, wenn M ∈NP und M NP-hart

– Schreibweise: M ∈NPC

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Konsequenzen von NP-Vollständigkeit

• Alle NP-vollständigen Probleme sind äquivalent

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Konsequenzen von NP-Vollständigkeit

• Alle NP-vollständigen Probleme sind äquivalent

– M,M ′ ∈NPC ⇒ M ′≤pM ∧ M≤pM
′

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Konsequenzen von NP-Vollständigkeit

• Alle NP-vollständigen Probleme sind äquivalent

– M,M ′ ∈NPC ⇒ M ′≤pM ∧ M≤pM
′

•NP-Vollständigkeit ist leicht nachweisbar, wenn ein

NP-vollständiges Problem bekannt ist

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Konsequenzen von NP-Vollständigkeit

• Alle NP-vollständigen Probleme sind äquivalent

– M,M ′ ∈NPC ⇒ M ′≤pM ∧ M≤pM
′

•NP-Vollständigkeit ist leicht nachweisbar, wenn ein

NP-vollständiges Problem bekannt ist

– M ∈NPC ⇔ M ∈NP ∧ ∃M ′ ∈NPC.M ′≤pM

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Konsequenzen von NP-Vollständigkeit

• Alle NP-vollständigen Probleme sind äquivalent

– M,M ′ ∈NPC ⇒ M ′≤pM ∧ M≤pM
′

•NP-Vollständigkeit ist leicht nachweisbar, wenn ein

NP-vollständiges Problem bekannt ist

– M ∈NPC ⇔ M ∈NP ∧ ∃M ′ ∈NPC.M ′≤pM

– M ∈NPC ⇔ ∃M ′ ∈NPC. M ′≤pM ∧ M≤pM
′

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Konsequenzen von NP-Vollständigkeit

• Alle NP-vollständigen Probleme sind äquivalent

– M,M ′ ∈NPC ⇒ M ′≤pM ∧ M≤pM
′

•NP-Vollständigkeit ist leicht nachweisbar, wenn ein

NP-vollständiges Problem bekannt ist

– M ∈NPC ⇔ M ∈NP ∧ ∃M ′ ∈NPC.M ′≤pM

– M ∈NPC ⇔ ∃M ′ ∈NPC. M ′≤pM ∧ M≤pM
′

•NP-vollständige Probleme entscheiden “P = NP”

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Konsequenzen von NP-Vollständigkeit

• Alle NP-vollständigen Probleme sind äquivalent

– M,M ′ ∈NPC ⇒ M ′≤pM ∧ M≤pM
′

•NP-Vollständigkeit ist leicht nachweisbar, wenn ein

NP-vollständiges Problem bekannt ist

– M ∈NPC ⇔ M ∈NP ∧ ∃M ′ ∈NPC.M ′≤pM

– M ∈NPC ⇔ ∃M ′ ∈NPC. M ′≤pM ∧ M≤pM
′

•NP-vollständige Probleme entscheiden “P = NP”

– P=NP ⇔ ∃M ∈NPC.M ∈P Satz G

– Ist P=NP dann sind alle NP-vollständigen Probleme in P

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Konsequenzen von NP-Vollständigkeit

• Alle NP-vollständigen Probleme sind äquivalent

– M,M ′ ∈NPC ⇒ M ′≤pM ∧ M≤pM
′

•NP-Vollständigkeit ist leicht nachweisbar, wenn ein

NP-vollständiges Problem bekannt ist

– M ∈NPC ⇔ M ∈NP ∧ ∃M ′ ∈NPC.M ′≤pM

– M ∈NPC ⇔ ∃M ′ ∈NPC. M ′≤pM ∧ M≤pM
′

•NP-vollständige Probleme entscheiden “P = NP”

– P=NP ⇔ ∃M ∈NPC.M ∈P Satz G

– Ist P=NP dann sind alle NP-vollständigen Probleme in P
– P6=NP ⇔ ∃M ∈NPC.M 6∈P
– Ist P6=NP dann sind alle NP-vollständigen Probleme nicht in P

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Wie zeigt man NP-Vollständigkeit?

• Codiere Berechnung einer NTM in einem Problem L

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Wie zeigt man NP-Vollständigkeit?

• Codiere Berechnung einer NTM in einem Problem L

– Wenn Berechnung positiv ausfällt, soll Problem lösbar sein

– Wenn Berechnung negativ ausfällt, soll Problem unlösbar sein

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Wie zeigt man NP-Vollständigkeit?

• Codiere Berechnung einer NTM in einem Problem L

– Wenn Berechnung positiv ausfällt, soll Problem lösbar sein

– Wenn Berechnung negativ ausfällt, soll Problem unlösbar sein

– Ergibt M≤pL für das von der NTM entschiedene Problem M

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Wie zeigt man NP-Vollständigkeit?

• Codiere Berechnung einer NTM in einem Problem L

– Wenn Berechnung positiv ausfällt, soll Problem lösbar sein

– Wenn Berechnung negativ ausfällt, soll Problem unlösbar sein

– Ergibt M≤pL für das von der NTM entschiedene Problem M

• Problem L muß alle polynomiellen NTMs codieren

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Wie zeigt man NP-Vollständigkeit?

• Codiere Berechnung einer NTM in einem Problem L

– Wenn Berechnung positiv ausfällt, soll Problem lösbar sein

– Wenn Berechnung negativ ausfällt, soll Problem unlösbar sein

– Ergibt M≤pL für das von der NTM entschiedene Problem M

• Problem L muß alle polynomiellen NTMs codieren

– Ergibt M≤pL für jedes M ∈NP

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Wie zeigt man NP-Vollständigkeit?

• Codiere Berechnung einer NTM in einem Problem L

– Wenn Berechnung positiv ausfällt, soll Problem lösbar sein

– Wenn Berechnung negativ ausfällt, soll Problem unlösbar sein

– Ergibt M≤pL für das von der NTM entschiedene Problem M

• Problem L muß alle polynomiellen NTMs codieren

– Ergibt M≤pL für jedes M ∈NP

• Welches Problem ist ausdrucksstark genug?

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Wie zeigt man NP-Vollständigkeit?

• Codiere Berechnung einer NTM in einem Problem L

– Wenn Berechnung positiv ausfällt, soll Problem lösbar sein

– Wenn Berechnung negativ ausfällt, soll Problem unlösbar sein

– Ergibt M≤pL für das von der NTM entschiedene Problem M

• Problem L muß alle polynomiellen NTMs codieren

– Ergibt M≤pL für jedes M ∈NP

• Welches Problem ist ausdrucksstark genug?

– Codiere mögliche Zustandsübergänge durch logische Formeln

– Problem: Können Zustandsübergänge so kombiniert werden,

daß Berechnung mit Ergebnis 1 codiert wird?

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Wie zeigt man NP-Vollständigkeit?

• Codiere Berechnung einer NTM in einem Problem L

– Wenn Berechnung positiv ausfällt, soll Problem lösbar sein

– Wenn Berechnung negativ ausfällt, soll Problem unlösbar sein

– Ergibt M≤pL für das von der NTM entschiedene Problem M

• Problem L muß alle polynomiellen NTMs codieren

– Ergibt M≤pL für jedes M ∈NP

• Welches Problem ist ausdrucksstark genug?

– Codiere mögliche Zustandsübergänge durch logische Formeln

– Problem: Können Zustandsübergänge so kombiniert werden,

daß Berechnung mit Ergebnis 1 codiert wird?

– Erfüllbarkeitsproblem der (Aussagen-)logik ist Kandidat für NPC

Theoretische Informatik II §8: Komplexitätstheorie 11 NP-Vollständige Probleme

Das Erfüllbarkeitsproblem

Ist eine aussagenlogische Formel in KNF erfüllbar?

Theoretische Informatik II §8: Komplexitätstheorie 11 NP-Vollständige Probleme

Das Erfüllbarkeitsproblem

Ist eine aussagenlogische Formel in KNF erfüllbar?

Gegeben m Klauseln k1, ..., km über n Variablen x1, ..xn.

Gibt es eine Belegung a1, ..., an ∈{0, 1}

der Variablen x1, ..xn, welche alle Klauseln erfüllt?

Theoretische Informatik II §8: Komplexitätstheorie 11 NP-Vollständige Probleme

Das Erfüllbarkeitsproblem

Ist eine aussagenlogische Formel in KNF erfüllbar?

Gegeben m Klauseln k1, ..., km über n Variablen x1, ..xn.

Gibt es eine Belegung a1, ..., an ∈{0, 1}

der Variablen x1, ..xn, welche alle Klauseln erfüllt?

• Klausel über den Variablen x1, ..xn

– Disjunktion einiger Literale der Form xi bzw. xi

Theoretische Informatik II §8: Komplexitätstheorie 11 NP-Vollständige Probleme

Das Erfüllbarkeitsproblem

Ist eine aussagenlogische Formel in KNF erfüllbar?

Gegeben m Klauseln k1, ..., km über n Variablen x1, ..xn.

Gibt es eine Belegung a1, ..., an ∈{0, 1}

der Variablen x1, ..xn, welche alle Klauseln erfüllt?

• Klausel über den Variablen x1, ..xn

– Disjunktion einiger Literale der Form xi bzw. xi

• Belegung a1, ..., an ∈{0, 1} erfüllt Klausel kj

– Auswertung von kj unter a1, ..., an ergibt den Boole’schen Wert 1

Theoretische Informatik II §8: Komplexitätstheorie 11 NP-Vollständige Probleme

Das Erfüllbarkeitsproblem

Ist eine aussagenlogische Formel in KNF erfüllbar?

Gegeben m Klauseln k1, ..., km über n Variablen x1, ..xn.

Gibt es eine Belegung a1, ..., an ∈{0, 1}

der Variablen x1, ..xn, welche alle Klauseln erfüllt?

• Klausel über den Variablen x1, ..xn

– Disjunktion einiger Literale der Form xi bzw. xi

• Belegung a1, ..., an ∈{0, 1} erfüllt Klausel kj

– Auswertung von kj unter a1, ..., an ergibt den Boole’schen Wert 1

• SAT = {k1, ..km | ki Klausel über x1, ..xn

∧ ∃a1, ..an ∈{0,1}. ∀j≤m. a1, ..an erfüllt kj}

Theoretische Informatik II §8: Komplexitätstheorie 11 NP-Vollständige Probleme

Das Erfüllbarkeitsproblem

Ist eine aussagenlogische Formel in KNF erfüllbar?

Gegeben m Klauseln k1, ..., km über n Variablen x1, ..xn.

Gibt es eine Belegung a1, ..., an ∈{0, 1}

der Variablen x1, ..xn, welche alle Klauseln erfüllt?

• Klausel über den Variablen x1, ..xn

– Disjunktion einiger Literale der Form xi bzw. xi

• Belegung a1, ..., an ∈{0, 1} erfüllt Klausel kj

– Auswertung von kj unter a1, ..., an ergibt den Boole’schen Wert 1

• SAT = {k1, ..km | ki Klausel über x1, ..xn

∧ ∃a1, ..an ∈{0,1}. ∀j≤m. a1, ..an erfüllt kj}

Codierbar als Teilmenge der Sprache der Aussagenlogik

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

– Auswertung: (0+1) ∗ (0+1+0) ∗ 0

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

– Auswertung: (0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

– Auswertung: (0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1 = 1 ∗ 1 ∗ 1

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

– Auswertung: (0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1 = 1 ∗ 1 ∗ 1 = 1

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

– Auswertung: (0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1 = 1 ∗ 1 ∗ 1 = 1

x1 ∧ x1

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

– Auswertung: (0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1 = 1 ∗ 1 ∗ 1 = 1

x1 ∧ x1 nicht erfüllbar

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

– Auswertung: (0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1 = 1 ∗ 1 ∗ 1 = 1

x1 ∧ x1 nicht erfüllbar

– Jede Belegung ergibt den Wert 0

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

– Auswertung: (0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1 = 1 ∗ 1 ∗ 1 = 1

x1 ∧ x1 nicht erfüllbar

– Jede Belegung ergibt den Wert 0

(x1 ∨ x2) ∧ (x1 ∨ x2)

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

– Auswertung: (0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1 = 1 ∗ 1 ∗ 1 = 1

x1 ∧ x1 nicht erfüllbar

– Jede Belegung ergibt den Wert 0

(x1 ∨ x2) ∧ (x1 ∨ x2) erfüllbar, Belegung: (1,0)

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

– Auswertung: (0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1 = 1 ∗ 1 ∗ 1 = 1

x1 ∧ x1 nicht erfüllbar

– Jede Belegung ergibt den Wert 0

(x1 ∨ x2) ∧ (x1 ∨ x2) erfüllbar, Belegung: (1,0)

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

– Auswertung: (0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1 = 1 ∗ 1 ∗ 1 = 1

x1 ∧ x1 nicht erfüllbar

– Jede Belegung ergibt den Wert 0

(x1 ∨ x2) ∧ (x1 ∨ x2) erfüllbar, Belegung: (1,0)

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

nicht erfüllbar

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

– Auswertung: (0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1 = 1 ∗ 1 ∗ 1 = 1

x1 ∧ x1 nicht erfüllbar

– Jede Belegung ergibt den Wert 0

(x1 ∨ x2) ∧ (x1 ∨ x2) erfüllbar, Belegung: (1,0)

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

nicht erfüllbar

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3)

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar

– Setze x3=0, x2=1, x1 beliebig, z.B. x1=0

– Auswertung: (0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1 = 1 ∗ 1 ∗ 1 = 1

x1 ∧ x1 nicht erfüllbar

– Jede Belegung ergibt den Wert 0

(x1 ∨ x2) ∧ (x1 ∨ x2) erfüllbar, Belegung: (1,0)

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

nicht erfüllbar

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3)

erfüllbar, Belegung: (1,1,0,0)

Theoretische Informatik II §8: Komplexitätstheorie 13 NP-Vollständige Probleme

Lösungsalgorithmen für das Erfüllbarkeitsproblem

SAT = {k1..km| ki Klausel über x1..xn ∧ ∃a1..an ∈{0,1}.∀j≤m.a1..an erfüllt kj}

• Deterministisch
– Werte Klauseln für alle möglichen Belegungen der Variablen aus

bis erfüllende Belegung gefunden ist

Theoretische Informatik II §8: Komplexitätstheorie 13 NP-Vollständige Probleme

Lösungsalgorithmen für das Erfüllbarkeitsproblem

SAT = {k1..km| ki Klausel über x1..xn ∧ ∃a1..an ∈{0,1}.∀j≤m.a1..an erfüllt kj}

• Deterministisch
– Werte Klauseln für alle möglichen Belegungen der Variablen aus

bis erfüllende Belegung gefunden ist

– Es gibt 2n möglichen Belegungen von x1, ..xn

Theoretische Informatik II §8: Komplexitätstheorie 13 NP-Vollständige Probleme

Lösungsalgorithmen für das Erfüllbarkeitsproblem

SAT = {k1..km| ki Klausel über x1..xn ∧ ∃a1..an ∈{0,1}.∀j≤m.a1..an erfüllt kj}

• Deterministisch
– Werte Klauseln für alle möglichen Belegungen der Variablen aus

bis erfüllende Belegung gefunden ist

– Es gibt 2n möglichen Belegungen von x1, ..xn

– Auswertung linear in Größe der Formel O(m ∗ n)

Theoretische Informatik II §8: Komplexitätstheorie 13 NP-Vollständige Probleme

Lösungsalgorithmen für das Erfüllbarkeitsproblem

SAT = {k1..km| ki Klausel über x1..xn ∧ ∃a1..an ∈{0,1}.∀j≤m.a1..an erfüllt kj}

• Deterministisch
– Werte Klauseln für alle möglichen Belegungen der Variablen aus

bis erfüllende Belegung gefunden ist

– Es gibt 2n möglichen Belegungen von x1, ..xn

– Auswertung linear in Größe der Formel O(m ∗ n)

– Laufzeit ist in O(2n)

Theoretische Informatik II §8: Komplexitätstheorie 13 NP-Vollständige Probleme

Lösungsalgorithmen für das Erfüllbarkeitsproblem

SAT = {k1..km| ki Klausel über x1..xn ∧ ∃a1..an ∈{0,1}.∀j≤m.a1..an erfüllt kj}

• Deterministisch
– Werte Klauseln für alle möglichen Belegungen der Variablen aus

bis erfüllende Belegung gefunden ist

– Es gibt 2n möglichen Belegungen von x1, ..xn

– Auswertung linear in Größe der Formel O(m ∗ n)

– Laufzeit ist in O(2n)

• Nichtdeterministisch
– Rate eine erfüllende Belegung der Variablen (falls es eine gibt)

– Prüfe Belegung durch Auswertung der Formel

Theoretische Informatik II §8: Komplexitätstheorie 13 NP-Vollständige Probleme

Lösungsalgorithmen für das Erfüllbarkeitsproblem

SAT = {k1..km| ki Klausel über x1..xn ∧ ∃a1..an ∈{0,1}.∀j≤m.a1..an erfüllt kj}

• Deterministisch
– Werte Klauseln für alle möglichen Belegungen der Variablen aus

bis erfüllende Belegung gefunden ist

– Es gibt 2n möglichen Belegungen von x1, ..xn

– Auswertung linear in Größe der Formel O(m ∗ n)

– Laufzeit ist in O(2n)

• Nichtdeterministisch
– Rate eine erfüllende Belegung der Variablen (falls es eine gibt)

– Prüfe Belegung durch Auswertung der Formel

– Polynomielle Laufzeit

Theoretische Informatik II §8: Komplexitätstheorie 13 NP-Vollständige Probleme

Lösungsalgorithmen für das Erfüllbarkeitsproblem

SAT = {k1..km| ki Klausel über x1..xn ∧ ∃a1..an ∈{0,1}.∀j≤m.a1..an erfüllt kj}

• Deterministisch
– Werte Klauseln für alle möglichen Belegungen der Variablen aus

bis erfüllende Belegung gefunden ist

– Es gibt 2n möglichen Belegungen von x1, ..xn

– Auswertung linear in Größe der Formel O(m ∗ n)

– Laufzeit ist in O(2n)

• Nichtdeterministisch
– Rate eine erfüllende Belegung der Variablen (falls es eine gibt)

