Theoretische Informatik 11

Einheit 8.5

Grenzen uberwinden

1. Pseudopolynomielle Algorithmen
2. Approximationsalgorithmen

3. Probabilistische Algorithmen

pIVers,,
V) Z A

aod

. v.? m
-

WIE KANN MAN “UNLOSBARE” PROBLEME ANGEHEN? I

e Kiunstliche Intelligenz
— Heuristische Losung unentscheidbarer Probleme (ohne Erfolgsgarantie)

— Theorembeweisen, Programmverifikation und -synthese (unvollstandig)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 1 NP-VOLLSTANDIGE PROBLEME

WIE KANN MAN “UNLOSBARE” PROBLEME ANGEHEN? I

e Kiunstliche Intelligenz
— Heuristische Losung unentscheidbarer Probleme (ohne Erfolgsgarantie)

— Theorembeweisen, Programmverifikation und -synthese (unvollstiandig)

e Approximierende und probabilistische Algorithmen
— Effiziente Bestimmung von nahezu optimalen Losungen

— 7.B. Primzahltest mit geringem Fehler (logarithmisch statt linear)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 1 NP-VOLLSTANDIGE PROBLEME

WIE KANN MAN “UNLOSBARE” PROBLEME ANGEHEN? I

e Kiunstliche Intelligenz
— Heuristische Losung unentscheidbarer Probleme (ohne Erfolgsgarantie)

— Theorembeweisen, Programmverifikation und -synthese (unvollstiandig)

e Approximierende und probabilistische Algorithmen
— Effiziente Bestimmung von nahezu optimalen Losungen

— 7.B. Primzahltest mit geringem Fehler (logarithmisch statt linear)

e Selbstorganisation statt vorformulierter Losungen

— Lernverfahren, Neuronale Netze, genetische Algorithmen, . ..

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 1 NP-VOLLSTANDIGE PROBLEME

WIE KANN MAN “UNLOSBARE” PROBLEME ANGEHEN? I

e Kiunstliche Intelligenz
— Heuristische Losung unentscheidbarer Probleme (ohne Erfolgsgarantie)

— Theorembeweisen, Programmverifikation und -synthese (unvollstiandig)

e Approximierende und probabilistische Algorithmen
— Effiziente Bestimmung von nahezu optimalen Losungen

— 7.B. Primzahltest mit geringem Fehler (logarithmisch statt linear)

e Selbstorganisation statt vorformulierter Losungen

— Lernverfahren, Neuronale Netze, genetische Algorithmen, . ..

Suche nach neuen Wegen liefert tieferes Verstandnis der Materie

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 1 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Gibt es leichte N'P-vollstandige Probleme?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Gibt es leichte N'P-vollstandige Probleme?

e Was unterscheidet CLIQUFE von K P?
— Beide Probleme sind N P-vollstandig

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Gibt es leichte N P-vollstandige Probleme?

e Was unterscheidet CLIQUFE von K P?
— Beide Probleme sind N'P-vollstiandig, aber
- 3SAT <, K P benutzt exponentiell grofie Zahlen als Codierung
- 3SAT<,CLIQUE codiert Formel durch gleichgrofien Graph

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Gibt es leichte N'P-vollstandige Probleme?

e Was unterscheidet CLIQUFE von K P?
— Beide Probleme sind N'P-vollstiandig, aber
- 3SAT <, K P benutzt exponentiell grofie Zahlen als Codierung
- 3SAT<,CLIQUE codiert Formel durch gleichgrofien Graph
— Ist K P nur wegen der grofien Zahlen N P-vollstandig?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Gibt es leichte N'P-vollstandige Probleme?

e Was unterscheidet CLIQUFE von K P?
— Beide Probleme sind N'P-vollstiandig, aber
- 3SAT <, K P benutzt exponentiell grofie Zahlen als Codierung
- 3SAT<,CLIQUE codiert Formel durch gleichgrofien Graph
— Ist K P nur wegen der grofien Zahlen N P-vollstandig?

e Eis gibt “bessere” Losungen fir K P
KP ={(g1.-gn, a1..ap,, G, A) | 3T{1.n}. i jgi <G A Bijcja; > A}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Gibt es leichte N'P-vollstandige Probleme?

e Was unterscheidet CLIQUFE von K P?
— Beide Probleme sind N'P-vollstiandig, aber
- 3SAT <, K P benutzt exponentiell grofie Zahlen als Codierung
- 3SAT<,CLIQUE codiert Formel durch gleichgrofien Graph
— Ist K P nur wegen der grofien Zahlen N P-vollstandig?

e Eis gibt “bessere” Losungen fir K P
KP :{ (91--9n, ai..Qy, G, A) | EIJQ{ln} Zz’Eng' <G A Ziejaz' ZA}

— Man muf} nicht alle Kombinationen von {1..n} einzeln auswerten

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Gibt es leichte N'P-vollstandige Probleme?

e Was unterscheidet CLIQUFE von K P?
— Beide Probleme sind N'P-vollstiandig, aber
- 3SAT <, K P benutzt exponentiell grofie Zahlen als Codierung
- 3SAT<,CLIQUE codiert Formel durch gleichgrofien Graph
— Ist K P nur wegen der grofien Zahlen N P-vollstandig?

e Eis gibt “bessere” Losungen fir K P
KP :{ (91--9n, ai..Qy, G, A) | EIJQ{ln} Zz’Eng' <G A Diicga; ZA}
— Man muf} nicht alle Kombinationen von {1..n} einzeln auswerten

— Man kann iterativ den optimalen Nutzen bestimmen,
indem man die Anzahl der Gegenstande und das Gewicht erhoht

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Gibt es leichte N'P-vollstandige Probleme?

e Was unterscheidet CLIQUFE von K P?

— Beide Probleme sind N'P-vollstiandig, aber
- 3SAT <, K P benutzt exponentiell grofie Zahlen als Codierung

- 3SAT<,CLIQUE codiert Formel durch gleichgrofien Graph
— Ist K P nur wegen der grofien Zahlen N P-vollstandig?

e Eis gibt “bessere” Losungen fir K P
KP ={(g1.-gn, a1..ap,, G, A) | 3T{1.n}. i jgi <G A Bijcja; > A}
— Man muf} nicht alle Kombinationen von {1..n} einzeln auswerten

— Man kann iterativ den optimalen Nutzen bestimmen,
indem man die Anzahl der Gegenstande und das Gewicht erhoht

— Sehr effizient, wenn das maximale Gewicht nicht zu grofl wird

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 2 NP-VOLLSTANDIGE PROBLEME

ITERATIVE LOSUNG FUR K P I

KP = { (91--9n, ai..Qy, G, A) | EL]Q{ln} EiEJgi <G A Eiejaz- ZA}

e Betrachte Subprobleme K P(k, g)

— Verwende Gegenstande 1, .., kK und Maximalgewicht ¢<G
— Bestimme optimalen Nutzen N (k, g)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 NP-VOLLSTANDIGE PROBLEME

ITERATIVE LOSUNG FUR K P I

KP = { (91--9n, ai..Qy, G, A) | EL]Q{ln} EiEJgi <G A Eiejaz- ZA}

e Betrachte Subprobleme K P(k, g)

— Verwende Gegenstande 1, .., kK und Maximalgewicht ¢<G

— Bestimme optimalen Nutzen N (k, g)
- N(k,0) = 0 fur alle k£

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 NP-VOLLSTANDIGE PROBLEME

ITERATIVE LOSUNG FUR K P I

KP = { (91--9n, ai..Qy, G, A) | EL]Q{ln} EiEJgi <G A Eiejaz- ZA}

e Betrachte Subprobleme K P(k, g)

— Verwende Gegenstande 1, .., kK und Maximalgewicht ¢<G
— Bestimme optimalen Nutzen N (k, g)

- N(k,0) =0 fiir alle k

- N(0,¢g) = 0 fur alle g

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 NP-VOLLSTANDIGE PROBLEME

ITERATIVE LOSUNG FUR K P I

KP = { (91--9n, ai..Qy, G, A) | E|J§{1n} ZiEJgi <G A Eiejai ZA}

e Betrachte Subprobleme K P(k, g)

— Verwende Gegenstande 1, .., kK und Maximalgewicht ¢<G
— Bestimme optimalen Nutzen N (k, g)

