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NP-Vollstindigkeit e

1. Reduzierbarkeit und Vollstandigkeit von Klassen
2. Der Satz von Cook
3. NP-vollstandige Probleme



DAs P-NP PROBLEM

WAS TUN, WENN EIN PROBLEM NICHT EFFEKTIV LOSBAR ZU SEIN SCHEINT?

73

““1 can't find an efficient algorithm, I guess I'm just too dumb.

Nicht empfehlenswert
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DAs P-NP PROBLEM

WAS TUN, WENN EIN PROBLEM NICHT EFFEKTIV LOSBAR ZU SEIN SCHEINT?

“I can’t find an efficient algorithm, because no such algorithm is possible!™

Extrem schwierig nachzuweisen, wenn uberhaupt
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DAs P-NP PROBLEM

WAS TUN, WENN EIN PROBLEM NICHT EFFEKTIV LOSBAR ZU SEIN SCHEINT?

ML L L

A‘ﬁwd

“1 can’t find an efficient algorithm, but neither can all these famous people.

—_D

Vielleicht der einzig mogliche Weg
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DAs P-NP PROBLEM I

Gilt P=NP oder P#ANP ?

e Eines der wichtigsten offenen Probleme der TI
— Sind nichtdeterministisch losbare Probleme effizient 1osbar?
— Seit mehr als 30 Jahren ungeklart, moglicherweise unlosbar
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DAs P-NP PROBLEM I

Gilt P=NP oder P#ANP ?

e Eines der wichtigsten offenen Probleme der TI
— Sind nichtdeterministisch losbare Probleme effizient 1osbar?
— Seit mehr als 30 Jahren ungeklart, moglicherweise unlosbar

e Mehr als 1000 algorithmische Probleme betroffen

— Suchprobleme (Travelling Salesman, .. . )

— Reihenfolgenprobleme (Scheduling, Binpacking, ... )

— Graphenprobleme (Clique, Vertex cover, ... ) — Operations Research
— Logische Probleme (Erfiillbarkeit, ...)  + Model Checking, Hardwareverifikation
— Zahlenprobleme (Primzahltest, .. .) — Kryptographie, IT Sicherheit
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DAs P-NP PROBLEM I

Gilt P=NP oder P#ANP ?

e Eines der wichtigsten offenen Probleme der TI
— Sind nichtdeterministisch losbare Probleme effizient 1osbar?
— Seit mehr als 30 Jahren ungeklart, moglicherweise unlosbar

e Mehr als 1000 algorithmische Probleme betroffen
— Suchprobleme (Travelling Salesman, .. . )
— Reihenfolgenprobleme (Scheduling, Binpacking, ... )

— Graphenprobleme (Clique, Vertex cover, ... ) — Operations Research
— Logische Probleme (Erfiillbarkeit, ...)  + Model Checking, Hardwareverifikation
— Zahlenprobleme (Primzahltest, .. .) — Kryptographie, IT Sicherheit

e Indizien sprechen gegen P=N"P
— 7Zu viele N'P-Probleme ohne bekannte polynomielle Losung
— Mehr als 1000 aquivalente Probleme in der ‘schwersten Teilklasse” von NP
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WIE ANALYSIERT MAN DIE FRAGE “P=NP ODER P#NP”? I
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WIE ANALYSIERT MAN DIE FRAGE “P=NP ODER P#NP”? I

e Untersuche die “schwierigsten” AN P-Probleme
— Kann man eines davon effizient losen?
— Wenn ja, dann gilt P=N"P
— Wenn nein, dann gibt es ein Beispiel fiir PN P
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e Untersuche die “schwierigsten” AN P-Probleme
— Kann man eines davon eflizient losen?
— Wenn ja, dann gilt P=N"P
— Wenn nein, dann gibt es ein Beispiel fiir PN P

e Was heifit “)M ist schwierigstes N'P-Problem”?
— Jedes andere N'P-Problem M’ ist leichter als M

— Losungen fiir M’ kénnen in Losungen fiir M’ umgewandelt werden

— Transformation der Losung ist effizient

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 NP-VOLLSTANDIGE PROBLEME




WIE ANALYSIERT MAN DIE FRAGE “P=NP ODER P#NP”? I

e Untersuche die “schwierigsten” AN P-Probleme

— Kann man eines davon eflizient losen?
— Wenn ja, dann gilt P=N"P
— Wenn nein, dann gibt es ein Beispiel fiir PN P

e Was heifit “)M ist schwierigstes N'P-Problem”?
— Jedes andere N'P-Problem M’ ist leichter als M

— Losungen fiir M’ kénnen in Losungen fiir M’ umgewandelt werden

— Transformation der Losung ist effizient

Y
Polynomielle Reduktion
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POLYNOMIELLE REDUZIERBARKEIT I

e M CX* polynomiell reduzierbar auf M’'CY* [Definition D
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POLYNOMIELLE REDUZIERBARKEIT I

e M CX* polynomiell reduzierbar auf M’CY™ [Definition D

— Eis gibt eine in polynomieller Zeit berechenbare totale Funktion f:X*—Y™*
mit M=f"1(M)
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e M CX™* polynomiell reduzierbar auf M/CY™ [Definition D

— Eis gibt eine in polynomieller Zeit berechenbare totale Funktion f:X*—Y™*
mit M=f"1(M)
— Schreibweise: M <, M’
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POLYNOMIELLE REDUZIERBARKEIT I

e M CX™* polynomiell reduzierbar auf M/CY™ [Definition D

— Eis gibt eine in polynomieller Zeit berechenbare totale Funktion f:X*—Y™*
mit M=f"1(M)
— Schreibweise: M <, M’

e Reduzierbarkeit = geringere Komplexitat Lemma E
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e Reduzierbarkeit = geringere Komplexitat Lemma E
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— Eis gibt eine in polynomieller Zeit berechenbare totale Funktion f:X*—Y™*
mit M=f"1(M)
— Schreibweise: M <, M’

e Reduzierbarkeit = geringere Komplexitat Lemma E
~M<,M’' A M'eP = ME¢cP
-M<,M' A M'e NP = MecNP
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POLYNOMIELLE REDUZIERBARKEIT I

e M CX™* polynomiell reduzierbar auf M/CY™ [Definition D

— Eis gibt eine in polynomieller Zeit berechenbare totale Funktion f:X*—Y™*
mit M=f"1(M)
— Schreibweise: M <, M’

e Reduzierbarkeit = geringere Komplexitat Lemma E
~M<,M’' A M'eP = ME¢cP
-M<,M' A M'e NP = MecNP

Bewels:

- Xum(r)=1
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e M CX™* polynomiell reduzierbar auf M/CY™ [Definition D

— Eis gibt eine in polynomieller Zeit berechenbare totale Funktion f:X*—Y™*
mit M=f"1(M)
— Schreibweise: M <, M’

e Reduzierbarkeit = geringere Komplexitat Lemma E
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Bewels:

—xmu(x)=1 & zeM
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POLYNOMIELLE REDUZIERBARKEIT I

e M CX™* polynomiell reduzierbar auf M/CY™ [Definition D

— Eis gibt eine in polynomieller Zeit berechenbare totale Funktion f:X*—Y™*
mit M=f"1(M)
— Schreibweise: M <, M’

e Reduzierbarkeit = geringere Komplexitat Lemma E
~M<,M’' A M'eP = ME¢cP
-M<,M' A M'e NP = MecNP

Bewels:

—xu(x)=1 & xeM < f(r)eM’
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POLYNOMIELLE REDUZIERBARKEIT I

e M CX™* polynomiell reduzierbar auf M/CY™ [Definition D

— Eis gibt eine in polynomieller Zeit berechenbare totale Funktion f:X*—Y™*
mit M=f"1(M)
— Schreibweise: M <, M’

e Reduzierbarkeit = geringere Komplexitat Lemma E
~M<,M’' A M'eP = ME¢cP
-M<,M' A M'e NP = MecNP

Bewels:

(@)=l & zeM & fl@)eM & xanlf(@)=1
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POLYNOMIELLE REDUZIERBARKEIT I

e M CX™* polynomiell reduzierbar auf M/CY™ [Definition D

— Eis gibt eine in polynomieller Zeit berechenbare totale Funktion f:X*—Y™*
mit M=f"1(M)
— Schreibweise: M <, M’

e Reduzierbarkeit = geringere Komplexitat Lemma E
~M<,M’' A M'eP = ME¢cP
-M<,M' A M'e NP = MecNP

Bewelis:
“xur)=l & zeM & flx)eM < xu(f(z)=1 < (urof)(z)=1
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POLYNOMIELLE REDUZIERBARKEIT I

e M CX™* polynomiell reduzierbar auf M/CY™ [Definition D

— Eis gibt eine in polynomieller Zeit berechenbare totale Funktion f:X*—Y™*
mit M=f"1(M)
— Schreibweise: M <, M’

e Reduzierbarkeit = geringere Komplexitat Lemma E
~M<,M’' A M'eP = ME¢cP
-M<,M' A M'e NP = MecNP

Bewels:

“xur)=l & zeM & flx)eM < xu(f(z)=1 < (urof)(z)=1
— xmr°f ist in polynomieller Zeit berechenbar, wenn dies fur y s gilt
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WICHTIGE GRAPHENTHEORETISCHE DEFINITIONEN I

e Ein (ungerichteter) Graph ist ein Paar G = (V, F), wobei V' endliche Menge und
EC{{v,v}|v,v eV rv#d }
Ein Graph ist darstellbar als Liste vy, ..., v,, {vi, v} }, - {vi,, v; }.

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 NP-VOLLSTANDIGE PROBLEME



WICHTIGE GRAPHENTHEORETISCHE DEFINITIONEN I

e Ein (ungerichteter) Graph ist ein Paar G = (V, F), wobei V' endliche Menge und
EC{{v,v}|v,v eV rv#d }
Ein Graph ist darstellbar als Liste vy, ..., v,, {vi, v} }, - {vi,, v; }.
e Ein Graph H = (Vy, Ey) ist genau dann Subgraph des Graphen G = (V, E) (H C (), wenn
alle Ecken und Kanten von H auch Ecken bzw. Kanten in GG sind:
(VH,EH> L (V,E) S Vg CV AEg CHE
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e Ein Graph H = (Vy, Ey) ist genau dann Subgraph des Graphen G = (V, E) (H C (), wenn
alle Ecken und Kanten von H auch Ecken bzw. Kanten in GG sind:
(VH,EH) (VE)I@VHQV/\EHQE
o H = (Vy, Eg) ist isomorph zu G = (V, E) (karz: H = (), wenn die Graphen durch

Umbenennung (bijektive Abbildung h : Vo—V') ineinander tiberfiihrt werden kénnen:
Vi, ,Eg,) = (V,E) : < 3h: V—-Vg,.(h bijektiv A Eg = {{h(u),h(v)} | {u,v}eE})
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e Dic Grifle |G| eines Graphen G = (V, F) ist die Anzahl |E| seiner Kanten.

e Der Komplementdrgraph des Graphen G = (V, E) ist der Graph G° = (V, E¢) mit
EC={{v,V'}|v,v eV }-F.

e Eine Clique der Grofie k im Graphen G = (V, E) ist eine vollstandig verbundene Knotenmenge
V' CV mit |V| = k. (Dabei heiit vollstindig verbunden: Yv,v" eV’ v £ v ={v,v'} e F)
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e Eine Clique der Grofie k im Graphen G = (V, E) ist eine vollstandig verbundene Knotenmenge
V' CV mit |V| = k. (Dabei heiit vollstindig verbunden: Yv,v" eV’ v £ v ={v,v'} e F)
e Eine Knotentiberdeckung (Vertex cover) des Graphen G = (V, E) ist eine Knotenmenge
V! C V mit der Eigenschaft V{v,v'} e E.veV’ v eV’
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e Eine Clique der Grofie k im Graphen G = (V, E) ist eine vollstandig verbundene Knotenmenge
V' CV mit |V| = k. (Dabei heiit vollstindig verbunden: Yv,v" eV’ v £ v ={v,v'} e F)

e Eine Knotentiberdeckung (Vertex cover) des Graphen G = (V, E) ist eine Knotenmenge
V! C V mit der Eigenschaft V{v,v'} e E.veV’ v eV’

e Ein Hamilton’scher Kreis im Graphen G = (V. E) ist ein Kreis, der nur aus Kanten aus E
besteht und jeden Knoten genau einmal bertihrt.
(D.h. eine Permutation 7 : {1.n}—{1..n} mit Vi < n. {v4), Vrian} €E A {Uzn), Vr()} € E)
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V' CV mit |V| = k. (Dabei heiit vollstindig verbunden: Yv,v" eV’ v £ v ={v,v'} e F)

e Eine Knotentiberdeckung (Vertex cover) des Graphen G = (V, E) ist eine Knotenmenge
V! C V mit der Eigenschaft V{v,v'} e E.veV’ v eV’

e Ein Hamilton’scher Kreis im Graphen G = (V. E) ist ein Kreis, der nur aus Kanten aus E
besteht und jeden Knoten genau einmal bertihrt.
(D.h. eine Permutation 7 : {1.n}—{1..n} mit Vi < n. {v4), Vrian} €E A {Uzn), Vr()} € E)

e Ein gerichteter Graph ist ein Paar G = (V, E), wobei V endliche Menge und £ C V x V.
Ein Hamilton’scher Kreis im gerichteten Graphen G = (V| E) ist ein gerichteter Kreis, der
nur aus Kanten aus £ besteht und jeden Knoten genau einmal bertihrt.
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POLYNOMIELLE REDUKTION AUF (GRAPHENPROBLEMEN I

e Cliquen Problem
— Gegeben ein Graph G = (V, E) der Grofle n und eine Zahl k<n.
— Gibt es in G eine Clique der Grofle k7
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e Cliquen Problem
— Gegeben ein Graph G = (V, E) der Grofle n und eine Zahl k<n.
— Gibt es in G eine Clique der Grofle k7

CLIQUE = { (G,k)| G = (V, E) Graph 1 (3V,.cV. |V,|>k
n V. is Clique in G) }
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POLYNOMIELLE REDUKTION AUF (GRAPHENPROBLEMEN I

e Cliquen Problem
— Gegeben ein Graph G = (V, E) der Grofle n und eine Zahl k<n.
— Gibt es in G eine Clique der Grofle k7

CLIQUE = { (G,k)| G = (V, E) Graph 1 (3V,.cV. |V,|>k
n V. is Clique in G) }

e Vertex Cover Problem
— Gegeben ein Graph G = (V, E) der Grofle n und eine Zahl k<n.
— Gibt es eine Teilmenge V'CV mit hochstens k& Elementen,
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NP-VOLLSTANDIGKEIT I
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e N/ P-hart: nicht leichter als NP
- M'cX* ist N'P-hart, wenn M <,M' fiir alle M e N'P

e N'P-vollstindig: das Schwierigste in NP
— McX* ist N'P-vollstandig, wenn M e N'P und M N P-hart
— Schreibweise: M e N'PC
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KONSEQUENZEN VON N P-VOLLSTANDIGKEIT I

e Alle N'P-vollstandigen Probleme sind dquivalent
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WIE ZEIGT MAN NP-VOLLSTANDIGKEIT? I

e Codiere Berechnung einer NTM in einem Problem L
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— Codiere mogliche Zustandsiibergange durch logische Formeln
— Problem: Konnen Zustandsubergange so kombiniert werden,

dafl Berechnung mit Ergebnis 1 codiert wird?
— Erfiillbarkeitsproblem der (Aussagen-)logik ist Kandidat fir NPC
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DAS ERFULLBARKEITSPROBLEM I

Ist eine aussagenlogische Formel in KNF erfullbar?
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Gibt es eine Belegung aq,...,a, {0,1}
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— Disjunktion einiger Literale der Form x; bzw. 7;

e Belegung as, ..., a, €{0, 1} erfiillt Klausel k;

— Auswertung von k; unter ay, ..., a, ergibt den Boole’schen Wert 1

e SAT = {ky, ..k, | k; Klausel iiber x4, ..z,
A Jaq,..a,€{0,1}. Vi<m. a4, ..a, erfillt k;}

