
Theoretische Informatik II

Einheit 8.5

Grenzen überwinden

1. Pseudopolynomielle Algorithmen

2. Approximationsalgorithmen

3. Probabilistische Algorithmen

Theoretische Informatik II §8: Komplexitätstheorie 1 NP-Vollständige Probleme

Wie kann man “unlösbare” Probleme angehen?

• Künstliche Intelligenz

– Heuristische Lösung unentscheidbarer Probleme (ohne Erfolgsgarantie)

– Theorembeweisen, Programmverifikation und -synthese (unvollständig)

Theoretische Informatik II §8: Komplexitätstheorie 1 NP-Vollständige Probleme

Wie kann man “unlösbare” Probleme angehen?

• Künstliche Intelligenz

– Heuristische Lösung unentscheidbarer Probleme (ohne Erfolgsgarantie)

– Theorembeweisen, Programmverifikation und -synthese (unvollständig)

• Approximierende und probabilistische Algorithmen

– Effiziente Bestimmung von nahezu optimalen Lösungen

– Z.B. Primzahltest mit geringem Fehler (logarithmisch statt linear)

Theoretische Informatik II §8: Komplexitätstheorie 1 NP-Vollständige Probleme

Wie kann man “unlösbare” Probleme angehen?

• Künstliche Intelligenz

– Heuristische Lösung unentscheidbarer Probleme (ohne Erfolgsgarantie)

– Theorembeweisen, Programmverifikation und -synthese (unvollständig)

• Approximierende und probabilistische Algorithmen

– Effiziente Bestimmung von nahezu optimalen Lösungen

– Z.B. Primzahltest mit geringem Fehler (logarithmisch statt linear)

• Selbstorganisation statt vorformulierter Lösungen

– Lernverfahren, Neuronale Netze, genetische Algorithmen, . . .

Theoretische Informatik II §8: Komplexitätstheorie 1 NP-Vollständige Probleme

Wie kann man “unlösbare” Probleme angehen?

• Künstliche Intelligenz

– Heuristische Lösung unentscheidbarer Probleme (ohne Erfolgsgarantie)

– Theorembeweisen, Programmverifikation und -synthese (unvollständig)

• Approximierende und probabilistische Algorithmen

– Effiziente Bestimmung von nahezu optimalen Lösungen

– Z.B. Primzahltest mit geringem Fehler (logarithmisch statt linear)

• Selbstorganisation statt vorformulierter Lösungen

– Lernverfahren, Neuronale Netze, genetische Algorithmen, . . .

Suche nach neuen Wegen liefert tieferes Verständnis der Materie

Theoretische Informatik II §8: Komplexitätstheorie 2 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Gibt es leichte NP-vollständige Probleme?

Theoretische Informatik II §8: Komplexitätstheorie 2 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Gibt es leichte NP-vollständige Probleme?

• Was unterscheidet CLIQUE von KP ?

– Beide Probleme sind NP-vollständig

Theoretische Informatik II §8: Komplexitätstheorie 2 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Gibt es leichte NP-vollständige Probleme?

• Was unterscheidet CLIQUE von KP ?

– Beide Probleme sind NP-vollständig, aber

· 3SAT≤pKP benutzt exponentiell große Zahlen als Codierung

· 3SAT≤pCLIQUE codiert Formel durch gleichgroßen Graph

Theoretische Informatik II §8: Komplexitätstheorie 2 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Gibt es leichte NP-vollständige Probleme?

• Was unterscheidet CLIQUE von KP ?

– Beide Probleme sind NP-vollständig, aber

· 3SAT≤pKP benutzt exponentiell große Zahlen als Codierung

· 3SAT≤pCLIQUE codiert Formel durch gleichgroßen Graph

– Ist KP nur wegen der großen Zahlen NP-vollständig?

Theoretische Informatik II §8: Komplexitätstheorie 2 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Gibt es leichte NP-vollständige Probleme?

• Was unterscheidet CLIQUE von KP ?

– Beide Probleme sind NP-vollständig, aber

· 3SAT≤pKP benutzt exponentiell große Zahlen als Codierung

· 3SAT≤pCLIQUE codiert Formel durch gleichgroßen Graph

– Ist KP nur wegen der großen Zahlen NP-vollständig?

• Es gibt “bessere” Lösungen für KP

KP ={ (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

Theoretische Informatik II §8: Komplexitätstheorie 2 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Gibt es leichte NP-vollständige Probleme?

• Was unterscheidet CLIQUE von KP ?

– Beide Probleme sind NP-vollständig, aber

· 3SAT≤pKP benutzt exponentiell große Zahlen als Codierung

· 3SAT≤pCLIQUE codiert Formel durch gleichgroßen Graph

– Ist KP nur wegen der großen Zahlen NP-vollständig?

• Es gibt “bessere” Lösungen für KP

KP ={ (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

– Man muß nicht alle Kombinationen von {1..n} einzeln auswerten

Theoretische Informatik II §8: Komplexitätstheorie 2 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Gibt es leichte NP-vollständige Probleme?

• Was unterscheidet CLIQUE von KP ?

– Beide Probleme sind NP-vollständig, aber

· 3SAT≤pKP benutzt exponentiell große Zahlen als Codierung

· 3SAT≤pCLIQUE codiert Formel durch gleichgroßen Graph

– Ist KP nur wegen der großen Zahlen NP-vollständig?