– Prüfe Belegung durch Auswertung der Formel

– Polynomielle Laufzeit

⇓

SAT ∈ NP

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Der Satz von Cook Satz I

SAT ist NP-vollständig

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Der Satz von Cook Satz I

SAT ist NP-vollständig

• Gegeben: NTM τ , die ein Problem in polynomieller Zeit löst

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Der Satz von Cook Satz I

SAT ist NP-vollständig

• Gegeben: NTM τ , die ein Problem in polynomieller Zeit löst

• Ziel: Codiere Berechnung von τ bei Eingabe w durch Formel

in KNF, die genau dann erfüllbar ist, wenn hτ(w) = 1

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Der Satz von Cook Satz I

SAT ist NP-vollständig

• Gegeben: NTM τ , die ein Problem in polynomieller Zeit löst

• Ziel: Codiere Berechnung von τ bei Eingabe w durch Formel

in KNF, die genau dann erfüllbar ist, wenn hτ(w) = 1

– Codierung muß in polynomieller Zeit (relativ zu |w|) berechenbar sein

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Der Satz von Cook Satz I

SAT ist NP-vollständig

• Gegeben: NTM τ , die ein Problem in polynomieller Zeit löst

• Ziel: Codiere Berechnung von τ bei Eingabe w durch Formel

in KNF, die genau dann erfüllbar ist, wenn hτ(w) = 1

– Codierung muß in polynomieller Zeit (relativ zu |w|) berechenbar sein

• Vorgehen: Beschreibe mögliche Konfigurationsübergänge

von τ durch Klauseln

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Der Satz von Cook Satz I

SAT ist NP-vollständig

• Gegeben: NTM τ , die ein Problem in polynomieller Zeit löst

• Ziel: Codiere Berechnung von τ bei Eingabe w durch Formel

in KNF, die genau dann erfüllbar ist, wenn hτ(w) = 1

– Codierung muß in polynomieller Zeit (relativ zu |w|) berechenbar sein

• Vorgehen: Beschreibe mögliche Konfigurationsübergänge

von τ durch Klauseln

– Codiere Zustand, Kopfposition und Bandzellen durch Literale

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Der Satz von Cook Satz I

SAT ist NP-vollständig

• Gegeben: NTM τ , die ein Problem in polynomieller Zeit löst

• Ziel: Codiere Berechnung von τ bei Eingabe w durch Formel

in KNF, die genau dann erfüllbar ist, wenn hτ(w) = 1

– Codierung muß in polynomieller Zeit (relativ zu |w|) berechenbar sein

• Vorgehen: Beschreibe mögliche Konfigurationsübergänge

von τ durch Klauseln

– Codiere Zustand, Kopfposition und Bandzellen durch Literale

– Es werden nur polynomiell viele Literale und Klauseln benötigt

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Der Satz von Cook Satz I

SAT ist NP-vollständig

• Gegeben: NTM τ , die ein Problem in polynomieller Zeit löst

• Ziel: Codiere Berechnung von τ bei Eingabe w durch Formel

in KNF, die genau dann erfüllbar ist, wenn hτ(w) = 1

– Codierung muß in polynomieller Zeit (relativ zu |w|) berechenbar sein

• Vorgehen: Beschreibe mögliche Konfigurationsübergänge

von τ durch Klauseln

– Codiere Zustand, Kopfposition und Bandzellen durch Literale

– Es werden nur polynomiell viele Literale und Klauseln benötigt

– Formel ist erfüllbar, wenn Konfigurationsübergänge zu Berechnung

zusammengesetzt werden können

Theoretische Informatik II §8: Komplexitätstheorie 15 NP-Vollständige Probleme

Satz von Cook: Grundannahmen

Zeige L≤pSAT für jede NP-Sprache L

Theoretische Informatik II §8: Komplexitätstheorie 15 NP-Vollständige Probleme

Satz von Cook: Grundannahmen

Zeige L≤pSAT für jede NP-Sprache L

• L wird von NTM τ entschieden

– τ = (S, X , Γ, δ, s0, b) mit S={s0, .., se}, Γ={x1, .., xv}, b=x1

Theoretische Informatik II §8: Komplexitätstheorie 15 NP-Vollständige Probleme

Satz von Cook: Grundannahmen

Zeige L≤pSAT für jede NP-Sprache L

• L wird von NTM τ entschieden

– τ = (S, X , Γ, δ, s0, b) mit S={s0, .., se}, Γ={x1, .., xv}, b=x1

– o.B.d.A.: τ hat Menge F von “Endzuständen” in denen τ “verharrt”
(Ersetze hierzu δ(s, a)=(s′, a′, h)

durch δ(s, a)=(s̄, a′, L), δ(s̄, a)=(¯̄s, a, R), δ(¯̄s, a)=(s̄, a, L))

Theoretische Informatik II §8: Komplexitätstheorie 15 NP-Vollständige Probleme

Satz von Cook: Grundannahmen

Zeige L≤pSAT für jede NP-Sprache L

• L wird von NTM τ entschieden

– τ = (S, X , Γ, δ, s0, b) mit S={s0, .., se}, Γ={x1, .., xv}, b=x1

– o.B.d.A.: τ hat Menge F von “Endzuständen” in denen τ “verharrt”
(Ersetze hierzu δ(s, a)=(s′, a′, h)

durch δ(s, a)=(s̄, a′, L), δ(s̄, a)=(¯̄s, a, R), δ(¯̄s, a)=(s̄, a, L))

– o.B.d.A.: Die akzeptierende Ausgabe 1 steht in Bandzelle 0

Theoretische Informatik II §8: Komplexitätstheorie 15 NP-Vollständige Probleme

Satz von Cook: Grundannahmen

Zeige L≤pSAT für jede NP-Sprache L

• L wird von NTM τ entschieden

– τ = (S, X , Γ, δ, s0, b) mit S={s0, .., se}, Γ={x1, .., xv}, b=x1

– o.B.d.A.: τ hat Menge F von “Endzuständen” in denen τ “verharrt”
(Ersetze hierzu δ(s, a)=(s′, a′, h)

durch δ(s, a)=(s̄, a′, L), δ(s̄, a)=(¯̄s, a, R), δ(¯̄s, a)=(s̄, a, L))

– o.B.d.A.: Die akzeptierende Ausgabe 1 steht in Bandzelle 0

• τ zeitbeschränkt durch Polynom p(n)

– tτ(w)≤p(n) für jedes Wort w ∈X∗ mit |w|=n

Theoretische Informatik II §8: Komplexitätstheorie 15 NP-Vollständige Probleme

Satz von Cook: Grundannahmen

Zeige L≤pSAT für jede NP-Sprache L

• L wird von NTM τ entschieden

– τ = (S, X , Γ, δ, s0, b) mit S={s0, .., se}, Γ={x1, .., xv}, b=x1

– o.B.d.A.: τ hat Menge F von “Endzuständen” in denen τ “verharrt”
(Ersetze hierzu δ(s, a)=(s′, a′, h)

durch δ(s, a)=(s̄, a′, L), δ(s̄, a)=(¯̄s, a, R), δ(¯̄s, a)=(s̄, a, L))

– o.B.d.A.: Die akzeptierende Ausgabe 1 steht in Bandzelle 0

• τ zeitbeschränkt durch Polynom p(n)

– tτ(w)≤p(n) für jedes Wort w ∈X∗ mit |w|=n

– Es sind genau p(n) Berechnungsschritte als Formel zu codieren

Theoretische Informatik II §8: Komplexitätstheorie 15 NP-Vollständige Probleme

Satz von Cook: Grundannahmen

Zeige L≤pSAT für jede NP-Sprache L

• L wird von NTM τ entschieden

– τ = (S, X , Γ, δ, s0, b) mit S={s0, .., se}, Γ={x1, .., xv}, b=x1

– o.B.d.A.: τ hat Menge F von “Endzuständen” in denen τ “verharrt”
(Ersetze hierzu δ(s, a)=(s′, a′, h)

durch δ(s, a)=(s̄, a′, L), δ(s̄, a)=(¯̄s, a, R), δ(¯̄s, a)=(s̄, a, L))

– o.B.d.A.: Die akzeptierende Ausgabe 1 steht in Bandzelle 0

• τ zeitbeschränkt durch Polynom p(n)

– tτ(w)≤p(n) für jedes Wort w ∈X∗ mit |w|=n

– Es sind genau p(n) Berechnungsschritte als Formel zu codieren

• τ platzbeschränkt durch p(n)

– τ kann während der Berechnung maximal p(n) Bandzellen aufsuchen

Theoretische Informatik II §8: Komplexitätstheorie 15 NP-Vollständige Probleme

Satz von Cook: Grundannahmen

Zeige L≤pSAT für jede NP-Sprache L

• L wird von NTM τ entschieden

– τ = (S, X , Γ, δ, s0, b) mit S={s0, .., se}, Γ={x1, .., xv}, b=x1

– o.B.d.A.: τ hat Menge F von “Endzuständen” in denen τ “verharrt”
(Ersetze hierzu δ(s, a)=(s′, a′, h)

durch δ(s, a)=(s̄, a′, L), δ(s̄, a)=(¯̄s, a, R), δ(¯̄s, a)=(s̄, a, L))

– o.B.d.A.: Die akzeptierende Ausgabe 1 steht in Bandzelle 0

• τ zeitbeschränkt durch Polynom p(n)

– tτ(w)≤p(n) für jedes Wort w ∈X∗ mit |w|=n

– Es sind genau p(n) Berechnungsschritte als Formel zu codieren

• τ platzbeschränkt durch p(n)

– τ kann während der Berechnung maximal p(n) Bandzellen aufsuchen

– Es reicht die Bandzellen von −p(n) bis +p(n) zu modellieren

Theoretische Informatik II §8: Komplexitätstheorie 16 NP-Vollständige Probleme

Satz von Cook: zu codierende Aussagen

• Anfangsbedingungen bei Eingabe w

Theoretische Informatik II §8: Komplexitätstheorie 16 NP-Vollständige Probleme

Satz von Cook: zu codierende Aussagen

• Anfangsbedingungen bei Eingabe w
– τ startet im Zustand s0 und der Kopf ist über Bandzelle 0

Theoretische Informatik II §8: Komplexitätstheorie 16 NP-Vollständige Probleme

Satz von Cook: zu codierende Aussagen

• Anfangsbedingungen bei Eingabe w
– τ startet im Zustand s0 und der Kopf ist über Bandzelle 0

– Bandinhalt der Zellen −p(n)...0...p(n) ist bp(n)w1..wnb
p(n)−n+1

Theoretische Informatik II §8: Komplexitätstheorie 16 NP-Vollständige Probleme

Satz von Cook: zu codierende Aussagen

• Anfangsbedingungen bei Eingabe w
– τ startet im Zustand s0 und der Kopf ist über Bandzelle 0

– Bandinhalt der Zellen −p(n)...0...p(n) ist bp(n)w1..wnb
p(n)−n+1

• Randbedingungen für eindeutiges Verhalten
Zu jedem Zeitpunkt t der Berechnung gilt

Theoretische Informatik II §8: Komplexitätstheorie 16 NP-Vollständige Probleme

Satz von Cook: zu codierende Aussagen

• Anfangsbedingungen bei Eingabe w
– τ startet im Zustand s0 und der Kopf ist über Bandzelle 0

– Bandinhalt der Zellen −p(n)...0...p(n) ist bp(n)w1..wnb
p(n)−n+1

• Randbedingungen für eindeutiges Verhalten
Zu jedem Zeitpunkt t der Berechnung gilt

– τ befindet sich in genau einem Zustand und liest genau eine Bandzelle

Theoretische Informatik II §8: Komplexitätstheorie 16 NP-Vollständige Probleme

Satz von Cook: zu codierende Aussagen

• Anfangsbedingungen bei Eingabe w
– τ startet im Zustand s0 und der Kopf ist über Bandzelle 0

– Bandinhalt der Zellen −p(n)...0...p(n) ist bp(n)w1..wnb
p(n)−n+1

• Randbedingungen für eindeutiges Verhalten
Zu jedem Zeitpunkt t der Berechnung gilt

– τ befindet sich in genau einem Zustand und liest genau eine Bandzelle

– Jede Bandzelle enthält genau ein Symbol

Theoretische Informatik II §8: Komplexitätstheorie 16 NP-Vollständige Probleme

Satz von Cook: zu codierende Aussagen

• Anfangsbedingungen bei Eingabe w
– τ startet im Zustand s0 und der Kopf ist über Bandzelle 0

– Bandinhalt der Zellen −p(n)...0...p(n) ist bp(n)w1..wnb
p(n)−n+1

• Randbedingungen für eindeutiges Verhalten
Zu jedem Zeitpunkt t der Berechnung gilt

– τ befindet sich in genau einem Zustand und liest genau eine Bandzelle

– Jede Bandzelle enthält genau ein Symbol

– τ wendet genau eine Zeile der Zustandsüberführungstabelle δ an

Theoretische Informatik II §8: Komplexitätstheorie 16 NP-Vollständige Probleme

Satz von Cook: zu codierende Aussagen

• Anfangsbedingungen bei Eingabe w
– τ startet im Zustand s0 und der Kopf ist über Bandzelle 0

– Bandinhalt der Zellen −p(n)...0...p(n) ist bp(n)w1..wnb
p(n)−n+1

• Randbedingungen für eindeutiges Verhalten
Zu jedem Zeitpunkt t der Berechnung gilt

– τ befindet sich in genau einem Zustand und liest genau eine Bandzelle

– Jede Bandzelle enthält genau ein Symbol

– τ wendet genau eine Zeile der Zustandsüberführungstabelle δ an

• Übergangsbedingungen

Theoretische Informatik II §8: Komplexitätstheorie 16 NP-Vollständige Probleme

Satz von Cook: zu codierende Aussagen

• Anfangsbedingungen bei Eingabe w
– τ startet im Zustand s0 und der Kopf ist über Bandzelle 0

– Bandinhalt der Zellen −p(n)...0...p(n) ist bp(n)w1..wnb
p(n)−n+1

• Randbedingungen für eindeutiges Verhalten
Zu jedem Zeitpunkt t der Berechnung gilt

– τ befindet sich in genau einem Zustand und liest genau eine Bandzelle

– Jede Bandzelle enthält genau ein Symbol

– τ wendet genau eine Zeile der Zustandsüberführungstabelle δ an

• Übergangsbedingungen
– Zu jedem Zeitpunkt t sind Zustand, Kopfposition und Bandinhalt

mit der Zustandsüberführungstabelle δ verträglich

Theoretische Informatik II §8: Komplexitätstheorie 16 NP-Vollständige Probleme

Satz von Cook: zu codierende Aussagen

• Anfangsbedingungen bei Eingabe w
– τ startet im Zustand s0 und der Kopf ist über Bandzelle 0

– Bandinhalt der Zellen −p(n)...0...p(n) ist bp(n)w1..wnb
p(n)−n+1

• Randbedingungen für eindeutiges Verhalten
Zu jedem Zeitpunkt t der Berechnung gilt

– τ befindet sich in genau einem Zustand und liest genau eine Bandzelle

– Jede Bandzelle enthält genau ein Symbol

– τ wendet genau eine Zeile der Zustandsüberführungstabelle δ an

• Übergangsbedingungen
– Zu jedem Zeitpunkt t sind Zustand, Kopfposition und Bandinhalt

mit der Zustandsüberführungstabelle δ verträglich

• Endbedingung

Theoretische Informatik II §8: Komplexitätstheorie 16 NP-Vollständige Probleme

Satz von Cook: zu codierende Aussagen

• Anfangsbedingungen bei Eingabe w
– τ startet im Zustand s0 und der Kopf ist über Bandzelle 0

– Bandinhalt der Zellen −p(n)...0...p(n) ist bp(n)w1..wnb
p(n)−n+1

• Randbedingungen für eindeutiges Verhalten
Zu jedem Zeitpunkt t der Berechnung gilt

– τ befindet sich in genau einem Zustand und liest genau eine Bandzelle

– Jede Bandzelle enthält genau ein Symbol

– τ wendet genau eine Zeile der Zustandsüberführungstabelle δ an

• Übergangsbedingungen
– Zu jedem Zeitpunkt t sind Zustand, Kopfposition und Bandinhalt

mit der Zustandsüberführungstabelle δ verträglich

• Endbedingung
– Nach p(n) Schritten befindet sich τ in einem Endzustand aus F

Theoretische Informatik II §8: Komplexitätstheorie 16 NP-Vollständige Probleme

Satz von Cook: zu codierende Aussagen

• Anfangsbedingungen bei Eingabe w
– τ startet im Zustand s0 und der Kopf ist über Bandzelle 0

– Bandinhalt der Zellen −p(n)...0...p(n) ist bp(n)w1..wnb
p(n)−n+1

• Randbedingungen für eindeutiges Verhalten
Zu jedem Zeitpunkt t der Berechnung gilt

– τ befindet sich in genau einem Zustand und liest genau eine Bandzelle

– Jede Bandzelle enthält genau ein Symbol

– τ wendet genau eine Zeile der Zustandsüberführungstabelle δ an

• Übergangsbedingungen
– Zu jedem Zeitpunkt t sind Zustand, Kopfposition und Bandinhalt

mit der Zustandsüberführungstabelle δ verträglich

• Endbedingung
– Nach p(n) Schritten befindet sich τ in einem Endzustand aus F

– Bandinhalt der Zellen −p(n)...0...p(n) ist bp(n)1bp(n)

Theoretische Informatik II §8: Komplexitätstheorie 17 NP-Vollständige Probleme

Symbole in der Codierung einer Berechnung

• zt,k, t ∈{0..p(n)}, k ∈{0..e}
– τ ist nach t Schritten im Zustand sk

Theoretische Informatik II §8: Komplexitätstheorie 17 NP-Vollständige Probleme

Symbole in der Codierung einer Berechnung

• zt,k, t ∈{0..p(n)}, k ∈{0..e}
– τ ist nach t Schritten im Zustand sk

• at,i,j, t ∈{0..p(n)}, i ∈{−p(n)..p(n)}, j ∈{1..v}
– Der Bandinhalt von Zelle i nach t Schritten ist das Symbol xj

Theoretische Informatik II §8: Komplexitätstheorie 17 NP-Vollständige Probleme

Symbole in der Codierung einer Berechnung

• zt,k, t ∈{0..p(n)}, k ∈{0..e}
– τ ist nach t Schritten im Zustand sk

• at,i,j, t ∈{0..p(n)}, i ∈{−p(n)..p(n)}, j ∈{1..v}
– Der Bandinhalt von Zelle i nach t Schritten ist das Symbol xj

• st,i, t ∈{0..p(n)}, i ∈{−p(n)..p(n)}
– τ liest im Schritt t den Bandinhalt von Zelle i

Theoretische Informatik II §8: Komplexitätstheorie 17 NP-Vollständige Probleme

Symbole in der Codierung einer Berechnung

• zt,k, t ∈{0..p(n)}, k ∈{0..e}
– τ ist nach t Schritten im Zustand sk

• at,i,j, t ∈{0..p(n)}, i ∈{−p(n)..p(n)}, j ∈{1..v}
– Der Bandinhalt von Zelle i nach t Schritten ist das Symbol xj

• st,i, t ∈{0..p(n)}, i ∈{−p(n)..p(n)}
– τ liest im Schritt t den Bandinhalt von Zelle i

• bt,l, t ∈{0..p(n)}, l ∈{1..v∗(e+1)}
– τ verwendet beim Übergang von t nach t+1 die Zeile l der Tabelle von δ

Theoretische Informatik II §8: Komplexitätstheorie 17 NP-Vollständige Probleme

Symbole in der Codierung einer Berechnung

• zt,k, t ∈{0..p(n)}, k ∈{0..e}
– τ ist nach t Schritten im Zustand sk

• at,i,j, t ∈{0..p(n)}, i ∈{−p(n)..p(n)}, j ∈{1..v}
– Der Bandinhalt von Zelle i nach t Schritten ist das Symbol xj

• st,i, t ∈{0..p(n)}, i ∈{−p(n)..p(n)}
– τ liest im Schritt t den Bandinhalt von Zelle i

• bt,l, t ∈{0..p(n)}, l ∈{1..v∗(e+1)}
– τ verwendet beim Übergang von t nach t+1 die Zeile l der Tabelle von δ

• Insgesamt O((p(n))2 ∗ |S| ∗ |Γ|) Variablen

Theoretische Informatik II §8: Komplexitätstheorie 17 NP-Vollständige Probleme

Symbole in der Codierung einer Berechnung

• zt,k, t ∈{0..p(n)}, k ∈{0..e}
– τ ist nach t Schritten im Zustand sk

• at,i,j, t ∈{0..p(n)}, i ∈{−p(n)..p(n)}, j ∈{1..v}
– Der Bandinhalt von Zelle i nach t Schritten ist das Symbol xj

• st,i, t ∈{0..p(n)}, i ∈{−p(n)..p(n)}
– τ liest im Schritt t den Bandinhalt von Zelle i

• bt,l, t ∈{0..p(n)}, l ∈{1..v∗(e+1)}
– τ verwendet beim Übergang von t nach t+1 die Zeile l der Tabelle von δ