Codierbar als Teilmenge der Sprache der Aussagenlogik
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BEISPIELE VON FORMELN IN KNF I

(T1va2) A (T1VIT2IVTZ) A T3
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— Auswertung: (0+1) * (04+1+0) * 0 = (14+1) * (0+0+1) x 1 = 1% 1 * 1
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BEISPIELE VON FORMELN IN KNF I

(w_lv:cz) A (:Bl \/CIBQVmg) N I3 erfullbar

— Setze x3=0, xo=1, x1 beliebig, z.B. £1=0
— Auswertung: (0+1) * (0+1+0) * 0 = (1+1) * (0+0+1) * 1 = 1x1*x1 =1
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BEISPIELE VON FORMELN IN KNF I

(w_lv:cz) A (:Bl \/CIBQVmg) N I3 erfullbar

— Setze x3=0, xo=1, x1 beliebig, z.B. £1=0
— Auswertung: (0+1) * (0+1+0) * 0 = (1+1) * (0+0+1) * 1 = 1x1*x1 =1

r1 N I1
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BEISPIELE VON FORMELN IN KNF I

(w_lv:cz) A (:Bl \/CIBQVmg) N I3 erfullbar

— Setze x3=0, xo=1, x1 beliebig, z.B. £1=0
— Auswertung: (0+1) * (0+1+0) * 0 = (1+1) * (0+0+1) * 1 = 1x1*x1 =1

r1 N I1 nicht erfillbar
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BEISPIELE VON FORMELN IN KNF I

(Cc_l\/wz) A (ml \/CI)szg) N I3 erfullbar

— Setze x3=0, xo=1, x1 beliebig, z.B. £1=0
— Auswertung: (0+1) * (0+1+0) * 0 = (1+1) * (0+0+1) * 1 = 1x1*x1 =1

r1 N 1 nicht erfillbar
— Jede Belegung ergibt den Wert 0
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BEISPIELE VON FORMELN IN KNF I

(w_lv:cz) A (:Bl \/CIBQVmg) N I3 erfullbar

— Setze x3=0, xo=1, x1 beliebig, z.B. £1=0
— Auswertung: (0+1) * (0+1+0) * 0 = (1+1) * (0+0+1) * 1 = 1x1*x1 =1

r1 N I1 nicht erfillbar
— Jede Belegung ergibt den Wert 0

(x1VvE2) A (T1VT2)
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BEISPIELE VON FORMELN IN KNF I

(Cc_l\/wz) A (ml \/CI)szg) N I3 erfullbar

— Setze x3=0, xo=1, x1 beliebig, z.B. £1=0
— Auswertung: (0+1) * (0+1+0) * 0 = (1+1) * (0+0+1) * 1 = 1x1*x1 =1

r1 N 1 nicht erfillbar
— Jede Belegung ergibt den Wert 0

(:Bl V :Bz) N (a:l V wz) erfillbar, Belequng: (1,0)
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BEISPIELE VON FORMELN IN KNF I

(w_lv:cz) A (331 \/CIBQVmg) N I3 erfullbar

— Setze x3=0, xo=1, x1 beliebig, z.B. £1=0
— Auswertung: (0+1) * (0+1+0) * 0 = (1+1) * (0+0+1) * 1 = 1x1*x1 =1

r1 N I1 nicht erfillbar
— Jede Belegung ergibt den Wert 0

(:131 V :Bz) A (CBl V wz) erfillbar, Belequng: (1,0)

(1 vez) A (T1VvER) A (TTVE2) A (T1VER)
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BEISPIELE VON FORMELN IN KNF I

(w_lv:cz) A (331 \/CIBQVmg) N I3 erfullbar

— Setze x3=0, xo=1, x1 beliebig, z.B. £1=0
— Auswertung: (0+1) * (0+1+0) * 0 = (1+1) * (0+0+1) * 1 = 1x1*x1 =1

r1 N I1 nicht erfillbar
— Jede Belegung ergibt den Wert 0

(:131 V :Bz) A (CBl V wz) erfillbar, Belequng: (1,0)

(1vaz) A (x1vEz) A (TTVez) A (T1VT2)
nicht erfullbar
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BEISPIELE VON FORMELN IN KNF I

(w_lva;z) A (331 \/332\/333) N I3 erfullbar

— Setze x3=0, xo=1, x1 beliebig, z.B. £1=0
— Auswertung: (0+1) * (0+1+0) * 0 = (1+1) * (0+0+1) * 1 = 1x1*x1 =1

r1 N I1 nicht erfillbar
— Jede Belegung ergibt den Wert 0

(:131 V :Bz) A (CBl V wz) erfillbar, Belequng: (1,0)

(1vaz) A (x1vEz) A (TTVez) A (T1VT2)
nicht erfullbar

(x1vEaVvE3) A (TTVE2VTH) A (T1 VT2 VT3)
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BEISPIELE VON FORMELN IN KNF I

(:13_1 Vv wz) A (2131 VoV 2133) N I3 erfullbar
— Setze x3=0, xo=1, x1 beliebig, z.B. £1=0
— Auswertung: (0+1) * (0+1+0) * 0 = (1+1) * (0+0+1) * 1 = 1x1*x1 =1

r1 N I1 nicht erfillbar
— Jede Belegung ergibt den Wert 0

(:131 V :Bz) A (CBl V wz) erfillbar, Belequng: (1,0)

(1vaz) A (x1vEz) A (TTVez) A (T1VT2)
nicht erfullbar

(x1vEaVvE3) A (TTVE2VTH) A (T1 VT2 VT3)
erfillbar, Belegung: (1,1,0,0)
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LOSUNGSALGORITHMEN FUR DAS ERFULLBARKEITSPROBLEM

SAT = {ky..ky| k; Klausel iiber zy..x, A Jay..a, €{0,1}.Vj<m.a,..a, erfillt k;}

e Deterministisch
— Werte Klauseln fir alle moglichen Belegungen der Variablen aus
bis erfillende Belegung gefunden ist
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— Werte Klauseln fir alle moglichen Belegungen der Variablen aus
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e Deterministisch
— Werte Klauseln fir alle moglichen Belegungen der Variablen aus
bis erfiillende Belegung gefunden ist
— Es gibt 2" moglichen Belegungen von x, ..x,

— Auswertung linear in Grofle der Formel O(m * n)
— Laufzeit ist in O(2")

e Nichtdeterministisch
— Rate eine erfiillende Belegung der Variablen (falls es eine gibt)
— Prife Belegung durch Auswertung der Formel
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bis erfiillende Belegung gefunden ist
— Es gibt 2" moglichen Belegungen von x, ..x,

— Auswertung linear in Grofle der Formel O(m * n)
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e Nichtdeterministisch
— Rate eine erfiillende Belegung der Variablen (falls es eine gibt)
— Prife Belegung durch Auswertung der Formel
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THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 13 NP-VOLLSTANDIGE PROBLEME




LOSUNGSALGORITHMEN FUR DAS ERFULLBARKEITSPROBLEM

SAT = {ky..ky| k; Klausel iiber zy..x, A Jay..a, €{0,1}.Vj<m.a,..a, erfillt k;}

e Deterministisch
— Werte Klauseln fir alle moglichen Belegungen der Variablen aus
bis erfiillende Belegung gefunden ist
— Es gibt 2" moglichen Belegungen von x, ..x,

— Auswertung linear in Grofle der Formel O(m * n)
— Laufzeit ist in O(2")

e Nichtdeterministisch
— Rate eine erfiillende Belegung der Variablen (falls es eine gibt)
— Prife Belegung durch Auswertung der Formel
— Polynomielle Laufzeit

U
SAT e NP

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 13 NP-VOLLSTANDIGE PROBLEME




DER SATZ VON COOK Satz | I

SAT ist N'P-vollstandig
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DER SATZ VON COOK Satz | I

SAT ist N'P-vollstandig

e Gegeben: NTM 7, die ein Problem in polynomieller Zeit lost

e Ziel: Codiere Berechnung von T bei Eingabe w durch Formel
in KNF, die genau dann erfiillbar ist, wenn h.(w) =1

— Codierung muf in polynomieller Zeit (relativ zu |w]|) berechenbar sein

e Vorgehen: Beschreibe mogliche Konfigurationsiibergange
von 7 durch Klauseln
— Codiere Zustand, Kopfposition und Bandzellen durch Literale
— Es werden nur polynomiell viele Literale und Klauseln benotigt

— Formel ist erfullbar, wenn Konfigurationsiibergange zu Berechnung

zusammengesetzt werden konnen

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 14 NP-VOLLSTANDIGE PROBLEME




SATZ VON COOK: GRUNDANNAHMEN I

Zeige L<,SAT fiir jede N'P-Sprache L
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SATZ VON COOK: GRUNDANNAHMEN I

Zeige L<,SAT fiir jede N'P-Sprache L

e I. wird von NT' M T entschieden
-7 = (5, X, T, 4, so, b) mit S={sq, .., Se}, '={x1,.., 2, }, b=11
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Zeige L<,SAT fiir jede N'P-Sprache L

e I. wird von NT' M T entschieden
-7 = (5, X, T, 4, so, b) mit S={sq, .., Se}, '={x1,.., 2, }, b=11

—o0.B.d.A: 7 hat Menge F' von “Endzustanden” in denen 7 “verharrt”
(Ersetze hierzu (s, a)=(s",d’, h)
durch 6(s, a)=(s,a’, L), 6(s, a)=(5s,a, R), 6(S,a)=(s,a, L))
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SATZ VON COOK: GRUNDANNAHMEN I

Zeige L<,SAT fiir jede N'P-Sprache L

e I. wird von NT' M T entschieden
-7 = (5, X, T, 4, so, b) mit S={sq, .., Se}, '={x1,.., 2, }, b=11

—o0.B.d.A: 7 hat Menge F' von “Endzustanden” in denen 7 “verharrt”
(Ersetze hierzu (s, a)=(s",d’, h)
durch 6(s, a)=(s,a’, L), 6(s, a)=(5s,a, R), 6(S,a)=(s,a, L))

— 0.B.d.A.: Die akzeptierende Ausgabe 1 steht in Bandzelle 0
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(Ersetze hierzu (s, a)=(s",d’, h)
durch 6(s, a)=(s,a’, L), 6(s, a)=(5s,a, R), 6(S,a)=(s,a, L))

— 0.B.d.A.: Die akzeptierende Ausgabe 1 steht in Bandzelle 0

e 7 zeitbeschriankt durch Polynom p(n)
—t-(w)<p(n) fir jedes Wort w e X* mit |w|=n
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SATZ VON COOK: GRUNDANNAHMEN I

Zeige L<,SAT fiir jede N'P-Sprache L

e I. wird von NT' M T entschieden
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— 0.B.d.A.: Die akzeptierende Ausgabe 1 steht in Bandzelle 0

e 7 zeitbeschriankt durch Polynom p(n)
—t-(w)<p(n) fir jedes Wort w e X* mit |w|=n

— Es sind genau p(n) Berechnungsschritte als Formel zu codieren
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SATZ VON COOK: GRUNDANNAHMEN I

Zeige L<,SAT fiir jede N'P-Sprache L

e I. wird von NT' M T entschieden
— T = (S, X, F, 5, S0, b) mit S:{So, ..,Se}, F:{Qfl, ..,IU}, b:l'l

—o0.B.d.A: 7 hat Menge F' von “Endzustanden” in denen 7 “verharrt”
(Ersetze hierzu (s, a)=(s",d’, h)
durch 6(s, a)=(s,a’, L), 6(s, a)=(5s,a, R), 6(S,a)=(s,a, L))

— 0.B.d.A.: Die akzeptierende Ausgabe 1 steht in Bandzelle 0

e 7 zeitbeschriankt durch Polynom p(n)
—t-(w)<p(n) fir jedes Wort w e X* mit |w|=n

— Es sind genau p(n) Berechnungsschritte als Formel zu codieren

e 7 platzbeschrankt durch p(n)

— 7 kann wahrend der Berechnung maximal p(n) Bandzellen aufsuchen
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SATZ VON COOK: GRUNDANNAHMEN I

Zeige L<,SAT fiir jede N'P-Sprache L

e I. wird von NT' M T entschieden
— T = (S, X, F, 5, S0, b) mit S:{So, ..,Se}, F:{Qfl, ..,IU}, b:$1

—o0.B.d.A: 7 hat Menge F' von “Endzustanden” in denen 7 “verharrt”
(Ersetze hierzu (s, a)=(s",d’, h)
durch 6(s, a)=(s,a’, L), 6(s, a)=(5s,a, R), 6(S,a)=(s,a, L))

— 0.B.d.A.: Die akzeptierende Ausgabe 1 steht in Bandzelle 0

e 7 zeitbeschriankt durch Polynom p(n)
—t-(w)<p(n) fir jedes Wort w e X* mit |w|=n

— Es sind genau p(n) Berechnungsschritte als Formel zu codieren

e 7 platzbeschrankt durch p(n)
— 7 kann wahrend der Berechnung maximal p(n) Bandzellen aufsuchen

— Es reicht die Bandzellen von —p(n) bis +p(n) zu modellieren
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SATZ VON COOK: ZU CODIERENDE AUSSAGEN I

e Anfangsbedingungen bei Eingabe w
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SATZ VON COOK: ZU CODIERENDE AUSSAGEN I

e Anfangsbedingungen bei Eingabe w

— 7 startet im Zustand sy und der Kopf ist iiber Bandzelle 0
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SATZ VON COOK: ZU CODIERENDE AUSSAGEN I

e Anfangsbedingungen bei Eingabe w

— 7 startet im Zustand sy und der Kopf ist iiber Bandzelle 0
~ Bandinhalt der Zellen —p(n)...0...p(n) ist b*™w; .., bP") ="+
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e Anfangsbedingungen bei Eingabe w

— 7 startet im Zustand sy und der Kopt ist iiber Bandzelle 0
— Bandinhalt der Zellen —p(n)...0...p(n) ist by . aw,, bt

e Randbedingungen fur eindeutiges Verhalten
Zu jedem Zeitpunkt ¢ der Berechnung gilt
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— Jede Bandzelle enthalt genau ein Symbol
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SATZ VON COOK: ZU CODIERENDE AUSSAGEN I

e Anfangsbedingungen bei Eingabe w
— 7 startet im Zustand sy und der Kopt ist iiber Bandzelle 0

— Bandinhalt der Zellen —p(n)...0...p(n) ist by . aw,, bt

e Randbedingungen fur eindeutiges Verhalten

Zu jedem Zeitpunkt ¢ der Berechnung gilt
— 7 befindet sich in genau einem Zustand und liest genau eine Bandzelle

— Jede Bandzelle enthalt genau ein Symbol
— 7 wendet genau eine Zeile der Zustandsuberfithrungstabelle 0 an

NP-VOLLSTANDIGE PROBLEME
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SATZ VON COOK: ZU CODIERENDE AUSSAGEN I

e Anfangsbedingungen bei Eingabe w
— 7 startet im Zustand sy und der Kopt ist iiber Bandzelle 0

— Bandinhalt der Zellen —p(n)...0...p(n) ist by . aw,, bt

e Randbedingungen fur eindeutiges Verhalten

Zu jedem Zeitpunkt ¢ der Berechnung gilt
— 7 befindet sich in genau einem Zustand und liest genau eine Bandzelle

— Jede Bandzelle enthalt genau ein Symbol
— 7 wendet genau eine Zeile der Zustandsuberfithrungstabelle 0 an

° U’bergangsbedingungen

NP-VOLLSTANDIGE PROBLEME

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 16




SATZ VON COOK: ZU CODIERENDE AUSSAGEN I

e Anfangsbedingungen bei Eingabe w
— 7 startet im Zustand sy und der Kopt ist iiber Bandzelle 0

— Bandinhalt der Zellen —p(n)...0...p(n) ist by . aw,, bt

e Randbedingungen fur eindeutiges Verhalten

Zu jedem Zeitpunkt ¢ der Berechnung gilt
— 7 befindet sich in genau einem Zustand und liest genau eine Bandzelle