- N(k,0) =0 fiir alle k

- N(0,¢g) = 0 fur alle g

- N(k, g) = max{N(k—1, g—gy) + ar, N(k—1,9)}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 NP-VOLLSTANDIGE PROBLEME

ITERATIVE LOSUNG FUR K P I

KP ={(g91..9n, a1..ap, G, A) | AT 1.0}, Xicjg: <G A Yjeja; >A}

e Betrachte Subprobleme K P(k, g)

— Verwende Gegenstande 1, .., kK und Maximalgewicht ¢<G
— Bestimme optimalen Nutzen N (k, g)

- N(k,0) =0 fiir alle k

- N(0,¢g) = 0 fur alle g

- N(k, g) = max{N(k—1, g—gy) + ar, N(k—1,9)}

e Lose Rucksackproblem K P
— Es gilt (91..9n, a1..0,,, G, A) € KP < N(n,G)>A

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 NP-VOLLSTANDIGE PROBLEME

ITERATIVE LOSUNG FUR K P I

KP ={(g91..9n, a1..ap, G, A) | AT 1.0}, Xicjg: <G A Yjeja; >A}

e Betrachte Subprobleme K P(k, g)

— Verwende Gegenstande 1, .., k und Maximalgewicht ¢<G
— Bestimme optimalen Nutzen N (k, g)

- N(k,0) =0 fiir alle k

- N(0,¢g) = 0 fur alle g

- N(k, g) = max{N(k—1, g—gy) + ar, N(k—1,9)}

e Lose Rucksackproblem K P
— Es gilt (g1..9, a1..0,, G, A) € KP < N(n,G)>A
— Gleichungen beschreiben rekursiven Algorithmus fiir N (n,)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 NP-VOLLSTANDIGE PROBLEME

ITERATIVE LOSUNG FUR K P I

KP ={(g91.-9n, a1..a, G, A) | AIA1.n}. Eicjg; <G A Xjeja; > A}

e Betrachte Subprobleme K P(k, g)

— Verwende Gegenstande 1, .., k und Maximalgewicht ¢<G
— Bestimme optimalen Nutzen N (k, g)

- N(k,0) =0 fiir alle k

- N(0,¢g) = 0 fur alle g

- N(k,g) = max{N(k—1,9—gi) + ar, N(k—1,9)}

e Lose Rucksackproblem K P
— Es gilt (g1..9, a1..0,, G, A) € KP < N(n,G)>A
— Gleichungen beschreiben rekursiven Algorithmus fiir N (n,)
— Tabellarischer Algorithmus bestimmt alle N(k, g) mit k<n und ¢<G

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 NP-VOLLSTANDIGE PROBLEME

ITERATIVE LOSUNG FUR K P I

KP ={(g91.-9n, a1..a, G, A) | AIA1.n}. Eicjg; <G A Xjeja; > A}

e Betrachte Subprobleme K P(k, g)
— Verwende Gegenstande 1, .., k und Maximalgewicht ¢<G

— Bestimme optimalen Nutzen N(k, g)
- N(k,0) =0 fiir alle k
- N(0,¢g) = 0 fur alle g
- N(k,g) = max{N(k—1,9—gr) + ar, N(k—1,9)}

e Lose Rucksackproblem K P
— Es gilt (g1..9, a1..0,, G, A) € KP < N(n,G)>A
— Gleichungen beschreiben rekursiven Algorithmus fiir N (n,)
— Tabellarischer Algorithmus bestimmt alle N(k, g) mit k<n und ¢<G
— Laufzeit ist O(n * G)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 NP-VOLLSTANDIGE PROBLEME

ITERATIVE LOSUNG FUR K P I

KP ={(g91..9n, a1..ap, G, A) | AT 1.0}, Xicjg: <G A Yjeja; >A}

e Betrachte Subprobleme K P(k, g)

— Verwende Gegenstande 1, .., kK und Maximalgewicht ¢<G
— Bestimme optimalen Nutzen N (k, g)

- N(k,0) =0 fiir alle k

- N(0,¢g) = 0 fur alle g

- N(k, g) = max{N(k—1, g—gy) + ar, N(k—1,9)}

e Lose Rucksackproblem K P
— Es gilt (91..9n, a1..0,,, G, A) € KP < N(n,G)>A
— Gleichungen beschreiben rekursiven Algorithmus fiir N (n,)
— Tabellarischer Algorithmus bestimmt alle N(k, g) mit k<n und ¢<G
— Laufzeit ist O(n * G)

U

(91:-Gns @1..0p, G, A) € KP ist IN O(n x G) Schritten l6sbar

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 3 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Liegt das Rucksackproblem K P etwa in P ?

THEORETISCHE INFORMATIK II §8: KOMPLEXITATSTHEORIE 4 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Liegt das Rucksackproblem K P etwa in P ?

e Losung fur K P ist nicht wirklich polynomiell

—n * G kann exponentiell wachsen relativ zur Grofie der Eingabe

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Liegt das Rucksackproblem K P etwa in P ?

e Losung fur K P ist nicht wirklich polynomiell

—n * G kann exponentiell wachsen relativ zur Grofie der Eingabe
— Grofie von (g1..9p, a1..a,, G, A) ist O(n * (logG + logA))

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Liegt das Rucksackproblem K P etwa in P ?

e Losung fur K P ist nicht wirklich polynomiell

—n * G kann exponentiell wachsen relativ zur Grofie der Eingabe
— Grofie von (g1..9p, a1..a,, G, A) ist O(n * (logG + logA))

e K P ist ein Zahlproblem

— McX* ist Zahlproblem, wenn es kein Polynom p gibt
mit M AX (w)<p(|w|) fir alle we X*

MAX (w) ist die grofite im Wort w codierte Zahl

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Liegt das Rucksackproblem K P etwa in P ?

e Losung fur K P ist nicht wirklich polynomiell

—n * G kann exponentiell wachsen relativ zur Grofie der Eingabe
— Grofie von (g1..9p, a1..a,, G, A) ist O(n * (logG + logA))

e K P ist ein Zahlproblem

— McX* ist Zahlproblem, wenn es kein Polynom p gibt
mit M AX (w)<p(|w|) fir alle we X*

MAX (w) ist die grofite im Wort w codierte Zahl
— Weitere Zahlprobleme: PARTITION, BPP, TSP, MSP, ...

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Liegt das Rucksackproblem K P etwa in P ?

e Losung fur K P ist nicht wirklich polynomiell

—n * G kann exponentiell wachsen relativ zur Grofie der Eingabe
— Grofie von (g1..9p, a1..a,, G, A) ist O(n * (logG + logA))

e K P ist ein Zahlproblem

— McX* ist Zahlproblem, wenn es kein Polynom p gibt
mit M AX (w)<p(|w|) fir alle we X*

MAX (w) ist die grofite im Wort w codierte Zahl
— Weitere Zahlprobleme: PARTITION, BPP, TSP, MSP, ...
— Keine Zahlprobleme: CLIQUE, VC'. 1S, SGI, LCS, DHC, HC
GC.,. ..

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 NP-VOLLSTANDIGE PROBLEME

PSEUDOPOLYNOMIELLE ALGORITHMEN I

Liegt das Rucksackproblem K P etwa in P ?

e Losung fur K P ist nicht wirklich polynomiell

—n * G kann exponentiell wachsen relativ zur Grofie der Eingabe
— Grofie von (g1..9p, a1..a,, G, A) ist O(n * (logG + logA))

e K P ist ein Zahlproblem

— McX* ist Zahlproblem, wenn es kein Polynom p gibt
mit M AX (w)<p(|w|) fir alle we X*

MAX (w) ist die grofite im Wort w codierte Zahl
— Weitere Zahlprobleme: PARTITION, BPP, TSP, MSP, ...
— Keine Zahlprobleme: CLIQUE, VC'. 1S, SGI, LCS, DHC, HC
GC.,. ..

e K P hat pseudopolynomielle Losung

— Ein Algorithmus fiir ein Zahlproblem McX™ ist pseudopolynomiell, wenn
seine Rechenzeit durch ein Polynom in |w| und M AX (w) beschrankt ist

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 4 NP-VOLLSTANDIGE PROBLEME

STARKE N P-VOLLSTANDIGKEIT I

e Pseudopolynomiell = effizient bei kleinen Zahlen

— Ist McX* pseudopolynomiell losbar, so ist fir jedes Polynom p
M, = {lweM | MAX (w)<p(Jw|)} € P