• Insgesamt O((p(n))2 ∗ |S| ∗ |Γ|) Variablen

Beschreibe Berechnung von hτ (w)

als KNF-Formel α(τ ,w) über diesen Variablen

Theoretische Informatik II §8: Komplexitätstheorie 18 NP-Vollständige Probleme

Satz von Cook: Codierung der Anfangsbedingungen

Start im Zustand s0, Kopf über Bandzelle 0,

Bandinhalt bp(n)w1..wnbp(n)−n+1

Theoretische Informatik II §8: Komplexitätstheorie 18 NP-Vollständige Probleme

Satz von Cook: Codierung der Anfangsbedingungen

Start im Zustand s0, Kopf über Bandzelle 0,

Bandinhalt bp(n)w1..wnbp(n)−n+1

Sei w1 = xj1, . . . , wn = xjn

Codiere Anfangsbedingungen als Formel A mit

A ≡ z0,0 ∧ s0,0

∧ a0,−p(n),1 ∧ . . . ∧ a0,−1,1

∧ a0,0,j1 ∧ . . . ∧ a0,n−1,jn

∧ a0,n,1 ∧ . . . ∧ a0,p(n),1

Theoretische Informatik II §8: Komplexitätstheorie 18 NP-Vollständige Probleme

Satz von Cook: Codierung der Anfangsbedingungen

Start im Zustand s0, Kopf über Bandzelle 0,

Bandinhalt bp(n)w1..wnbp(n)−n+1

Sei w1 = xj1, . . . , wn = xjn

Codiere Anfangsbedingungen als Formel A mit

A ≡ z0,0 ∧ s0,0

∧ a0,−p(n),1 ∧ . . . ∧ a0,−1,1

∧ a0,0,j1 ∧ . . . ∧ a0,n−1,jn

∧ a0,n,1 ∧ . . . ∧ a0,p(n),1

• A ist in KNF Rein konjunktive Formel

Theoretische Informatik II §8: Komplexitätstheorie 18 NP-Vollständige Probleme

Satz von Cook: Codierung der Anfangsbedingungen

Start im Zustand s0, Kopf über Bandzelle 0,

Bandinhalt bp(n)w1..wnbp(n)−n+1

Sei w1 = xj1, . . . , wn = xjn

Codiere Anfangsbedingungen als Formel A mit

A ≡ z0,0 ∧ s0,0

∧ a0,−p(n),1 ∧ . . . ∧ a0,−1,1

∧ a0,0,j1 ∧ . . . ∧ a0,n−1,jn

∧ a0,n,1 ∧ . . . ∧ a0,p(n),1

• A ist in KNF Rein konjunktive Formel

• Größe: O(p(n)) 2∗p(n)+3 Variablen

Theoretische Informatik II §8: Komplexitätstheorie 18 NP-Vollständige Probleme

Satz von Cook: Codierung der Anfangsbedingungen

Start im Zustand s0, Kopf über Bandzelle 0,

Bandinhalt bp(n)w1..wnbp(n)−n+1

Sei w1 = xj1, . . . , wn = xjn

Codiere Anfangsbedingungen als Formel A mit

A ≡ z0,0 ∧ s0,0

∧ a0,−p(n),1 ∧ . . . ∧ a0,−1,1

∧ a0,0,j1 ∧ . . . ∧ a0,n−1,jn

∧ a0,n,1 ∧ . . . ∧ a0,p(n),1

• A ist in KNF Rein konjunktive Formel

• Größe: O(p(n)) 2∗p(n)+3 Variablen

• Berechnungsaufwand: O(p(n)) Bestimmung von p(n)

Theoretische Informatik II §8: Komplexitätstheorie 19 NP-Vollständige Probleme

Satz von Cook: Codierung der Randbedingungen

In jedem Schritt genau ein Zustand, eine Bandzelle ein

Symbol pro Bandzelle, eine verwendete Zeile von δ

Theoretische Informatik II §8: Komplexitätstheorie 19 NP-Vollständige Probleme

Satz von Cook: Codierung der Randbedingungen

In jedem Schritt genau ein Zustand, eine Bandzelle ein

Symbol pro Bandzelle, eine verwendete Zeile von δ

Codiere Randbedingungen als Formel R mit

R ≡ ∃1(z0,0, .., z0,e) ∧ . . . ∧ ∃1(zp(n),0, .., zp(n),e)

∧ ∃1(s0,−p(n), .., s0,p(n)) ∧ . . . ∧ ∃1(sp(n),−p(n), .., sp(n),p(n))

∧ ∃1(a0,−p(n),1, .., a0,−p(n),v) ∧ . . . ∧ ∃1(ap(n),p(n),1, .., ap(n),p(n),v)

∧ ∃1(b0,,1, .., b0,v∗(e+1)) ∧ . . . ∧ ∃1(bp(n),1, .., bp(n),v∗(e+1))

Theoretische Informatik II §8: Komplexitätstheorie 19 NP-Vollständige Probleme

Satz von Cook: Codierung der Randbedingungen

In jedem Schritt genau ein Zustand, eine Bandzelle ein

Symbol pro Bandzelle, eine verwendete Zeile von δ

Codiere Randbedingungen als Formel R mit

R ≡ ∃1(z0,0, .., z0,e) ∧ . . . ∧ ∃1(zp(n),0, .., zp(n),e)

∧ ∃1(s0,−p(n), .., s0,p(n)) ∧ . . . ∧ ∃1(sp(n),−p(n), .., sp(n),p(n))

∧ ∃1(a0,−p(n),1, .., a0,−p(n),v) ∧ . . . ∧ ∃1(ap(n),p(n),1, .., ap(n),p(n),v)

∧ ∃1(b0,,1, .., b0,v∗(e+1)) ∧ . . . ∧ ∃1(bp(n),1, .., bp(n),v∗(e+1))

Dabei ist ∃1(y1, .., ym) Abkürzung für “genau eines der yi gilt’

– ∃1(y1, .., ym) ≡ (y1 ∨ .. ∨ym) ∧ (ȳ1 ∨ ȳ2) ∧ .. ∧ (ȳ1 ∨ ȳm)

∧ (ȳ2 ∨ ȳ3) ∧ .. ∧ (ȳ2 ∨ ȳm) ∧ .. ∧ (ȳm−1 ∨ ȳm)

Theoretische Informatik II §8: Komplexitätstheorie 19 NP-Vollständige Probleme

Satz von Cook: Codierung der Randbedingungen

In jedem Schritt genau ein Zustand, eine Bandzelle ein

Symbol pro Bandzelle, eine verwendete Zeile von δ

Codiere Randbedingungen als Formel R mit

R ≡ ∃1(z0,0, .., z0,e) ∧ . . . ∧ ∃1(zp(n),0, .., zp(n),e)

∧ ∃1(s0,−p(n), .., s0,p(n)) ∧ . . . ∧ ∃1(sp(n),−p(n), .., sp(n),p(n))

∧ ∃1(a0,−p(n),1, .., a0,−p(n),v) ∧ . . . ∧ ∃1(ap(n),p(n),1, .., ap(n),p(n),v)

∧ ∃1(b0,,1, .., b0,v∗(e+1)) ∧ . . . ∧ ∃1(bp(n),1, .., bp(n),v∗(e+1))

Dabei ist ∃1(y1, .., ym) Abkürzung für “genau eines der yi gilt’

– ∃1(y1, .., ym) ≡ (y1 ∨ .. ∨ym) ∧ (ȳ1 ∨ ȳ2) ∧ .. ∧ (ȳ1 ∨ ȳm)

∧ (ȳ2 ∨ ȳ3) ∧ .. ∧ (ȳ2 ∨ ȳm) ∧ .. ∧ (ȳm−1 ∨ ȳm)

• R ist in KNF Konjunktion von ∃
1
-Formeln

Theoretische Informatik II §8: Komplexitätstheorie 19 NP-Vollständige Probleme

Satz von Cook: Codierung der Randbedingungen

In jedem Schritt genau ein Zustand, eine Bandzelle ein

Symbol pro Bandzelle, eine verwendete Zeile von δ

Codiere Randbedingungen als Formel R mit

R ≡ ∃1(z0,0, .., z0,e) ∧ . . . ∧ ∃1(zp(n),0, .., zp(n),e)

∧ ∃1(s0,−p(n), .., s0,p(n)) ∧ . . . ∧ ∃1(sp(n),−p(n), .., sp(n),p(n))

∧ ∃1(a0,−p(n),1, .., a0,−p(n),v) ∧ . . . ∧ ∃1(ap(n),p(n),1, .., ap(n),p(n),v)

∧ ∃1(b0,,1, .., b0,v∗(e+1)) ∧ . . . ∧ ∃1(bp(n),1, .., bp(n),v∗(e+1))

Dabei ist ∃1(y1, .., ym) Abkürzung für “genau eines der yi gilt’

– ∃1(y1, .., ym) ≡ (y1 ∨ .. ∨ym) ∧ (ȳ1 ∨ ȳ2) ∧ .. ∧ (ȳ1 ∨ ȳm)

∧ (ȳ2 ∨ ȳ3) ∧ .. ∧ (ȳ2 ∨ ȳm) ∧ .. ∧ (ȳm−1 ∨ ȳm)

• R ist in KNF Konjunktion von ∃
1
-Formeln

• Größe: O((p(n))3) (p(n)+1) ∗ ((e+1) + (2∗p(n)+1)2 + . . .) Variablen

Theoretische Informatik II §8: Komplexitätstheorie 19 NP-Vollständige Probleme

Satz von Cook: Codierung der Randbedingungen

In jedem Schritt genau ein Zustand, eine Bandzelle ein

Symbol pro Bandzelle, eine verwendete Zeile von δ

Codiere Randbedingungen als Formel R mit

R ≡ ∃1(z0,0, .., z0,e) ∧ . . . ∧ ∃1(zp(n),0, .., zp(n),e)

∧ ∃1(s0,−p(n), .., s0,p(n)) ∧ . . . ∧ ∃1(sp(n),−p(n), .., sp(n),p(n))

∧ ∃1(a0,−p(n),1, .., a0,−p(n),v) ∧ . . . ∧ ∃1(ap(n),p(n),1, .., ap(n),p(n),v)

∧ ∃1(b0,,1, .., b0,v∗(e+1)) ∧ . . . ∧ ∃1(bp(n),1, .., bp(n),v∗(e+1))

Dabei ist ∃1(y1, .., ym) Abkürzung für “genau eines der yi gilt’

– ∃1(y1, .., ym) ≡ (y1 ∨ .. ∨ym) ∧ (ȳ1 ∨ ȳ2) ∧ .. ∧ (ȳ1 ∨ ȳm)

∧ (ȳ2 ∨ ȳ3) ∧ .. ∧ (ȳ2 ∨ ȳm) ∧ .. ∧ (ȳm−1 ∨ ȳm)

• R ist in KNF Konjunktion von ∃
1
-Formeln

• Größe: O((p(n))3) (p(n)+1) ∗ ((e+1) + (2∗p(n)+1)2 + . . .) Variablen

• Berechnungsaufwand: O((p(n))3) Bestimmung von p(n) + . . .

Theoretische Informatik II §8: Komplexitätstheorie 20 NP-Vollständige Probleme

Satz von Cook: Codierung der Übergangsbedingungen

Zustand, Kopfposition und Bandinhalt verträglich mit δ

Theoretische Informatik II §8: Komplexitätstheorie 20 NP-Vollständige Probleme

Satz von Cook: Codierung der Übergangsbedingungen

Zustand, Kopfposition und Bandinhalt verträglich mit δ

• Betrachte Zeit t und Bandzelle i einzeln

Theoretische Informatik II §8: Komplexitätstheorie 20 NP-Vollständige Probleme

Satz von Cook: Codierung der Übergangsbedingungen

Zustand, Kopfposition und Bandinhalt verträglich mit δ

• Betrachte Zeit t und Bandzelle i einzeln

– Zeile l von δ sei δ(skl
,xjl

)=(sk′
l
,xj′

l
,p) mit p ∈{+1, −1}

Theoretische Informatik II §8: Komplexitätstheorie 20 NP-Vollständige Probleme

Satz von Cook: Codierung der Übergangsbedingungen

Zustand, Kopfposition und Bandinhalt verträglich mit δ

• Betrachte Zeit t und Bandzelle i einzeln

– Zeile l von δ sei δ(skl
,xjl

)=(sk′
l
,xj′

l
,p) mit p ∈{+1, −1}

– Falls τ zur Zeit t Zelle i nicht liest, bleibt sie unverändert

Formulierung: ((s̄t,i ∧at,i,1) ⇒ at+1,i,1) ∧ ..

∧ ((s̄t,i ∧at,i,v) ⇒ at+1,i,v)

Theoretische Informatik II §8: Komplexitätstheorie 20 NP-Vollständige Probleme

Satz von Cook: Codierung der Übergangsbedingungen

Zustand, Kopfposition und Bandinhalt verträglich mit δ

• Betrachte Zeit t und Bandzelle i einzeln

– Zeile l von δ sei δ(skl
,xjl

)=(sk′
l
,xj′

l
,p) mit p ∈{+1, −1}

– Falls τ zur Zeit t Zelle i nicht liest, bleibt sie unverändert

Formulierung: ((s̄t,i ∧at,i,1) ⇒ at+1,i,1) ∧ ..

∧ ((s̄t,i ∧at,i,v) ⇒ at+1,i,v)

– Falls τ zur Zeit t Zelle i liest und Zeile l benutzt

Theoretische Informatik II §8: Komplexitätstheorie 20 NP-Vollständige Probleme

Satz von Cook: Codierung der Übergangsbedingungen

Zustand, Kopfposition und Bandinhalt verträglich mit δ

• Betrachte Zeit t und Bandzelle i einzeln

– Zeile l von δ sei δ(skl
,xjl

)=(sk′
l
,xj′

l
,p) mit p ∈{+1, −1}

– Falls τ zur Zeit t Zelle i nicht liest, bleibt sie unverändert

Formulierung: ((s̄t,i ∧at,i,1) ⇒ at+1,i,1) ∧ ..

∧ ((s̄t,i ∧at,i,v) ⇒ at+1,i,v)

– Falls τ zur Zeit t Zelle i liest und Zeile l benutzt

· Zur Zeit t: Zustand skl
, Zelle i ist xjl

Formulierung: (st,i ∧bt,l) ⇒ (zt,kl
∧at,i,jl

)

Theoretische Informatik II §8: Komplexitätstheorie 20 NP-Vollständige Probleme

Satz von Cook: Codierung der Übergangsbedingungen

Zustand, Kopfposition und Bandinhalt verträglich mit δ

• Betrachte Zeit t und Bandzelle i einzeln

– Zeile l von δ sei δ(skl
,xjl

)=(sk′
l
,xj′

l
,p) mit p ∈{+1, −1}

– Falls τ zur Zeit t Zelle i nicht liest, bleibt sie unverändert

Formulierung: ((s̄t,i ∧at,i,1) ⇒ at+1,i,1) ∧ ..

∧ ((s̄t,i ∧at,i,v) ⇒ at+1,i,v)

– Falls τ zur Zeit t Zelle i liest und Zeile l benutzt

· Zur Zeit t: Zustand skl
, Zelle i ist xjl

Formulierung: (st,i ∧bt,l) ⇒ (zt,kl
∧at,i,jl

)

· Zur Zeit t+1: Zustand sk′
l
, Zelle i ist xj′

l
, neue Zelle i+p

Formulierung: (st,i ∧bt,l) ⇒ (zt+1,k′
l
∧at+1,k′

l
∧st+1,i+p)

Theoretische Informatik II §8: Komplexitätstheorie 20 NP-Vollständige Probleme

Satz von Cook: Codierung der Übergangsbedingungen

Zustand, Kopfposition und Bandinhalt verträglich mit δ

• Betrachte Zeit t und Bandzelle i einzeln

– Zeile l von δ sei δ(skl
,xjl

)=(sk′
l
,xj′

l
,p) mit p ∈{+1, −1}

– Falls τ zur Zeit t Zelle i nicht liest, bleibt sie unverändert

Formulierung: ((s̄t,i ∧at,i,1) ⇒ at+1,i,1) ∧ ..

∧ ((s̄t,i ∧at,i,v) ⇒ at+1,i,v)

– Falls τ zur Zeit t Zelle i liest und Zeile l benutzt

· Zur Zeit t: Zustand skl
, Zelle i ist xjl

Formulierung: (st,i ∧bt,l) ⇒ (zt,kl
∧at,i,jl

)

· Zur Zeit t+1: Zustand sk′
l
, Zelle i ist xj′

l
, neue Zelle i+p

Formulierung: (st,i ∧bt,l) ⇒ (zt+1,k′
l
∧at+1,k′

l
∧st+1,i+p)

Formeln müssen normalisiert und kombiniert werden

Theoretische Informatik II §8: Komplexitätstheorie 21 NP-Vollständige Probleme

Satz von Cook: Codierung der Übergangsbedingungen

• Definiere Formeln Ü(t, i) t ∈{0..p(n)}, i ∈{−p(n)..p(n)}
Ü(t, i) ≡ (st,i ∨ āt,i,1 ∨at+1,i,q) ∧ .. ∧ (st,i ∨ āt,i,v ∨at+1,i,v)

∧ (s̄t,i ∨ b̄t,1 ∨zt,k1) ∧ (s̄t,i ∨ b̄t,1 ∨at,i,j1)

∧ (s̄t,i ∨ b̄t,1 ∨zt+1,k′
1
) ∧ (s̄t,i ∨ b̄t,1 ∨at+1,k′

1
)

∧ (s̄t,i ∨ b̄t,1 ∨st+1,i+p)
...

∧ (s̄t,i ∨ b̄t,m ∨zt,km) ∧ (s̄t,i ∨ b̄t,m ∨at,i,jm)

∧ (s̄t,i ∨ b̄t,m ∨zt+1,k′
m
) ∧ (s̄t,i ∨ b̄t,m ∨at+1,k′

m
)

∧ (s̄t,i ∨ b̄t,m ∨st+1,i+p)

Theoretische Informatik II §8: Komplexitätstheorie 21 NP-Vollständige Probleme

Satz von Cook: Codierung der Übergangsbedingungen

• Definiere Formeln Ü(t, i) t ∈{0..p(n)}, i ∈{−p(n)..p(n)}
Ü(t, i) ≡ (st,i ∨ āt,i,1 ∨at+1,i,q) ∧ .. ∧ (st,i ∨ āt,i,v ∨at+1,i,v)

∧ (s̄t,i ∨ b̄t,1 ∨zt,k1) ∧ (s̄t,i ∨ b̄t,1 ∨at,i,j1)

∧ (s̄t,i ∨ b̄t,1 ∨zt+1,k′
1
) ∧ (s̄t,i ∨ b̄t,1 ∨at+1,k′

1
)

∧ (s̄t,i ∨ b̄t,1 ∨st+1,i+p)
...

∧ (s̄t,i ∨ b̄t,m ∨zt,km) ∧ (s̄t,i ∨ b̄t,m ∨at,i,jm)

∧ (s̄t,i ∨ b̄t,m ∨zt+1,k′
m
) ∧ (s̄t,i ∨ b̄t,m ∨at+1,k′

m
)

∧ (s̄t,i ∨ b̄t,m ∨st+1,i+p)

Ü ≡ Ü(0, −p(n)) ∧ .. ∧ Ü(0, p(n)) ∧ .. ∧ Ü(p(n), p(n))

Theoretische Informatik II §8: Komplexitätstheorie 21 NP-Vollständige Probleme

Satz von Cook: Codierung der Übergangsbedingungen

• Definiere Formeln Ü(t, i) t ∈{0..p(n)}, i ∈{−p(n)..p(n)}
Ü(t, i) ≡ (st,i ∨ āt,i,1 ∨at+1,i,q) ∧ .. ∧ (st,i ∨ āt,i,v ∨at+1,i,v)

∧ (s̄t,i ∨ b̄t,1 ∨zt,k1) ∧ (s̄t,i ∨ b̄t,1 ∨at,i,j1)

∧ (s̄t,i ∨ b̄t,1 ∨zt+1,k′
1
) ∧ (s̄t,i ∨ b̄t,1 ∨at+1,k′

1
)

∧ (s̄t,i ∨ b̄t,1 ∨st+1,i+p)
...

∧ (s̄t,i ∨ b̄t,m ∨zt,km) ∧ (s̄t,i ∨ b̄t,m ∨at,i,jm)

∧ (s̄t,i ∨ b̄t,m ∨zt+1,k′
m
) ∧ (s̄t,i ∨ b̄t,m ∨at+1,k′

m
)

∧ (s̄t,i ∨ b̄t,m ∨st+1,i+p)

Ü ≡ Ü(0, −p(n)) ∧ .. ∧ Ü(0, p(n)) ∧ .. ∧ Ü(p(n), p(n))

• Ü ist in KNF

Theoretische Informatik II §8: Komplexitätstheorie 21 NP-Vollständige Probleme

Satz von Cook: Codierung der Übergangsbedingungen

• Definiere Formeln Ü(t, i) t ∈{0..p(n)}, i ∈{−p(n)..p(n)}
Ü(t, i) ≡ (st,i ∨ āt,i,1 ∨at+1,i,q) ∧ .. ∧ (st,i ∨ āt,i,v ∨at+1,i,v)

∧ (s̄t,i ∨ b̄t,1 ∨zt,k1) ∧ (s̄t,i ∨ b̄t,1 ∨at,i,j1)

∧ (s̄t,i ∨ b̄t,1 ∨zt+1,k′
1
) ∧ (s̄t,i ∨ b̄t,1 ∨at+1,k′

1
)

∧ (s̄t,i ∨ b̄t,1 ∨st+1,i+p)
...