— Jede Bandzelle enthalt genau ein Symbol
— 7 wendet genau eine Zeile der Zustandsuberfithrungstabelle 0 an

° U’bergangsbedingungen
— Zu jedem Zeitpunkt ¢ sind Zustand, Kopfposition und Bandinhalt
mit der Zustandsiiberfithrungstabelle ¢ vertraglich

NP-VOLLSTANDIGE PROBLEME
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SATZ VON COOK: ZU CODIERENDE AUSSAGEN I

e Anfangsbedingungen bei Eingabe w
— 7 startet im Zustand sy und der Kopt ist iiber Bandzelle 0
- Bandinhalt der Zellen —p(n)...0...p(n) ist 6w, .., bP") ="+

e Randbedingungen fur eindeutiges Verhalten
Zu jedem Zeitpunkt ¢ der Berechnung gilt
— 7 befindet sich in genau einem Zustand und liest genau eine Bandzelle
— Jede Bandzelle enthalt genau ein Symbol
— 7 wendet genau eine Zeile der Zustandsuberfithrungstabelle 0 an

° U’bergangsbedingungen
— Zu jedem Zeitpunkt ¢ sind Zustand, Kopfposition und Bandinhalt
mit der Zustandsiiberfithrungstabelle ¢ vertraglich

e Endbedingung
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SATZ VON COOK: ZU CODIERENDE AUSSAGEN I

e Anfangsbedingungen bei Eingabe w
— 7 startet im Zustand sy und der Kopt ist iiber Bandzelle 0
- Bandinhalt der Zellen —p(n)...0...p(n) ist 6w, .., bP") ="+

e Randbedingungen fur eindeutiges Verhalten
Zu jedem Zeitpunkt ¢ der Berechnung gilt
— 7 befindet sich in genau einem Zustand und liest genau eine Bandzelle
— Jede Bandzelle enthalt genau ein Symbol
— 7 wendet genau eine Zeile der Zustandsuberfithrungstabelle 0 an

° U’bergangsbedingungen
— Zu jedem Zeitpunkt ¢ sind Zustand, Kopfposition und Bandinhalt
mit der Zustandsiiberfithrungstabelle ¢ vertraglich

e Endbedingung
— Nach p(n) Schritten befindet sich 7 in einem Endzustand aus F
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SATZ VON COOK: ZU CODIERENDE AUSSAGEN I

e Anfangsbedingungen bei Eingabe w
— 7 startet im Zustand sy und der Kopt ist iiber Bandzelle 0
- Bandinhalt der Zellen —p(n)...0...p(n) ist 6w, .., bP") ="+

e Randbedingungen fur eindeutiges Verhalten
Zu jedem Zeitpunkt ¢ der Berechnung gilt
— 7 befindet sich in genau einem Zustand und liest genau eine Bandzelle
— Jede Bandzelle enthalt genau ein Symbol
— 7 wendet genau eine Zeile der Zustandsuberfithrungstabelle 0 an

° U’bergangsbedingungen
— Zu jedem Zeitpunkt ¢ sind Zustand, Kopfposition und Bandinhalt
mit der Zustandsiiberfithrungstabelle ¢ vertraglich

e Endbedingung
— Nach p(n) Schritten befindet sich 7 in einem Endzustand aus F
— Bandinhalt der Zellen —p(n)...0...p(n) ist pr(n) 1 pp(n)
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SYMBOLE IN DER CODIERUNG EINER BERECHNUNG I

® 24k, t{0.p(n)}t ke{0.e}
— 7 1st nach ¢ Schritten im Zustand s;.
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SYMBOLE IN DER CODIERUNG EINER BERECHNUNG I

® 24k, t{0.p(n)}t ke{0.e}
— 7 1st nach ¢ Schritten im Zustand s;.

®a;; i, t<{0.p(n)}, ic{—p(n).p(n)}, je{l.v}
— Der Bandinhalt von Zelle ¢ nach ¢ Schritten ist das Symbol z;
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SYMBOLE IN DER CODIERUNG EINER BERECHNUNG I

® 24k, t{0.p(n)}t ke{0.e}
— 7 1st nach ¢ Schritten im Zustand s;.

®ai; i, tc{0.p(n)} ic{—pn).pn)} je{l.v}
— Der Bandinhalt von Zelle ¢ nach ¢ Schritten ist das Symbol z;

® 5t i, te{0.p(n)}, ie{—p(n).p(n)}
— 7 liest im Schritt ¢ den Bandinhalt von Zelle 2
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SYMBOLE IN DER CODIERUNG EINER BERECHNUNG I

® 24k, t{0.p(n)}t ke{0.e}
— 7 1st nach ¢ Schritten im Zustand s;.

®ai; i, tc{0.p(n)} ic{—pn).pn)} je{l.v}
— Der Bandinhalt von Zelle ¢ nach ¢ Schritten ist das Symbol z;

® 5t i, te{0.p(n)}, ie{—p(n).p(n)}
— 7 liest im Schritt ¢ den Bandinhalt von Zelle 2

° bt,la te{0..p(n)}, le{l..vx(e+1)}

— 7 verwendet beim Ubergang von ¢ nach t+1 die Zeile I der Tabelle von &
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SYMBOLE IN DER CODIERUNG EINER BERECHNUNG I

® 2t ky 1{0.p(n)}, ke{0.e}
— 7 1st nach ¢ Schritten im Zustand s;.

®ai; i, tc{0.p(n)} ic{—pn).pn)} je{l.v}
— Der Bandinhalt von Zelle ¢ nach ¢ Schritten ist das Symbol z;

® St i, t<{0.p(n)}, te{—p(n).p(n)}
— 7 liest im Schritt ¢ den Bandinhalt von Zelle 2

° bt,lv te{0..p(n)}, le{l..vx(e+1)}

— 7 verwendet beim Ubergang von ¢ nach t+1 die Zeile I der Tabelle von &

e Insgesamt O( (p(n))? * |S| = |T'|) Variablen
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SYMBOLE IN DER CODIERUNG EINER BERECHNUNG I

® 24k, t{0.p(n)}t ke{0.e}
— 7 1st nach ¢ Schritten im Zustand s;.

®ai; i, tc{0.p(n)} ic{—pn).pn)} je{l.v}
— Der Bandinhalt von Zelle ¢ nach ¢ Schritten ist das Symbol z;

® 5t i, te{0.p(n)}, ie{—p(n).p(n)}
— 7 liest im Schritt ¢ den Bandinhalt von Zelle 2

° bt,la te{0..p(n)}, le{l..vx(e+1)}

— 7 verwendet beim Ubergang von ¢ nach t+1 die Zeile I der Tabelle von &

e Insgesamt O( (p(n))? * |S| = |T'|) Variablen

Beschreibe Berechnung von h,(w)

als KNF-Formel a(7,w) iiber diesen Variablen
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SATZ VON COOK: CODIERUNG DER ANFANGSBEDINGUNGEN I

Start im Zustand sy, Kopf iiber Bandzelle 0,

Bandinhalt b?(™w;..w,,bP(™ "+l
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SATZ VON COOK: CODIERUNG DER ANFANGSBEDINGUNGEN I

Start im Zustand sy, Kopf iiber Bandzelle O,

Bandinhalt b?(™w;..w,, bP(™—"+1

Sei w1 = Tj, ..., Wy = Tj,

Codiere Anfangsbedingungen als Formel A mit
A = 20,0 N 80,0

1 N ..o N Qg,—1,1

A aOvovjl ANEERIA aovn_lajn

N\ a,(),n,l VANRAN a’O,p(n),l
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SATZ VON COOK: CODIERUNG DER ANFANGSBEDINGUNGEN I

Start im Zustand sy, Kopf iiber Bandzelle O,

Bandinhalt b?(™w;..w,, bP(™—"+1

Sei w1 = Tj, ..., Wy = Tj,

Codiere Anfangsbedingungen als Formel A mit
A = 20,0 N 80,0

1 N ..o N Qg,—1,1

A\ ag,0,51 N oo N ag,n—1,jn

N agn,l N .o A aO’p(n),l

e A istin KNF Rein konjunktive Formel
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SATZ VON COOK: CODIERUNG DER ANFANGSBEDINGUNGEN I

Start im Zustand sy, Kopf iiber Bandzelle O,

Bandinhalt b?(™w;..w,, bP(™—"+1

Sei w1 = Tj, ..., Wy = Tj,

Codiere Anfangsbedingungen als Formel A mit
A = 20,0 N 80,0

1 N ..o N Qg,—1,1

A aOvovjl ANREEINA aovn_lajn

A\ a,(),n,l VAN AN a’O,p(n),l
e A istin KNF Rein konjunktive Formel
e Grofle: (’)(p(n)) 2xp(n)+3 Variablen
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SATZ VON COOK: CODIERUNG DER ANFANGSBEDINGUNGEN I

Start im Zustand sy, Kopf iiber Bandzelle O,

Bandinhalt b?(™w;..w,, bP(™—"+1

Sei w1 = Tj, ..., Wy = Tj,

Codiere Anfangsbedingungen als Formel A mit
A = 20,0 N 80,0

1 N ..o N Qg,—1,1

A a’0,0,jl ANREEINA aovn_lajn

A\ Cl,()’rn’l N oo N a’O,p(n),l
e A istin KNF Rein konjunktive Formel
e Grofle: (’)(p(n)) 2xp(n)+3 Variablen
e Berechnungsaufwand: O(p(n)) Bestimmung von p(n)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 18 NP-VOLLSTANDIGE PROBLEME




SATZ VON COOK: CODIERUNG DER RANDBEDINGUNGEN I

In jedem Schritt genau ein Zustand, eine Bandzelle ein

Symbol pro Bandzelle, eine verwendete Zeile von 9§
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SATZ VON COOK: CODIERUNG DER RANDBEDINGUNGEN I

In jedem Schritt genau ein Zustand, eine Bandzelle ein

Symbol pro Bandzelle, eine verwendete Zeile von 9§

Codiere Randbedingungen als Formel R mit

R — 31(20’0, con ZO,e) VAN Hl(zp(n)’o, ooy Zp(n),e)
A 3(80,—p(n)s o3 So,p(n)) A - A T(Sp(n),—p(n)s ++s Sp(n),p(n))
A EI1(a0,—p(n),17 x aO,—p(n),v) ANEREINA EI1(ap('n),10(7’b),1v "’ap(n),p(n),v)
A 3

1(b0,,17 o9 bO,v*(e—l—l)) AN oA E|1(bp(n),17 o9 bp(n),v*(e—i—l))

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 19 NP-VOLLSTANDIGE PROBLEME




SATZ VON COOK: CODIERUNG DER RANDBEDINGUNGEN I

In jedem Schritt genau ein Zustand, eine Bandzelle ein

Symbol pro Bandzelle, eine verwendete Zeile von 9§

Codiere Randbedingungen als Formel R mit

R — 31(20’0, "3Z0,e) VAN Hl(zp(n)’o, ooy Zp(n),e)
A 31<30,—p(n)’ "930,29(%)) ANEREA Hl(sp(n),—p(n)? "’Sp(n),p(n)>
A (@0, —p(n),15 s B0, —p(n)w) A - A T(Cp(n)p(n),15 ++s Cp(n),p(n),)

A Ell(bO,,la o9 bO,v*(e—l—l)) AN oA E|1(bp(n),17 o9 bp(n),v*(e—i—l))

Dabei ist 3 (y1, .., ym) Abkiirzung fur “genau eines der y; gilt’

W5 Ym) = WV vym) A (Givye) A A (YL VYm)
A (G2 vys) A A G2V Tm) A A (Yme1 Vi)
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SATZ VON COOK: CODIERUNG DER RANDBEDINGUNGEN I

In jedem Schritt genau ein Zustand, eine Bandzelle ein

Symbol pro Bandzelle, eine verwendete Zeile von 9§

Codiere Randbedingungen als Formel R mit

R — 31(20’0, "3Z0,e) VAN Hl(zp(n)’o, ooy Zp(n),e)
A 31<30,—p(n)’ "930,29(%)) ANEREA Hl(sp(n),—p(n)? "’Sp(n),p(n)>
A (@0, —p(n),15 s B0, —p(n)w) A - A T(Cp(n)p(n),15 ++s Cp(n),p(n),)

A Ell(bO,,la o9 bO,v*(e—l—l)) AN oA E|1(bp(n),17 o9 bp(n),v*(e—i—l))

Dabei ist 3 (y1, .., ym) Abkiirzung fur “genau eines der y; gilt’

W5 Ym) = WV vym) A (Givye) A A (YL VYm)
A (G2 vys) A A G2V Tm) A A (Yme1 Vi)

e Rist in KNF Konjunktion von 3-Formeln
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SATZ VON COOK: CODIERUNG DER RANDBEDINGUNGEN I

In jedem Schritt genau ein Zustand, eine Bandzelle ein

Symbol pro Bandzelle, eine verwendete Zeile von 9§

Codiere Randbedingungen als Formel R mit

R — 31(20’0, "3Z0,e) VAN Hl(zp(n)’o, ooy Zp(n),e)
A 31<30,—p(n)’ "930,29(%)) ANEREA Hl(sp(n),—p(n)? "’Sp(n),p(n)>
A (@0, —p(n),15 s B0, —p(n)w) A - A T(Cp(n)p(n),15 ++s Cp(n),p(n),)

A Ell(bO,,la o9 bO,v*(e—l—l)) AN oA E|1(bp(n),17 o9 bp(n),v*(e—i—l))

Dabei ist 3 (y1, .., ym) Abkiirzung fur “genau eines der y; gilt’

W5 Ym) = WV vym) A (Givye) A A (YL VYm)
A (G2 vys) A A G2V Tm) A A (Yme1 Vi)

e Rist in KNF Konjunktion von 3-Formeln

e Grofle: O((p(n))g) (p(n)+1) * ((e4+1) + (2%p(n)+1)? + ...) Variablen
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SATZ VON COOK: CODIERUNG DER RANDBEDINGUNGEN I

In jedem Schritt genau ein Zustand, eine Bandzelle ein

Symbol pro Bandzelle, eine verwendete Zeile von 9

Codiere Randbedingungen als Formel R mit

R — 31(20’0, con ZO,e) VAN Hl(zp(n)’o, ooy Zp(n),e)
A 3(80,—p(n)s o3 So,p(n)) A - A T(Sp(n),—p(n)s ++s Sp(n),p(n))
A T @0,—p(n),15 s @o,—p(n)w) A - A T Qp(n),p(n),1s -+ Ap(n),p(n)w)

A Ell(bO,,la o9 bO,v*(e—|—1)> AN oA E|1(bp(n),17 o9 bp(n),v*(e—i—l))

Dabei ist 3 (y1, .., ym) Abkiirzung fur “genau eines der y; gilt’

AW Ym) = Wvevym) A (Gve) A A (YL VYm)
A (G2 vys) A A G2V Tm) A A (Yme1 Vi)

e R istin KNF Konjunktion von 3-Formeln
e Grofle: O((p(n))g) (p(n)+1) * ((e4+1) + (2%p(n)+1)? + ...) Variablen

e Berechnungsaufwand: O((p(n))?)  Bestimmung von p(n) + ...