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 NP-VOLLSTANDIGE PROBLEME

STARKE N P-VOLLSTANDIGKEIT I

e Pseudopolynomiell = effizient bei kleinen Zahlen

— Ist McX* pseudopolynomiell losbar, so ist fir jedes Polynom p
M, = {lweM | MAX (w)<p(Jw|)} € P
— Die Restriktion von K P auf polynomiell grole Gewichte liegt in P

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 NP-VOLLSTANDIGE PROBLEME

STARKE N P-VOLLSTANDIGKEIT I

e Pseudopolynomiell = effizient bei kleinen Zahlen
— Ist McX* pseudopolynomiell losbar, so ist fir jedes Polynom p
M, = {lweM | MAX (w)<p(Jw|)} € P
— Die Restriktion von K P auf polynomiell grole Gewichte liegt in P

— Hat jedes Zahlproblem eine pseudopolynomielle Losung?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 NP-VOLLSTANDIGE PROBLEME

STARKE N P-VOLLSTANDIGKEIT I

e Pseudopolynomiell = effizient bei kleinen Zahlen
— Ist McX* pseudopolynomiell losbar, so ist fir jedes Polynom p
M, = {lweM | MAX (w)<p(Jw|)} € P
— Die Restriktion von K P auf polynomiell grole Gewichte liegt in P

— Hat jedes Zahlproblem eine pseudopolynomielle Losung?

e I'S P ohne pseudopolynomielle Losung (falls PANP)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 NP-VOLLSTANDIGE PROBLEME

STARKE N P-VOLLSTANDIGKEIT I

e Pseudopolynomiell = effizient bei kleinen Zahlen
— Ist McX* pseudopolynomiell losbar, so ist fir jedes Polynom p
M, = {lweM | MAX (w)<p(Jw|)} € P
— Die Restriktion von K P auf polynomiell grole Gewichte liegt in P

— Hat jedes Zahlproblem eine pseudopolynomielle Losung?

e I'SP ohne pseudopolynomielle Losung (falls PANP)
— Der Reduktionsbeweis HC' <, T'SP zeigt HC<,T'SP,

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 NP-VOLLSTANDIGE PROBLEME

STARKE N P-VOLLSTANDIGKEIT I

e Pseudopolynomiell = effizient bei kleinen Zahlen
— Ist McX* pseudopolynomiell losbar, so ist fir jedes Polynom p
M, = {lweM | MAX (w)<p(Jw|)} € P
— Die Restriktion von K P auf polynomiell grofle Gewichte liegt in P

— Hat jedes Zahlproblem eine pseudopolynomielle Losung?

e I'S P ohne pseudopolynomielle Losung (falls PANP)
— Der Reduktionsbeweis HC<,T'SP zeigt HC<,T'SP,
— Eine Restriktion von T'SP auf kleine Zahlen bleibt N'P-vollstandig

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 NP-VOLLSTANDIGE PROBLEME

STARKE N P-VOLLSTANDIGKEIT I

e Pseudopolynomiell = effizient bei kleinen Zahlen
— Ist McX* pseudopolynomiell losbar, so ist fir jedes Polynom p
M, = {lweM | MAX (w)<p(Jw|)} € P
— Die Restriktion von K P auf polynomiell grofle Gewichte liegt in P

— Hat jedes Zahlproblem eine pseudopolynomielle Losung?

e I'S P ohne pseudopolynomielle Losung (falls PANP)
— Der Reduktionsbeweis HC<,T'SP zeigt HC<,T'SP,
— Eine Restriktion von T'SP auf kleine Zahlen bleibt N'P-vollstandig

e T'SP ist stark NP-vollstandig
— McX* stark N'P-vollstandig = M, N'P-vollstiandig fiir ein Polynom p

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 NP-VOLLSTANDIGE PROBLEME

STARKE N P-VOLLSTANDIGKEIT I

e Pseudopolynomiell = effizient bei kleinen Zahlen
— Ist McX* pseudopolynomiell losbar, so ist fir jedes Polynom p
M, = {lweM | MAX (w)<p(Jw|)} € P
— Die Restriktion von K P auf polynomiell grofle Gewichte liegt in P

— Hat jedes Zahlproblem eine pseudopolynomielle Losung?

e I'S P ohne pseudopolynomielle Losung (falls PANP)
— Der Reduktionsbeweis HC<,T'SP zeigt HC<,T'SP,
— Eine Restriktion von T'SP auf kleine Zahlen bleibt N'P-vollstandig

e T'SP ist stark NP-vollstandig
— McX* stark N'P-vollstandig = M, N'P-vollstiandig fiir ein Polynom p
— M stark N"P-vollstandig = M hat keine pseudopolynomielle Losung

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 NP-VOLLSTANDIGE PROBLEME

STARKE N P-VOLLSTANDIGKEIT I

e Pseudopolynomiell = effizient bei kleinen Zahlen
— Ist McX* pseudopolynomiell losbar, so ist fir jedes Polynom p
M, = {lweM | MAX (w)<p(Jw|)} € P
— Die Restriktion von K P auf polynomiell grole Gewichte liegt in P

— Hat jedes Zahlproblem eine pseudopolynomielle Losung?

e I'S P ohne pseudopolynomielle Losung (falls PANP)
— Der Reduktionsbeweis HC'<,T'SP zeigt HC<,T'SP,
— Eine Restriktion von T'SP auf kleine Zahlen bleibt N'P-vollstandig

e T'SP ist stark NP-vollstandig
— McX* stark N'P-vollstandig = M, N'P-vollstiandig fiir ein Polynom p
— M stark N"P-vollstandig = M hat keine pseudopolynomielle Losung

U

Einschrankung auf kleine Zahlen ist nur zuweilen
eine Antwort auf das P—N P Dilemma

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 5 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSALGORITHMEN FUR OPTIMIERUNGSPROBLEME I

e Viele Probleme haben Optimierungsvariante

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSALGORITHMEN FUR OPTIMIERUNGSPROBLEME I

e Viele Probleme haben Optimierungsvariante
~ CLIQU E,:: bestimme die grofite Clique im Graphen
—~ T'SP,,: bestimme die kostengiinstigste Rundreise
— BPP,,: bestimme die kleinste Anzahl der notigen Behalter
— K P, bestimme das geringstmogliche Gewicht fiir einen festen Nutzen

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSALGORITHMEN FUR OPTIMIERUNGSPROBLEME I

e Viele Probleme haben Optimierungsvariante
~ CLIQU E,:: bestimme die grofite Clique im Graphen
—~ T'SP,,: bestimme die kostengiinstigste Rundreise
— BPP,,: bestimme die kleinste Anzahl der notigen Behalter

— K P, bestimme das geringstmogliche Gewicht fiir einen festen Nutzen
Alle Probleme sind NP-hart

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSALGORITHMEN FUR OPTIMIERUNGSPROBLEME

e Viele Probleme haben Optimierungsvariante
~ CLIQU E,:: bestimme die grofite Clique im Graphen
—~ T'SP,,: bestimme die kostengiinstigste Rundreise
— BPP,,: bestimme die kleinste Anzahl der notigen Behalter
— K P, bestimme das geringstmogliche Gewicht fiir einen festen Nutzen

Alle Probleme sind NP-hart
Wie effizient kann man eine optimale Losung annahern?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSALGORITHMEN FUR OPTIMIERUNGSPROBLEME I

e Viele Probleme haben Optimierungsvariante
~ CLIQU E,:: bestimme die grofite Clique im Graphen
—~ T'SP,,: bestimme die kostengiinstigste Rundreise
— BPP,,: bestimme die kleinste Anzahl der notigen Behalter

— K P, bestimme das geringstmogliche Gewicht fiir einen festen Nutzen
Alle Probleme sind NP-hart
Wie effizient kann man eine optimale Losung annahern?

e Optimierungsproblem MCX™*
— Fiir we X* gibt es ggf. mehrere (akzeptable) Losungen x mit (w, z) € M

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSALGORITHMEN FUR OPTIMIERUNGSPROBLEME I

e Viele Probleme haben Optimierungsvariante
~ CLIQU E,:: bestimme die grofite Clique im Graphen
—~ T'SP,,: bestimme die kostengiinstigste Rundreise
— BPP,,: bestimme die kleinste Anzahl der notigen Behalter
— K P, bestimme das geringstmogliche Gewicht fiir einen festen Nutzen