∧ (s̄t,i ∨ b̄t,m ∨zt,km) ∧ (s̄t,i ∨ b̄t,m ∨at,i,jm)

∧ (s̄t,i ∨ b̄t,m ∨zt+1,k′
m
) ∧ (s̄t,i ∨ b̄t,m ∨at+1,k′

m
)

∧ (s̄t,i ∨ b̄t,m ∨st+1,i+p)

Ü ≡ Ü(0, −p(n)) ∧ .. ∧ Ü(0, p(n)) ∧ .. ∧ Ü(p(n), p(n))

• Ü ist in KNF

• Größe: O((p(n))3)

Theoretische Informatik II §8: Komplexitätstheorie 21 NP-Vollständige Probleme

Satz von Cook: Codierung der Übergangsbedingungen

• Definiere Formeln Ü(t, i) t ∈{0..p(n)}, i ∈{−p(n)..p(n)}
Ü(t, i) ≡ (st,i ∨ āt,i,1 ∨at+1,i,q) ∧ .. ∧ (st,i ∨ āt,i,v ∨at+1,i,v)

∧ (s̄t,i ∨ b̄t,1 ∨zt,k1) ∧ (s̄t,i ∨ b̄t,1 ∨at,i,j1)

∧ (s̄t,i ∨ b̄t,1 ∨zt+1,k′
1
) ∧ (s̄t,i ∨ b̄t,1 ∨at+1,k′

1
)

∧ (s̄t,i ∨ b̄t,1 ∨st+1,i+p)
...

∧ (s̄t,i ∨ b̄t,m ∨zt,km) ∧ (s̄t,i ∨ b̄t,m ∨at,i,jm)

∧ (s̄t,i ∨ b̄t,m ∨zt+1,k′
m
) ∧ (s̄t,i ∨ b̄t,m ∨at+1,k′

m
)

∧ (s̄t,i ∨ b̄t,m ∨st+1,i+p)

Ü ≡ Ü(0, −p(n)) ∧ .. ∧ Ü(0, p(n)) ∧ .. ∧ Ü(p(n), p(n))

• Ü ist in KNF

• Größe: O((p(n))3)

• Berechnungsaufwand: O((p(n))3)

Theoretische Informatik II §8: Komplexitätstheorie 22 NP-Vollständige Probleme

Satz von Cook: Codierung der Endbedingung

Nach p(n) Schritten: Endzustand aus F , Bandinhalt bp(n)1bp(n)

Theoretische Informatik II §8: Komplexitätstheorie 22 NP-Vollständige Probleme

Satz von Cook: Codierung der Endbedingung

Nach p(n) Schritten: Endzustand aus F , Bandinhalt bp(n)1bp(n)

Sei F={sr, .., se} und x2 = 1

Codiere Endbedingungen als Formel E mit

E = (zp(n),r ∨ .. ∨ zp(n),e)

∧ ap(n),−p(n),1 ∧ . . . ∧ ap(n),−1,1

∧ ap(n),0,2 ∧

∧ ap(n),1,1 ∧ . . . ∧ ap(n),p(n),1

Theoretische Informatik II §8: Komplexitätstheorie 22 NP-Vollständige Probleme

Satz von Cook: Codierung der Endbedingung

Nach p(n) Schritten: Endzustand aus F , Bandinhalt bp(n)1bp(n)

Sei F={sr, .., se} und x2 = 1

Codiere Endbedingungen als Formel E mit

E = (zp(n),r ∨ .. ∨ zp(n),e)

∧ ap(n),−p(n),1 ∧ . . . ∧ ap(n),−1,1

∧ ap(n),0,2 ∧

∧ ap(n),1,1 ∧ . . . ∧ ap(n),p(n),1

• E ist in KNF

Theoretische Informatik II §8: Komplexitätstheorie 22 NP-Vollständige Probleme

Satz von Cook: Codierung der Endbedingung

Nach p(n) Schritten: Endzustand aus F , Bandinhalt bp(n)1bp(n)

Sei F={sr, .., se} und x2 = 1

Codiere Endbedingungen als Formel E mit

E = (zp(n),r ∨ .. ∨ zp(n),e)

∧ ap(n),−p(n),1 ∧ . . . ∧ ap(n),−1,1

∧ ap(n),0,2 ∧

∧ ap(n),1,1 ∧ . . . ∧ ap(n),p(n),1

• E ist in KNF

• Größe: O(p(n))

Theoretische Informatik II §8: Komplexitätstheorie 22 NP-Vollständige Probleme

Satz von Cook: Codierung der Endbedingung

Nach p(n) Schritten: Endzustand aus F , Bandinhalt bp(n)1bp(n)

Sei F={sr, .., se} und x2 = 1

Codiere Endbedingungen als Formel E mit

E = (zp(n),r ∨ .. ∨ zp(n),e)

∧ ap(n),−p(n),1 ∧ . . . ∧ ap(n),−1,1

∧ ap(n),0,2 ∧

∧ ap(n),1,1 ∧ . . . ∧ ap(n),p(n),1

• E ist in KNF

• Größe: O(p(n))

• Berechnungsaufwand: O(p(n))

Theoretische Informatik II §8: Komplexitätstheorie 23 NP-Vollständige Probleme

Korrektheit der Codierung α(τ ,w) ≡ A ∧ R ∧ Ü ∧ E

• α(τ ,w) ist in KNF
– Jede der Teilformeln ist in KNF

Theoretische Informatik II §8: Komplexitätstheorie 23 NP-Vollständige Probleme

Korrektheit der Codierung α(τ ,w) ≡ A ∧ R ∧ Ü ∧ E

• α(τ ,w) ist in KNF
– Jede der Teilformeln ist in KNF

• α(τ ,w) ist in Zeit O((p(n))3) konstruierbar
– Summe des (deterministischen) Berechnungsaufwands für Teilformeln

Theoretische Informatik II §8: Komplexitätstheorie 23 NP-Vollständige Probleme

Korrektheit der Codierung α(τ ,w) ≡ A ∧ R ∧ Ü ∧ E

• α(τ ,w) ist in KNF
– Jede der Teilformeln ist in KNF

• α(τ ,w) ist in Zeit O((p(n))3) konstruierbar
– Summe des (deterministischen) Berechnungsaufwands für Teilformeln

• w ∈ L ⇒ α(τ ,w) ∈ SAT

Theoretische Informatik II §8: Komplexitätstheorie 23 NP-Vollständige Probleme

Korrektheit der Codierung α(τ ,w) ≡ A ∧ R ∧ Ü ∧ E

• α(τ ,w) ist in KNF
– Jede der Teilformeln ist in KNF

• α(τ ,w) ist in Zeit O((p(n))3) konstruierbar
– Summe des (deterministischen) Berechnungsaufwands für Teilformeln

• w ∈ L ⇒ α(τ ,w) ∈ SAT
– Ist w ∈L, dann gibt es eine akzeptierende Berechnung κ0,..,κp(n) für w

Theoretische Informatik II §8: Komplexitätstheorie 23 NP-Vollständige Probleme

Korrektheit der Codierung α(τ ,w) ≡ A ∧ R ∧ Ü ∧ E

• α(τ ,w) ist in KNF
– Jede der Teilformeln ist in KNF

• α(τ ,w) ist in Zeit O((p(n))3) konstruierbar
– Summe des (deterministischen) Berechnungsaufwands für Teilformeln

• w ∈ L ⇒ α(τ ,w) ∈ SAT
– Ist w ∈L, dann gibt es eine akzeptierende Berechnung κ0,..,κp(n) für w

– Setze: zt,k=1, falls sk Zustand von κt ist (sonst 0)

at,i,j=1, falls xj Inhalt der i-ten Bandzelle in κt ist (sonst 0)

st,i=1, falls i die Kopfposition in κt ist (sonst 0)

bt,l=1, falls in κt die Zeile l der Tabelle von δ benutzt wird (sonst 0)

Theoretische Informatik II §8: Komplexitätstheorie 23 NP-Vollständige Probleme

Korrektheit der Codierung α(τ ,w) ≡ A ∧ R ∧ Ü ∧ E

• α(τ ,w) ist in KNF
– Jede der Teilformeln ist in KNF

• α(τ ,w) ist in Zeit O((p(n))3) konstruierbar
– Summe des (deterministischen) Berechnungsaufwands für Teilformeln

• w ∈ L ⇒ α(τ ,w) ∈ SAT
– Ist w ∈L, dann gibt es eine akzeptierende Berechnung κ0,..,κp(n) für w

– Setze: zt,k=1, falls sk Zustand von κt ist (sonst 0)

at,i,j=1, falls xj Inhalt der i-ten Bandzelle in κt ist (sonst 0)

st,i=1, falls i die Kopfposition in κt ist (sonst 0)

bt,l=1, falls in κt die Zeile l der Tabelle von δ benutzt wird (sonst 0)

– Per Konstruktion erfüllt dies die Formel α(τ ,w),

Theoretische Informatik II §8: Komplexitätstheorie 23 NP-Vollständige Probleme

Korrektheit der Codierung α(τ ,w) ≡ A ∧ R ∧ Ü ∧ E

• α(τ ,w) ist in KNF
– Jede der Teilformeln ist in KNF

• α(τ ,w) ist in Zeit O((p(n))3) konstruierbar
– Summe des (deterministischen) Berechnungsaufwands für Teilformeln

• w ∈ L ⇒ α(τ ,w) ∈ SAT
– Ist w ∈L, dann gibt es eine akzeptierende Berechnung κ0,..,κp(n) für w

– Setze: zt,k=1, falls sk Zustand von κt ist (sonst 0)

at,i,j=1, falls xj Inhalt der i-ten Bandzelle in κt ist (sonst 0)

st,i=1, falls i die Kopfposition in κt ist (sonst 0)

bt,l=1, falls in κt die Zeile l der Tabelle von δ benutzt wird (sonst 0)

– Per Konstruktion erfüllt dies die Formel α(τ ,w), also α(τ ,w) ∈SAT

Theoretische Informatik II §8: Komplexitätstheorie 23 NP-Vollständige Probleme

Korrektheit der Codierung α(τ ,w) ≡ A ∧ R ∧ Ü ∧ E

• α(τ ,w) ist in KNF
– Jede der Teilformeln ist in KNF

• α(τ ,w) ist in Zeit O((p(n))3) konstruierbar
– Summe des (deterministischen) Berechnungsaufwands für Teilformeln

• w ∈ L ⇒ α(τ ,w) ∈ SAT
– Ist w ∈L, dann gibt es eine akzeptierende Berechnung κ0,..,κp(n) für w

– Setze: zt,k=1, falls sk Zustand von κt ist (sonst 0)

at,i,j=1, falls xj Inhalt der i-ten Bandzelle in κt ist (sonst 0)

st,i=1, falls i die Kopfposition in κt ist (sonst 0)

bt,l=1, falls in κt die Zeile l der Tabelle von δ benutzt wird (sonst 0)

– Per Konstruktion erfüllt dies die Formel α(τ ,w), also α(τ ,w) ∈SAT

• α(τ ,w) ∈ SAT ⇒ w ∈ L

Theoretische Informatik II §8: Komplexitätstheorie 23 NP-Vollständige Probleme

Korrektheit der Codierung α(τ ,w) ≡ A ∧ R ∧ Ü ∧ E

• α(τ ,w) ist in KNF
– Jede der Teilformeln ist in KNF

• α(τ ,w) ist in Zeit O((p(n))3) konstruierbar
– Summe des (deterministischen) Berechnungsaufwands für Teilformeln

• w ∈ L ⇒ α(τ ,w) ∈ SAT
– Ist w ∈L, dann gibt es eine akzeptierende Berechnung κ0,..,κp(n) für w

– Setze: zt,k=1, falls sk Zustand von κt ist (sonst 0)

at,i,j=1, falls xj Inhalt der i-ten Bandzelle in κt ist (sonst 0)

st,i=1, falls i die Kopfposition in κt ist (sonst 0)

bt,l=1, falls in κt die Zeile l der Tabelle von δ benutzt wird (sonst 0)

– Per Konstruktion erfüllt dies die Formel α(τ ,w), also α(τ ,w) ∈SAT

• α(τ ,w) ∈ SAT ⇒ w ∈ L
– Ist α(τ ,w) erfüllbar, so kann wegen Formel Ü die Belegung der Variablen

in eine Konfigurationsfolge κ0,..,κp(n) umgerechnet werden

Theoretische Informatik II §8: Komplexitätstheorie 23 NP-Vollständige Probleme

Korrektheit der Codierung α(τ ,w) ≡ A ∧ R ∧ Ü ∧ E

• α(τ ,w) ist in KNF
– Jede der Teilformeln ist in KNF

• α(τ ,w) ist in Zeit O((p(n))3) konstruierbar
– Summe des (deterministischen) Berechnungsaufwands für Teilformeln

• w ∈ L ⇒ α(τ ,w) ∈ SAT
– Ist w ∈L, dann gibt es eine akzeptierende Berechnung κ0,..,κp(n) für w

– Setze: zt,k=1, falls sk Zustand von κt ist (sonst 0)

at,i,j=1, falls xj Inhalt der i-ten Bandzelle in κt ist (sonst 0)

st,i=1, falls i die Kopfposition in κt ist (sonst 0)

bt,l=1, falls in κt die Zeile l der Tabelle von δ benutzt wird (sonst 0)

– Per Konstruktion erfüllt dies die Formel α(τ ,w), also α(τ ,w) ∈SAT

• α(τ ,w) ∈ SAT ⇒ w ∈ L
– Ist α(τ ,w) erfüllbar, so kann wegen Formel Ü die Belegung der Variablen

in eine Konfigurationsfolge κ0,..,κp(n) umgerechnet werden

– Wegen der Formel R gibt es genau eine solche Konfigurationsfolge

Theoretische Informatik II §8: Komplexitätstheorie 23 NP-Vollständige Probleme

Korrektheit der Codierung α(τ ,w) ≡ A ∧ R ∧ Ü ∧ E

• α(τ ,w) ist in KNF
– Jede der Teilformeln ist in KNF

• α(τ ,w) ist in Zeit O((p(n))3) konstruierbar
– Summe des (deterministischen) Berechnungsaufwands für Teilformeln

• w ∈ L ⇒ α(τ ,w) ∈ SAT
– Ist w ∈L, dann gibt es eine akzeptierende Berechnung κ0,..,κp(n) für w

– Setze: zt,k=1, falls sk Zustand von κt ist (sonst 0)

at,i,j=1, falls xj Inhalt der i-ten Bandzelle in κt ist (sonst 0)

st,i=1, falls i die Kopfposition in κt ist (sonst 0)

bt,l=1, falls in κt die Zeile l der Tabelle von δ benutzt wird (sonst 0)

– Per Konstruktion erfüllt dies die Formel α(τ ,w), also α(τ ,w) ∈SAT

• α(τ ,w) ∈ SAT ⇒ w ∈ L
– Ist α(τ ,w) erfüllbar, so kann wegen Formel Ü die Belegung der Variablen

in eine Konfigurationsfolge κ0,..,κp(n) umgerechnet werden

– Wegen der Formel R gibt es genau eine solche Konfigurationsfolge

– Wegen A und E repräsentiert diese die Berechnung hτ(w) = 1,

Theoretische Informatik II §8: Komplexitätstheorie 23 NP-Vollständige Probleme

Korrektheit der Codierung α(τ ,w) ≡ A ∧ R ∧ Ü ∧ E

• α(τ ,w) ist in KNF
– Jede der Teilformeln ist in KNF

• α(τ ,w) ist in Zeit O((p(n))3) konstruierbar
– Summe des (deterministischen) Berechnungsaufwands für Teilformeln

• w ∈ L ⇒ α(τ ,w) ∈ SAT
– Ist w ∈L, dann gibt es eine akzeptierende Berechnung κ0,..,κp(n) für w

– Setze: zt,k=1, falls sk Zustand von κt ist (sonst 0)

at,i,j=1, falls xj Inhalt der i-ten Bandzelle in κt ist (sonst 0)

st,i=1, falls i die Kopfposition in κt ist (sonst 0)

bt,l=1, falls in κt die Zeile l der Tabelle von δ benutzt wird (sonst 0)

– Per Konstruktion erfüllt dies die Formel α(τ ,w), also α(τ ,w) ∈SAT

• α(τ ,w) ∈ SAT ⇒ w ∈ L
– Ist α(τ ,w) erfüllbar, so kann wegen Formel Ü die Belegung der Variablen

in eine Konfigurationsfolge κ0,..,κp(n) umgerechnet werden

– Wegen der Formel R gibt es genau eine solche Konfigurationsfolge

– Wegen A und E repräsentiert diese die Berechnung hτ(w) = 1, also w ∈L

Theoretische Informatik II §8: Komplexitätstheorie 24 NP-Vollständige Probleme

Methodik für Nachweis von NP-Vollständigkeit

• Zeige L ∈ NP:

Theoretische Informatik II §8: Komplexitätstheorie 24 NP-Vollständige Probleme

Methodik für Nachweis von NP-Vollständigkeit

• Zeige L ∈ NP:

– Beschreibe, welchen Lösungsvorschlag das Orakel generiert

Theoretische Informatik II §8: Komplexitätstheorie 24 NP-Vollständige Probleme

Methodik für Nachweis von NP-Vollständigkeit

• Zeige L ∈ NP:

– Beschreibe, welchen Lösungsvorschlag das Orakel generiert

– Beschreibe, wie Lösungsvorschlag überprüft wird

Theoretische Informatik II §8: Komplexitätstheorie 24 NP-Vollständige Probleme

Methodik für Nachweis von NP-Vollständigkeit

• Zeige L ∈ NP:

– Beschreibe, welchen Lösungsvorschlag das Orakel generiert

– Beschreibe, wie Lösungsvorschlag überprüft wird

– Zeige, daß das Prüfverfahren polynomiell ist

Theoretische Informatik II §8: Komplexitätstheorie 24 NP-Vollständige Probleme

Methodik für Nachweis von NP-Vollständigkeit

• Zeige L ∈ NP:

– Beschreibe, welchen Lösungsvorschlag das Orakel generiert

– Beschreibe, wie Lösungsvorschlag überprüft wird

– Zeige, daß das Prüfverfahren polynomiell ist

• Zeige ∃L′ ∈ NPC. L′≤pL

Theoretische Informatik II §8: Komplexitätstheorie 24 NP-Vollständige Probleme

Methodik für Nachweis von NP-Vollständigkeit

• Zeige L ∈ NP:

– Beschreibe, welchen Lösungsvorschlag das Orakel generiert

– Beschreibe, wie Lösungsvorschlag überprüft wird

– Zeige, daß das Prüfverfahren polynomiell ist

• Zeige ∃L′ ∈ NPC. L′≤pL (anstatt ∀L′ ∈NP .L′≤pL)

Theoretische Informatik II §8: Komplexitätstheorie 24 NP-Vollständige Probleme

Methodik für Nachweis von NP-Vollständigkeit

• Zeige L ∈ NP:

– Beschreibe, welchen Lösungsvorschlag das Orakel generiert

– Beschreibe, wie Lösungsvorschlag überprüft wird

– Zeige, daß das Prüfverfahren polynomiell ist

• Zeige ∃L′ ∈ NPC. L′≤pL (anstatt ∀L′ ∈NP .L′≤pL)

– Wähle ein ähnliches, bekanntes Problem L′ ∈NPC

Theoretische Informatik II §8: Komplexitätstheorie 24 NP-Vollständige Probleme

Methodik für Nachweis von NP-Vollständigkeit

• Zeige L ∈ NP:

– Beschreibe, welchen Lösungsvorschlag das Orakel generiert

– Beschreibe, wie Lösungsvorschlag überprüft wird

– Zeige, daß das Prüfverfahren polynomiell ist

• Zeige ∃L′ ∈ NPC. L′≤pL (anstatt ∀L′ ∈NP .L′≤pL)

– Wähle ein ähnliches, bekanntes Problem L′ ∈NPC
– Beschreibe Transformationsfunktion f , welche Eingaben aus

der Sprache für L′ in Worte der Sprache für L umwandelt

Theoretische Informatik II §8: Komplexitätstheorie 24 NP-Vollständige Probleme

Methodik für Nachweis von NP-Vollständigkeit

• Zeige L ∈ NP:

– Beschreibe, welchen Lösungsvorschlag das Orakel generiert

– Beschreibe, wie Lösungsvorschlag überprüft wird

– Zeige, daß das Prüfverfahren polynomiell ist

• Zeige ∃L′ ∈ NPC. L′≤pL (anstatt ∀L′ ∈NP .L′≤pL)

– Wähle ein ähnliches, bekanntes Problem L′ ∈NPC
– Beschreibe Transformationsfunktion f , welche Eingaben aus

der Sprache für L′ in Worte der Sprache für L umwandelt

– Zeige für alle x: x ∈L′ ⇔ f(x) ∈L (also L′ = f−1(L))