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 19 NP-VOLLSTANDIGE PROBLEME




SATZ VON CoOK: CODIERUNG DER UBERCGANGSBEDINGUNGEN |

Zustand, Kopfposition und Bandinhalt vertraglich mit §
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SATZ VON CoOK: CODIERUNG DER UBERCANGSBEDINGUNGEN

Zustand, Kopfposition und Bandinhalt vertraglich mit §

® Betrachte Zeit t und Bandzelle 72 einzeln
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SATZ VON CoOK: CODIERUNG DER UBERCANGSBEDINGUNGEN

Zustand, Kopfposition und Bandinhalt vertraglich mit §

e Betrachte Zeit t und Bandzelle 7 einzeln
— Zeile 1 von 9§ sei 6(sp;,xj)=(sy,x;,p) mit pe{+1,—1}
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SATZ VON CoOK: CODIERUNG DER UBERCANGSBEDINGUNGEN |

Zustand, Kopfposition und Bandinhalt vertraglich mit §

e Betrachte Zeit ¢t und Bandzelle 7 einzeln
— Zeile 1 von 9§ sei 6(sp;,xj)=(sy,x;,p) mit pe{+1,—1}
— Falls 7 zur Zeit t Zelle 7 nicht liest, bleibt sie unverandert
Formulierung: ((5:;ra:1) = @ry141) A -

A ((Btinaiw) = Qit1,i0)
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SATZ VON CoOK: CODIERUNG DER UBERCANGSBEDINGUNGEN |

Zustand, Kopfposition und Bandinhalt vertraglich mit §

e Betrachte Zeit ¢t und Bandzelle 7 einzeln
— Zeile 1 von 9§ sei 6(sp;,xj)=(sy,x;,p) mit pe{+1,—1}
— Falls 7 zur Zeit t Zelle 7 nicht liest, bleibt sie unverandert
Formulierung: ((5:;ra:1) = @ry141) A -
A ((Bi A Giw) = Qeyi)

— Falls 7 zur Zeit t Zelle 7 liest und Zeile | benutzt
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SATZ VON CoOK: CODIERUNG DER UBERCANGSBEDINGUNGEN |

Zustand, Kopfposition und Bandinhalt vertraglich mit §

e Betrachte Zeit ¢t und Bandzelle 7 einzeln
— Zeile 1 von 9§ sei 6(sp;,xj)=(sy,x;,p) mit pe{+1,—1}
— Falls 7 zur Zeit t Zelle 7 nicht liest, bleibt sie unverandert
Formulierung: ((5:;ra:1) = @ry141) A -
A ((BtiAGtiw) = Qpi1i0)
— Falls 7 zur Zeit t Zelle 7 liest und Zeile | benutzt

» Zur Zeit t: Zustand sy, Zelle 1 ist x;,

Formulierung: (s:; Aby;) = (2tk, At j,)
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SATZ VON CoOK: CODIERUNG DER UBERCANGSBEDINGUNGEN |

Zustand, Kopfposition und Bandinhalt vertraglich mit §

e Betrachte Zeit ¢t und Bandzelle 7 einzeln
— Zeile 1 von 9§ sei 6(sp;,xj)=(sy,x;,p) mit pe{+1,—1}
— Falls 7 zur Zeit t Zelle 7 nicht liest, bleibt sie unverandert
Formulierung: ((5:;ra:1) = @ry141) A -
A ((Btinaiw) = Qit1,i0)
— Falls 7 zur Zeit t Zelle 7 liest und Zeile | benutzt
» Zur Zeit t: Zustand sy, Zelle 1 ist x;,
Formulierung: (s:; Aby;) = (2tk, At j,)
» Ziur Zeit t+1: Zustand Sk!s Zelle 1 ist T, neue Zelle 1+p
Formulierung: (s¢; Aby;) = (th,k; NGy g A St+1,itp)
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SATZ VON CoOK: CODIERUNG DER UBERCANGSBEDINGUNGEN

Zustand, Kopfposition und Bandinhalt vertraglich mit §

e Betrachte Zeit ¢t und Bandzelle 7 einzeln
— Zeile 1 von 9§ sei 6(sp;,xj)=(sy,x;,p) mit pe{+1,—1}
— Falls 7 zur Zeit t Zelle 7 nicht liest, bleibt sie unverandert
Formulierung: ((5:;ra:1) = @ry141) A -
A ((8tinativ) = Qty1iw)
— Falls 7 zur Zeit t Zelle 7 liest und Zeile | benutzt
» Zur Zeit t: Zustand sy, Zelle 1 ist x;,
Formulierung: (s:; Aby;) = (2tk, At j,)
» Ziur Zeit t+1: Zustand Sk!s Zelle 1 ist T, neue Zelle 1+p
Formulierung: (s;; Ab;) = (th,k; NGy g A St+1,itp)

Formeln mussen normalisiert und kombiniert werden
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SATZ VON CoOK: CODIERUNG DER UBERCANGSBEDINGUNGEN

e Definiere Formeln U(t,4) t<{0.p(n)}.ic{—p(n).pn)}
Ij(t, 1) = (84,iVAti1VGii1iq) N - A (SiVQriwVaQiiiiv)
A (Brivbeivzig) A (8eivbeivag,)
A (8t v Bt,l v Zt+1,k:’1) A (8t v Et,l Vv at+1,k’1)

A (8tivbea v Siysitp)

A (8t vbem v Zik,) A (8t Vbim v a,)
A (8t vbem Vv zipinr ) A (Bt Vbim Vvagi g )

A (8t,i VOtm V St41,itp)
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SATZ VON CoOK: CODIERUNG DER UBERCANGSBEDINGUNGEN

e Definiere Formeln U(t,4) t<{0.p(n)}.ic{—p(n).pn)}
ﬂ'(t, 1) = (84,iVAti1VGii1iq) N - A (SiVQriwVaQiiiiv)
A (Bt v Et,l VZik) A (8tiv Et,l V@t )
A (8givbig v Zepiw) A (Stv by v Qyy1,1))

A (8tivbea v Siysitp)

A (8t vbem v Zik,) A (8t Vbim v a,)
A (8t vbem Vv zipinr ) A (Bt Vbim Vvagi g )

A (8t,i VOtm V St41,itp)

U = U0, —pn)r..AT(0,p(n) A .. xUp(n),p(n))
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SATZ VON CoOK: CODIERUNG DER UBERCANGSBEDINGUNGEN

e Definiere Formeln U(t,4) t<{0.p(n)}.ic{—p(n).pn)}
Ij(t, 1) = (84,iVAti1VGii1iq) N - A (SiVQriwVaQiiiiv)
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A (8t vbem Vv zipinr ) A (Bt Vbim Vvagi g )

A (8t,i VOtm V St41,itp)

U = U0, —pn)r..AT(0,p(n) A .. xUp(n),p(n))

o Uistin KNF
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SATZ VON COOK: CODIERUNG DER ENDBEDINGUNG I

Nach p(n) Schritten: Endzustand aus F, Bandinhalt bP(")1pP(")
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KORREKTHEIT DER CODIERUNG a(T,w) = AARAUANE

e a(7T,w) ist in KNF
— Jede der Teilformeln ist in KNF
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— Per Konstruktion erfiillt dies die Formel a(7,w), also a(7,w)eSAT

e a(T,w) e SAT = welL
~Ist a(r,w) erfiillbar, so kann wegen Formel U die Belegung der Variablen
in eine Konfigurationsfolge xo,..,k,,) umgerechnet werden
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METHODIK FUR NACHWEIS VON N P-VOLLSTANDIGKEIT I

e Zeige L e N'P:
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METHODIK FUR NACHWEIS VON N P-VOLLSTANDIGKEIT I

e Zeige L € N'P:

— Beschreibe, welchen Losungsvorschlag das Orakel generiert
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— Beschreibe, welchen Losungsvorschlag das Orakel generiert
— Beschreibe, wie Losungsvorschlag tiberprift wird

— Zeige, dafl das Priifverfahren polynomiell ist
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— Wahle ein ahnliches, bekanntes Problem L' e N'PC
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— Beschreibe, wie Losungsvorschlag tiberprift wird

— Zeige, dafl das Priifverfahren polynomiell ist

e Zeige dL' e N'PC. L,SpL (anstatt VL e N'P. L'<,L)
— Wahle ein ahnliches, bekanntes Problem L' e N'PC

— Beschreibe Transformationsfunktion f, welche Eingaben aus
der Sprache fiir L' in Worte der Sprache fiir L umwandelt
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— Beschreibe, wie Losungsvorschlag tiberprift wird

— Zeige, daf3 das Prufverfahren polynomiell ist
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— Wahle ein ahnliches, bekanntes Problem L' e N'PC
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— Beschreibe, welchen Losungsvorschlag das Orakel generiert
— Beschreibe, wie Losungsvorschlag tiberprift wird

— Zeige, daf3 das Prufverfahren polynomiell ist

e Zeige IL' e N'PC. L,SpL (anstatt VL e N'P. L'<,L)
— Wahle ein ahnliches, bekanntes Problem L' e N'PC

— Beschreibe Transformationsfunktion f, welche Eingaben aus
der Sprache fiir L' in Worte der Sprache fiir L umwandelt

— Zeige fur alle x: vel! < f(x)el (also L' = f~1(L))

— Zeige, dal3 f in polynomieller Zeit berechnet werden kann
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ERFULLBARKEITSPROBLEM MIT 3 LITERALEN PRO KLAUSEL I

3SAT

= {k1, ..k | Vi<m. Jz;; e{T1,T1, ety Tny Tp}. ki = Zi1VZi2V 23

A dai,..a,€{0,1}. V<m. aq,..a, erfillt k; }
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= {k1, ..k | Vi<m. Jz;; e{T1,T1, ety Tny Tp}. ki = Zi1VZi2V 23

A Jaq,..a,€{0,1}. V<m. a,,..a, erfiillt k; }

e 3SAT e NP
— Wie SAT e N'P: Rate Belegung der Variablen und werte Klauseln aus
e SAT <, 3SAT" Satz ]

— Normalisierung der Klauseln k4, ..k, uber 1, ..2,.
Ersetze Klausel k; durche aquivalente Menge von Dreierklauseln
- Ersetze einelementige Klauseln k; = z durch zvzvz
- Ersetze zweielementige Klauseln k; = z vz’ durch zvzv 2/
. Ubernehme dreielementige Klauseln unverindert
- Ersetze Klauseln k; = 21 v 29... vz; durch j-2 neue Klauseln mit neuen

Variablen Yil- (21 V 29 \/yz’,l) A (yT,lVZS \/yijg) AN <yi,j—3 VZi—1 \/Zj)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 25 NP-VOLLSTANDIGE PROBLEME




ERFULLBARKEITSPROBLEM MIT 3 LITERALEN PRO KLAUSEL I

3SAT

= {k1, ..k | Vi<m. Jz;; e{T1,T1, ety Tny Tp}. ki = Zi1VZi2V 23

A Jaq,..a,€{0,1}. V<m. a,,..a, erfiillt k; }

e 3SAT e NP
— Wie SAT e N'P: Rate Belegung der Variablen und werte Klauseln aus
e SAT <, 3SAT" Satz ]

— Normalisierung der Klauseln k4, ..k, uber 1, ..2,.
Ersetze Klausel k; durche aquivalente Menge von Dreierklauseln
- Ersetze einelementige Klauseln k; = z durch zvzvz
- Ersetze zweielementige Klauseln k; = z vz’ durch zvzv 2/
. Ubernehme dreielementige Klauseln unverindert
- Ersetze Klauseln k; = 21 v 29... vz; durch j-2 neue Klauseln mit neuen
Variablen y; ;0 (z1vzavyin) A (Tiavesvyio) A ... (Yij—3VZj—1VZ)

— Normalisierung der Klauseln moglich in polynomieller Zeit
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ERFULLBARKEITSPROBLEM MIT 3 LITERALEN PRO KLAUSEL I

3SAT

= {k1, ..k | Vi<m. Jz;; e{T1,T1, ety Tny Tp}. ki = Zi1VZi2V 23

A Jaq,..a,€{0,1}. V<m. a,,..a, erfiillt k; }

e 3SAT e NP
— Wie SAT e N'P: Rate Belegung der Variablen und werte Klauseln aus
e SAT <, 3SAT" Satz ]

— Normalisierung der Klauseln k4, ..k, uber 1, ..2,.

Ersetze Klausel k; durche aquivalente Menge von Dreierklauseln

- Ersetze einelementige Klauseln k; = z durch zvzvz

- Ersetze zweielementige Klauseln k; = z vz’ durch zvzv 2/

. Ubernehme dreielementige Klauseln unverindert

- Ersetze Klauseln k; = 21 v 29... vz; durch j-2 neue Klauseln mit neuen

Variablen y; ;0 (z1vzavyin) A (Tiavesvyio) A ... (Yij—3VZj—1VZ)

— Normalisierung der Klauseln moglich in polynomieller Zeit
— k; erfilllbar genau dann wenn normalisierte Klauselmenge erfillbar
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ERFULLBARKEITSPROBLEM MIT 3 LITERALEN PRO KLAUSEL I

3SAT

= {k1, ..k | Vi<m. Jz;; e{T1,T1, ety Tny Tp}. ki = Zi1VZi2V 23

A Jaq,..a,€{0,1}. V<m. a,,..a, erfiillt k; }

e 3SAT e NP
— Wie SAT e N'P: Rate Belegung der Variablen und werte Klauseln aus
e SAT <, 3SAT" Satz ]

— Normalisierung der Klauseln k4, ..k, uber 1, ..2,.

Ersetze Klausel k; durche aquivalente Menge von Dreierklauseln

- Ersetze einelementige Klauseln k; = z durch zvzvz

- Ersetze zweielementige Klauseln k; = z vz’ durch zvzv 2/

. Ubernehme dreielementige Klauseln unverindert

- Ersetze Klauseln k; = 21 v 29... vz; durch j-2 neue Klauseln mit neuen

Variablen y; ;0 (z1vzavyin) A (Tiavesvyio) A ... (Yij—3VZj—1VZ)

— Normalisierung der Klauseln moglich in polynomieller Zeit

— k; erfilllbar genau dann wenn normalisierte Klauselmenge erfillbar
— Fiir die Transformation f gilt: VF. F e SAT & f(F)e3SAT
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DAS CLIQUEN PROBLEM IST N P-VOLLSTANDIG  [Def K/ Satz L |

CLIQUE ={(G,k)| G = (V,E) Graph A (3V.cV.|V.|>k A V_.is Clique in G) }

e CLIQUE e NP:
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DAS CLIQUEN PROBLEM IST N P-VOLLSTANDIG  [Def K/ Satz L |

CLIQUE ={(G,k)| G = (V,E) Graph A (3V.cV.|V.|>k A V_.is Clique in G) }

e CLIQUE e NP:

— Rate eine Kantenmenge V,.cV
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DAS CLIQUEN PROBLEM IST N P-VOLLSTANDIG  [Def K/ Satz L |

CLIQUE ={(G,k)| G = (V,E) Graph A (3V.cV.|V.|>k A V_.is Clique in G) }

e CLIQUE e NP:

— Rate eine Kantenmenge V,.cV
— Priife |V.|>k mazimal |V.| Schritte
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DAS CLIQUEN PROBLEM IST N P-VOLLSTANDIG  [Def K/ Satz L |

CLIQUE ={(G,k)| G = (V,E) Graph A (3V.cV.|V.|>k A V_.is Clique in G) }

e CLIQUE e NP:

— Rate eine Kantenmenge V,.cV
— Priife |V.|>k mazimal |V.| Schritte
— Priife: Vo£v' e V.. {v,0'} e B mazimal |V.|?  |E|<|V|* Schritte
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DAS CLIQUEN PROBLEM IST N P-VOLLSTANDIG  [Def K/ Satz L |

CLIQUE ={(G,k)| G = (V,E) Graph A (3V.cV.|V.|>k A V_.is Clique in G) }

e CLIQUE e NP:

— Rate eine Kantenmenge V,.cV
— Priife |V.|>k mazimal |V.| Schritte
— Priife: Vo£v' e V.. {v,0'} e B mazimal |V.|?  |E|<|V|* Schritte

©3SAT<,CLIQUE
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DAS CLIQUEN PROBLEM IST N P-VOLLSTANDIG  [Def K/ Satz L |

CLIQUE ={(G,k)| G = (V,E) Graph A (3V.cV.|V.|>k A V_.is Clique in G) }

e CLIQUE e NP:

— Rate eine Kantenmenge V,.cV
— Priife |V.|>k mazimal |V.| Schritte
— Priife: Vo£v' e V.. {v,0'} e B mazimal |V.|?  |E|<|V|* Schritte

©3SAT<,CLIQUE

- Gegeben F = (kl, ceny ]{fm) mit ki — Z;1 V22V 23 und Zij E{QEl, ,l’_n}
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DAS CLIQUEN PROBLEM IST N P-VOLLSTANDIG  [Def K/ Satz L |