Alle Probleme sind NP-hart
Wie effizient kann man eine optimale Losung annahern?

e Optimierungsproblem MCX™*
— Fiir we X* gibt es ggf. mehrere (akzeptable) Losungen x mit (w, z) € M
— OPTy(w): Wert einer optimalen (maxi-/minimalen) Losung fiir w e X*

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSALGORITHMEN FUR OPTIMIERUNGSPROBLEME I

e Viele Probleme haben Optimierungsvariante
~ CLIQU E,:: bestimme die grofite Clique im Graphen
—~ T'SP,,: bestimme die kostengiinstigste Rundreise
— BPP,,: bestimme die kleinste Anzahl der notigen Behalter
— K P, bestimme das geringstmogliche Gewicht fiir einen festen Nutzen

Alle Probleme sind NP-hart
Wie effizient kann man eine optimale Losung annahern?

e Optimierungsproblem MCX™*
— Fiir we X* gibt es ggf. mehrere (akzeptable) Losungen x mit (w, z) € M
— OPTy(w): Wert einer optimalen (maxi-/minimalen) Losung fiir w e X*

e Approximationsalgorithmus A fiir MCX™
— A berechnet fiir we X* ein x = A(w) mit (w,x)eM

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSALGORITHMEN FUR OPTIMIERUNGSPROBLEME I

e Viele Probleme haben Optimierungsvariante
~ CLIQU E,:: bestimme die grofite Clique im Graphen
—~ T'SP,,: bestimme die kostengiinstigste Rundreise
— BPP,,: bestimme die kleinste Anzahl der notigen Behalter
— K P, bestimme das geringstmogliche Gewicht fiir einen festen Nutzen

Alle Probleme sind NP-hart
Wie effizient kann man eine optimale Losung annahern?

e Optimierungsproblem MCX™*
— Fiir we X* gibt es ggf. mehrere (akzeptable) Losungen x mit (w, z) € M
— OPTy(w): Wert einer optimalen (maxi-/minimalen) Losung fiir w e X*

e Approximationsalgorithmus A fiir MCX™
— A berechnet fiir we X* ein x = A(w) mit (w,x)eM
— Ra(w): Giite des Algorithmus A (normiertes Verhiltnis O PT)y (w) zu A(w))

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSALGORITHMEN FUR OPTIMIERUNGSPROBLEME I

e Viele Probleme haben Optimierungsvariante
~ CLIQU E,:: bestimme die grofite Clique im Graphen
—~ T'SP,,: bestimme die kostengiinstigste Rundreise
— BPP,,: bestimme die kleinste Anzahl der notigen Behalter
— K P, bestimme das geringstmogliche Gewicht fiir einen festen Nutzen

Alle Probleme sind NP-hart
Wie effizient kann man eine optimale Losung annahern?

e Optimierungsproblem MCX™*
— Fiir we X* gibt es ggf. mehrere (akzeptable) Losungen x mit (w, z) € M
— OPTy(w): Wert einer optimalen (maxi-/minimalen) Losung fiir w e X*

e Approximationsalgorithmus A fiir MCX™
— A berechnet fiir we X* ein x = A(w) mit (w,x)eM
— Ra(w): Giite des Algorithmus A (normiertes Verhiltnis O PT)y (w) zu A(w))
— R asymptotische worst-case Giite von A (inf{r>1]V> we X* Ra(w)<r})

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSALGORITHMEN FUR OPTIMIERUNGSPROBLEME I

e Viele Probleme haben Optimierungsvariante
~ CLIQUE,,: bestimme die grofite Clique im Graphen
—~ T'SP,,: bestimme die kostengiinstigste Rundreise
— BPP,,: bestimme die kleinste Anzahl der notigen Behalter
— K P, bestimme das geringstmogliche Gewicht fir einen festen Nutzen

Alle Probleme sind NP-hart
Wie effizient kann man eine optimale Losung annahern?

e Optimierungsproblem MCX™*
— Fiir we X* gibt es ggf. mehrere (akzeptable) Losungen x mit (w, z) € M
— OPTy(w): Wert einer optimalen (maxi-/minimalen) Losung fiir w e X*

e Approximationsalgorithmus A fiir MCX™
— A berechnet fiir we X* ein x = A(w) mit (w,x)eM
— Ra(w): Giite des Algorithmus A (normiertes Verhiltnis O PT)y (w) zu A(w))
— R asymptotische worst-case Giite von A (inf{r>1]V> we X* Ra(w)<r})
~ Ryin(M,w): = inf{ RY(w) | A approximiert M in polynomieller Zeit}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 6 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR DAS RUCKSACKPROBLEM I

KP = { (91--9n, ai..apn, G, A) | E|J§{1n} Ziejgi <G A Ziejai ZA}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR DAS RUCKSACKPROBLEM I

KP = { (gl..gn, ai..ap, G, A) | E|J§{1n} Ziejgi SG A Ziejai ZA}

e Beliebig guter multiplikativer Fehler
— Fiir jedes € gibt es einen Approximationsalgorithmus A mit
Laufzeit O(n® x e ') und Giite Ra(w)<1+e fiir alle w

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR DAS RUCKSACKPROBLEM I

KP = { (gl..gn, ai..ap, G, A) | E|J§{1n} Ziejgi SG A Ziejai ZA}

e Beliebig guter multiplikativer Fehler
— Fiir jedes € gibt es einen Approximationsalgorithmus A mit
Laufzeit O(n® x e ') und Giite Ra(w)<1+e fiir alle w

e Kein konstanter additiver Fehler moglich

— Fiir kein k gibt es einen polynomiellen Algorithmus A g p
mit der Eigenschaft |OPTkp(w) — Agp(w)|<k fir alle w

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR DAS RUCKSACKPROBLEM I

KP = { (gl..gn, ai..ap, G, A) | E|J§{1n} Ziejgi SG A Ziejai ZA}

e Beliebig guter multiplikativer Fehler
— Fiir jedes € gibt es einen Approximationsalgorithmus A mit
Laufzeit O(n® x e ') und Giite Ra(w)<1+e fiir alle w

e Kein konstanter additiver Fehler moglich

— Fiir kein k gibt es einen polynomiellen Algorithmus A g p
mit der Eigenschaft |OPTkp(w) — Agp(w)|<k fir alle w

Wenn es Ax p geben wiirde, dann entscheiden wir K P polynomiell wie folgt

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR DAS RUCKSACKPROBLEM I

KP = { (gl..gn, ai..ap, G, A) | E|J§{1n} Zz’Eng' SG A Ziejai ZA}

e Beliebig guter multiplikativer Fehler
— Fiir jedes € gibt es einen Approximationsalgorithmus A mit
Laufzeit O(n® x e ') und Giite Ra(w)<1+e fiir alle w

e Kein konstanter additiver Fehler moglich

— Fiir kein k gibt es einen polynomiellen Algorithmus A g p
mit der Eigenschaft |OPTkp(w) — Agp(w)|<k fir alle w

Wenn es Ax p geben wiirde, dann entscheiden wir K P polynomiell wie folgt
— Transformiere w = (g1..gn, a1..a,, G, A) in
w' = (g1.-gn, arx(k+1)..a,x(k+1), G, Ax(k+1))

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR DAS RUCKSACKPROBLEM I

KP = { (91--gn7 ai..ap, G, A) | E|J§{1n} Zz’Eng' SG A Ziejai ZA}

e Beliebig guter multiplikativer Fehler
— Fiir jedes € gibt es einen Approximationsalgorithmus A mit
Laufzeit O(n® x e ') und Giite Ra(w)<1+e fiir alle w

e Kein konstanter additiver Fehler moglich

— Fiir kein k gibt es einen polynomiellen Algorithmus A g p

mit der Eigenschaft |OPTkp(w) — Agp(w)|<k fir alle w
Wenn es Ax p geben wiirde, dann entscheiden wir K P polynomiell wie folgt
— Transformiere w = (g1..gn, a1..a,, G, A) in
w' = (g1.-gn, arx(k+1)..a,x(k+1), G, Ax(k+1))
— Wegen |OPTip(w') — Agp(w)| <k folgt
|OPTkp(w) — [Axp(w')/(k+1)] | < [k/(k+1)] =0