Theoretische Informatik II §8: Komplexitätstheorie 24 NP-Vollständige Probleme

Methodik für Nachweis von NP-Vollständigkeit

• Zeige L ∈ NP:

– Beschreibe, welchen Lösungsvorschlag das Orakel generiert

– Beschreibe, wie Lösungsvorschlag überprüft wird

– Zeige, daß das Prüfverfahren polynomiell ist

• Zeige ∃L′ ∈ NPC. L′≤pL (anstatt ∀L′ ∈NP .L′≤pL)

– Wähle ein ähnliches, bekanntes Problem L′ ∈NPC
– Beschreibe Transformationsfunktion f , welche Eingaben aus

der Sprache für L′ in Worte der Sprache für L umwandelt

– Zeige für alle x: x ∈L′ ⇔ f(x) ∈L (also L′ = f−1(L))

– Zeige, daß f in polynomieller Zeit berechnet werden kann

Theoretische Informatik II §8: Komplexitätstheorie 25 NP-Vollständige Probleme

Erfüllbarkeitsproblem mit 3 Literalen pro Klausel

3SAT

= {k1, ..km | ∀i≤m. ∃zij ∈{x1, x1, ..., xn, xn}. ki = zi1 ∨zi2 ∨zi3

∧ ∃a1, ..an ∈{0,1}. ∀j≤m. a1, ..an erfüllt kj }

Theoretische Informatik II §8: Komplexitätstheorie 25 NP-Vollständige Probleme

Erfüllbarkeitsproblem mit 3 Literalen pro Klausel

3SAT

= {k1, ..km | ∀i≤m. ∃zij ∈{x1, x1, ..., xn, xn}. ki = zi1 ∨zi2 ∨zi3

∧ ∃a1, ..an ∈{0,1}. ∀j≤m. a1, ..an erfüllt kj }

• 3SAT ∈ NP

Theoretische Informatik II §8: Komplexitätstheorie 25 NP-Vollständige Probleme

Erfüllbarkeitsproblem mit 3 Literalen pro Klausel

3SAT

= {k1, ..km | ∀i≤m. ∃zij ∈{x1, x1, ..., xn, xn}. ki = zi1 ∨zi2 ∨zi3

∧ ∃a1, ..an ∈{0,1}. ∀j≤m. a1, ..an erfüllt kj }

• 3SAT ∈ NP
– Wie SAT ∈NP : Rate Belegung der Variablen und werte Klauseln aus

Theoretische Informatik II §8: Komplexitätstheorie 25 NP-Vollständige Probleme

Erfüllbarkeitsproblem mit 3 Literalen pro Klausel

3SAT

= {k1, ..km | ∀i≤m. ∃zij ∈{x1, x1, ..., xn, xn}. ki = zi1 ∨zi2 ∨zi3

∧ ∃a1, ..an ∈{0,1}. ∀j≤m. a1, ..an erfüllt kj }

• 3SAT ∈ NP
– Wie SAT ∈NP : Rate Belegung der Variablen und werte Klauseln aus

• SAT ≤p 3SAT : Satz J

Theoretische Informatik II §8: Komplexitätstheorie 25 NP-Vollständige Probleme

Erfüllbarkeitsproblem mit 3 Literalen pro Klausel

3SAT

= {k1, ..km | ∀i≤m. ∃zij ∈{x1, x1, ..., xn, xn}. ki = zi1 ∨zi2 ∨zi3

∧ ∃a1, ..an ∈{0,1}. ∀j≤m. a1, ..an erfüllt kj }

• 3SAT ∈ NP
– Wie SAT ∈NP : Rate Belegung der Variablen und werte Klauseln aus

• SAT ≤p 3SAT : Satz J

– Normalisierung der Klauseln k1, ..km über x1, ..xn.

Ersetze Klausel ki durche äquivalente Menge von Dreierklauseln

Theoretische Informatik II §8: Komplexitätstheorie 25 NP-Vollständige Probleme

Erfüllbarkeitsproblem mit 3 Literalen pro Klausel

3SAT

= {k1, ..km | ∀i≤m. ∃zij ∈{x1, x1, ..., xn, xn}. ki = zi1 ∨zi2 ∨zi3

∧ ∃a1, ..an ∈{0,1}. ∀j≤m. a1, ..an erfüllt kj }

• 3SAT ∈ NP
– Wie SAT ∈NP : Rate Belegung der Variablen und werte Klauseln aus

• SAT ≤p 3SAT : Satz J

– Normalisierung der Klauseln k1, ..km über x1, ..xn.

Ersetze Klausel ki durche äquivalente Menge von Dreierklauseln

· Ersetze einelementige Klauseln ki = z durch z ∨z ∨z

· Ersetze zweielementige Klauseln ki = z ∨z′ durch z ∨z ∨z′

· Übernehme dreielementige Klauseln unverändert

· Ersetze Klauseln ki = z1 ∨z2... ∨zj durch j-2 neue Klauseln mit neuen

Variablen yi,l: (z1 ∨z2 ∨yi,1) ∧ (yi,1 ∨z3 ∨yi,2) ∧ . . . (yi,j−3 ∨zj−1 ∨zj)

Theoretische Informatik II §8: Komplexitätstheorie 25 NP-Vollständige Probleme

Erfüllbarkeitsproblem mit 3 Literalen pro Klausel

3SAT

= {k1, ..km | ∀i≤m. ∃zij ∈{x1, x1, ..., xn, xn}. ki = zi1 ∨zi2 ∨zi3

∧ ∃a1, ..an ∈{0,1}. ∀j≤m. a1, ..an erfüllt kj }

• 3SAT ∈ NP
– Wie SAT ∈NP : Rate Belegung der Variablen und werte Klauseln aus

• SAT ≤p 3SAT : Satz J

– Normalisierung der Klauseln k1, ..km über x1, ..xn.

Ersetze Klausel ki durche äquivalente Menge von Dreierklauseln

· Ersetze einelementige Klauseln ki = z durch z ∨z ∨z

· Ersetze zweielementige Klauseln ki = z ∨z′ durch z ∨z ∨z′

· Übernehme dreielementige Klauseln unverändert

· Ersetze Klauseln ki = z1 ∨z2... ∨zj durch j-2 neue Klauseln mit neuen

Variablen yi,l: (z1 ∨z2 ∨yi,1) ∧ (yi,1 ∨z3 ∨yi,2) ∧ . . . (yi,j−3 ∨zj−1 ∨zj)

– Normalisierung der Klauseln möglich in polynomieller Zeit

Theoretische Informatik II §8: Komplexitätstheorie 25 NP-Vollständige Probleme

Erfüllbarkeitsproblem mit 3 Literalen pro Klausel

3SAT

= {k1, ..km | ∀i≤m. ∃zij ∈{x1, x1, ..., xn, xn}. ki = zi1 ∨zi2 ∨zi3

∧ ∃a1, ..an ∈{0,1}. ∀j≤m. a1, ..an erfüllt kj }

• 3SAT ∈ NP
– Wie SAT ∈NP : Rate Belegung der Variablen und werte Klauseln aus

• SAT ≤p 3SAT : Satz J

– Normalisierung der Klauseln k1, ..km über x1, ..xn.

Ersetze Klausel ki durche äquivalente Menge von Dreierklauseln

· Ersetze einelementige Klauseln ki = z durch z ∨z ∨z

· Ersetze zweielementige Klauseln ki = z ∨z′ durch z ∨z ∨z′

· Übernehme dreielementige Klauseln unverändert

· Ersetze Klauseln ki = z1 ∨z2... ∨zj durch j-2 neue Klauseln mit neuen

Variablen yi,l: (z1 ∨z2 ∨yi,1) ∧ (yi,1 ∨z3 ∨yi,2) ∧ . . . (yi,j−3 ∨zj−1 ∨zj)

– Normalisierung der Klauseln möglich in polynomieller Zeit

– ki erfüllbar genau dann wenn normalisierte Klauselmenge erfüllbar

Theoretische Informatik II §8: Komplexitätstheorie 25 NP-Vollständige Probleme

Erfüllbarkeitsproblem mit 3 Literalen pro Klausel

3SAT

= {k1, ..km | ∀i≤m. ∃zij ∈{x1, x1, ..., xn, xn}. ki = zi1 ∨zi2 ∨zi3

∧ ∃a1, ..an ∈{0,1}. ∀j≤m. a1, ..an erfüllt kj }

• 3SAT ∈ NP
– Wie SAT ∈NP : Rate Belegung der Variablen und werte Klauseln aus

• SAT ≤p 3SAT : Satz J

– Normalisierung der Klauseln k1, ..km über x1, ..xn.

Ersetze Klausel ki durche äquivalente Menge von Dreierklauseln

· Ersetze einelementige Klauseln ki = z durch z ∨z ∨z

· Ersetze zweielementige Klauseln ki = z ∨z′ durch z ∨z ∨z′

· Übernehme dreielementige Klauseln unverändert

· Ersetze Klauseln ki = z1 ∨z2... ∨zj durch j-2 neue Klauseln mit neuen

Variablen yi,l: (z1 ∨z2 ∨yi,1) ∧ (yi,1 ∨z3 ∨yi,2) ∧ . . . (yi,j−3 ∨zj−1 ∨zj)

– Normalisierung der Klauseln möglich in polynomieller Zeit

– ki erfüllbar genau dann wenn normalisierte Klauselmenge erfüllbar

– Für die Transformation f gilt: ∀F . F ∈SAT ⇔ f(F) ∈3SAT

Theoretische Informatik II §8: Komplexitätstheorie 26 NP-Vollständige Probleme

Das Cliquen Problem ist NP-vollständig Def K/ Satz L

CLIQUE ={ (G, k) | G = (V, E) Graph ∧ (∃Vc⊆V . |Vc|≥k ∧ Vc is Clique in G) }

• CLIQUE ∈ NP:

Theoretische Informatik II §8: Komplexitätstheorie 26 NP-Vollständige Probleme

Das Cliquen Problem ist NP-vollständig Def K/ Satz L

CLIQUE ={ (G, k) | G = (V, E) Graph ∧ (∃Vc⊆V . |Vc|≥k ∧ Vc is Clique in G) }

• CLIQUE ∈ NP:

– Rate eine Kantenmenge Vc⊆V

Theoretische Informatik II §8: Komplexitätstheorie 26 NP-Vollständige Probleme

Das Cliquen Problem ist NP-vollständig Def K/ Satz L

CLIQUE ={ (G, k) | G = (V, E) Graph ∧ (∃Vc⊆V . |Vc|≥k ∧ Vc is Clique in G) }

• CLIQUE ∈ NP:

– Rate eine Kantenmenge Vc⊆V

– Prüfe |Vc|≥k maximal |Vc| Schritte

Theoretische Informatik II §8: Komplexitätstheorie 26 NP-Vollständige Probleme

Das Cliquen Problem ist NP-vollständig Def K/ Satz L

CLIQUE ={ (G, k) | G = (V, E) Graph ∧ (∃Vc⊆V . |Vc|≥k ∧ Vc is Clique in G) }

• CLIQUE ∈ NP:

– Rate eine Kantenmenge Vc⊆V

– Prüfe |Vc|≥k maximal |Vc| Schritte

– Prüfe: ∀v 6=v′ ∈Vc. {v, v′} ∈E maximal |Vc|2 ∗ |E|≤|V |4 Schritte

Theoretische Informatik II §8: Komplexitätstheorie 26 NP-Vollständige Probleme

Das Cliquen Problem ist NP-vollständig Def K/ Satz L

CLIQUE ={ (G, k) | G = (V, E) Graph ∧ (∃Vc⊆V . |Vc|≥k ∧ Vc is Clique in G) }

• CLIQUE ∈ NP:

– Rate eine Kantenmenge Vc⊆V

– Prüfe |Vc|≥k maximal |Vc| Schritte

– Prüfe: ∀v 6=v′ ∈Vc. {v, v′} ∈E maximal |Vc|2 ∗ |E|≤|V |4 Schritte

• 3SAT≤pCLIQUE

Theoretische Informatik II §8: Komplexitätstheorie 26 NP-Vollständige Probleme

Das Cliquen Problem ist NP-vollständig Def K/ Satz L

CLIQUE ={ (G, k) | G = (V, E) Graph ∧ (∃Vc⊆V . |Vc|≥k ∧ Vc is Clique in G) }

• CLIQUE ∈ NP:

– Rate eine Kantenmenge Vc⊆V

– Prüfe |Vc|≥k maximal |Vc| Schritte

– Prüfe: ∀v 6=v′ ∈Vc. {v, v′} ∈E maximal |Vc|2 ∗ |E|≤|V |4 Schritte

• 3SAT≤pCLIQUE

– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}

Theoretische Informatik II §8: Komplexitätstheorie 26 NP-Vollständige Probleme

Das Cliquen Problem ist NP-vollständig Def K/ Satz L

CLIQUE ={ (G, k) | G = (V, E) Graph ∧ (∃Vc⊆V . |Vc|≥k ∧ Vc is Clique in G) }

• CLIQUE ∈ NP:

– Rate eine Kantenmenge Vc⊆V

– Prüfe |Vc|≥k maximal |Vc| Schritte

– Prüfe: ∀v 6=v′ ∈Vc. {v, v′} ∈E maximal |Vc|2 ∗ |E|≤|V |4 Schritte

• 3SAT≤pCLIQUE

– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Graphen GF := (V, E) mit

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Theoretische Informatik II §8: Komplexitätstheorie 26 NP-Vollständige Probleme

Das Cliquen Problem ist NP-vollständig Def K/ Satz L

CLIQUE ={ (G, k) | G = (V, E) Graph ∧ (∃Vc⊆V . |Vc|≥k ∧ Vc is Clique in G) }

• CLIQUE ∈ NP:

– Rate eine Kantenmenge Vc⊆V

– Prüfe |Vc|≥k maximal |Vc| Schritte

– Prüfe: ∀v 6=v′ ∈Vc. {v, v′} ∈E maximal |Vc|2 ∗ |E|≤|V |4 Schritte

• 3SAT≤pCLIQUE

– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Graphen GF := (V, E) mit

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}
– Setze f(F) := (GF ,m)

Theoretische Informatik II §8: Komplexitätstheorie 26 NP-Vollständige Probleme

Das Cliquen Problem ist NP-vollständig Def K/ Satz L

CLIQUE ={ (G, k) | G = (V, E) Graph ∧ (∃Vc⊆V . |Vc|≥k ∧ Vc is Clique in G) }

• CLIQUE ∈ NP:

– Rate eine Kantenmenge Vc⊆V

– Prüfe |Vc|≥k maximal |Vc| Schritte

– Prüfe: ∀v 6=v′ ∈Vc. {v, v′} ∈E maximal |Vc|2 ∗ |E|≤|V |4 Schritte

• 3SAT≤pCLIQUE

– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Graphen GF := (V, E) mit

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}
– Setze f(F) := (GF ,m)

– f ist in polynomieller Zeit berechenbar

Theoretische Informatik II §8: Komplexitätstheorie 27 NP-Vollständige Probleme

Codierung einer Formel als Cliquenproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

Theoretische Informatik II §8: Komplexitätstheorie 27 NP-Vollständige Probleme

Codierung einer Formel als Cliquenproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

k1

x1

x2

x3

Theoretische Informatik II §8: Komplexitätstheorie 27 NP-Vollständige Probleme

Codierung einer Formel als Cliquenproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

k1

x1

x2

x3

k2

x4

x2

x1

Theoretische Informatik II §8: Komplexitätstheorie 27 NP-Vollständige Probleme

Codierung einer Formel als Cliquenproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

k1

x1

x2

x3

k2

x4

x2

x1

k3
x1 x2 x3

Theoretische Informatik II §8: Komplexitätstheorie 27 NP-Vollständige Probleme

Codierung einer Formel als Cliquenproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

k1

x1

x2

x3

k2

x4

x2

x1

k3
x1 x2 x3

Theoretische Informatik II §8: Komplexitätstheorie 27 NP-Vollständige Probleme

Codierung einer Formel als Cliquenproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

k1

x1

x2

x3

k2

x4

x2

x1

k3
x1 x2 x3

Theoretische Informatik II §8: Komplexitätstheorie 27 NP-Vollständige Probleme

Codierung einer Formel als Cliquenproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

k1

x1

x2

x3

k2

x4

x2

x1

k3
x1 x2 x3

Theoretische Informatik II §8: Komplexitätstheorie 27 NP-Vollständige Probleme

Codierung einer Formel als Cliquenproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

k1

x1

x2

x3

k2

x4

x2

x1

k3
x1 x2 x3

Theoretische Informatik II §8: Komplexitätstheorie 27 NP-Vollständige Probleme

Codierung einer Formel als Cliquenproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

k1

x1

x2

x3

k2

x4

x2

x1

k3
x1 x2 x3

Theoretische Informatik II §8: Komplexitätstheorie 27 NP-Vollständige Probleme

Codierung einer Formel als Cliquenproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

k1

x1

x2

x3

k2

x4

x2

x1

k3
x1 x2 x3

Theoretische Informatik II §8: Komplexitätstheorie 27 NP-Vollständige Probleme

Codierung einer Formel als Cliquenproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

k1

x1

x2

x3

k2

x4

x2

x1

k3
x1 x2 x3

Gibt es in dem Graphen eine 3-Clique?

Theoretische Informatik II §8: Komplexitätstheorie 27 NP-Vollständige Probleme

Codierung einer Formel als Cliquenproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

k1

x1

x2

x3

k2

x4

x2

x1

k3
x1 x2 x3

Gibt es in dem Graphen eine 3-Clique?