CLIQUE ={(G,k)| G = (V,E) Graph A (3V.cV.|V.|>k A V_.is Clique in G) }

e CLIQUE e NP:
— Rate eine Kantenmenge V,.cV
— Priife |V.|>k mazimal |V.| Schritte
— Priife: Vo£v' e V.. {v,0'} e B mazimal |V.|?  |E|<|V|* Schritte

e 3SAT<,CLIQUE
— Gegeben F' = (ky, ..., ky) mit k; = zi1vziovzis und 2z €{x1, ..., T, }
— Konstruiere Graphen G := (V, F) mit
Voi=A{v; | 1<i<m, 1<j<3} und E := { {vij, vry} | 170 72j7Z75}
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DAS CLIQUEN PROBLEM IST N P-VOLLSTANDIG  [Def K/ Satz L |

CLIQUE ={(G,k)| G = (V,E) Graph A (3V.cV.|V.|>k A V_.is Clique in G) }

e CLIQUE e NP:
— Rate eine Kantenmenge V,.cV
— Priife |V.|>k mazimal |V.| Schritte
— Priife: Vo£v' e V.. {v,0'} e B mazimal |V.|?  |E|<|V|* Schritte

e 3SAT<,CLIQUE
— Gegeben F' = (ky, ..., ky) mit k; = zi1vziovzis und 2z €{x1, ..., T, }
— Konstruiere Graphen G := (V, F) mit
Voi=A{v; | 1<i<m, 1<j<3} und E := { {vij, vry} | 170 72j7Z75}
— Setze f(F) = (Gp,m)
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DAS CLIQUEN PROBLEM IST N P-VOLLSTANDIG  [Def K/ Satz L |

CLIQUE ={(G,k)| G = (V,E) Graph A (3V.cV.|V.|>k A V_.is Clique in G) }

e CLIQUE e NP:
— Rate eine Kantenmenge V,.cV
— Priife |V.|>k mazimal |V.| Schritte
— Priife: Vo£v' e V.. {v,0'} e B mazimal |V.|?  |E|<|V|* Schritte

e 3SAT<,CLIQUE
— Gegeben F' = (ky, ..., ky) mit k; = zi1vziovzis und 2z €{x1, ..., T, }
— Konstruiere Graphen G := (V, F) mit
Voi=A{v; | 1<i<m, 1<j<3} und E := { {vij, vry} | 170 72j7Z75}
— Setze f(F) = (Gp,m)

— f ist in polynomieller Zeit berechenbar
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CODIERUNG EINER FORMEL ALS CLIQUENPROBLEM I

F = (kl,kz,kg) mit k?l = X1 VIyVIL3 k2:$_1VCB2VCB_4 kﬁgzwlvwszg
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CODIERUNG EINER FORMEL ALS CLIQUENPROBLEM I

F = (kl,kz,kg) mit kl = X1 VIyVIL3 k2:$_1VCB2VCIZ_4 ]{33:$1V$2VCIZ3
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CODIERUNG EINER FORMEL ALS CLIQUENPROBLEM I

F = (kl,kz,kg) mit kl = X1 VIyVIL3 kzzw_1VCB2VCIZ_4 k:g:a:lvw2va33

k1 ko
. *
3 T1
__e .
T2 T2
. .
1 T4
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CODIERUNG EINER FORMEL ALS CLIQUENPROBLEM I

1 VT2 VIy kﬁg = 1 VILyVI3

F = (kla I{:z, kg) mit kl — &1 VT2 VI3 k2 —

k1 k2
i e
(Eg I
__e ®
L2 L2
. L
L] L4
k3 ° ° °
T 2 T3

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 27 NP-VOLLSTANDIGE PROBLEME




CODIERUNG EINER FORMEL ALS CLIQUENPROBLEM I

F = (I{il,kz,kg) mit kl = X1 VIyVIL3 1{32 = X1 VIyVIy I{igzwl VI VI3
k1 ko
*

2U3§ L1

__® ~e

o L2

. pa
r1 L4
kg ‘o e .
Ty 2 T3
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CODIERUNG EINER FORMEL ALS CLIQUENPROBLEM I

F = (kl,kz,kg) mit kl = X1 VIyVIL3 1{32 = X1 VIyVIy kﬁgzwl VI VI3
k1 ko
pa—
T3\ o

2
. pa
T T4
ks S ~
T T2 T3
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CODIERUNG EINER FORMEL ALS CLIQUENPROBLEM I

P = (kl, kz, kg) mit kl = X1 VIyVIL3 1{32 = X1 VIyVIy 1{33 — 1 VL2VI3
k1 ko
pa—
$3§ L1

N
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CODIERUNG EINER FORMEL ALS CLIQUENPROBLEM I

P = (kl,kz,kg) mit kl = X1 VIyVIL3 kQZZE_1V$2VCIZ_4 I{igzwlvwszg

k1 ko

z3\ T

N -
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CODIERUNG EINER FORMEL ALS CLIQUENPROBLEM I

P = (kl,kz,kg) mit kl = X1 VIyVIL3 kQZZB_1V$2VCIJ_4 1{33:€D1V€B2VCIZ3

k1 ko
w?ﬁ 7»:8—1
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CODIERUNG EINER FORMEL ALS CLIQUENPROBLEM I

P = (kl,kz,kg) mit kl = X1 VIyVIL3 kQZZB_1V$2VCIJ_4 1{33:€D1V€B2VCIZ3

k1 ko
w?ﬁ ?»:8_1
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CODIERUNG EINER FORMEL ALS CLIQUENPROBLEM I

P = (kl,kz,kg) mit kl = X1 VIyVIL3 kQZZE_1V$2VCIZ_4 I{igzwlvwszg

k1 ko
fB?ﬁ ?»:8_1

S 4
Ty ®y T3

Gibt es in dem Graphen eine 3-Clique?
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CODIERUNG EINER FORMEL ALS CLIQUENPROBLEM I

F = (kl,kz,kg) mit kl = X1 VIyVIL3 I{izzw_1V$2VCIZ_4 I{igzwlvwszg

Gibt es in dem Graphen eine 3-Clique?
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KORREKTHEIT DER TRANSFORMATION I

Gegeben F = (]-Cl, cees km) mit ]‘Cz = Zi1VZi2VZi3 und Zij E{ZL’l, ,.CIZ'_n}
Setze f(F) = (Gp,m) mit Gp = (V, E), wobei
Vo= {v; | 1<i<im, 1<5<3} und E = { {v;j,viy} | i rn2j#Z77}
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KORREKTHEIT DER TRANSFORMATION I

Gegeben F = (]-Cl, cees km) mit ]‘Cz = Zij1VZi2VZ3 und Zij E{l’l, ,.CIZ'_n}
Setze f(F) = (Gp,m) mit Gp = (V, E), wobei
Vo= {v; | 1<i<im, 1<5<3} und E = { {v;j,viy} | i rn2j#Z77}

Essei f(F)eCLIQUE
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KORREKTHEIT DER TRANSFORMATION I

Gegeben F = (]-Cl, cees km) mit ]‘Cz = Zi1VZi2VZi3 und Zij E{ZL’l, ,.CIZ'_n}
Setze f(F) = (Gp,m) mit Gp = (V, E), wobei
Vo= {v; | 1<i<im, 1<5<3} und E = { {v;j,viy} | i rn2j#Z77}

Essei f(F)eCLIQUE
Dann hat G eine m-Clique V,
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KORREKTHEIT DER TRANSFORMATION I

Gegeben F = (]-Cl, cees km) mit k@ = Zi1VZi2VZi3 und Zij 6{1’1, ,.CIZ'_n}
Setze f(F') = (Gp,m) mit Gp = (V, E), wobei
Vo= {v; | 1<i<im, 1<5<3} und E = { {v;j,viy} | i rn2j#Z77}

Essei f(F)eCLIQUE

Dann hat G eine m-Clique V,

Per Konstruktion von E enthélt V. aus jedem der Blocke b; .= {v;; | 1<5j<3}
genau einen Knoten
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KORREKTHEIT DER TRANSFORMATION I

Gegeben F = (]-Cl, ceny ]’Cm) mit kz = Zi1VZi2VZi3 und Zij E{.I'l, ,.CIZ'_n}
Setze f(F') = (Gp,m) mit Gp = (V, E), wobei
Vo= {v; | 1<i<im, 1<5<3} und E = { {v;j,viy} | i rn2j#Z77}

Essei f(F)eCLIQUE

Dann hat G eine m-Clique V,

Per Konstruktion von E enthélt V. aus jedem der Blocke b; .= {v;; | 1<5j<3}
genau einen Knoten und keine zwei Knoten in V, sind komplementar (z;;%#2;77)
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KORREKTHEIT DER TRANSFORMATION I

Gegeben F = (]-Cl, ceny km) mit ]‘Cz = Zi1VZi2VZi3 und Zij E{.I'l, ,.CIZ'_n}

Setze f(F') = (Gp,m) mit Gp = (V, E), wobei

Vo= {v; | 1<i<im, 1<5<3} und E = { {v;j,viy} | i rn2j#Z77}

Essei f(F)eCLIQUE

Dann hat G eine m-Clique V,

Per Konstruktion von E enthélt V. aus jedem der Blocke b; .= {v;; | 1<5j<3}

genau einen Knoten und keine zwei Knoten in V, sind komplementar (z;;%#2;77)
Eine Belegung der zugehorigen z;; mit 1 erfullt alle Klauseln &; von F
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KORREKTHEIT DER TRANSFORMATION I

Gegeben F = (]-Cl, ceny km) mit ]‘Cz = Zi1VZi2VZi3 und Zij E{.I'l, ,.CIZ'_n}
Setze f(F') = (Gp,m) mit Gp = (V, E), wobei
Vo= {v; | 1<i<im, 1<5<3} und E = { {v;j,viy} | i rn2j#Z77}

Essei f(F)eCLIQUE

Dann hat G eine m-Clique V,

Per Konstruktion von E enthélt V. aus jedem der Blocke b; .= {v;; | 1<5j<3}
genau einen Knoten und keine zwei Knoten in V, sind komplementar (z;;%#2;77)

Eine Belegung der zugehorigen z;; mit 1 erfullt alle Klauseln &; von F
Also gilt F'e3SAT
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KORREKTHEIT DER TRANSFORMATION I

Gegeben F = (]-Cl, ceny km) mit kz = Zi1VZi2VZi3 und Zij E{.I'l, ,.CIZ'_n}
Setze f(F') := (Gp,m) mit Gp := (V, F), wobei
Vo= {v; | 1<i<im, 1<5<3} und E = { {v;j,viy} | i rn2j#Z77}

Essei f(F)eCLIQUE

Dann hat G eine m-Clique V,

Per Konstruktion von E enthélt V. aus jedem der Blocke b; .= {v;; | 1<5j<3}
genau einen Knoten und keine zwei Knoten in V, sind komplementar (z;;%#2;77)
Eine Belegung der zugehorigen z;; mit 1 erfullt alle Klauseln &; von F

Also gilt F'e3SAT

Gilt umgekehrt /' 35 AT, so gibt es eine erfiillende Belegung der z;;
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KORREKTHEIT DER TRANSFORMATION I

Gegeben F = (]-Cl, ceny km) mit kz = Zi1VZi2VZi3 und Zij E{.I'l, ,.CIZ'_n}
Setze f(F') := (Gp,m) mit Gp := (V, F), wobei
Vo= {v; | 1<i<im, 1<5<3} und E = { {v;j,viy} | i rn2j#Z77}

Essei f(F)eCLIQUE

Dann hat G eine m-Clique V,

Per Konstruktion von E enthélt V. aus jedem der Blocke b; .= {v;; | 1<5j<3}
genau einen Knoten und keine zwei Knoten in V, sind komplementar (z;;%#2;77)
Eine Belegung der zugehorigen z;; mit 1 erfullt alle Klauseln &; von F

Also gilt F'e3SAT

Gilt umgekehrt /' 35 AT, so gibt es eine erfiillende Belegung der z;;
Wahle aus jeder Klausel k; ein Literal mit dem Wert 1
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KORREKTHEIT DER TRANSFORMATION I

Gegeben F = (]{1, ceny km) mit kz = Zi1VZi2VZi3 und Zij E{.I'l, ,ZC_n}
Setze f(F') := (Gp,m) mit Gp := (V, F), wobei
Vo= {v; | 1<i<im, 1<5<3} und E = { {v;j,viy} | i rn2j#Z77}

Essei f(F)eCLIQUE

Dann hat G eine m-Clique V,

Per Konstruktion von E enthélt V. aus jedem der Blocke b; .= {v;; | 1<5j<3}
genau einen Knoten und keine zwei Knoten in V, sind komplementar (z;;%#2;77)
Eine Belegung der zugehorigen z;; mit 1 erfullt alle Klauseln &; von F

Also gilt F'e3SAT

Gilt umgekehrt /' 35 AT, so gibt es eine erfiillende Belegung der z;;
Wahle aus jeder Klausel k; ein Literal mit dem Wert 1
Die zugehorigen Knoten bilden eine m-Clique in G
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KORREKTHEIT DER TRANSFORMATION I

Gegeben F = (]{1, ceny km) mit kz = Zi1VZi2VZi3 und Zij E{.I'l, ,ZC_n}
Setze f(F') := (Gp,m) mit Gp := (V, F), wobei
Vo= {v; | 1<i<im, 1<5<3} und E = { {v;j,viy} | i rn2j#Z77}

Essei f(F)eCLIQUE

Dann hat G eine m-Clique V,

Per Konstruktion von E enthélt V. aus jedem der Blocke b; .= {v;; | 1<5j<3}
genau einen Knoten und keine zwei Knoten in V, sind komplementar (z;;%#2;77)
Eine Belegung der zugehorigen z;; mit 1 erfullt alle Klauseln &; von F

Also gilt F'e3SAT

Gilt umgekehrt /' 35 AT, so gibt es eine erfiillende Belegung der z;;
Wahle aus jeder Klausel k; ein Literal mit dem Wert 1
Die zugehorigen Knoten bilden eine m-Clique in G

Also gilt f(F)eCLIQUE
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KORREKTHEIT DER TRANSFORMATION I

Gegeben F = (]-Cl, ceny km) mit kz = Zi1VZi2VZi3 und Zij E{.I'l, ,.CIZ'_n}
Setze f(F') := (Gp,m) mit Gp := (V, F), wobei
Vo= {v; | 1<i<im, 1<5<3} und E = { {v;j,viy} | i rn2j#Z77}

Essei f(F)eCLIQUE

Dann hat G eine m-Clique V,

Per Konstruktion von E enthélt V. aus jedem der Blocke b; .= {v;; | 1<5j<3}
genau einen Knoten und keine zwei Knoten in V, sind komplementar (z;;%#2;77)
Eine Belegung der zugehorigen z;; mit 1 erfullt alle Klauseln &; von F

Also gilt F'e3SAT

Gilt umgekehrt /' 35 AT, so gibt es eine erfiillende Belegung der z;;
Wahle aus jeder Klausel k; ein Literal mit dem Wert 1
Die zugehorigen Knoten bilden eine m-Clique in G

Also gilt f(F)eCLIQUE

U
3SAT <, CLIQUE
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VERTEX COVER PROBLEM IST NP-VOLLSTANDIG [Def/Satz M |

VC ={(G, k)| G Graph » (3V'V. |V'|<k A V'ist Knoteniiberdeckung von G)}

o VC eNP:
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VC ={(G, k)| G Graph » (3V'V. |V'|<k A V'ist Knoteniiberdeckung von G)}

o VC eNP:

— Rate eine Kantenmenge V/'cV
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VERTEX COVER PROBLEM IST NP-VOLLSTANDIG [Def/Satz M |

VC ={(G, k)| G Graph » (3V'V. |V'|<k A V'ist Knoteniiberdeckung von G)}

o VC eNP:

— Rate eine Kantenmenge V/'cV
— Priife |V'|<k mazimal |V'| Schritte
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VERTEX COVER PROBLEM IST NP-VOLLSTANDIG [Def/Satz M |