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR DAS RUCKSACKPROBLEM I

KP = { (91--gn7 ai..ap, G, A) | E|J§{1n} Zz’Eng' SG A Ziejai ZA}

e Beliebig guter multiplikativer Fehler
— Fiir jedes € gibt es einen Approximationsalgorithmus A mit
Laufzeit O(n® x e ') und Giite Ra(w)<1+e fiir alle w

e Kein konstanter additiver Fehler moglich

— Fiir kein k gibt es einen polynomiellen Algorithmus A g p

mit der Eigenschaft |OPTkp(w) — Agp(w)|<k fir alle w
Wenn es Ax p geben wiirde, dann entscheiden wir K P polynomiell wie folgt
— Transformiere w = (g1..gn, a1..a,, G, A) in
w' = (g1.-gn, arx(k+1)..a,x(k+1), G, Ax(k+1))
— Wegen |OPTip(w') — Agp(w)| <k folgt
|OPTkp(w) — [Agp(w')/(k+1)] | < [k/(k+1)] =0
—~Alsogilt we KP < |Agp(w')/(k+1)]>A

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR DAS RUCKSACKPROBLEM I

KP = { (91--9n, ai..Qy, G, A) | E|J§{1n} ZiEJgi <G A Eiejai ZA}

e Beliebig guter multiplikativer Fehler
— Fiir jedes € gibt es einen Approximationsalgorithmus A mit
Laufzeit O(n® x e ') und Giite Ra(w)<1+e fiir alle w

e Kein konstanter additiver Fehler moglich

— Fiir kein k gibt es einen polynomiellen Algorithmus A g p

mit der Eigenschaft |OPTkp(w) — Agp(w)|<k fir alle w
Wenn es Ax p geben wiirde, dann entscheiden wir K P polynomiell wie folgt
— Transformiere w = (g1..gn, a1..a,, G, A) in
w' = (g1.-gn, arx(k+1)..a,x(k+1), G, Ax(k+1))
— Wegen |OPTip(w') — Agp(w)| <k folgt
|OPTkp(w) — [Agp(w')/(k+1)] | < [k/(k+1)] =0
—~Alsogilt we KP < |Agp(w')/(k+1)]>A

Beweistechnik: Multiplikation des Problems, nachtragliche Division des Fehlers

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 7 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR BINPACKING I

e Asymptotische Giite 11/9 erreichbar

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR BINPACKING I

e Asymptotische Giite 11/9 erreichbar

— FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge
und packe sie jeweils in die erste freie Kiste, in der gentigend Platz ist

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR BINPACKING I

e Asymptotische Giite 11/9 erreichbar

— FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge
und packe sie jeweils in die erste freie Kiste, in der gentigend Platz ist

~ Esgilt FFD(w) = 11/9%*OPTgpp(w) + 4 fir alle w
— Polynomielle Approximation mit R = 11/9

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR BINPACKING I

e Asymptotische Giite 11/9 erreichbar

— FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge
und packe sie jeweils in die erste freie Kiste, in der gentigend Platz ist

~ Esgilt FFD(w) = 11/9%*OPTgpp(w) + 4 fir alle w
— Polynomielle Approximation mit R = 11/9

e Keine absolute Giite besser als 3/2 (falls PANP)
— Kein polynomieller Approximationsalgorithmus mit R4 < 3/2 moglich

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR BINPACKING I

e Asymptotische Giite 11/9 erreichbar

— FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge
und packe sie jeweils in die erste freie Kiste, in der gentigend Platz ist

~ Esgilt FFD(w) = 11/9%*OPTgpp(w) + 4 fir alle w
— Polynomielle Approximation mit R% = 11/9

e Keine absolute Giite besser als 3/2 (falls PANP)
— Kein polynomieller Approximationsalgorithmus mit R4 < 3/2 moglich

— Die Reduktion PARTITION <,BPP benutzt 2 Behalter
der Grofe S :=)" | a;/2, auf die Zahlen verteilt werden

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR BINPACKING I

e Asymptotische Giite 11/9 erreichbar

— FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge
und packe sie jeweils in die erste freie Kiste, in der gentigend Platz ist

~ Esgilt FFD(w) = 11/9%*OPTgpp(w) + 4 fir alle w
— Polynomielle Approximation mit R% = 11/9

e Keine absolute Giite besser als 3/2 (falls PANP)
— Kein polynomieller Approximationsalgorithmus mit R4 < 3/2 moglich

— Die Reduktion PARTITION <,BPP benutzt 2 Behalter
der Grofe S :=)" | a;/2, auf die Zahlen verteilt werden

— Jeder Approximationsalgorithmus A mit R4 < 3/2 liefert
A(w) = 2, falls we PARTITION und sonst A(w)>3

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR BINPACKING I

e Asymptotische Giite 11/9 erreichbar

— FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge
und packe sie jeweils in die erste freie Kiste, in der gentigend Platz ist

~ Esgilt FFD(w) = 11/9%*OPTgpp(w) + 4 fir alle w
— Polynomielle Approximation mit R% = 11/9

e Keine absolute Giite besser als 3/2 (falls PANP)
— Kein polynomieller Approximationsalgorithmus mit R4 < 3/2 moglich
— Die Reduktion PARTITION <,BPP benutzt 2 Behalter
der Grofe S :=)" | a;/2, auf die Zahlen verteilt werden
— Jeder Approximationsalgorithmus A mit R4 < 3/2 liefert
A(w) = 2, falls we PARTITION und sonst A(w)>3
— Wegen PARTITION e N'PC kann A nicht polynomiell sein

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 NP-VOLLSTANDIGE PROBLEME

APPROXIMATIONSSCHEMATA FUR BINPACKING I

e Asymptotische Giite 11/9 erreichbar

— FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge
und packe sie jeweils in die erste freie Kiste, in der gentigend Platz ist

~ Esgilt FFD(w) = 11/9%*OPTgpp(w) + 4 fir alle w
— Polynomielle Approximation mit R% = 11/9

e Keine absolute Giite besser als 3/2 (falls PANP)
— Kein polynomieller Approximationsalgorithmus mit R4 < 3/2 moglich
— Die Reduktion PARTITION <,BPP benutzt 2 Behalter
der Grofe S :=)" | a;/2, auf die Zahlen verteilt werden
— Jeder Approximationsalgorithmus A mit R4 < 3/2 liefert
A(w) = 2, falls we PARTITION und sonst A(w)>3
— Wegen PARTITION e N'PC kann A nicht polynomiell sein

Beweistechnik: Einbettung eines NP-vollstandigen Entscheidungsproblems

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 NP-VOLLSTANDIGE PROBLEME

APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={cia....cno1n, B| Im{l.n}—{1l..n}. 7 bijektiv
A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME

APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={cia....cno1n, B| Im{l.n}—{1l..n}. 7 bijektiv
A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

e R9° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME

APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={cia....cno1n, B| Im{l.n}—{1l..n}. 7 bijektiv
A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

e R9° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

e Keine endliche Grenze fur multiplikativen Fehler
— s gibt keinen polynomiellen Algorithmus A mit RY=r fir ein 7 eN

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME

APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={c2,....Chn-1n, B| Im{l.n}—{1l..n}. 7 bijektiv
" Z?:_ll Cr(iyr(it1) T Camn1) < B}

e R9° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

e Keine endliche Grenze fur multiplikativen Fehler
— s gibt keinen polynomiellen Algorithmus A mit RY=r fir ein 7 eN

Wenn es A geben wiirde, dann entscheiden wir HC' polynomiell wie folgt

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME

APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={cia....cno1n, B| Im{l.n}—{1l..n}. 7 bijektiv
A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

e R9° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

e Keine endliche Grenze fur multiplikativen Fehler
— s gibt keinen polynomiellen Algorithmus A mit RY=r fir ein 7 eN

Wenn es A geben wiirde, dann entscheiden wir HC' polynomiell wie folgt
— Transformiere einen Graphen G = (V) E) in w = ¢19, ..., ¢, |V
mit ¢;; = 1 falls {¢, 7} € F und ¢;; = r|V| 4+ 1 sonst