Theoretische Informatik II §8: Komplexitätstheorie 28 NP-Vollständige Probleme

Korrektheit der Transformation

Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
Setze f(F) := (GF , m) mit GF := (V, E), wobei

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Theoretische Informatik II §8: Komplexitätstheorie 28 NP-Vollständige Probleme

Korrektheit der Transformation

Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
Setze f(F) := (GF , m) mit GF := (V, E), wobei

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Es sei f(F) ∈CLIQUE

Theoretische Informatik II §8: Komplexitätstheorie 28 NP-Vollständige Probleme

Korrektheit der Transformation

Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
Setze f(F) := (GF , m) mit GF := (V, E), wobei

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Es sei f(F) ∈CLIQUE

Dann hat GF eine m-Clique Vc

Theoretische Informatik II §8: Komplexitätstheorie 28 NP-Vollständige Probleme

Korrektheit der Transformation

Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
Setze f(F) := (GF , m) mit GF := (V, E), wobei

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Es sei f(F) ∈CLIQUE

Dann hat GF eine m-Clique Vc

Per Konstruktion von E enthält Vc aus jedem der Blöcke bi := {vij | 1≤j≤3}
genau einen Knoten

Theoretische Informatik II §8: Komplexitätstheorie 28 NP-Vollständige Probleme

Korrektheit der Transformation

Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
Setze f(F) := (GF , m) mit GF := (V, E), wobei

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Es sei f(F) ∈CLIQUE

Dann hat GF eine m-Clique Vc

Per Konstruktion von E enthält Vc aus jedem der Blöcke bi := {vij | 1≤j≤3}
genau einen Knoten und keine zwei Knoten in Vc sind komplementär (zij 6=zi′j′)

Theoretische Informatik II §8: Komplexitätstheorie 28 NP-Vollständige Probleme

Korrektheit der Transformation

Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
Setze f(F) := (GF , m) mit GF := (V, E), wobei

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Es sei f(F) ∈CLIQUE

Dann hat GF eine m-Clique Vc

Per Konstruktion von E enthält Vc aus jedem der Blöcke bi := {vij | 1≤j≤3}
genau einen Knoten und keine zwei Knoten in Vc sind komplementär (zij 6=zi′j′)

Eine Belegung der zugehörigen zij mit 1 erfüllt alle Klauseln ki von F

Theoretische Informatik II §8: Komplexitätstheorie 28 NP-Vollständige Probleme

Korrektheit der Transformation

Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
Setze f(F) := (GF , m) mit GF := (V, E), wobei

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Es sei f(F) ∈CLIQUE

Dann hat GF eine m-Clique Vc

Per Konstruktion von E enthält Vc aus jedem der Blöcke bi := {vij | 1≤j≤3}
genau einen Knoten und keine zwei Knoten in Vc sind komplementär (zij 6=zi′j′)

Eine Belegung der zugehörigen zij mit 1 erfüllt alle Klauseln ki von F

Also gilt F ∈3SAT

Theoretische Informatik II §8: Komplexitätstheorie 28 NP-Vollständige Probleme

Korrektheit der Transformation

Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
Setze f(F) := (GF , m) mit GF := (V, E), wobei

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Es sei f(F) ∈CLIQUE

Dann hat GF eine m-Clique Vc

Per Konstruktion von E enthält Vc aus jedem der Blöcke bi := {vij | 1≤j≤3}
genau einen Knoten und keine zwei Knoten in Vc sind komplementär (zij 6=zi′j′)

Eine Belegung der zugehörigen zij mit 1 erfüllt alle Klauseln ki von F

Also gilt F ∈3SAT

Gilt umgekehrt F ∈3SAT , so gibt es eine erfüllende Belegung der zij

Theoretische Informatik II §8: Komplexitätstheorie 28 NP-Vollständige Probleme

Korrektheit der Transformation

Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
Setze f(F) := (GF , m) mit GF := (V, E), wobei

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Es sei f(F) ∈CLIQUE

Dann hat GF eine m-Clique Vc

Per Konstruktion von E enthält Vc aus jedem der Blöcke bi := {vij | 1≤j≤3}
genau einen Knoten und keine zwei Knoten in Vc sind komplementär (zij 6=zi′j′)

Eine Belegung der zugehörigen zij mit 1 erfüllt alle Klauseln ki von F

Also gilt F ∈3SAT

Gilt umgekehrt F ∈3SAT , so gibt es eine erfüllende Belegung der zij

Wähle aus jeder Klausel ki ein Literal mit dem Wert 1

Theoretische Informatik II §8: Komplexitätstheorie 28 NP-Vollständige Probleme

Korrektheit der Transformation

Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
Setze f(F) := (GF , m) mit GF := (V, E), wobei

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Es sei f(F) ∈CLIQUE

Dann hat GF eine m-Clique Vc

Per Konstruktion von E enthält Vc aus jedem der Blöcke bi := {vij | 1≤j≤3}
genau einen Knoten und keine zwei Knoten in Vc sind komplementär (zij 6=zi′j′)

Eine Belegung der zugehörigen zij mit 1 erfüllt alle Klauseln ki von F

Also gilt F ∈3SAT

Gilt umgekehrt F ∈3SAT , so gibt es eine erfüllende Belegung der zij

Wähle aus jeder Klausel ki ein Literal mit dem Wert 1

Die zugehörigen Knoten bilden eine m-Clique in GF

Theoretische Informatik II §8: Komplexitätstheorie 28 NP-Vollständige Probleme

Korrektheit der Transformation

Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
Setze f(F) := (GF , m) mit GF := (V, E), wobei

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Es sei f(F) ∈CLIQUE

Dann hat GF eine m-Clique Vc

Per Konstruktion von E enthält Vc aus jedem der Blöcke bi := {vij | 1≤j≤3}
genau einen Knoten und keine zwei Knoten in Vc sind komplementär (zij 6=zi′j′)

Eine Belegung der zugehörigen zij mit 1 erfüllt alle Klauseln ki von F

Also gilt F ∈3SAT

Gilt umgekehrt F ∈3SAT , so gibt es eine erfüllende Belegung der zij

Wähle aus jeder Klausel ki ein Literal mit dem Wert 1

Die zugehörigen Knoten bilden eine m-Clique in GF

Also gilt f(F) ∈CLIQUE

Theoretische Informatik II §8: Komplexitätstheorie 28 NP-Vollständige Probleme

Korrektheit der Transformation

Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
Setze f(F) := (GF , m) mit GF := (V, E), wobei

V := {vij | 1≤i≤m, 1≤j≤3} und E := { {vij, vi′j′} | i6=i′ ∧zij 6=zi′j′}

Es sei f(F) ∈CLIQUE

Dann hat GF eine m-Clique Vc

Per Konstruktion von E enthält Vc aus jedem der Blöcke bi := {vij | 1≤j≤3}
genau einen Knoten und keine zwei Knoten in Vc sind komplementär (zij 6=zi′j′)

Eine Belegung der zugehörigen zij mit 1 erfüllt alle Klauseln ki von F

Also gilt F ∈3SAT

Gilt umgekehrt F ∈3SAT , so gibt es eine erfüllende Belegung der zij

Wähle aus jeder Klausel ki ein Literal mit dem Wert 1

Die zugehörigen Knoten bilden eine m-Clique in GF

Also gilt f(F) ∈CLIQUE

⇓

3SAT ≤p CLIQUE

Theoretische Informatik II §8: Komplexitätstheorie 29 NP-Vollständige Probleme

Vertex Cover Problem ist NP-vollständig Def/Satz M

V C = { (G, k) | G Graph ∧ (∃V ′⊆V . |V ′|≤k ∧ V ′ ist Knotenüberdeckung von G)}

• V C ∈ NP:

Theoretische Informatik II §8: Komplexitätstheorie 29 NP-Vollständige Probleme

Vertex Cover Problem ist NP-vollständig Def/Satz M

V C = { (G, k) | G Graph ∧ (∃V ′⊆V . |V ′|≤k ∧ V ′ ist Knotenüberdeckung von G)}

• V C ∈ NP:

– Rate eine Kantenmenge V ′⊆V

Theoretische Informatik II §8: Komplexitätstheorie 29 NP-Vollständige Probleme

Vertex Cover Problem ist NP-vollständig Def/Satz M

V C = { (G, k) | G Graph ∧ (∃V ′⊆V . |V ′|≤k ∧ V ′ ist Knotenüberdeckung von G)}

• V C ∈ NP:

– Rate eine Kantenmenge V ′⊆V

– Prüfe |V ′|≤k maximal |V ′| Schritte

Theoretische Informatik II §8: Komplexitätstheorie 29 NP-Vollständige Probleme

Vertex Cover Problem ist NP-vollständig Def/Satz M

V C = { (G, k) | G Graph ∧ (∃V ′⊆V . |V ′|≤k ∧ V ′ ist Knotenüberdeckung von G)}

• V C ∈ NP:

– Rate eine Kantenmenge V ′⊆V

– Prüfe |V ′|≤k maximal |V ′| Schritte

– Prüfe: ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′ maximal |V ′| ∗ |E|≤|V |3 Schritte

Theoretische Informatik II §8: Komplexitätstheorie 29 NP-Vollständige Probleme

Vertex Cover Problem ist NP-vollständig Def/Satz M

V C = { (G, k) | G Graph ∧ (∃V ′⊆V . |V ′|≤k ∧ V ′ ist Knotenüberdeckung von G)}

• V C ∈ NP:

– Rate eine Kantenmenge V ′⊆V

– Prüfe |V ′|≤k maximal |V ′| Schritte

– Prüfe: ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′ maximal |V ′| ∗ |E|≤|V |3 Schritte

• CLIQUE≤pV C

Theoretische Informatik II §8: Komplexitätstheorie 29 NP-Vollständige Probleme

Vertex Cover Problem ist NP-vollständig Def/Satz M

V C = { (G, k) | G Graph ∧ (∃V ′⊆V . |V ′|≤k ∧ V ′ ist Knotenüberdeckung von G)}

• V C ∈ NP:

– Rate eine Kantenmenge V ′⊆V

– Prüfe |V ′|≤k maximal |V ′| Schritte

– Prüfe: ∀{v, v′} ∈E. v ∈V ′ ∨v′ ∈V ′ maximal |V ′| ∗ |E|≤|V |3 Schritte

• CLIQUE≤pV C

– Bereits beweisen Folie 6

Theoretische Informatik II §8: Komplexitätstheorie 30 NP-Vollständige Probleme

Weitere NP-vollständige Graphenprobleme

• Independent Set CLIQUE ≤p IS

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es in G eine unabhängige Knotenmenge der Größe k?

Theoretische Informatik II §8: Komplexitätstheorie 30 NP-Vollständige Probleme

Weitere NP-vollständige Graphenprobleme

• Independent Set CLIQUE ≤p IS

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es in G eine unabhängige Knotenmenge der Größe k?

IS ={ (G, k) | G = (V, E) Graph
∧ ∃Vi⊆V . |Vc|≥k ∧ ∀u, v ∈Vi. {u, v} 6∈E }

Theoretische Informatik II §8: Komplexitätstheorie 30 NP-Vollständige Probleme

Weitere NP-vollständige Graphenprobleme

• Independent Set CLIQUE ≤p IS

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es in G eine unabhängige Knotenmenge der Größe k?

IS ={ (G, k) | G = (V, E) Graph
∧ ∃Vi⊆V . |Vc|≥k ∧ ∀u, v ∈Vi. {u, v} 6∈E }

• Subgraph Isomorphism CLIQUE ≤p SGI

– Gegeben zwei Graphen G1 = (V1, E1) und G2 = (V2, E2).

– Gibt es einen Subgraphen H von G1, der isomorph zu G2 ist?

Theoretische Informatik II §8: Komplexitätstheorie 30 NP-Vollständige Probleme

Weitere NP-vollständige Graphenprobleme

• Independent Set CLIQUE ≤p IS

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es in G eine unabhängige Knotenmenge der Größe k?

IS ={ (G, k) | G = (V, E) Graph
∧ ∃Vi⊆V . |Vc|≥k ∧ ∀u, v ∈Vi. {u, v} 6∈E }

• Subgraph Isomorphism CLIQUE ≤p SGI

– Gegeben zwei Graphen G1 = (V1, E1) und G2 = (V2, E2).

– Gibt es einen Subgraphen H von G1, der isomorph zu G2 ist?

SGI = { G1, G2) | G1, G2 Graphen ∧ ∃H Graph. HvG1 ∧ H ∼= G2 }

Theoretische Informatik II §8: Komplexitätstheorie 30 NP-Vollständige Probleme

Weitere NP-vollständige Graphenprobleme

• Independent Set CLIQUE ≤p IS

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es in G eine unabhängige Knotenmenge der Größe k?

IS ={ (G, k) | G = (V, E) Graph
∧ ∃Vi⊆V . |Vc|≥k ∧ ∀u, v ∈Vi. {u, v} 6∈E }

• Subgraph Isomorphism CLIQUE ≤p SGI

– Gegeben zwei Graphen G1 = (V1, E1) und G2 = (V2, E2).

– Gibt es einen Subgraphen H von G1, der isomorph zu G2 ist?

SGI = { G1, G2) | G1, G2 Graphen ∧ ∃H Graph. HvG1 ∧ H ∼= G2 }

• Largest Common Subgraph SGI ≤p LCS

– Gegeben Graphen G1 = (V1, E1) und G2 = (V2, E2) und eine Zahl

k≤|G1|
– Gibt es isomorphe Subgraphen H1 von G1 und H2 von G2 der Größe k?

Theoretische Informatik II §8: Komplexitätstheorie 30 NP-Vollständige Probleme

Weitere NP-vollständige Graphenprobleme

• Independent Set CLIQUE ≤p IS

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es in G eine unabhängige Knotenmenge der Größe k?

IS ={ (G, k) | G = (V, E) Graph
∧ ∃Vi⊆V . |Vc|≥k ∧ ∀u, v ∈Vi. {u, v} 6∈E }

• Subgraph Isomorphism CLIQUE ≤p SGI

– Gegeben zwei Graphen G1 = (V1, E1) und G2 = (V2, E2).

– Gibt es einen Subgraphen H von G1, der isomorph zu G2 ist?

SGI = { G1, G2) | G1, G2 Graphen ∧ ∃H Graph. HvG1 ∧ H ∼= G2 }

• Largest Common Subgraph SGI ≤p LCS

– Gegeben Graphen G1 = (V1, E1) und G2 = (V2, E2) und eine Zahl

k≤|G1|
– Gibt es isomorphe Subgraphen H1 von G1 und H2 von G2 der Größe k?

LCS = { (G1, G2, k) | G1, G2 Graphen ∧ k≤|G1 ∧ ∃H1, H2 Graphen.
H1vG1 ∧ H2vG2 ∧ H1

∼= H2 ∧ |H1|≥k }

Theoretische Informatik II §8: Komplexitätstheorie 31 NP-Vollständige Probleme

Weitere NP-vollständige Graphenprobleme

• Directed Hamiltonian Circuit 3SAT ≤p DHC

– Gegeben ein gerichteter Graph G

– Gibt es in G einen Hamilton’schen Kreis?

Theoretische Informatik II §8: Komplexitätstheorie 31 NP-Vollständige Probleme

Weitere NP-vollständige Graphenprobleme

• Directed Hamiltonian Circuit 3SAT ≤p DHC

– Gegeben ein gerichteter Graph G

– Gibt es in G einen Hamilton’schen Kreis?

DHC = { G | G = (V, E) gerichteter Graph
∧ ∃π:{1..n}→{1..n}. π Hamilton’scher Kreis in G }

Theoretische Informatik II §8: Komplexitätstheorie 31 NP-Vollständige Probleme

Weitere NP-vollständige Graphenprobleme

• Directed Hamiltonian Circuit 3SAT ≤p DHC

– Gegeben ein gerichteter Graph G

– Gibt es in G einen Hamilton’schen Kreis?

DHC = { G | G = (V, E) gerichteter Graph
∧ ∃π:{1..n}→{1..n}. π Hamilton’scher Kreis in G }

• Hamiltonian Circuit DHC ≤p HC

– Gegeben ein ungerichteter Graph G = (V, E).

– Gibt es in G einen Hamilton’schen Kreis?

Theoretische Informatik II §8: Komplexitätstheorie 31 NP-Vollständige Probleme

Weitere NP-vollständige Graphenprobleme

• Directed Hamiltonian Circuit 3SAT ≤p DHC

– Gegeben ein gerichteter Graph G

– Gibt es in G einen Hamilton’schen Kreis?

DHC = { G | G = (V, E) gerichteter Graph
∧ ∃π:{1..n}→{1..n}. π Hamilton’scher Kreis in G }

• Hamiltonian Circuit DHC ≤p HC

– Gegeben ein ungerichteter Graph G = (V, E).

– Gibt es in G einen Hamilton’schen Kreis?

HC = { G | G = (V, E) Graph ∧ ∃π:{1..n}→{1..n}.
π Hamilton’scher Kreis in G }

Theoretische Informatik II §8: Komplexitätstheorie 31 NP-Vollständige Probleme

Weitere NP-vollständige Graphenprobleme

• Directed Hamiltonian Circuit 3SAT ≤p DHC

– Gegeben ein gerichteter Graph G

– Gibt es in G einen Hamilton’schen Kreis?

DHC = { G | G = (V, E) gerichteter Graph
∧ ∃π:{1..n}→{1..n}. π Hamilton’scher Kreis in G }

• Hamiltonian Circuit DHC ≤p HC

– Gegeben ein ungerichteter Graph G = (V, E).

– Gibt es in G einen Hamilton’schen Kreis?

HC = { G | G = (V, E) Graph ∧ ∃π:{1..n}→{1..n}.
π Hamilton’scher Kreis in G }

• Travelling Salesman Problem HC ≤p TSP

– Gegeben n Städte, Reisekostentabelle cij, Kostenbeschränkung B

– Gibt es eine Rundreise durch alle n Städte, deren Kosten unter B liegt?

Theoretische Informatik II §8: Komplexitätstheorie 31 NP-Vollständige Probleme

Weitere NP-vollständige Graphenprobleme

• Directed Hamiltonian Circuit 3SAT ≤p DHC

– Gegeben ein gerichteter Graph G

– Gibt es in G einen Hamilton’schen Kreis?

DHC = { G | G = (V, E) gerichteter Graph
∧ ∃π:{1..n}→{1..n}. π Hamilton’scher Kreis in G }

• Hamiltonian Circuit DHC ≤p HC

– Gegeben ein ungerichteter Graph G = (V, E).

– Gibt es in G einen Hamilton’schen Kreis?

HC = { G | G = (V, E) Graph ∧ ∃π:{1..n}→{1..n}.
π Hamilton’scher Kreis in G }

• Travelling Salesman Problem HC ≤p TSP

– Gegeben n Städte, Reisekostentabelle cij, Kostenbeschränkung B

– Gibt es eine Rundreise durch alle n Städte, deren Kosten unter B liegt?

TSP = { c12, ..., cn−1,n, B | B, cij ∈N ∧ ∃π:{1..n}→{1..n}. π bijektiv
∧

∑n−1
i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

Theoretische Informatik II §8: Komplexitätstheorie 32 NP-Vollständige Probleme

Weitere NP-vollständige Probleme

• Knapsack: (Rucksack-Bepackung) 3SAT ≤p KP

– Gegeben n Objekte mit Gewichten g1, ..., gn und Nutzwerten a1, ...an

– Rucksack mit Gewichtsschranke G, Minimalnutzwert A.

– Gibt es eine Bepackung mit Mindestnutzen A und Maximalgewicht G?

Theoretische Informatik II §8: Komplexitätstheorie 32 NP-Vollständige Probleme

Weitere NP-vollständige Probleme

• Knapsack: (Rucksack-Bepackung) 3SAT ≤p KP

– Gegeben n Objekte mit Gewichten g1, ..., gn und Nutzwerten a1, ...an

– Rucksack mit Gewichtsschranke G, Minimalnutzwert A.

– Gibt es eine Bepackung mit Mindestnutzen A und Maximalgewicht G?

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

Theoretische Informatik II §8: Komplexitätstheorie 32 NP-Vollständige Probleme

Weitere NP-vollständige Probleme

• Knapsack: (Rucksack-Bepackung) 3SAT ≤p KP

– Gegeben n Objekte mit Gewichten g1, ..., gn und Nutzwerten a1, ...an

– Rucksack mit Gewichtsschranke G, Minimalnutzwert A.

– Gibt es eine Bepackung mit Mindestnutzen A und Maximalgewicht G?

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Partitionsproblem KP ≤p PART

– Gegeben n Objekte mit Wert b1, ..., bn.

– Gibt es eine Aufteilung der Objekte in zwei gleichwertige Stapel?

Theoretische Informatik II §8: Komplexitätstheorie 32 NP-Vollständige Probleme

Weitere NP-vollständige Probleme

• Knapsack: (Rucksack-Bepackung) 3SAT ≤p KP

– Gegeben n Objekte mit Gewichten g1, ..., gn und Nutzwerten a1, ...an

– Rucksack mit Gewichtsschranke G, Minimalnutzwert A.

– Gibt es eine Bepackung mit Mindestnutzen A und Maximalgewicht G?

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Partitionsproblem KP ≤p PART

– Gegeben n Objekte mit Wert b1, ..., bn.

– Gibt es eine Aufteilung der Objekte in zwei gleichwertige Stapel?

PART = { b1, ..., bn | bi ∈N ∧ ∃I ⊆ {1..n}. ∑

i ∈ I bi =
∑

i ∈{1..n}−I bi }

Theoretische Informatik II §8: Komplexitätstheorie 32 NP-Vollständige Probleme

Weitere NP-vollständige Probleme

• Knapsack: (Rucksack-Bepackung) 3SAT ≤p KP

– Gegeben n Objekte mit Gewichten g1, ..., gn und Nutzwerten a1, ...an

– Rucksack mit Gewichtsschranke G, Minimalnutzwert A.

– Gibt es eine Bepackung mit Mindestnutzen A und Maximalgewicht G?

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Partitionsproblem KP ≤p PART

– Gegeben n Objekte mit Wert b1, ..., bn.

– Gibt es eine Aufteilung der Objekte in zwei gleichwertige Stapel?

PART = { b1, ..., bn | bi ∈N ∧ ∃I ⊆ {1..n}. ∑

i ∈ I bi =
∑

i ∈{1..n}−I bi }

• Binpacking PART ≤p BPP

– Gegeben n Objekte der Größe a1, ...an und k Behälter der Größe b

– Kann man alle Objekte in den Behältern unterbringen?

Theoretische Informatik II §8: Komplexitätstheorie 32 NP-Vollständige Probleme

Weitere NP-vollständige Probleme

• Knapsack: (Rucksack-Bepackung) 3SAT ≤p KP

– Gegeben n Objekte mit Gewichten g1, ..., gn und Nutzwerten a1, ...an

– Rucksack mit Gewichtsschranke G, Minimalnutzwert A.

– Gibt es eine Bepackung mit Mindestnutzen A und Maximalgewicht G?

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Partitionsproblem KP ≤p PART

– Gegeben n Objekte mit Wert b1, ..., bn.

– Gibt es eine Aufteilung der Objekte in zwei gleichwertige Stapel?