VC ={(G, k)| G Graph » (3V'V. |V'|<k A V'ist Knoteniiberdeckung von G)}

o VC eNP:

— Rate eine Kantenmenge V/'cV
— Priife |V'|<k mazimal |V'| Schritte
— Priife: V{v,v'} e E.veV/vo' eV’ mazimal |V'| x |E|<|V]? Schritte
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VERTEX COVER PROBLEM IST NP-VOLLSTANDIG [Def/Satz M |

VC ={(G, k)| G Graph » (3V'V. |V'|<k A V'ist Knoteniiberdeckung von G)}

o VC eNP:

— Rate eine Kantenmenge V/'cV
— Priife |V'|<k mazimal |V'| Schritte
— Priife: V{v,v'} e E.veV/vo' eV’ mazimal |V'| x |E|<|V]? Schritte

e CLIQUE<,VC
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VERTEX COVER PROBLEM IST NP-VOLLSTANDIG [Def/Satz M |

VC ={(G, k)| G Graph » (3V'V. |V'|<k A V'ist Knoteniiberdeckung von G)}

o VC eNP:

— Rate eine Kantenmenge V/'cV
— Priife |V'|<k mazimal |V'| Schritte
— Priife: V{v,v'} e E.veV/vo' eV’ mazimal |V'| x |E|<|V]? Schritte

e CLIQUE<,VC

— Bereits beweisen Folie 6
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WEITERE NP-VOLLSTANDIGE GRAPHENPROBLEME I

e Independent Set CLIQUE <, IS
— Gegeben ein Graph G = (V, E) der Grofie n und eine Zahl k<n.
— Gibt es in G eine unabhangige Knotenmenge der Grofie k7

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 30 NP-VOLLSTANDIGE PROBLEME




WEITERE NP-VOLLSTANDIGE GRAPHENPROBLEME I

e Independent Set CLIQUE <, IS
— Gegeben ein Graph G = (V, E) der Grofie n und eine Zahl k<n.
— Gibt es in G eine unabhangige Knotenmenge der Grofie k7

IS ={(G,k)| G = (V,E) Graph
A ViV AV ZE A Yu,veV. {u, v} ¢ B}
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WEITERE NP-VOLLSTANDIGE GRAPHENPROBLEME I

e Independent Set CLIQUE <, IS
— Gegeben ein Graph G = (V, E) der Grofie n und eine Zahl k<n.
— Gibt es in G eine unabhangige Knotenmenge der Grofie k7

IS ={(G,k)| G = (V,E) Graph
A ViV AV ZE A Yu,veV. {u, v} ¢ B}

e Subgraph Isomorphism CLIQUE <, SGI
— Gegeben zwei Graphen G = (Vi, Ey) und Gy = (Va, Es).
— Gibt es einen Subgraphen H von (G, der isomorph zu G ist?
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WEITERE NP-VOLLSTANDIGE GRAPHENPROBLEME I

e Independent Set CLIQUE <, IS
— Gegeben ein Graph G = (V, E) der Grofie n und eine Zahl k<n.
— Gibt es in G eine unabhangige Knotenmenge der Grofie k7

IS ={(G,k)| G = (V,E) Graph
A ViV AV ZE A Yu,veV. {u, v} ¢ B}

e Subgraph Isomorphism CLIQUE <, SGI
— Gegeben zwei Graphen G = (Vi, Ey) und Gy = (Va, Es).
— Gibt es einen Subgraphen H von (G, der isomorph zu G ist?

SGI = { Gl,G2> | Gl,GQ Graphen A dH Graph. HEGl ANHZ= GQ}
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WEITERE NP-VOLLSTANDIGE GRAPHENPROBLEME I

e Independent Set CLIQUE <, IS
— Gegeben ein Graph G = (V, E) der Grofie n und eine Zahl k<n.
— Gibt es in G eine unabhangige Knotenmenge der Grofie k7
IS ={(G,k)| G = (V,E) Graph
n VSV |V >k A Yu,veV {u,v}¢E }

e Subgraph Isomorphism CLIQUE <, SGI
— Gegeben zwei Graphen G = (Vi, Ey) und Gy = (Va, Es).
— Gibt es einen Subgraphen H von (G, der isomorph zu G ist?

SGI = { Gl,G2> | Gl,GQ Graphen A dH Graph. HEGl ANHZ= GQ}

e Largest Common Subgraph SGI <, LCS
— Gegeben Graphen G = (Vq, 1) und G = (Vs E5) und eine Zahl
k<|G|

— Gibt es isomorphe Subgraphen H; von G und Hs von Gy der Grofie k7

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 30 NP-VOLLSTANDIGE PROBLEME




WEITERE NP-VOLLSTANDIGE GRAPHENPROBLEME I

e Independent Set CLIQUE <, IS
— Gegeben ein Graph G = (V, E) der Grofie n und eine Zahl k<n.
— Gibt es in G eine unabhangige Knotenmenge der Grofie k7
IS ={(G,k)| G = (V,E) Graph
n VSV |V >k A Yu,veV {u,v}¢E }

e Subgraph Isomorphism CLIQUE <, SGI
— Gegeben zwei Graphen G = (Vi, Ey) und Gy = (Va, Es).
— Gibt es einen Subgraphen H von (G, der isomorph zu G ist?

SGI = { Gl,G2> | Gl,GQ Graphen A dH Graph. HEGl ANHZ= GQ}

e Largest Common Subgraph SGI <, LCS
— Gegeben Graphen G = (Vq, 1) und G = (Vs E5) und eine Zahl
k<|G|

— Gibt es isomorphe Subgraphen H; von G und Hs von Gy der Grofie k7

LCS ={ (G1,Gs,k) | G1,Gy Graphen A k<|G; A IH;, Hy Graphen.
ngGl A HQEGQ AN Hy = Ho A ‘Hl‘Zk}
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WEITERE NP-VOLLSTANDIGE GRAPHENPROBLEME I

® Directed Hamiltonian Circuit 3SAT <, DHC
— Gegeben ein gerichteter Graph G
— Gibt es in GG einen Hamilton’schen Kreis?
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WEITERE NP-VOLLSTANDIGE GRAPHENPROBLEME I

® Directed Hamiltonian Circuit 3SAT <, DHC
— Gegeben ein gerichteter Graph G
— Gibt es in GG einen Hamilton’schen Kreis?

DHC ={ G| G = (V, E) gerichteter Graph
n dm{l.n}—{1..n}. © Hamilton’scher Kreis in G}
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WEITERE NP-VOLLSTANDIGE GRAPHENPROBLEME I

® Directed Hamiltonian Circuit 3SAT <, DHC
— Gegeben ein gerichteter Graph G
— Gibt es in GG einen Hamilton’schen Kreis?

DHC ={ G| G = (V, E) gerichteter Graph
n dm{l.n}—{1..n}. © Hamilton’scher Kreis in G}

e Hamiltonian Circuit DHC <, HC
— Gegeben ein ungerichteter Graph G = (V, E).
— Gibt es in G einen Hamilton’schen Kreis?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 31 NP-VOLLSTANDIGE PROBLEME




WEITERE NP-VOLLSTANDIGE GRAPHENPROBLEME I

® Directed Hamiltonian Circuit 3SAT <, DHC
— Gegeben ein gerichteter Graph G
— Gibt es in GG einen Hamilton’schen Kreis?

DHC ={ G| G = (V, E) gerichteter Graph
n dm{l.n}—{1..n}. © Hamilton’scher Kreis in G}

e Hamiltonian Circuit DHC <, HC
— Gegeben ein ungerichteter Graph G = (V, E).
— Gibt es in G einen Hamilton’schen Kreis?

HC ={G|G=(V,FE) Graph A Ir:{l..n}—{1..n}.

7 Hamilton’scher Kreis in G}
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WEITERE NP-VOLLSTANDIGE GRAPHENPROBLEME I

® Directed Hamiltonian Circuit 3SAT <, DHC
— Gegeben ein gerichteter Graph G
— Gibt es in G einen Hamilton’schen Kreis?

DHC ={ G| G = (V, E) gerichteter Graph
n dm{l.n}—{1..n}. © Hamilton’scher Kreis in G}

e Hamiltonian Circuit DHC <, HC
— Gegeben ein ungerichteter Graph G = (V, E).
— Gibt es in G einen Hamilton’schen Kreis?

HC ={G|G=(V,FE) Graph A Ir:{l..n}—{1..n}.

7 Hamilton’scher Kreis in G}

e Travelling Salesman Problem HC <, TSP
— Gegeben n Stadte, Reisekostentabelle ¢;;, Kostenbeschrankung B
— (Gibt es eine Rundreise durch alle n Stadte, deren Kosten unter B liegt?
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WEITERE NP-VOLLSTANDIGE GRAPHENPROBLEME I

® Directed Hamiltonian Circuit 3SAT <, DHC
— Gegeben ein gerichteter Graph G
— Gibt es in G einen Hamilton’schen Kreis?

DHC ={ G| G = (V, E) gerichteter Graph
n dm{l.n}—{1..n}. © Hamilton’scher Kreis in G}

e Hamiltonian Circuit DHC <, HC
— Gegeben ein ungerichteter Graph G = (V, E).
— Gibt es in G einen Hamilton’schen Kreis?

HC ={G|G=(V,FE) Graph A Ir:{l..n}—{1..n}.

7 Hamilton’scher Kreis in G}

e Travelling Salesman Problem HC <, TSP
— Gegeben n Stadte, Reisekostentabelle ¢;;, Kostenbeschrankung B
— (Gibt es eine Rundreise durch alle n Stadte, deren Kosten unter B liegt?

TSP ={ci....cono1n, B| B,c;;eNa 3Im: {1 n}t—{l.n}. m bijektiv
/\Zzlc 7(i+1) T Ca(n)m(1 <B}
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WEITERE NP-VOLLSTANDIGE PROBLEME I

e Knapsack: (Rucksack-Bepackung) 3SAT <, KP
— Gegeben n Objekte mit Gewichten g4, ..., g, und Nutzwerten aq, ...a,
— Rucksack mit Gewichtsschranke GG, Minimalnutzwert A.
— Gibt es eine Bepackung mit Mindestnutzen A und Maximalgewicht G7
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WEITERE NP-VOLLSTANDIGE PROBLEME I

e Knapsack: (Rucksack-Bepackung) 3SAT <, KP
— Gegeben n Objekte mit Gewichten g4, ..., g, und Nutzwerten aq, ...a,
— Rucksack mit Gewichtsschranke GG, Minimalnutzwert A.
— Gibt es eine Bepackung mit Mindestnutzen A und Maximalgewicht G7

KP = { <g1..gn, ai..ay, G, A) ‘ EL]Q{l’I”L} Ziejgi SG A\ Ziejai ZA}
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WEITERE NP-VOLLSTANDIGE PROBLEME I

e Knapsack: (Rucksack-Bepackung) 3SAT <, KP
— Gegeben n Objekte mit Gewichten g4, ..., g, und Nutzwerten aq, ...a,
— Rucksack mit Gewichtsschranke GG, Minimalnutzwert A.
— Gibt es eine Bepackung mit Mindestnutzen A und Maximalgewicht G7

KP = { <g1..gn, ai..ay, G, A) ‘ EL]Q{l’I”L} Ziejgi SG A\ Ziejai ZA}

e Partitionsproblem KP <, PART
— Gegeben n Objekte mit Wert b4, ..., b,,.
— (Gibt es eine Aufteilung der Objekte in zwei gleichwertige Stapel?
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WEITERE NP-VOLLSTANDIGE PROBLEME I

e Knapsack: (Rucksack-Bepackung) 3SAT <, KP
— Gegeben n Objekte mit Gewichten g4, ..., g, und Nutzwerten aq, ...a,
— Rucksack mit Gewichtsschranke GG, Minimalnutzwert A.
— Gibt es eine Bepackung mit Mindestnutzen A und Maximalgewicht G7

KP = { <g1..gn, ai..ay, G, A) ‘ EL]Q{l’I”L} Ziejgi SG A\ Ziejai ZA}

e Partitionsproblem KP <, PART
— Gegeben n Objekte mit Wert b4, ..., b,,.
— (Gibt es eine Aufteilung der Objekte in zwei gleichwertige Stapel?

PART = {by,....;b, | b;eN A 3T C{ln}. > e /bi=2 ey sbi }
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WEITERE NP-VOLLSTANDIGE PROBLEME I

e Knapsack: (Rucksack-Bepackung) 3SAT <, KP
— Gegeben n Objekte mit Gewichten g4, ..., g, und Nutzwerten aq, ...a,
— Rucksack mit Gewichtsschranke GG, Minimalnutzwert A.
— Gibt es eine Bepackung mit Mindestnutzen A und Maximalgewicht G7

KP = { <g1..gn, ai..ay, G, A) ‘ EL]Q{l’I”L} Ziejgi SG A\ Ziejai ZA}
e Partitionsproblem KP <, PART

— Gegeben n Objekte mit Wert b4, ..., b,,.
— (Gibt es eine Aufteilung der Objekte in zwei gleichwertige Stapel?

PART = {by,....;b, | b;eN A 3T C{ln}. > e /bi=2 ey sbi }

e Binpacking PART <, BPP
— Gegeben n Objekte der Grofie a4, ...a,, und k Behalter der Grofie b

— Kann man alle Objekte in den Behaltern unterbringen?
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WEITERE NP-VOLLSTANDIGE PROBLEME I

e Knapsack: (Rucksack-Bepackung) 3SAT <, KP
— Gegeben n Objekte mit Gewichten g4, ..., g, und Nutzwerten aq, ...a,
— Rucksack mit Gewichtsschranke GG, Minimalnutzwert A.
— Gibt es eine Bepackung mit Mindestnutzen A und Maximalgewicht G7

KP = { <g1..gn, ai..ay, G, A) ‘ EL]Q{l’I”L} Ziejgi SG A\ Ziejai ZA}

e Partitionsproblem KP <, PART
— Gegeben n Objekte mit Wert b4, ..., b,,.
— (Gibt es eine Aufteilung der Objekte in zwei gleichwertige Stapel?

PART: {bl,...,bn ‘ bZ‘EN A\ ng {ln} Zi@]bi:ZiE{l..n}—Ibi }
e Binpacking PART <, BPP
— Gegeben n Objekte der Grofie a4, ...a,, und k Behalter der Grofie b

— Kann man alle Objekte in den Behaltern unterbringen?
BPP ={ay,...an, b, k) | a;,b,keN A 3f - {1.n}={1..k}.
YISk 2ieqpiy @ =0}
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WEITERE NP-VOLLSTANDIGE PROBLEME I

e Graph Coloring 3SAT <, GC
— Gegeben ein Graph G = (V, E) der Grofie n und eine Zahl k<n.

— Gibt es eine Farbung von V' mit k verschiedenen Farben,
so dal3 verbundene Konten verschieden Farben haben?
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WEITERE NP-VOLLSTANDIGE PROBLEME I

e Graph Coloring 3SAT <, GC
— Gegeben ein Graph G = (V, E) der Grofie n und eine Zahl k<n.

— Gibt es eine Farbung von V' mit k verschiedenen Farben,
so dal3 verbundene Konten verschieden Farben haben?

GC ={(G,k)|G=(V, FE) Graph » Afy:V—={1..k} Y{u,v} eE. fy(u)Z£fy(v)}
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WEITERE NP-VOLLSTANDIGE PROBLEME I

e Graph Coloring 3SAT <, GC
— Gegeben ein Graph G = (V, E) der Grofie n und eine Zahl k<n.

— Gibt es eine Farbung von V' mit k verschiedenen Farben,
so dal3 verbundene Konten verschieden Farben haben?

GC ={(G,k)|G=(V, E) Graph » 3fy:V—={1. .k} Y{u,v}eE. fy(u)#£fr(v)}

e Multiprozessor-Scheduling MSP = BPP
— Gegeben n Prozesse j; mit Laufzeit t(j;), m Prozessoren, Deadline tp.