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME

APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={cia....cno1n, B| Im{l.n}—{1l..n}. 7 bijektiv
A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

e R9° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

e Keine endliche Grenze fur multiplikativen Fehler
— s gibt keinen polynomiellen Algorithmus A mit RY=r fir ein 7 eN
Wenn es A geben wiirde, dann entscheiden wir HC' polynomiell wie folgt
— Transformiere einen Graphen G = (V) E) in w = ¢19, ..., ¢, |V
mit ¢;; = 1 falls {¢, 7} € F und ¢;; = r|V| 4+ 1 sonst
—Dann Ge HC = OPTpsp(w)=|V|und G¢ HC = OPTpgp(w)>(r+1)x|V|

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME

APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={cia....cno1n, B| Im{l.n}—{1l..n}. 7 bijektiv
A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

e R9° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

e Keine endliche Grenze fur multiplikativen Fehler
— s gibt keinen polynomiellen Algorithmus A mit RY=r fir ein 7 eN

Wenn es A geben wiirde, dann entscheiden wir HC' polynomiell wie folgt
— Transformiere einen Graphen G = (V) E) in w = ¢19, ..., ¢, |V
mit ¢;; = 1 falls {¢, 7} € F und ¢;; = r|V| 4+ 1 sonst
—Dann Ge HC = OPTpsp(w)=|V|und G¢ HC = OPTpgp(w)>(r+1)x|V|
— Fiir grofle Graphen: A(w)<r«xOPTrsp(w) also Ge HC' < A(w)<rx|V|

(Fiir kleine Graphen verwende den exponentiellen Entscheidungsalgorithmus)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME

APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={cia....cno1n, B| Im{l.n}—{1l..n}. 7 bijektiv
A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

e RY° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

e Keine endliche Grenze fur multiplikativen Fehler
— s gibt keinen polynomiellen Algorithmus A mit RY=r fir ein 7 eN

Wenn es A geben wiirde, dann entscheiden wir HC' polynomiell wie folgt
— Transformiere einen Graphen G = (V, E) in w = ¢19, ..., ¢h—1.p, |V
mit ¢;; = 1 falls {¢, 7} € F und ¢;; = r|V| 4+ 1 sonst
—Dann Ge HC = OPTpsp(w)=|V|und G¢ HC = OPTpgp(w)>(r+1)x|V|
— Fiir grofie Graphen: A(w)<rxOPTrsp(w) also Ge HC' < A(w)<rx|V|

(Fiir kleine Graphen verwende den exponentiellen Entscheidungsalgorithmus)

Beweistechnik: Reduktion auf A/P-vollstandiges Problem mit Multiplikation
des Kostenunterschieds zwischen positiver und negativer Antwort

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME

TRAVELLING SALESMAN MIT DREIECKSUNGLEICHUNG I

TSPA — { C125 +++y Cn—1.n, B ‘ \V/i,j, k. CZ‘JSCZ',]{;—FC]{J A El7r{1n}—>{1n}
7 bijektiv A S0 Crpivn(inn) + Camyn(y < B }

e Approximationsalgorithmus

—Zuw = c¢j9,...,Ch—1,, B konstruiere vollstandigen Graphen G = (V| F)
mit V' = {vy, .., v, } und Gewichten ¢; ; fiir {v;,v,} € E

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 NP-VOLLSTANDIGE PROBLEME

TRAVELLING SALESMAN MIT DREIECKSUNGLEICHUNG I

TSPA — { C125 +++y Cn—1.n, B ‘ \V/i,j, k. CZ‘JSCZ',]{;—FC]CJ A El7r{1n}—>{1n}
7 bijektiv A S0 Crpivn(inn) + Camyn(y < B }

e Approximationsalgorithmus
—Zuw = c¢j9,...,Ch—1,, B konstruiere vollstandigen Graphen G = (V| F)
mit V' = {vy, .., v, } und Gewichten ¢; ; fiir {v;,v,} € E
— Konstruiere spannenden Baum T" = (V, Ep) mit minimaler Kantensumme
Beginnend mit B = (), Vp = {v;} wiederhole bis Vp =V
- Wahle Kante {v;, v;} mit minimalem Gewicht, so daf$ v; e Vp, v; ¢ Vp
- Setze Vp .= VpU{v,} und Ep = EpU{v;, v}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 NP-VOLLSTANDIGE PROBLEME

TRAVELLING SALESMAN MIT DREIECKSUNGLEICHUNG I

TSPA — { C125 +++y Cn—1.n, B ‘ \V/i,j, k. CZ‘JSCZ',]{;—FC]CJ A Hﬁ{ln}—w{ln}
7 bijektiv A S0 Crpivn(inn) + Camyn(y < B }

e Approximationsalgorithmus
—Zuw = c¢j9,...,Ch—1,, B konstruiere vollstandigen Graphen G = (V| F)
mit V' = {vy, .., v, } und Gewichten ¢; ; fiir {v;,v,} € E

— Konstruiere spannenden Baum T" = (V, Ep) mit minimaler Kantensumme
Beginnend mit B = (), Vp = {v;} wiederhole bis Vp =V
- Wahle Kante {v;, v;} mit minimalem Gewicht, so daf$ v; e Vp, v; ¢ Vp
- Setze Vp .= VpU{v,} und Ep = EpU{v;, v}

— Durchlaufe 7" so, daf} jede Kante genau zweimal benutzt wird

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 NP-VOLLSTANDIGE PROBLEME

TRAVELLING SALESMAN MIT DREIECKSUNGLEICHUNG I

TSPA — { C125 +++y Cn—1.n, B ‘ \V/i,j, k. CZ‘JSCZ',]{;—FC]CJ A Hﬁ{ln}—w{ln}
7 bijektiv A S0 Crpivn(inn) + Camyn(y < B }

e Approximationsalgorithmus
—Zuw = c¢j9,...,Ch—1,, B konstruiere vollstandigen Graphen G = (V| F)
mit V' = {vy, .., v, } und Gewichten ¢; ; fiir {v;,v,} € E

— Konstruiere spannenden Baum T" = (V, Ep) mit minimaler Kantensumme
Beginnend mit B = (), Vp = {v;} wiederhole bis Vp =V
- Wahle Kante {v;, v;} mit minimalem Gewicht, so daf$ v; e Vp, v; ¢ Vp
- Setze Vp .= VpU{v,} und Ep = EpU{v;, v}

— Durchlaufe 7" so, dafl jede Kante genau zweimal benutzt wird

— Verkiirze den entstandenen Rundweg so, dafl einem Knoten
zum nachsten noch nicht angesteuerten Knoten verzweigt wird

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 NP-VOLLSTANDIGE PROBLEME

TRAVELLING SALESMAN MIT DREIECKSUNGLEICHUNG I

TSPA — { C125 +++y Cn—1.n, B ‘ \V/i,j, k. CZ‘JSCZ',]{;—FC]CJ A Hﬁ{ln}—w{ln}
7 bijektiv A S0 Crpivn(inn) + Camyn(y < B }

e Approximationsalgorithmus
—Zuw = c¢j9,...,Ch—1,, B konstruiere vollstandigen Graphen G = (V| F)
mit V' = {vy, .., v, } und Gewichten ¢; ; fiir {v;,v,} € E

— Konstruiere spannenden Baum T" = (V, Ep) mit minimaler Kantensumme
Beginnend mit B = (), Vp = {v;} wiederhole bis Vp =V
- Wahle Kante {v;, v;} mit minimalem Gewicht, so daf$ v; e Vp, v; ¢ Vp
- Setze Vp .= VpU{v,} und Ep = EpU{v;, v}

— Durchlaufe 7" so, daf} jede Kante genau zweimal benutzt wird

— Verkiirze den entstandenen Rundweg so, dafl einem Knoten
zum nachsten noch nicht angesteuerten Knoten verzweigt wird

e Laufzeit des Algorithmus ist O(n?)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 NP-VOLLSTANDIGE PROBLEME

TRAVELLING SALESMAN MIT DREIECKSUNGLEICHUNG I

TSPA — { C125 +++y Cn—1.n, B ‘ \V/i,j, k. CZ‘JSCZ',]{;—FC]CJ A El7r{1n}—>{1n}
7 bijektiv A S0 Crpivn(inn) + Camyn(y < B }

e Approximationsalgorithmus
—Zuw = c¢j9,...,Ch—1,, B konstruiere vollstandigen Graphen G = (V| F)
mit V' = {vy, .., v, } und Gewichten ¢; ; fiir {v;,v,} € E