PART = { b1, ..., bn | bi ∈N ∧ ∃I ⊆ {1..n}. ∑

i ∈ I bi =
∑

i ∈{1..n}−I bi }

• Binpacking PART ≤p BPP

– Gegeben n Objekte der Größe a1, ...an und k Behälter der Größe b

– Kann man alle Objekte in den Behältern unterbringen?

BPP = { a1, ...an, b, k) | ai, b, k ∈N ∧ ∃f : {1..n}→{1..k}.
∀j ≤ k.

∑

i ∈{i|f(i)=j} ai ≤ b }

Theoretische Informatik II §8: Komplexitätstheorie 33 NP-Vollständige Probleme

Weitere NP-vollständige Probleme

• Graph Coloring 3SAT ≤p GC

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es eine Färbung von V mit k verschiedenen Farben,
so daß verbundene Konten verschieden Farben haben?

Theoretische Informatik II §8: Komplexitätstheorie 33 NP-Vollständige Probleme

Weitere NP-vollständige Probleme

• Graph Coloring 3SAT ≤p GC

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es eine Färbung von V mit k verschiedenen Farben,
so daß verbundene Konten verschieden Farben haben?

GC = { (G, k) |G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v)}

Theoretische Informatik II §8: Komplexitätstheorie 33 NP-Vollständige Probleme

Weitere NP-vollständige Probleme

• Graph Coloring 3SAT ≤p GC

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es eine Färbung von V mit k verschiedenen Farben,
so daß verbundene Konten verschieden Farben haben?

GC = { (G, k) |G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v)}

• Multiprozessor-Scheduling MSP =̂ BPP

– Gegeben n Prozesse ji mit Laufzeit t(ji), m Prozessoren, Deadline tD.

– Gibt es eine Verteilung der Prozesse auf die Prozessoren,
so daß bei Startzeit t0 alle Prozesse vor der Zeit tD beendet sind?

Theoretische Informatik II §8: Komplexitätstheorie 33 NP-Vollständige Probleme

Weitere NP-vollständige Probleme

• Graph Coloring 3SAT ≤p GC

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es eine Färbung von V mit k verschiedenen Farben,
so daß verbundene Konten verschieden Farben haben?

GC = { (G, k) |G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v)}

• Multiprozessor-Scheduling MSP =̂ BPP

– Gegeben n Prozesse ji mit Laufzeit t(ji), m Prozessoren, Deadline tD.

– Gibt es eine Verteilung der Prozesse auf die Prozessoren,
so daß bei Startzeit t0 alle Prozesse vor der Zeit tD beendet sind?

• Integer Linear Programming 3SAT ≤p ILP

– Gegeben eine k×k Matrix A und einen Vektor ~b ∈Z
k

– Gibt es ein ~x ∈Z
k, welches das lineare Ungleichungssystem A ∗ ~x≥~b löst?

Theoretische Informatik II §8: Komplexitätstheorie 33 NP-Vollständige Probleme

Weitere NP-vollständige Probleme

• Graph Coloring 3SAT ≤p GC

– Gegeben ein Graph G = (V, E) der Größe n und eine Zahl k≤n.

– Gibt es eine Färbung von V mit k verschiedenen Farben,
so daß verbundene Konten verschieden Farben haben?

GC = { (G, k) |G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v)}

• Multiprozessor-Scheduling MSP =̂ BPP

– Gegeben n Prozesse ji mit Laufzeit t(ji), m Prozessoren, Deadline tD.

– Gibt es eine Verteilung der Prozesse auf die Prozessoren,
so daß bei Startzeit t0 alle Prozesse vor der Zeit tD beendet sind?

• Integer Linear Programming 3SAT ≤p ILP

– Gegeben eine k×k Matrix A und einen Vektor ~b ∈Z
k

– Gibt es ein ~x ∈Z
k, welches das lineare Ungleichungssystem A ∗ ~x≥~b löst?

• Zusammengesetztheit (vermutlich nicht NP-vollständig)

– Gegeben eine n-stellige Zahl x ∈N

– Gibt es zwei natürliche Zahlen p und q mit x = p∗q?

Theoretische Informatik II §8: Komplexitätstheorie 34 NP-Vollständige Probleme

NP-vollständigkeit des Rucksackproblems

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• KP ∈ NP:

Theoretische Informatik II §8: Komplexitätstheorie 34 NP-Vollständige Probleme

NP-vollständigkeit des Rucksackproblems

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• KP ∈ NP:
– Rate Menge von Gegenständen Kantenmenge J⊆{1..n}

Theoretische Informatik II §8: Komplexitätstheorie 34 NP-Vollständige Probleme

NP-vollständigkeit des Rucksackproblems

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• KP ∈ NP:
– Rate Menge von Gegenständen Kantenmenge J⊆{1..n}
– Prüfe Σi∈Jgi ≤G und Σi∈Jai ≥A maximal 2|J | Schritte

Theoretische Informatik II §8: Komplexitätstheorie 34 NP-Vollständige Probleme

NP-vollständigkeit des Rucksackproblems

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• KP ∈ NP:
– Rate Menge von Gegenständen Kantenmenge J⊆{1..n}
– Prüfe Σi∈Jgi ≤G und Σi∈Jai ≥A maximal 2|J | Schritte

• Zeige 3SAT≤pKP

Theoretische Informatik II §8: Komplexitätstheorie 34 NP-Vollständige Probleme

NP-vollständigkeit des Rucksackproblems

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• KP ∈ NP:
– Rate Menge von Gegenständen Kantenmenge J⊆{1..n}
– Prüfe Σi∈Jgi ≤G und Σi∈Jai ≥A maximal 2|J | Schritte

• Zeige 3SAT≤pKP
– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}

Theoretische Informatik II §8: Komplexitätstheorie 34 NP-Vollständige Probleme

NP-vollständigkeit des Rucksackproblems

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• KP ∈ NP:
– Rate Menge von Gegenständen Kantenmenge J⊆{1..n}
– Prüfe Σi∈Jgi ≤G und Σi∈Jai ≥A maximal 2|J | Schritte

• Zeige 3SAT≤pKP
– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Rucksackproblem f(F) ≡ (g1, ..g2m+2n, a1, ..a2m+2n, G, A)

wobei die aj und gj m + n-stellige Zahlen sind, welche die Anzahl

der Vorkommen von Literalen in den Klauseln codieren

Theoretische Informatik II §8: Komplexitätstheorie 34 NP-Vollständige Probleme

NP-vollständigkeit des Rucksackproblems

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• KP ∈ NP:
– Rate Menge von Gegenständen Kantenmenge J⊆{1..n}
– Prüfe Σi∈Jgi ≤G und Σi∈Jai ≥A maximal 2|J | Schritte

• Zeige 3SAT≤pKP
– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Rucksackproblem f(F) ≡ (g1, ..g2m+2n, a1, ..a2m+2n, G, A)

wobei die aj und gj m + n-stellige Zahlen sind, welche die Anzahl

der Vorkommen von Literalen in den Klauseln codieren

· aj, j≤n: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj ≡ an+j, j≤n: Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci ≡ a2n+i, i≤m: Stelle m+i ist 1, sonst 0

· di ≡ a2n+m+i, i≤m: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

Theoretische Informatik II §8: Komplexitätstheorie 34 NP-Vollständige Probleme

NP-vollständigkeit des Rucksackproblems

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• KP ∈ NP:
– Rate Menge von Gegenständen Kantenmenge J⊆{1..n}
– Prüfe Σi∈Jgi ≤G und Σi∈Jai ≥A maximal 2|J | Schritte

• Zeige 3SAT≤pKP
– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Rucksackproblem f(F) ≡ (g1, ..g2m+2n, a1, ..a2m+2n, G, A)

wobei die aj und gj m + n-stellige Zahlen sind, welche die Anzahl

der Vorkommen von Literalen in den Klauseln codieren

· aj, j≤n: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj ≡ an+j, j≤n: Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci ≡ a2n+i, i≤m: Stelle m+i ist 1, sonst 0

· di ≡ a2n+m+i, i≤m: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

– f ist in polynomieller Zeit berechenbar

Theoretische Informatik II §8: Komplexitätstheorie 35 NP-Vollständige Probleme

Codierung einer Formel als Rucksackproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

Theoretische Informatik II §8: Komplexitätstheorie 35 NP-Vollständige Probleme

Codierung einer Formel als Rucksackproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

A = 444 1111

a1 = 100 1000 b1 = 011 1000 c1 = 100 0000 d1 = 200 0000

a2 = 010 0100 b2 = 101 0100 c2 = 010 0000 d2 = 020 0000

a3 = 100 0010 b3 = 001 0010 c3 = 001 0000 d3 = 002 0000

a4 = 000 0001 b4 = 010 0001

Theoretische Informatik II §8: Komplexitätstheorie 35 NP-Vollständige Probleme

Codierung einer Formel als Rucksackproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

A = 444 1111

a1 = 100 1000 b1 = 011 1000 c1 = 100 0000 d1 = 200 0000

a2 = 010 0100 b2 = 101 0100 c2 = 010 0000 d2 = 020 0000

a3 = 100 0010 b3 = 001 0010 c3 = 001 0000 d3 = 002 0000

a4 = 000 0001 b4 = 010 0001

(1, 1, 0, 0) ist erfüllende Belegung

Theoretische Informatik II §8: Komplexitätstheorie 35 NP-Vollständige Probleme

Codierung einer Formel als Rucksackproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

A = 444 1111

a1 = 100 1000 b1 = 011 1000 c1 = 100 0000 d1 = 200 0000

a2 = 010 0100 b2 = 101 0100 c2 = 010 0000 d2 = 020 0000

a3 = 100 0010 b3 = 001 0010 c3 = 001 0000 d3 = 002 0000

a4 = 000 0001 b4 = 010 0001

(1, 1, 0, 0) ist erfüllende Belegung

a1 + a2 + b3 + b4 + c1 + c3 + d1 + d2 + d3 = A

Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme

Korrektheit der Transformation

· aj: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj : Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci: Stelle m+i ist 1, sonst 0 di: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme

Korrektheit der Transformation

· aj: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj : Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci: Stelle m+i ist 1, sonst 0 di: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme

Korrektheit der Transformation

· aj: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj : Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci: Stelle m+i ist 1, sonst 0 di: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Für j≤n wähle aj falls xj=1 und bj sonst

Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme

Korrektheit der Transformation

· aj: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj : Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci: Stelle m+i ist 1, sonst 0 di: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Für j≤n wähle aj falls xj=1 und bj sonst

7→ In der Summe haben alle Stellen m+j den Wert 1

7→ Da ki erfüllt wird, haben die Stellen i≤n einen Wert aus {1..3}

Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme

Korrektheit der Transformation

· aj: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj : Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci: Stelle m+i ist 1, sonst 0 di: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Für j≤n wähle aj falls xj=1 und bj sonst

7→ In der Summe haben alle Stellen m+j den Wert 1

7→ Da ki erfüllt wird, haben die Stellen i≤n einen Wert aus {1..3}
Die Stellen i≤n können mit ci und di zu 4 ergänzt werden

Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme

Korrektheit der Transformation

· aj: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj : Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci: Stelle m+i ist 1, sonst 0 di: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Für j≤n wähle aj falls xj=1 und bj sonst

7→ In der Summe haben alle Stellen m+j den Wert 1

7→ Da ki erfüllt wird, haben die Stellen i≤n einen Wert aus {1..3}
Die Stellen i≤n können mit ci und di zu 4 ergänzt werden Also f(F) ∈KP

Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme

Korrektheit der Transformation

· aj: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj : Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci: Stelle m+i ist 1, sonst 0 di: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Für j≤n wähle aj falls xj=1 und bj sonst

7→ In der Summe haben alle Stellen m+j den Wert 1

7→ Da ki erfüllt wird, haben die Stellen i≤n einen Wert aus {1..3}
Die Stellen i≤n können mit ci und di zu 4 ergänzt werden Also f(F) ∈KP

Gilt f(F) ∈KP , so gibt es eine Bepackung die genau den Wert A ergibt

Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme

Korrektheit der Transformation

· aj: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj : Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci: Stelle m+i ist 1, sonst 0 di: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Für j≤n wähle aj falls xj=1 und bj sonst

7→ In der Summe haben alle Stellen m+j den Wert 1

7→ Da ki erfüllt wird, haben die Stellen i≤n einen Wert aus {1..3}
Die Stellen i≤n können mit ci und di zu 4 ergänzt werden Also f(F) ∈KP

Gilt f(F) ∈KP , so gibt es eine Bepackung die genau den Wert A ergibt

Die Bepackung enthält für j≤n entweder aj (wähle xj:=1) oder bj (xj:=0)

Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme

Korrektheit der Transformation

· aj: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj : Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci: Stelle m+i ist 1, sonst 0 di: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Für j≤n wähle aj falls xj=1 und bj sonst

7→ In der Summe haben alle Stellen m+j den Wert 1

7→ Da ki erfüllt wird, haben die Stellen i≤n einen Wert aus {1..3}
Die Stellen i≤n können mit ci und di zu 4 ergänzt werden Also f(F) ∈KP

Gilt f(F) ∈KP , so gibt es eine Bepackung die genau den Wert A ergibt

Die Bepackung enthält für j≤n entweder aj (wähle xj:=1) oder bj (xj:=0)

Wegen ci+di=3 ist jede Stelle i≤m der Summe der aj und bj mindestens 1

Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme

Korrektheit der Transformation

· aj: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj : Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci: Stelle m+i ist 1, sonst 0 di: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Für j≤n wähle aj falls xj=1 und bj sonst

7→ In der Summe haben alle Stellen m+j den Wert 1

7→ Da ki erfüllt wird, haben die Stellen i≤n einen Wert aus {1..3}
Die Stellen i≤n können mit ci und di zu 4 ergänzt werden Also f(F) ∈KP

Gilt f(F) ∈KP , so gibt es eine Bepackung die genau den Wert A ergibt

Die Bepackung enthält für j≤n entweder aj (wähle xj:=1) oder bj (xj:=0)

Wegen ci+di=3 ist jede Stelle i≤m der Summe der aj und bj mindestens 1

Also kommt in jeder Klausel ki mindestens ein Literal mit dem Wert 1 vor

Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme

Korrektheit der Transformation

· aj: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj : Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci: Stelle m+i ist 1, sonst 0 di: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Für j≤n wähle aj falls xj=1 und bj sonst

7→ In der Summe haben alle Stellen m+j den Wert 1

7→ Da ki erfüllt wird, haben die Stellen i≤n einen Wert aus {1..3}
Die Stellen i≤n können mit ci und di zu 4 ergänzt werden Also f(F) ∈KP

Gilt f(F) ∈KP , so gibt es eine Bepackung die genau den Wert A ergibt

Die Bepackung enthält für j≤n entweder aj (wähle xj:=1) oder bj (xj:=0)

Wegen ci+di=3 ist jede Stelle i≤m der Summe der aj und bj mindestens 1

Also kommt in jeder Klausel ki mindestens ein Literal mit dem Wert 1 vor

Damit erfüllt die Belegung die Formel F , also F ∈3SAT

Theoretische Informatik II §8: Komplexitätstheorie 36 NP-Vollständige Probleme

Korrektheit der Transformation

· aj: Stelle i≤m ist Anzahl der xj in ki, Stelle m+j ist 1, sonst 0

· bj : Stelle i≤m ist Anzahl der x̄j in ki, Stelle m+j ist 1, sonst 0

· ci: Stelle m+i ist 1, sonst 0 di: Stelle m+i ist 2, sonst 0

· gj=aj für alle j A≡G = 4 . . . 4︸ ︷︷ ︸
m−mal

1 . . . 1︸ ︷︷ ︸
n−mal

Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Für j≤n wähle aj falls xj=1 und bj sonst

7→ In der Summe haben alle Stellen m+j den Wert 1

7→ Da ki erfüllt wird, haben die Stellen i≤n einen Wert aus {1..3}
Die Stellen i≤n können mit ci und di zu 4 ergänzt werden Also f(F) ∈KP

Gilt f(F) ∈KP , so gibt es eine Bepackung die genau den Wert A ergibt

Die Bepackung enthält für j≤n entweder aj (wähle xj:=1) oder bj (xj:=0)

Wegen ci+di=3 ist jede Stelle i≤m der Summe der aj und bj mindestens 1

Also kommt in jeder Klausel ki mindestens ein Literal mit dem Wert 1 vor

Damit erfüllt die Belegung die Formel F , also F ∈3SAT

⇓

3SAT ≤p KP

Theoretische Informatik II §8: Komplexitätstheorie 37 NP-Vollständige Probleme

NP-vollständigkeit des Färbbarkeitsproblems

GC = { (G, k) | G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v) }

Zeige 3SAT≤pGC

Theoretische Informatik II §8: Komplexitätstheorie 37 NP-Vollständige Probleme

NP-vollständigkeit des Färbbarkeitsproblems

GC = { (G, k) | G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v) }

Zeige 3SAT≤pGC
– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}

Theoretische Informatik II §8: Komplexitätstheorie 37 NP-Vollständige Probleme

NP-vollständigkeit des Färbbarkeitsproblems

GC = { (G, k) | G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v) }

Zeige 3SAT≤pGC
– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Färbungsproblem f(F) ≡ (G, 3) wie folgt

Theoretische Informatik II §8: Komplexitätstheorie 37 NP-Vollständige Probleme

NP-vollständigkeit des Färbbarkeitsproblems

GC = { (G, k) | G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v) }

Zeige 3SAT≤pGC
– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Färbungsproblem f(F) ≡ (G, 3) wie folgt

· Teilgraph für Codierung der Variablenbelegung

Wähle Vvar = {u, x1, ..., xn}
und Evar = {{u, x1}, {u, x1}, {x1, x1}, ..{u, xn}, {u, xn}, {xn, xn}}

Theoretische Informatik II §8: Komplexitätstheorie 37 NP-Vollständige Probleme

NP-vollständigkeit des Färbbarkeitsproblems

GC = { (G, k) | G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v) }

Zeige 3SAT≤pGC
– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Färbungsproblem f(F) ≡ (G, 3) wie folgt

· Teilgraph für Codierung der Variablenbelegung

Wähle Vvar = {u, x1, ..., xn}
und Evar = {{u, x1}, {u, x1}, {x1, x1}, ..{u, xn}, {u, xn}, {xn, xn}}

Bei 3-Färbbarkeit erhalten xi und xi verschiedene Farben aus 0 oder 1

Theoretische Informatik II §8: Komplexitätstheorie 37 NP-Vollständige Probleme

NP-vollständigkeit des Färbbarkeitsproblems

GC = { (G, k) | G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v) }

Zeige 3SAT≤pGC
– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Färbungsproblem f(F) ≡ (G, 3) wie folgt

· Teilgraph für Codierung der Variablenbelegung

Wähle Vvar = {u, x1, ..., xn}
und Evar = {{u, x1}, {u, x1}, {x1, x1}, ..{u, xn}, {u, xn}, {xn, xn}}

Bei 3-Färbbarkeit erhalten xi und xi verschiedene Farben aus 0 oder 1

· Teilgraph für Codierung der Klauseln

Wähle Vk = {v, a1, b1, c1, y1, z1, .., am, bm, cm, ym, zm}
und Ek = {{v, y1}, {v, z1}, {a1, y1}, {a1, z1}, {b1, y1}, {c1, z1}, {b1, c1},

...{v, ym}, ..{bm, cm}, {u, v}}

Theoretische Informatik II §8: Komplexitätstheorie 37 NP-Vollständige Probleme

NP-vollständigkeit des Färbbarkeitsproblems

GC = { (G, k) | G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v) }

Zeige 3SAT≤pGC
– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Färbungsproblem f(F) ≡ (G, 3) wie folgt

· Teilgraph für Codierung der Variablenbelegung

Wähle Vvar = {u, x1, ..., xn}
und Evar = {{u, x1}, {u, x1}, {x1, x1}, ..{u, xn}, {u, xn}, {xn, xn}}

Bei 3-Färbbarkeit erhalten xi und xi verschiedene Farben aus 0 oder 1

· Teilgraph für Codierung der Klauseln

Wähle Vk = {v, a1, b1, c1, y1, z1, .., am, bm, cm, ym, zm}
und Ek = {{v, y1}, {v, z1}, {a1, y1}, {a1, z1}, {b1, y1}, {c1, z1}, {b1, c1},

...{v, ym}, ..{bm, cm}, {u, v}}
Knoten v erhält Farbe 0 oder 1

Theoretische Informatik II §8: Komplexitätstheorie 37 NP-Vollständige Probleme

NP-vollständigkeit des Färbbarkeitsproblems

GC = { (G, k) | G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v) }

Zeige 3SAT≤pGC
– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Färbungsproblem f(F) ≡ (G, 3) wie folgt