— Gibt es eine Verteilung der Prozesse auf die Prozessoren,
so dafl bei Startzeit ¢y alle Prozesse vor der Zeit tp beendet sind?
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WEITERE NP-VOLLSTANDIGE PROBLEME I

e Graph Coloring 3SAT <, GC
— Gegeben ein Graph G = (V, E) der Grofie n und eine Zahl k<n.

— Gibt es eine Farbung von V' mit k verschiedenen Farben,
so dal3 verbundene Konten verschieden Farben haben?

GC ={(G,k)|G=(V, E) Graph » 3fy:V—={1. .k} Y{u,v}eE. fy(u)#£fr(v)}

e Multiprozessor-Scheduling MSP = BPP
— Gegeben n Prozesse j; mit Laufzeit t(j;), m Prozessoren, Deadline tp.

— Gibt es eine Verteilung der Prozesse auf die Prozessoren,
so dafl bei Startzeit ¢y alle Prozesse vor der Zeit tp beendet sind?

e Integer Linear Programming 3SAT <, ILP

— Gegeben eine kxk Matrix A und einen Vektor beZ¥
— (bt es ein T eZF, welches das lineare Ungleichungssystem A s £>b 16st?
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WEITERE NP-VOLLSTANDIGE PROBLEME I

e Graph Coloring 3SAT <, GC
— Gegeben ein Graph G = (V, E) der Grofie n und eine Zahl k<n.

— Gibt es eine Farbung von V' mit k verschiedenen Farben,
so dal3 verbundene Konten verschieden Farben haben?

GC ={(G,k)|G=(V, E) Graph » 3fy:V—={1. .k} Y{u,v}eE. fy(u)#£fr(v)}

e Multiprozessor-Scheduling MSP = BPP
— Gegeben n Prozesse j; mit Laufzeit t(j;), m Prozessoren, Deadline tp.

— Gibt es eine Verteilung der Prozesse auf die Prozessoren,
so dafl bei Startzeit ¢y alle Prozesse vor der Zeit tp beendet sind?

e Integer Linear Programming 3SAT <, ILP

— Gegeben eine kxk Matrix A und einen Vektor beZ¥
— (bt es ein T eZF, welches das lineare Ungleichungssystem A s £>b 16st?

e Zusammengesetztheit (vermutlich nicht NP-vollstandig)
— Gegeben eine n-stellige Zahl x eN
— Gibt es zweil natiirliche Zahlen p und ¢ mit x = pxq?
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NP-VOLLSTANDIGKEIT DES RUCKSACKPROBLEMS I

KP = { (91--9n, ai..apn, G, A) | E|J§{1n} Ziejgi <G A Ziejai ZA}

e KPcNP:
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NP-VOLLSTANDIGKEIT DES RUCKSACKPROBLEMS I

KP = { (gl..gn, ai..ap, G, A) | E|J§{1n} Ziejgi SG A Ziejai ZA}

e KPcNP:

— Rate Menge von Gegenstinden Kantenmenge J<{1..n}
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NP-VOLLSTANDIGKEIT DES RUCKSACKPROBLEMS I

KP = { (gl..gn, ai..ap, G, A) | E|J§{1n} Ziejgi SG A Ziejai ZA}

e KPecNP:
— Rate Menge von Gegenstinden Kantenmenge J<{1..n}
— Priife ¥;c;9; <G und Yicja;, >A mazimal 2|J| Schritte
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NP-VOLLSTANDIGKEIT DES RUCKSACKPROBLEMS I

KP = { (gl..gn, ai..ap, G, A) | E|J§{1n} Ziejgi SG A Ziejai ZA}

e KPecNP:
— Rate Menge von Gegenstinden Kantenmenge J<{1..n}
— Priife ¥;c;9; <G und Yicja;, >A mazimal 2|J| Schritte

e Zeige 3SAT<,KP
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NP-VOLLSTANDIGKEIT DES RUCKSACKPROBLEMS I

KP = { (gl..gn, ai..ap, G, A) | E|J§{1n} Ziejgi SG A Ziejai ZA}

e KPecNP:
— Rate Menge von Gegenstinden Kantenmenge J<{1..n}
— Priife ¥;c;9; <G und Yicja;, >A mazimal 2|J| Schritte

e Zeige 3SAT<,KP

— Gegeben F' = (ky, ..., ky) mit k; = 2z vziovzis und 2 €{x1, ..., Ty}
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NP-VOLLSTANDIGKEIT DES RUCKSACKPROBLEMS I

KP = { (91--9n, ai..Qy, G, A) | EL]Q{ln} EiEJgi <G A Eiejaz- ZA}

e KPcNP:
— Rate Menge von Gegenstianden Kantenmenge J<{1..n}
— Priife ¥;c;9; <G und Yicja;, >A mazimal 2|J| Schritte

e Zeige 3SAT<,KP
— Gegeben F' = (ky, ..., ky) mit k; = 2z vziovzis und 2 €{x1, ..., Ty}
— Konstruiere Rucksackproblem f(F) = (g1, .-g2ms2n, 01, --Qomion, G, A)
wobei die a; und g; m + n-stellige Zahlen sind, welche die Anzahl
der Vorkommen von Literalen in den Klauseln codieren
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NP-VOLLSTANDIGKEIT DES RUCKSACKPROBLEMS I

KP = { (91--9n, ai..Qy, G, A) | EL]Q{ln} Ziejgi <G A Diica; ZA}

e KPcNP:
— Rate Menge von Gegenstédnden Kantenmenge J<{1..n}
— Priife ¥;c;9; <G und Yicja;, >A mazimal 2|J| Schritte

e Zeige 3SAT<,KP

— Gegeben F' = (ki, ..., ky) mit k; = 2z vziovzis und 2z €{x1, ..., Ty}

— Konstruiere Rucksackproblem f(F) = (g1, .-g2ms2n, 01, --Qomion, G, A)
wobei die a; und g; m + n-stellige Zahlen sind, welche die Anzahl
der Vorkommen von Literalen in den Klauseln codieren
- aj, 7<n: Stelle :<m ist Anzahl der x; in k;, Stelle m~+7 ist 1, sonst 0
- bj = anj, j<n: Stelle i<m ist Anzahl der z; in k;, Stelle m+7 ist 1, sonst 0
G = Ao, 1M Stelle m—+1 ist 1, sonst 0
- d; = aopmi, 1<m: Stelle m~+1 ist 2, sonst 0

-gj=a;furalle; A=G=4...41...1

m—mal n—mal
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NP-VOLLSTANDIGKEIT DES RUCKSACKPROBLEMS I

KP = { (91--9n, ai..Qy, G, A) | EL]Q{ln} Ziejgi <G A Diica; ZA}

e KPcNP:
— Rate Menge von Gegenstédnden Kantenmenge J<{1..n}
— Priife ¥;c;9; <G und Yicja;, >A mazimal 2|J| Schritte

e Zeige 3SAT<,KP

— Gegeben F' = (ki, ..., ky) mit k; = 2z vziovzis und 2z €{x1, ..., Ty}

— Konstruiere Rucksackproblem f(F) = (g1, .-g2ms2n, 01, --Qomion, G, A)
wobei die a; und g; m + n-stellige Zahlen sind, welche die Anzahl
der Vorkommen von Literalen in den Klauseln codieren
- aj, 7<n: Stelle :<m ist Anzahl der x; in k;, Stelle m~+7 ist 1, sonst 0
- bj = anj, j<n: Stelle i<m ist Anzahl der z; in k;, Stelle m+7 ist 1, sonst 0
G = Ao, 1M Stelle m—+1 ist 1, sonst 0
- d; = aopmi, 1<m: Stelle m~+1 ist 2, sonst 0

-gj=a;furalle; A=G=4...41...1

m—mal n—mal
— f ist in polynomieller Zeit berechenbar
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CODIERUNG EINER FORMEL ALS RUCKSACKPROBLEM I

F = (kl,kz,kg) mit klzwlvw_zv:vg k2:$_1VCE2V$_4 k3:$1VCB2V$3
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CODIERUNG EINER FORMEL ALS RUCKSACKPROBLEM I

F = (kl,kz,kg) mit klzwlvw_szg k2:$_1V$2V€D_4 ngCIZlVCIZQVZBg

A =4441111

a; = 1001000 b; = 0111000 ¢y = 1000000 d; = 2000000
a; = 0100100 b, = 1010100 c2 = 0100000 ds, = 0200000
a3 = 1000010 bs = 001 0010 c3 = 0010000 dsz = 0020000
as = 0000001 by = 0100001
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CODIERUNG EINER FORMEL ALS RUCKSACKPROBLEM I

F = (kl,kz,kg) mit klzwlvw_szg k2:$_1V$2V€D_4 I{ig:CIZlVCIZQVZBg

A =4441111

a; = 1001000 b; = 0111000 ¢y = 1000000 d; = 2000000
a; = 0100100 b, = 1010100 c2 = 0100000 ds, = 0200000
a3 = 1000010 bs = 001 0010 c3 = 0010000 dsz = 0020000
as = 0000001 by = 0100001

(1,1,0,0) ist erfiillende Belegung

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 35 NP-VOLLSTANDIGE PROBLEME




CODIERUNG EINER FORMEL ALS RUCKSACKPROBLEM I

F = (kl,kz,kg) mit klzwlvw_szg k2:$_1V$2V€D_4 I{?g:CIZlVCIZQVZBg

A =4441111

a; = 1001000 b; = 0111000 ¢y = 1000000 d; = 2000000
a; = 0100100 b, = 1010100 c2 = 0100000 ds, = 0200000
a3 = 1000010 bs = 001 0010 c3 = 0010000 dsz = 0020000
as = 0000001 by = 0100001

(1,1,0,0) ist erfiillende Belegung
a1+a2+bg+bg+c1+c3+di+dat+d3s=A
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KORREKTHEIT DER TRANSFORMATION I

- a;: Stelle t<m ist Anzahl der z; in E;, Stelle m+-j ist 1, sonst 0
- b;: Stelle e<m ist Anzahl der z; in k;, Stelle m+-j ist 1, sonst 0
- ¢;: Stelle m—1 ist 1, sonst 0 d;: Stelle m+1 ist 2, sonst 0

m—mal n—mal
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KORREKTHEIT DER TRANSFORMATION I

- a;: Stelle t<m ist Anzahl der z; in E;, Stelle m+-j ist 1, sonst 0
- b;: Stelle e<m ist Anzahl der z; in k;, Stelle m+-j ist 1, sonst 0
- ¢;: Stelle m—1 ist 1, sonst 0 d;: Stelle m+1 ist 2, sonst 0

m—mal n—mal

Ist F'e 35 AT, so gibt es eine erfiillende Belegung der x;
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KORREKTHEIT DER TRANSFORMATION I

- a;: Stelle t<m ist Anzahl der z; in E;, Stelle m+-j ist 1, sonst 0
- b;: Stelle e<m ist Anzahl der z; in k;, Stelle m+-j ist 1, sonst 0
- ¢;: Stelle m—1 ist 1, sonst 0 d;: Stelle m+1 ist 2, sonst 0

-gj=a;firalley A=G=4...41...1

m—mal n—mal

Ist F'e 35 AT, so gibt es eine erfiillende Belegung der x;
Fur j<n wahle a; falls ;=1 und b; sonst
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KORREKTHEIT DER TRANSFORMATION I

- a;: Stelle t<m ist Anzahl der z; in E;, Stelle m+-j ist 1, sonst 0
- b;: Stelle e<m ist Anzahl der z; in k;, Stelle m+-j ist 1, sonst 0
- ¢;: Stelle m~+1 ist 1, sonst 0 d;: Stelle m+1 ist 2, sonst 0

-gj=a;firalley A=G=4...41...1

m—mal n—mal

Ist F'e 35 AT, so gibt es eine erfiillende Belegung der x;

Fur j<n wahle a; falls ;=1 und b; sonst

— In der Summe haben alle Stellen m+5 den Wert 1

— Da k; erfiillt wird, haben die Stellen ¢<n einen Wert aus {1..3}
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KORREKTHEIT DER TRANSFORMATION I

- a;: Stelle t<m ist Anzahl der z; in E;, Stelle m+-j ist 1, sonst 0
- b;: Stelle e<m ist Anzahl der z; in k;, Stelle m+-j ist 1, sonst 0
- ¢;: Stelle m~+1 ist 1, sonst 0 d;: Stelle m+1 ist 2, sonst 0

-gj=a;firalley A=G=4...41...1

m—mal n—mal

Ist F'e 35 AT, so gibt es eine erfiillende Belegung der x;

Fur j<n wahle a; falls ;=1 und b; sonst

— In der Summe haben alle Stellen m-+7 den Wert 1

— Da k; erfiillt wird, haben die Stellen ¢<n einen Wert aus {1..3}
Die Stellen ¢<n konnen mit ¢; und d; zu 4 erganzt werden
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KORREKTHEIT DER TRANSFORMATION I

- a;: Stelle t<m ist Anzahl der z; in E;, Stelle m+-j ist 1, sonst 0
- b;: Stelle e<m ist Anzahl der z; in k;, Stelle m+-j ist 1, sonst 0
- ¢;: Stelle m~+1 ist 1, sonst 0 d;: Stelle m+1 ist 2, sonst 0

-gj=a;firalley A=G=4...41...1

m—mal n—mal

Ist F'e 35 AT, so gibt es eine erfiillende Belegung der x;

Fur j<n wahle a; falls ;=1 und b; sonst

— In der Summe haben alle Stellen m+5 den Wert 1

— Da k; erfiillt wird, haben die Stellen ¢<n einen Wert aus {1..3}

Die Stellen ¢<n konnen mit ¢; und d; zu 4 erganzt werden Also f(F')e KP
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KORREKTHEIT DER TRANSFORMATION I

- a;: Stelle t<m ist Anzahl der z; in E;, Stelle m+-j ist 1, sonst 0
- b;: Stelle e<m ist Anzahl der z; in k;, Stelle m+-j ist 1, sonst 0
- ¢;: Stelle m~+1 ist 1, sonst 0 d;: Stelle m+1 ist 2, sonst 0

-gj=a;firalley A=G=4...41...1

m—mal n—mal

Ist F'e 35 AT, so gibt es eine erfiillende Belegung der x;

Fur j<n wahle a; falls ;=1 und b; sonst

— In der Summe haben alle Stellen m-+7 den Wert 1

— Da k; erfiillt wird, haben die Stellen ¢<n einen Wert aus {1..3}

Die Stellen ¢<n konnen mit ¢; und d; zu 4 erganzt werden Also f(F')e KP

Gilt f(F')e K P, so gibt es eine Bepackung die genau den Wert A ergibt
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KORREKTHEIT DER TRANSFORMATION I

- a;: Stelle t<m ist Anzahl der z; in E;, Stelle m+-j ist 1, sonst 0
- b;: Stelle e<m ist Anzahl der z; in k;, Stelle m+-j ist 1, sonst 0
- ¢;: Stelle m~+1 ist 1, sonst 0 d;: Stelle m+1 ist 2, sonst 0

-gj=a;firalley A=G=4...41...1

m—mal n—mal

Ist F'e 35 AT, so gibt es eine erfiillende Belegung der x;

Fur j<n wahle a; falls ;=1 und b; sonst

— In der Summe haben alle Stellen m-+7 den Wert 1

— Da k; erfiillt wird, haben die Stellen ¢<n einen Wert aus {1..3}

Die Stellen ¢<n konnen mit ¢; und d; zu 4 erganzt werden Also f(F')e KP

Gilt f(F')e K P, so gibt es eine Bepackung die genau den Wert A ergibt
Die Bepackung enthalt fiir j<n entweder a; (wahle z;:=1) oder b; (z,:=0)
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KORREKTHEIT DER TRANSFORMATION I

- a;: Stelle t<m ist Anzahl der z; in E;, Stelle m+-j ist 1, sonst 0
- b;: Stelle e<m ist Anzahl der z; in k;, Stelle m+-j ist 1, sonst 0
- ¢;: Stelle m~+1 ist 1, sonst 0 d;: Stelle m+1 ist 2, sonst 0