— Konstruiere spannenden Baum T" = (V, Ep) mit minimaler Kantensumme
Beginnend mit B = (), Vp = {v;} wiederhole bis Vp =V
- Wahle Kante {v;, v;} mit minimalem Gewicht, so daf$ v; e Vp, v; ¢ Vp
- Setze Vp .= VpU{v,} und Ep = EpU{v;, v}

— Durchlaufe T' so, daf} jede Kante genau zweimal benutzt wird

— Verkiirze den entstandenen Rundweg so, dafi einem Knoten
zum nachsten noch nicht angesteuerten Knoten verzweigt wird

e Laufzeit des Algorithmus ist O(n?)
e Giite des Algorithmus ist R < 3/2 (aufwendig)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 10 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHE ALGORITHMEN I

“Approximation” einer Entscheidung

e Verhalten gesteuert durch Zufallszahlen

— Falsche Entscheidung kann nicht ausgeschlossen werden

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHE ALGORITHMEN I

“Approximation” einer Entscheidung

e Verhalten gesteuert durch Zufallszahlen
— Falsche Entscheidung kann nicht ausgeschlossen werden
— Approximation = Verringerung der Fehlerwahrscheinlichkeit

— Fehlerwahrscheinlichkeit unter 27 1% besser als die von Hardwarefehlern

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHE ALGORITHMEN I

“Approximation” einer Entscheidung

e Verhalten gesteuert durch Zufallszahlen
— Falsche Entscheidung kann nicht ausgeschlossen werden
— Approximation = Verringerung der Fehlerwahrscheinlichkeit

— Fehlerwahrscheinlichkeit unter 271 besser als die von Hardwarefehlern

e Anwendungen
— Primzahltest in linearer Zeit

— Optimierung von Quicksort auf O(nxlogn) (Bestimmung Pivotelement)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHE ALGORITHMEN I

“Approximation” einer Entscheidung

e Verhalten gesteuert durch Zufallszahlen
— Falsche Entscheidung kann nicht ausgeschlossen werden
— Approximation = Verringerung der Fehlerwahrscheinlichkeit

— Fehlerwahrscheinlichkeit unter 271 besser als die von Hardwarefehlern

e Anwendungen
— Primzahltest in linearer Zeit

— Optimierung von Quicksort auf O(nxlogn) (Bestimmung Pivotelement)

e Wie weist man gut Eigenschaften nach?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHE ALGORITHMEN I

“Approximation” einer Entscheidung

e Verhalten gesteuert durch Zufallszahlen
— Falsche Entscheidung kann nicht ausgeschlossen werden
— Approximation = Verringerung der Fehlerwahrscheinlichkeit

— Fehlerwahrscheinlichkeit unter 271 besser als die von Hardwarefehlern

e Anwendungen
— Primzahltest in linearer Zeit

— Optimierung von Quicksort auf O(nxlogn) (Bestimmung Pivotelement)

e Wie weist man gut Eigenschaften nach?

— Einfaches Modell fiir probabilistische Algorithmen formulieren

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHE ALGORITHMEN I

“Approximation” einer Entscheidung

e Verhalten gesteuert durch Zufallszahlen
— Falsche Entscheidung kann nicht ausgeschlossen werden
— Approximation = Verringerung der Fehlerwahrscheinlichkeit

— Fehlerwahrscheinlichkeit unter 271 besser als die von Hardwarefehlern

e Anwendungen
— Primzahltest in linearer Zeit

— Optimierung von Quicksort auf O(nxlogn) (Bestimmung Pivotelement)

e Wie weist man gut Eigenschaften nach?
— Einfaches Modell fiir probabilistische Algorithmen formulieren

— Eigenschaften abstrakter probabilistischer Sprachklassen analysieren

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHE BERECHNUNGSMODELLE I

e Probabilistische Turingmaschine
— Struktur: 7 = (S, X, I', 4, sg, b)
— Zustandsiiberfithrungsfunktion: §:SxI" — (SxI'x{r,[,h})?
Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewihlt

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHE BERECHNUNGSMODELLE I

e Probabilistische Turingmaschine
— Struktur: 7 = (S, X, I', 4, sg, b)
— Zustandsiiberfithrungsfunktion: §:SxI" — (SxI'x{r,[,h})?
Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewihlt
— Ausgabe: h.(w) € {0,1,7} (Akzeptieren — Verwerfen — keine Aussage)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHE BERECHNUNGSMODELLE I

e Probabilistische Turingmaschine
— Struktur: 7 = (S, X, I', 4, sg, b)
— Zustandsiiberfithrungsfunktion: §:SxI" — (SxI'x{r,[,h})?
Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewihlt
— Ausgabe: h.(w) € {0,1,7} (Akzeptieren — Verwerfen — keine Aussage)

— Rechenzeit: maximale Rechenzeit aller moglichen Rechenwege

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHE BERECHNUNGSMODELLE I

e Probabilistische Turingmaschine
— Struktur: 7 = (S, X, I', 4, sg, b)
— Zustandsiiberfithrungsfunktion: §:SxI" — (SxI'x{r,[,h})?
Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewihlt
— Ausgabe: h.(w) € {0,1,7} (Akzeptieren — Verwerfen — keine Aussage)
— Rechenzeit: maximale Rechenzeit aller moglichen Rechenwege

— PT'M: polynomiell zeitbeschrankte probabilistische Turingmaschine

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHE BERECHNUNGSMODELLE I

e Probabilistische Turingmaschine
— Struktur: 7 = (S, X, I', 4, sg, b)
— Zustandsiiberfihrungsfunktion: §:SxI" — (SxI'x{r,[,h})?
Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewéhlt
— Ausgabe: h.(w) € {0,1,7} (Akzeptieren — Verwerfen — keine Aussage)
— Rechenzeit: maximale Rechenzeit aller moglichen Rechenwege

— PT'M: polynomiell zeitbeschrankte probabilistische Turingmaschine

e Abstrakteres Modell: Probabilistische Algorithmen

— Programme mit zufalligen Entscheidungen

— Abstrakte Komplexitat wie bisher

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHE BERECHNUNGSMODELLE I

e Probabilistische Turingmaschine
— Struktur: 7 = (S, X, I', 4, sg, b)
— Zustandsiiberfithrungsfunktion: §:SxI" — (SxI'x{r,[,h})?
Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewihlt
— Ausgabe: h.(w) € {0,1,7} (Akzeptieren — Verwerfen — keine Aussage)
— Rechenzeit: maximale Rechenzeit aller moglichen Rechenwege

— PT'M: polynomiell zeitbeschrankte probabilistische Turingmaschine

e Abstrakteres Modell: Probabilistische Algorithmen

— Programme mit zufalligen Entscheidungen

— Abstrakte Komplexitat wie bisher

Was kann man mit polynomiell zeitbeschrankten

probabilistischen Algorithmen erreichen?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 12 NP-VOLLSTANDIGE PROBLEME

WICHTIGE PROBABILISTISCHE SPRACHKLASSEN I

e PP: Probabilistic Polynomial Monte-Carlo-Algorithmen
— Wahrscheinlichkeit fiir korrekte Antwort grofier als 1/2
-~ PP ={L|3PTM 7. Vw. Prob(h.(w)=x,(w)) > 1/2}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 13 NP-VOLLSTANDIGE PROBLEME

WICHTIGE PROBABILISTISCHE SPRACHKLASSEN I

e PP: Probabilistic Polynomial Monte-Carlo-Algorithmen
— Wahrscheinlichkeit fiir korrekte Antwort grofier als 1/2
-~ PP ={L|3PTM 7. Vw. Prob(h.(w)=x,(w)) > 1/2}

e BPP: Bounded error Probabilistic Polynomial
— Wahrscheinlichkeit fiir korrekte Antwort grofer als 1/2+-¢
~BPP ={L|3PTM 7. de> 0 Vw. Prob(h;(w)=x,(w)) > 1/24€}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 13 NP-VOLLSTANDIGE PROBLEME