· Teilgraph für Codierung der Variablenbelegung

Wähle Vvar = {u, x1, ..., xn}
und Evar = {{u, x1}, {u, x1}, {x1, x1}, ..{u, xn}, {u, xn}, {xn, xn}}

Bei 3-Färbbarkeit erhalten xi und xi verschiedene Farben aus 0 oder 1

· Teilgraph für Codierung der Klauseln

Wähle Vk = {v, a1, b1, c1, y1, z1, .., am, bm, cm, ym, zm}
und Ek = {{v, y1}, {v, z1}, {a1, y1}, {a1, z1}, {b1, y1}, {c1, z1}, {b1, c1},

...{v, ym}, ..{bm, cm}, {u, v}}
Knoten v erhält Farbe 0 oder 1

· Kanten zur Codierung der Klauselliterale

Elit = { {a1, z11}, {b1, z12}, {c1, z13}, ...{am, zm1}, {bm, zm2}, {cm, zm3} }

Theoretische Informatik II §8: Komplexitätstheorie 37 NP-Vollständige Probleme

NP-vollständigkeit des Färbbarkeitsproblems

GC = { (G, k) | G=(V, E) Graph ∧ ∃fV :V →{1..k}.∀{u, v} ∈E.fV (u)6=fV (v) }

Zeige 3SAT≤pGC
– Gegeben F = (k1, ..., km) mit ki = zi1 ∨zi2 ∨zi3 und zij ∈{x1, ..., xn}
– Konstruiere Färbungsproblem f(F) ≡ (G, 3) wie folgt

· Teilgraph für Codierung der Variablenbelegung

Wähle Vvar = {u, x1, ..., xn}
und Evar = {{u, x1}, {u, x1}, {x1, x1}, ..{u, xn}, {u, xn}, {xn, xn}}

Bei 3-Färbbarkeit erhalten xi und xi verschiedene Farben aus 0 oder 1

· Teilgraph für Codierung der Klauseln

Wähle Vk = {v, a1, b1, c1, y1, z1, .., am, bm, cm, ym, zm}
und Ek = {{v, y1}, {v, z1}, {a1, y1}, {a1, z1}, {b1, y1}, {c1, z1}, {b1, c1},

...{v, ym}, ..{bm, cm}, {u, v}}
Knoten v erhält Farbe 0 oder 1

· Kanten zur Codierung der Klauselliterale

Elit = { {a1, z11}, {b1, z12}, {c1, z13}, ...{am, zm1}, {bm, zm2}, {cm, zm3} }
– G=(Vvar∪Vk, Evar∪Ek∪Elit) ist in polynomieller Zeit berechenbar

Theoretische Informatik II §8: Komplexitätstheorie 38 NP-Vollständige Probleme

Codierung einer Formel als Färbungsproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

Theoretische Informatik II §8: Komplexitätstheorie 38 NP-Vollständige Probleme

Codierung einer Formel als Färbungsproblem

F = (k1, k2, k3) mit k1 = x1 ∨x2 ∨x3 k2 = x1 ∨x2 ∨x4 k3 = x1 ∨x2 ∨x3

x1 x2 x3 x4

a

b c

y z a

b c

y z a

b c

y z

u
v

Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme

Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme

Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Wähle fv(xi), fv(xi) ∈{0,1} entsprechend, fv(u) = 2 und fv(v) = 0.

Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme

Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Wähle fv(xi), fv(xi) ∈{0,1} entsprechend, fv(u) = 2 und fv(v) = 0.

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme

Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Wähle fv(xi), fv(xi) ∈{0,1} entsprechend, fv(u) = 2 und fv(v) = 0.

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme

Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Wähle fv(xi), fv(xi) ∈{0,1} entsprechend, fv(u) = 2 und fv(v) = 0.

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Die anderen 4 Knoten bilden eine Kette und werden abwechselnd gefärbt

Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme

Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Wähle fv(xi), fv(xi) ∈{0,1} entsprechend, fv(u) = 2 und fv(v) = 0.

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Die anderen 4 Knoten bilden eine Kette und werden abwechselnd gefärbt

Also f(F) ∈GC

Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme

Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Wähle fv(xi), fv(xi) ∈{0,1} entsprechend, fv(u) = 2 und fv(v) = 0.

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Die anderen 4 Knoten bilden eine Kette und werden abwechselnd gefärbt

Also f(F) ∈GC

• Ist f(F) ∈GC dann ist o.B.d.A. fv(u) = 2 und fv(v) = 0

Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme

Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Wähle fv(xi), fv(xi) ∈{0,1} entsprechend, fv(u) = 2 und fv(v) = 0.

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Die anderen 4 Knoten bilden eine Kette und werden abwechselnd gefärbt

Also f(F) ∈GC

• Ist f(F) ∈GC dann ist o.B.d.A. fv(u) = 2 und fv(v) = 0

Wähle Belegung der xi entsprechend der Färbung von xi

Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme

Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Wähle fv(xi), fv(xi) ∈{0,1} entsprechend, fv(u) = 2 und fv(v) = 0.

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Die anderen 4 Knoten bilden eine Kette und werden abwechselnd gefärbt

Also f(F) ∈GC

• Ist f(F) ∈GC dann ist o.B.d.A. fv(u) = 2 und fv(v) = 0

Wähle Belegung der xi entsprechend der Färbung von xi

Wäre Klausel ki nicht erfüllt, so müßte die Farbe der ai, bi, ci 1 oder 2 sein

Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme

Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Wähle fv(xi), fv(xi) ∈{0,1} entsprechend, fv(u) = 2 und fv(v) = 0.

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Die anderen 4 Knoten bilden eine Kette und werden abwechselnd gefärbt

Also f(F) ∈GC

• Ist f(F) ∈GC dann ist o.B.d.A. fv(u) = 2 und fv(v) = 0

Wähle Belegung der xi entsprechend der Färbung von xi

Wäre Klausel ki nicht erfüllt, so müßte die Farbe der ai, bi, ci 1 oder 2 sein

Wegen fv(bi)6=fv(ci) und fv(v) = 0 wäre dann {fv(yi), fv(zi)} = {1, 2}

Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme

Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Wähle fv(xi), fv(xi) ∈{0,1} entsprechend, fv(u) = 2 und fv(v) = 0.

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Die anderen 4 Knoten bilden eine Kette und werden abwechselnd gefärbt

Also f(F) ∈GC

• Ist f(F) ∈GC dann ist o.B.d.A. fv(u) = 2 und fv(v) = 0

Wähle Belegung der xi entsprechend der Färbung von xi

Wäre Klausel ki nicht erfüllt, so müßte die Farbe der ai, bi, ci 1 oder 2 sein

Wegen fv(bi)6=fv(ci) und fv(v) = 0 wäre dann {fv(yi), fv(zi)} = {1, 2}
Dies widerspricht der Färbbarkeit, da ai ebenfalls mit 1 oder 2 gefärbt ist.

Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme

Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Wähle fv(xi), fv(xi) ∈{0,1} entsprechend, fv(u) = 2 und fv(v) = 0.

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Die anderen 4 Knoten bilden eine Kette und werden abwechselnd gefärbt

Also f(F) ∈GC

• Ist f(F) ∈GC dann ist o.B.d.A. fv(u) = 2 und fv(v) = 0

Wähle Belegung der xi entsprechend der Färbung von xi

Wäre Klausel ki nicht erfüllt, so müßte die Farbe der ai, bi, ci 1 oder 2 sein

Wegen fv(bi)6=fv(ci) und fv(v) = 0 wäre dann {fv(yi), fv(zi)} = {1, 2}
Dies widerspricht der Färbbarkeit, da ai ebenfalls mit 1 oder 2 gefärbt ist.

Also F ∈3SAT

Theoretische Informatik II §8: Komplexitätstheorie 39 NP-Vollständige Probleme

Korrektheit der Transformation

• Ist F ∈3SAT , so gibt es eine erfüllende Belegung der xj

Wähle fv(xi), fv(xi) ∈{0,1} entsprechend, fv(u) = 2 und fv(v) = 0.

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Da jedes ki erfüllbar ist, kann einer der ai, bi, ci die Farbe 0 erhalten

Die anderen 4 Knoten bilden eine Kette und werden abwechselnd gefärbt

Also f(F) ∈GC

• Ist f(F) ∈GC dann ist o.B.d.A. fv(u) = 2 und fv(v) = 0

Wähle Belegung der xi entsprechend der Färbung von xi

Wäre Klausel ki nicht erfüllt, so müßte die Farbe der ai, bi, ci 1 oder 2 sein

Wegen fv(bi)6=fv(ci) und fv(v) = 0 wäre dann {fv(yi), fv(zi)} = {1, 2}
Dies widerspricht der Färbbarkeit, da ai ebenfalls mit 1 oder 2 gefärbt ist.

Also F ∈3SAT

⇓

3SAT ≤p GC

Theoretische Informatik II §8: Komplexitätstheorie 40 NP-Vollständige Probleme

Jenseits von NP-vollständigkeit

• co−NP: Probleme mit Komplement in NP

Theoretische Informatik II §8: Komplexitätstheorie 40 NP-Vollständige Probleme

Jenseits von NP-vollständigkeit

• co−NP: Probleme mit Komplement in NP
– Die Menge der gültigen Formeln ist in co−NP (Komplement von SAT)

Theoretische Informatik II §8: Komplexitätstheorie 40 NP-Vollständige Probleme

Jenseits von NP-vollständigkeit

• co−NP: Probleme mit Komplement in NP
– Die Menge der gültigen Formeln ist in co−NP (Komplement von SAT)

– Das Primzahlproblem liegt in co−NP

Theoretische Informatik II §8: Komplexitätstheorie 40 NP-Vollständige Probleme

Jenseits von NP-vollständigkeit

• co−NP: Probleme mit Komplement in NP
– Die Menge der gültigen Formeln ist in co−NP (Komplement von SAT)

– Das Primzahlproblem liegt in co−NP
– Das Primzahlproblem liegt auch in NP Reischuk, 313–315

Theoretische Informatik II §8: Komplexitätstheorie 40 NP-Vollständige Probleme

Jenseits von NP-vollständigkeit

• co−NP: Probleme mit Komplement in NP
– Die Menge der gültigen Formeln ist in co−NP (Komplement von SAT)

– Das Primzahlproblem liegt in co−NP
– Das Primzahlproblem liegt auch in NP Reischuk, 313–315

– Ist ein co−NP Problem L NP-vollständig, so gilt NP = co−NP
Es würde folgen: L′ ≤p L ∈NP für jedes L′ ∈co−NP

Theoretische Informatik II §8: Komplexitätstheorie 40 NP-Vollständige Probleme

Jenseits von NP-vollständigkeit

• co−NP: Probleme mit Komplement in NP
– Die Menge der gültigen Formeln ist in co−NP (Komplement von SAT)

– Das Primzahlproblem liegt in co−NP
– Das Primzahlproblem liegt auch in NP Reischuk, 313–315

– Ist ein co−NP Problem L NP-vollständig, so gilt NP = co−NP
Es würde folgen: L′ ≤p L ∈NP für jedes L′ ∈co−NP

– Das Zusammengesetztheitsproblem ist vermutlich nicht NP-vollständig

sondern liegt zwischen P und NPC (sofern

Theoretische Informatik II §8: Komplexitätstheorie 40 NP-Vollständige Probleme

Jenseits von NP-vollständigkeit

• co−NP: Probleme mit Komplement in NP
– Die Menge der gültigen Formeln ist in co−NP (Komplement von SAT)

– Das Primzahlproblem liegt in co−NP
– Das Primzahlproblem liegt auch in NP Reischuk, 313–315

– Ist ein co−NP Problem L NP-vollständig, so gilt NP = co−NP
Es würde folgen: L′ ≤p L ∈NP für jedes L′ ∈co−NP

– Das Zusammengesetztheitsproblem ist vermutlich nicht NP-vollständig

sondern liegt zwischen P und NPC (sofern

• Es gibt PSPACE-vollständige Probleme

Theoretische Informatik II §8: Komplexitätstheorie 40 NP-Vollständige Probleme

Jenseits von NP-vollständigkeit

• co−NP: Probleme mit Komplement in NP
– Die Menge der gültigen Formeln ist in co−NP (Komplement von SAT)

– Das Primzahlproblem liegt in co−NP
– Das Primzahlproblem liegt auch in NP Reischuk, 313–315

– Ist ein co−NP Problem L NP-vollständig, so gilt NP = co−NP
Es würde folgen: L′ ≤p L ∈NP für jedes L′ ∈co−NP

– Das Zusammengesetztheitsproblem ist vermutlich nicht NP-vollständig

sondern liegt zwischen P und NPC (sofern

• Es gibt PSPACE-vollständige Probleme

In-Place Acceptance Asteroth/Baier §4.5
– Gegeben DTM τ und w ∈X∗: Gilt hτ(w) = 1 und sτ(w)≤|w|?

Theoretische Informatik II §8: Komplexitätstheorie 40 NP-Vollständige Probleme

Jenseits von NP-vollständigkeit

• co−NP: Probleme mit Komplement in NP
– Die Menge der gültigen Formeln ist in co−NP (Komplement von SAT)

– Das Primzahlproblem liegt in co−NP
– Das Primzahlproblem liegt auch in NP Reischuk, 313–315

– Ist ein co−NP Problem L NP-vollständig, so gilt NP = co−NP
Es würde folgen: L′ ≤p L ∈NP für jedes L′ ∈co−NP

– Das Zusammengesetztheitsproblem ist vermutlich nicht NP-vollständig

sondern liegt zwischen P und NPC (sofern

• Es gibt PSPACE-vollständige Probleme

In-Place Acceptance Asteroth/Baier §4.5
– Gegeben DTM τ und w ∈X∗: Gilt hτ(w) = 1 und sτ(w)≤|w|?
QBF: Ist eine gegebene quantifizierte boole’sche Formel wahr? Reischuk §6.4.4

Theoretische Informatik II §8: Komplexitätstheorie 40 NP-Vollständige Probleme

Jenseits von NP-vollständigkeit

• co−NP: Probleme mit Komplement in NP
– Die Menge der gültigen Formeln ist in co−NP (Komplement von SAT)

– Das Primzahlproblem liegt in co−NP
– Das Primzahlproblem liegt auch in NP Reischuk, 313–315

– Ist ein co−NP Problem L NP-vollständig, so gilt NP = co−NP
Es würde folgen: L′ ≤p L ∈NP für jedes L′ ∈co−NP

– Das Zusammengesetztheitsproblem ist vermutlich nicht NP-vollständig

sondern liegt zwischen P und NPC (sofern

• Es gibt PSPACE-vollständige Probleme

In-Place Acceptance Asteroth/Baier §4.5
– Gegeben DTM τ und w ∈X∗: Gilt hτ(w) = 1 und sτ(w)≤|w|?
QBF: Ist eine gegebene quantifizierte boole’sche Formel wahr? Reischuk §6.4.4

Wie kann man unhandhabbare Probleme angehen?

Theoretische Informatik II §8: Komplexitätstheorie 41 Komplexitätsklassen

Komplexitätsklassenhierarchie vgl. Kap 8.3

• Zeitkomplexitätsklassen
LOGTIME in logarithmischer Zeit lösbar

NLOGTIME nichtdeterministisch in logarithmischer Zeit lösbar

P in polynomieller Zeit lösbar

NP nichtdeterministisch in polynomieller Zeit lösbar

NPC NP-vollständige Probleme

NPI NP-unvollständige Probleme: NP - NPC - P
co−NP Komplement in NP
EXPTIME in exponentieller Zeit lösbar

NEXPTIME nichtdeterministisch in exponentieller Zeit lösbar

Theoretische Informatik II §8: Komplexitätstheorie 41 Komplexitätsklassen

Komplexitätsklassenhierarchie vgl. Kap 8.3

• Zeitkomplexitätsklassen
LOGTIME in logarithmischer Zeit lösbar

NLOGTIME nichtdeterministisch in logarithmischer Zeit lösbar

P in polynomieller Zeit lösbar

NP nichtdeterministisch in polynomieller Zeit lösbar

NPC NP-vollständige Probleme

NPI NP-unvollständige Probleme: NP - NPC - P
co−NP Komplement in NP
EXPTIME in exponentieller Zeit lösbar

NEXPTIME nichtdeterministisch in exponentieller Zeit lösbar

• Platzkomplexitätsklassen
LOGSPACE mit logarithmischem Platzverbrauch lösbar

NLOGSPACE nichtdeterministisch mit logarithmischem Platzverbrauch lösbar

PSPACE mit polynomiellem Platzverbrauch lösbar

NPSPACE nichtdeterministisch mit polynomiellem Platzverbrauch lösbar

EXPSPACE mit exponentiellem Platzverbrauch lösbar

Theoretische Informatik II §8: Komplexitätstheorie 42 Komplexitätsklassen

Sprachklassenhierarchie

EXPSPACE

EXPTIME

NEXPTIME

NPSPACE
PSPACE

NPC

NP co−NP

NPI

P

LOGSPACE

LOGTIME

Theoretische Informatik II §8: Komplexitätstheorie 43 Komplexitätsklassen

Wichtige Vertreter verschiedener Klassen

• Isomorphie ungerichteter Graphen NPI

Theoretische Informatik II §8: Komplexitätstheorie 43 Komplexitätsklassen

Wichtige Vertreter verschiedener Klassen

• Isomorphie ungerichteter Graphen NPI

• Zuverlässigkeit von Netzwerken NP-hart, vermutlich nicht in NP
– Wahrscheinlichkeit für fehlerfreie Verbindung zwischen zwei Knoten

Theoretische Informatik II §8: Komplexitätstheorie 43 Komplexitätsklassen

Wichtige Vertreter verschiedener Klassen

• Isomorphie ungerichteter Graphen NPI

• Zuverlässigkeit von Netzwerken NP-hart, vermutlich nicht in NP
– Wahrscheinlichkeit für fehlerfreie Verbindung zwischen zwei Knoten

• Minimale äquivalente Schaltkreise NP-hart, nicht in NP (“Σ2”)

– Bestimme optimale Größe einer Schaltung

Theoretische Informatik II §8: Komplexitätstheorie 43 Komplexitätsklassen

Wichtige Vertreter verschiedener Klassen

• Isomorphie ungerichteter Graphen NPI

• Zuverlässigkeit von Netzwerken NP-hart, vermutlich nicht in NP
– Wahrscheinlichkeit für fehlerfreie Verbindung zwischen zwei Knoten

• Minimale äquivalente Schaltkreise NP-hart, nicht in NP (“Σ2”)

– Bestimme optimale Größe einer Schaltung

• Quantifizierte boole’sche Formeln PSPACE-vollständig

– Gültigkeit aussagenlogischer Formeln mit boole’schen Quantoren

Theoretische Informatik II §8: Komplexitätstheorie 43 Komplexitätsklassen

Wichtige Vertreter verschiedener Klassen

• Isomorphie ungerichteter Graphen NPI

• Zuverlässigkeit von Netzwerken NP-hart, vermutlich nicht in NP
– Wahrscheinlichkeit für fehlerfreie Verbindung zwischen zwei Knoten

• Minimale äquivalente Schaltkreise NP-hart, nicht in NP (“Σ2”)

– Bestimme optimale Größe einer Schaltung

• Quantifizierte boole’sche Formeln PSPACE-vollständig

– Gültigkeit aussagenlogischer Formeln mit boole’schen Quantoren

• Strategische Spiele PSPACE-vollständig

– Details in Garey/Johnson Seite 254ff

Theoretische Informatik II §8: Komplexitätstheorie 43 Komplexitätsklassen

Wichtige Vertreter verschiedener Klassen

• Isomorphie ungerichteter Graphen NPI

• Zuverlässigkeit von Netzwerken NP-hart, vermutlich nicht in NP
– Wahrscheinlichkeit für fehlerfreie Verbindung zwischen zwei Knoten

• Minimale äquivalente Schaltkreise NP-hart, nicht in NP (“Σ2”)

– Bestimme optimale Größe einer Schaltung

• Quantifizierte boole’sche Formeln PSPACE-vollständig

– Gültigkeit aussagenlogischer Formeln mit boole’schen Quantoren

• Strategische Spiele PSPACE-vollständig

– Details in Garey/Johnson Seite 254ff

• TSP∗: Bestimmung aller Rundreisen mit gegebenen Kosten

– Unrealistische Problemstellung: zu viele Lösungen EXPSPACE