-gj=a;firalley A=G=4...41...1

m—mal n—mal

Ist F'e 35 AT, so gibt es eine erfiillende Belegung der x;

Fur j<n wahle a; falls ;=1 und b; sonst

— In der Summe haben alle Stellen m-+7 den Wert 1

— Da k; erfiillt wird, haben die Stellen ¢<n einen Wert aus {1..3}

Die Stellen ¢<n konnen mit ¢; und d; zu 4 erganzt werden Also f(F')e KP

Gilt f(F')e K P, so gibt es eine Bepackung die genau den Wert A ergibt
Die Bepackung enthalt fiir j<n entweder a; (wahle z;:=1) oder b; (z,:=0)
Wegen c;+d;=3 ist jede Stelle :<m der Summe der a; und b; mindestens 1
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KORREKTHEIT DER TRANSFORMATION I

- a;: Stelle t<m ist Anzahl der z; in E;, Stelle m+-j ist 1, sonst 0
- b;: Stelle e<m ist Anzahl der z; in k;, Stelle m+-j ist 1, sonst 0
- ¢;: Stelle m~+1 ist 1, sonst 0 d;: Stelle m+1 ist 2, sonst 0

-gj=a;firalley A=G=4...41...1

m—mal n—mal

Ist F'e 35 AT, so gibt es eine erfiillende Belegung der x;

Fur j<n wahle a; falls ;=1 und b; sonst

— In der Summe haben alle Stellen m-+7 den Wert 1

— Da k; erfiillt wird, haben die Stellen ¢<n einen Wert aus {1..3}

Die Stellen ¢<n konnen mit ¢; und d; zu 4 erganzt werden Also f(F')e KP

Gilt f(F')e K P, so gibt es eine Bepackung die genau den Wert A ergibt

Die Bepackung enthalt fiir j<n entweder a; (wahle z;:=1) oder b; (z,:=0)
Wegen c;+d;=3 ist jede Stelle :<m der Summe der a; und b; mindestens 1
Also kommt in jeder Klausel k; mindestens ein Literal mit dem Wert 1 vor
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KORREKTHEIT DER TRANSFORMATION I

- a;: Stelle t<m ist Anzahl der z; in k4, Stelle m+7 ist 1, sonst 0
- b;: Stelle e<m ist Anzahl der z; in k;, Stelle m+-j ist 1, sonst 0
- ¢;: Stelle m~+1 ist 1, sonst 0 d;: Stelle m+1 ist 2, sonst 0

-gj=a;firalley A=G=4...41...1

m—mal n—mal

Ist F'e 35 AT, so gibt es eine erfiillende Belegung der x;

Fur j<n wahle a; falls ;=1 und b; sonst

— In der Summe haben alle Stellen m-+7 den Wert 1

— Da k; erfiillt wird, haben die Stellen ¢<n einen Wert aus {1..3}

Die Stellen ¢<n konnen mit ¢; und d; zu 4 erganzt werden Also f(F')e KP

Gilt f(F')e K P, so gibt es eine Bepackung die genau den Wert A ergibt
Die Bepackung enthalt fiir j<n entweder a; (wahle z;:=1) oder b; (z,:=0)
Wegen c;+d;=3 ist jede Stelle :<m der Summe der a; und b; mindestens 1

Also kommt in jeder Klausel k; mindestens ein Literal mit dem Wert 1 vor
Damit erfullt die Belegung die Formel F', also F'e3S5AT
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KORREKTHEIT DER TRANSFORMATION I

- a;: Stelle t<m ist Anzahl der z; in E;, Stelle m+-j ist 1, sonst 0
- b;: Stelle e<m ist Anzahl der z; in k;, Stelle m+-j ist 1, sonst 0
- ¢;: Stelle m~+1 ist 1, sonst 0 d;: Stelle m+1 ist 2, sonst 0

-gj=a;firalley A=G=4...41...1

m—mal n—mal

Ist F'e 35 AT, so gibt es eine erfiillende Belegung der x;

Fur j<n wahle a; falls ;=1 und b; sonst

— In der Summe haben alle Stellen m-+7 den Wert 1

— Da k; erfiillt wird, haben die Stellen ¢<n einen Wert aus {1..3}

Die Stellen ¢<n konnen mit ¢; und d; zu 4 erganzt werden Also f(F')e KP

Gilt f(F')e K P, so gibt es eine Bepackung die genau den Wert A ergibt
Die Bepackung enthalt fiir j<n entweder a; (wahle z;:=1) oder b; (z,:=0)
Wegen c;+d;=3 ist jede Stelle :<m der Summe der a; und b; mindestens 1

Also kommt in jeder Klausel k; mindestens ein Literal mit dem Wert 1 vor
Damit erfullt die Belegung die Formel F', also F'e3S5AT

4
3SAT <, KP
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NP-VOLLSTANDIGKEIT DES FARBBARKEITSPROBLEMS I

GC ={ (G,k) | G=(V, E) Graph A dfy:V—={1..k} Y{u,v} eE. fy(u)#fy(v) }

Zeige 3SAT<,GC
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NP-VOLLSTANDIGKEIT DES FARBBARKEITSPROBLEMS I

GC ={ (G,k) | G=(V, E) Graph A dfy:V—={1..k} Y{u,v} eE. fy(u)#fy(v) }

Zeige 3SAT<,GC

— Gegeben F' = (ky, ..., kyp) mit k; = zj1 vziovzis und z€{x1, ..., 7, }
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NP-VOLLSTANDIGKEIT DES FARBBARKEITSPROBLEMS I

GC ={ (G,k) | G=(V, E) Graph A dfy:V—={1..k} Y{u,v} eE. fy(u)#fy(v) }

Zeige 3SAT<,GC

— Gegeben F' = (ky, ..., kyp) mit k; = zj1 vziovzis und z€{x1, ..., 7, }
— Konstruiere Farbungsproblem f(F) = (G, 3) wie folgt
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NP-VOLLSTANDIGKEIT DES FARBBARKEITSPROBLEMS I

GC ={ (G,k) | G=(V, E) Graph A dfy:V—={1..k} Y{u,v} eE. fy(u)#fy(v) }

Zeige 3SAT<,GC
— Gegeben F' = (ky, ..., kyp) mit k; = zj1 vziovzis und z€{x1, ..., 7, }
— Konstruiere Farbungsproblem f(F) = (G, 3) wie folgt
- Teilgraph fiur Codierung der Variablenbelegung
Wiéhle V.. = {u, x1,...., 7, }
und Eyqp = {{uv 561}, {uvx_l}v {5131,513_1}, “{u7 ZL"n}, {uv CC_n}, {Zlﬁn, Zli_n}}
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NP-VOLLSTANDIGKEIT DES FARBBARKEITSPROBLEMS I

GC ={ (G,k) | G=(V, E) Graph A dfy:V—={1..k} Y{u,v} eE. fy(u)#fy(v) }

Zeige 3SAT<,GC
— Gegeben F' = (ky, ..., kyp) mit k; = zj1 vziovzis und z€{x1, ..., 7, }
— Konstruiere Farbungsproblem f(F) = (G, 3) wie folgt
- Teilgraph fiur Codierung der Variablenbelegung
Wiéhle V.. = {u, x1,...., 7, }
und Eyqp = {{uv 561}, {uvx_l}v {5131,513_1}, “{u7 ZL"n}, {uv CC_n}, {Zlﬁn, Zli_n}}

Bei 3-Farbbarkeit erhalten x; und 7; verschiedene Farben aus 0 oder 1
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NP-VOLLSTANDIGKEIT DES FARBBARKEITSPROBLEMS I

GC ={ (G,k) | G=(V, E) Graph A dfy:V—={1..k} Y{u,v} eE. fy(u)#fy(v) }

Zeige 3SAT<,GC
— Gegeben F' = (ky, ..., kyp) mit k; = zj1 vziovzis und z€{x1, ..., 7, }
— Konstruiere Farbungsproblem f(F) = (G, 3) wie folgt
- Teilgraph fiur Codierung der Variablenbelegung
Wiéhle V.. = {u, x1,...., 7, }
und Eyqp = {{uv 561}, {uvx_l}v {5131,513_1}, “{u7 ZL"n}, {uv CC_n}, {Zlﬁn, Zli_n}}
Bei 3-Farbbarkeit erhalten x; und 7; verschiedene Farben aus 0 oder 1
- Teilgraph fiir Codierung der Klauseln
Wihle Vi, = {v, a1,b1,c1, Y1, 21, -, Qs by Cons Yy Zim +
und By = {{v,y1},{v, 21}, {ar, u1}, {ar, 21}, {01, a1}, {e1, 21}, {01, e}y
~Av,ymt, Abm, e}, {u,v}}
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GC ={ (G,k) | G=(V, E) Graph A dfy:V—={1..k} Y{u,v} eE. fy(u)#fy(v) }

Zeige 3SAT<,GC
— Gegeben F' = (ky, ..., kyp) mit k; = zj1 vziovzis und z€{x1, ..., 7, }
— Konstruiere Farbungsproblem f(F) = (G, 3) wie folgt
- Teilgraph fiur Codierung der Variablenbelegung
Wiéhle V.. = {u, x1,...., 7, }
und Eyqp = {{uv 561}, {uvx_l}v {5131,513_1}, “{u7 ZL"n}, {uv CC_n}, {Zlﬁn, Zli_n}}
Bei 3-Farbbarkeit erhalten x; und 7; verschiedene Farben aus 0 oder 1
- Teilgraph fiir Codierung der Klauseln
Wihle Vi, = {v, a1,b1,c1, Y1, 21, -, Qs by Cons Yy Zim +
und By = {{v,y1},{v, 21}, {ar, u1}, {ar, 21}, {01, a1}, {e1, 21}, {01, e}y
~Av,ymt, Abm, e}, {u,v}}

Knoten v erhalt Farbe 0 oder 1
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NP-VOLLSTANDIGKEIT DES FARBBARKEITSPROBLEMS I

GC ={ (G,k) | G=(V, E) Graph A dfy:V—={1.k} Y{u,v} eE. fy(u)#£fr(v) }

Zeige 3SAT<,GC
— Gegeben F' = (ky, ..., kyp) mit k; = zj1 vziovzis und z€{x1, ..., 7, }
— Konstruiere Farbungsproblem f(F) = (G, 3) wie folgt
- Teilgraph fiur Codierung der Variablenbelegung
Wiéhle V.. = {u, x1,...., 7, }
und Eyqp = {{uv 561}, {u7x_1}7 {5131,513_1}, “{u7 ZIZn}, {u7 CC_n}, {Zlﬁn, Zli_n}}
Bei 3-Farbbarkeit erhalten x; und 7; verschiedene Farben aus 0 oder 1
- Teilgraph fiir Codierung der Klauseln
Wihle Vi, = {v, a1,b1,c1, Y1, 21, -, Qs by Cons Yy Zim +
und By = {{v,y1},{v, 21}, {ar, u1}, {ar, 21}, {01, a1}, {e1, 21}, {01, e}y
~Av,ymt, Abm, e}, {u,v}}

Knoten v erhalt Farbe 0 oder 1
- Kanten zur Codierung der Klauselliterale

Bl = { {@1, Z11}, {517 212}, {017 213}, ---{am, Zml}a {bmazm2}a {Cm, st} }
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NP-VOLLSTANDIGKEIT DES FARBBARKEITSPROBLEMS I

GC ={ (G,k) | G=(V, E) Graph A dfy:V—={1.k} Y{u,v} eE. fy(u)#£fr(v) }

Zeige 3SAT<,GC
— Gegeben F' = (ky, ..., kyp) mit k; = zj1 vziovzis und z€{x1, ..., 7, }
— Konstruiere Farbungsproblem f(F) = (G, 3) wie folgt
- Teilgraph fiur Codierung der Variablenbelegung
Wiéhle V.. = {u, x1,...., 7, }
und Eyqp = {{uv 561}, {u7x_1}7 {5131,513_1}, “{u7 ZIZn}, {u7 CC_n}, {Zlﬁn, Zli_n}}
Bei 3-Farbbarkeit erhalten x; und 7; verschiedene Farben aus 0 oder 1
- Teilgraph fiir Codierung der Klauseln
Wihle Vi, = {v, a1,b1,c1, Y1, 21, -, Qs by Cons Yy Zim +
und By = {{v,y1},{v, 21}, {ar, u1}, {ar, 21}, {01, a1}, {e1, 21}, {01, e}y
~Av,ymt, Abm, e}, {u,v}}

Knoten v erhalt Farbe 0 oder 1
- Kanten zur Codierung der Klauselliterale

B = { {a1, z11}, {b1, 212}, {c1, 213}, A @m, 21} {0m, 2m2 by {€ms 2ms} }
— G=(Vyour UVi, By UELUE);) ist in polynomieller Zeit berechenbar
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CODIERUNG EINER FORMEL ALS FARBUNGSPROBLEM I

F = (kl,kﬁz,kg) mit klzwlvw_szg k2=a3_1vw2vw_4 kgzwlva}2vw3
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F = (kl,kz,kﬁg) mit klzwlvw_szg kiz:w_l\/wsz_4 kgzwlvwngg

b C b C b C
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KORREKTHEIT DER TRANSFORMATION I

o Ist '35 AT, so gibt es eine erfilllende Belegung der x;
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JENSEITS VON AN P-VOLLSTANDIGKEIT I

e co—NP: Probleme mit Komplement in NP
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JENSEITS VON AN P-VOLLSTANDIGKEIT I

e co—NP: Probleme mit Komplement in NP
— Die Menge der giiltigen Formeln ist in co— NP (Komplement von SAT)
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In-Place Acceptance Asteroth /Baier §4.5
— Gegeben DTM 7 und w e X*: Gilt h,(w) =1 und s, (w)<|w|?
QBF: Ist eine gegebene quantifizierte boole’sche Formel wahr? |Reischuk §6.4.4

Wie kann man unhandhabbare Probleme angehen?
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KOMPLEXITATSKLASSENHIERARCHIE vgl. Kap 8.3 |

e Zeitkomplexitatsklassen
LOGTIME  in logarithmischer Zeit losbar

NLOGTIME nichtdeterministisch in logarithmischer Zeit 1osbar

P in polynomieller Zeit 1osbar

NP nichtdeterministisch in polynomieller Zeit losbar
NPC N P-vollstandige Probleme

NPT N P-unvollstandige Probleme: NP - NPC - P
co—NP Komplement in NP

EXPTIME  in exponentieller Zeit losbar
NEXPTIME nichtdeterministisch in exponentieller Zeit losbar
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NPT N P-unvollstandige Probleme: NP - NPC - P
co—NP Komplement in NP

EXPTIME  in exponentieller Zeit losbar
NEXPTIME nichtdeterministisch in exponentieller Zeit losbar

e Platzkomplexitatsklassen
LOGSPACE  mit logarithmischem Platzverbrauch losbar

NLOGSPACE nichtdeterministisch mit logarithmischem Platzverbrauch losbar
PSPACE mit polynomiellem Platzverbrauch losbar

NPSPACE nichtdeterministisch mit polynomiellem Platzverbrauch losbar
EXPSPACE  mit exponentiellem Platzverbrauch losbar
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SPRACHKLASSENHIERARCHIE I

EXPSPACE

EXPTIME

PSPACE

P
LOGSPACE
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WICHTIGE VERTRETER VERSCHIEDENER KILASSEN I

e Isomorphie ungerichteter Graphen NPT
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WICHTIGE VERTRETER VERSCHIEDENER KILASSEN I

e Isomorphie ungerichteter Graphen NPT

e Zuverlassigkeit von Netzwerken NP-hart, vermutlich nicht in NP

— Wahrscheinlichkeit fiir fehlerfreie Verbindung zwischen zwei Knoten
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— Gultigkeit aussagenlogischer Formeln mit boole’schen Quantoren

e Strategische Spiele PSP AC E~vollstindig
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e TSP*: Bestimmung aller Rundreisen mit gegebenen Kosten

— Unrealistische Problemstellung: zu viele Losungen EXPSPACE
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