WICHTIGE PROBABILISTISCHE SPRACHKLASSEN I

e PP: Probabilistic Polynomial Monte-Carlo-Algorithmen
— Wahrscheinlichkeit fiir korrekte Antwort grofier als 1/2
-~ PP ={L|3PTM 7. Vw. Prob(h.(w)=x,(w)) > 1/2}

e BPP: Bounded error Probabilistic Polynomial
— Wahrscheinlichkeit fiir korrekte Antwort grofer als 1/2+-¢
~BPP ={L|3PTM 7. de> 0 Vw. Prob(h;(w)=x,(w)) > 1/24€}

e RP: Random Polynomial
— Nichtzugehorige korrekt identifiziert, andere mit Wahrscheinlichkeit > 1/2
—~RP={L|3PTM 7. VweL. Prob(h(w)=1) > 1/2
rnYwegL. Prob(h.(w)=0) =1}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 13 NP-VOLLSTANDIGE PROBLEME

WICHTIGE PROBABILISTISCHE SPRACHKLASSEN I

e PP: Probabilistic Polynomial Monte-Carlo-Algorithmen
— Wahrscheinlichkeit fiir korrekte Antwort grofier als 1/2
~PP={L|3PTM 7. Vw. Prob(h.(w)=x,(w)) > 1/2}

e BPP: Bounded error Probabilistic Polynomial
— Wahrscheinlichkeit fiir korrekte Antwort grofer als 1/2+-¢
~BPP ={L |3 PTM 7. de> 0 Vw. Prob(h;(w)=x,(w)) > 1/2+€}

e RP: Random Polynomial
— Nichtzugehorige korrekt identifiziert, andere mit Wahrscheinlichkeit > 1/2
—~RP ={L|3IPTM 7. VweL. Prob(h;(w)=1) > 1/2
rnYwegL. Prob(h.(w)=0) =1}

e ZPP: Zero error PP Las-Vegas-Algorithmen
— Wabhrscheinlichkeit fiir korrekte Antwort > 1/2; keine falschen Antworten

- 7ZPP ={L |3 PTM 7.
VwelL. (Prob(h.(w)=1)>1/2 n Prob(h.(w)=0)=0)
rnYwgL. Prob(h(w)=0)>1/2 n Prob(h.(w)=1)=20)}

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 13 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHER PRIMZAHLTEST FUR 7.>>3 [(Solovay/Strassen)

1. Wenn 1 gerade ist: Antwort “keine Primzahl”

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 14 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHER PRIMZAHLTEST FUR 1>>3 [(Solovay/Strassen)

1. Wenn n gerade ist: Antwort “keine Primzahl”

2. Ansonsten wahle a € {1...n} zufillig

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 14 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHER PRIMZAHLTEST FUR 1>>3 [(Solovay/Strassen)

1. Wenn n gerade ist: Antwort “keine Primzahl”

2. Ansonsten wahle a € {1...n} zufillig

3. Falls ged(n, a)#1: Antwort “keine Primzahl”

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 14 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHER PRIMZAHLTEST FUR 1>>3 [(Solovay/Strassen)

1. Wenn n gerade ist: Antwort “keine Primzahl”
2. Ansonsten wahle a € {1...n} zufillig
3. Falls ged(n, a)#1: Antwort “keine Primzahl”

4. Ansonsten setze € := a(""Y/2(mod n)
0 :=J(a,n) (Jacobi Symbol)

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 14 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHER PRIMZAHLTEST FUR 1>>3 [(Solovay/Strassen)
1. Wenn n gerade ist: Antwort “keine Primzahl”
2. Ansonsten wahle a € {1...n} zufillig
3. Falls ged(n, a)#1: Antwort “keine Primzahl”
4. Ansonsten setze € := a(""Y/2(mod n)
0 :=J(a,n) (Jacobi Symbol)
5. Falls € = 9§: Antwort “Primzahl”

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 14 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHER PRIMZAHLTEST FUR 1>>3 [(Solovay/Strassen)
1. Wenn n gerade ist: Antwort “keine Primzahl”
2. Ansonsten wahle a € {1...n} zufillig
3. Falls ged(n, a)#1: Antwort “keine Primzahl”
4. Ansonsten setze € := a(""Y/2(mod n)
0 :=J(a,n) (Jacobi Symbol)
5. Falls € = 9§: Antwort “Primzahl”
6. Ansonsten: Antwort “keine Primzahl”

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 14 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHER PRIMZAHLTEST FUR 1>>3 [(Solovay/Strassen)

1. Wenn n gerade ist: Antwort “keine Primzahl”
2. Ansonsten wahle a € {1...n} zufillig
3. Falls ged(n, a)#1: Antwort “keine Primzahl”
4. Ansonsten setze € := a(""Y/2(mod n)

0 :=J(a,n) (Jacobi Symbol)
5. Falls € = 9§: Antwort “Primzahl”
6. Ansonsten: Antwort “keine Primzahl”

RP-Algorithmus
— Korrekte Ausgabe, falls n Primzahl

— Fehlerwahrscheinlichkeit unter 1/2, falls n keine Primzahl

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 14 NP-VOLLSTANDIGE PROBLEME

PROBABILISTISCHER PRIMZAHLTEST FUR 1>>3 [(Solovay/Strassen)
1. Wenn n gerade ist: Antwort “keine Primzahl”
2. Ansonsten wahle a € {1...n} zufillig
3. Falls ged(n, a)#1: Antwort “keine Primzahl”
4. Ansonsten setze € := a(""Y/2(mod n)
0 :=J(a,n) (Jacobi Symbol)
5. Falls € = 9§: Antwort “Primzahl”
6. Ansonsten: Antwort “keine Primzahl”

RP-Algorithmus
— Korrekte Ausgabe, falls n Primzahl

— Fehlerwahrscheinlichkeit unter 1/2, falls n keine Primzahl

Rechenzeit <6 x logn

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 14 NP-VOLLSTANDIGE PROBLEME

EIGENSCHAFTEN PROBABILISTISCHER SPRACHKLASSEN I

e k-fache Iteration von RP Algorithmen verringert die

Wabhrscheinlichkeit einer falschen Antwort auf 2%

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 15 NP-VOLLSTANDIGE PROBLEME

EIGENSCHAFTEN PROBABILISTISCHER SPRACHKLASSEN I

e k-fache Iteration von RP Algorithmen verringert die
Wahrscheinlichkeit einer falschen Antwort auf 27

— Ist 7 die k-fache statistisch unabhangige Iteration einer PTM fir L € RP,
so gilt

Vwe L.Prob(h,(w)=1) > 1-2"% A Yw¢L.Prob(h,(w)=0) =1

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 15 NP-VOLLSTANDIGE PROBLEME

EIGENSCHAFTEN PROBABILISTISCHER SPRACHKLASSEN I

e k-fache Iteration von RP Algorithmen verringert die
Wahrscheinlichkeit einer falschen Antwort auf 27
— Ist 7 die k-fache statistisch unabhangige Iteration einer PTM fir L € RP,
so gilt
Vwe L.Prob(h,(w)=1) > 1-2"% A Yw¢L.Prob(h,(w)=0) =1

k
— log(1—4¢€2)

verringert die Wahrscheinlichkeit der falschen Antwort auf 27

e t-fache Iteration eines BPP Algorithmus fur t >

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 15 NP-VOLLSTANDIGE PROBLEME

EIGENSCHAFTEN PROBABILISTISCHER SPRACHKLASSEN I

e k-fache Iteration von RP Algorithmen verringert die
Wahrscheinlichkeit einer falschen Antwort auf 27

— Ist 7 die k-fache statistisch unabhangige Iteration einer PTM fiir L € RP,
so gilt

Vwe L.Prob(h,(w)=1) > 1-2"% A Yw¢L.Prob(h,(w)=0) =1

k
— log(1—4¢€2)

verringert die Wahrscheinlichkeit der falschen Antwort auf 27

— Sei 7" die (2t+1)-fache statistisch unabhéangige Iteration einer PTM

fir L e BPP, die genau dann akzeptiert, wenn 7 mindestens ¢+1-mal
k—1
—log(1—4¢€?)

YVw. P?"Ob(hTt(w):XL(w)) > 127 Wegener 75-77

e t-fache Iteration eines BPP Algorithmus fur t >

akzeptiert, so gilt fur ¢ >

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 15 NP-VOLLSTANDIGE PROBLEME

SPRACHKLASSENHIERARCHIE I

PP

/\

BPP NPUco—NP

|

NP

RP //;’P/ﬂco—./\/' P

— =

RP Nco-RP
I
ZPP

|

P

>
>

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 16 NP-VOLLSTANDIGE PROBLEME