• Es gibt “bessere” Lösungen für KP

KP ={ (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

– Man muß nicht alle Kombinationen von {1..n} einzeln auswerten

– Man kann iterativ den optimalen Nutzen bestimmen,

indem man die Anzahl der Gegenstände und das Gewicht erhöht

Theoretische Informatik II §8: Komplexitätstheorie 2 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Gibt es leichte NP-vollständige Probleme?

• Was unterscheidet CLIQUE von KP ?

– Beide Probleme sind NP-vollständig, aber

· 3SAT≤pKP benutzt exponentiell große Zahlen als Codierung

· 3SAT≤pCLIQUE codiert Formel durch gleichgroßen Graph

– Ist KP nur wegen der großen Zahlen NP-vollständig?

• Es gibt “bessere” Lösungen für KP

KP ={ (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

– Man muß nicht alle Kombinationen von {1..n} einzeln auswerten

– Man kann iterativ den optimalen Nutzen bestimmen,

indem man die Anzahl der Gegenstände und das Gewicht erhöht

– Sehr effizient, wenn das maximale Gewicht nicht zu groß wird

Theoretische Informatik II §8: Komplexitätstheorie 3 NP-Vollständige Probleme

Iterative Lösung für KP

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Betrachte Subprobleme KP (k, g)
– Verwende Gegenstände 1, .., k und Maximalgewicht g≤G

– Bestimme optimalen Nutzen N(k, g)

Theoretische Informatik II §8: Komplexitätstheorie 3 NP-Vollständige Probleme

Iterative Lösung für KP

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Betrachte Subprobleme KP (k, g)
– Verwende Gegenstände 1, .., k und Maximalgewicht g≤G

– Bestimme optimalen Nutzen N(k, g)

· N(k, 0) = 0 für alle k

Theoretische Informatik II §8: Komplexitätstheorie 3 NP-Vollständige Probleme

Iterative Lösung für KP

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Betrachte Subprobleme KP (k, g)
– Verwende Gegenstände 1, .., k und Maximalgewicht g≤G

– Bestimme optimalen Nutzen N(k, g)

· N(k, 0) = 0 für alle k

· N(0, g) = 0 für alle g

Theoretische Informatik II §8: Komplexitätstheorie 3 NP-Vollständige Probleme

Iterative Lösung für KP

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Betrachte Subprobleme KP (k, g)
– Verwende Gegenstände 1, .., k und Maximalgewicht g≤G

– Bestimme optimalen Nutzen N(k, g)

· N(k, 0) = 0 für alle k

· N(0, g) = 0 für alle g

· N(k, g) = max{N(k−1, g−gk) + ak, N(k−1, g)}

Theoretische Informatik II §8: Komplexitätstheorie 3 NP-Vollständige Probleme

Iterative Lösung für KP

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Betrachte Subprobleme KP (k, g)
– Verwende Gegenstände 1, .., k und Maximalgewicht g≤G

– Bestimme optimalen Nutzen N(k, g)

· N(k, 0) = 0 für alle k

· N(0, g) = 0 für alle g

· N(k, g) = max{N(k−1, g−gk) + ak, N(k−1, g)}

• Löse Rucksackproblem KP
– Es gilt (g1..gn, a1..an, G, A) ∈ KP ⇔ N(n,G)≥A

Theoretische Informatik II §8: Komplexitätstheorie 3 NP-Vollständige Probleme

Iterative Lösung für KP

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Betrachte Subprobleme KP (k, g)
– Verwende Gegenstände 1, .., k und Maximalgewicht g≤G

– Bestimme optimalen Nutzen N(k, g)

· N(k, 0) = 0 für alle k

· N(0, g) = 0 für alle g

· N(k, g) = max{N(k−1, g−gk) + ak, N(k−1, g)}

• Löse Rucksackproblem KP
– Es gilt (g1..gn, a1..an, G, A) ∈ KP ⇔ N(n,G)≥A

– Gleichungen beschreiben rekursiven Algorithmus für N(n,G)

Theoretische Informatik II §8: Komplexitätstheorie 3 NP-Vollständige Probleme

Iterative Lösung für KP

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Betrachte Subprobleme KP (k, g)
– Verwende Gegenstände 1, .., k und Maximalgewicht g≤G

– Bestimme optimalen Nutzen N(k, g)

· N(k, 0) = 0 für alle k

· N(0, g) = 0 für alle g

· N(k, g) = max{N(k−1, g−gk) + ak, N(k−1, g)}

• Löse Rucksackproblem KP
– Es gilt (g1..gn, a1..an, G, A) ∈ KP ⇔ N(n,G)≥A

– Gleichungen beschreiben rekursiven Algorithmus für N(n,G)

– Tabellarischer Algorithmus bestimmt alle N(k, g) mit k≤n und g≤G

Theoretische Informatik II §8: Komplexitätstheorie 3 NP-Vollständige Probleme

Iterative Lösung für KP

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Betrachte Subprobleme KP (k, g)
– Verwende Gegenstände 1, .., k und Maximalgewicht g≤G

– Bestimme optimalen Nutzen N(k, g)

· N(k, 0) = 0 für alle k

· N(0, g) = 0 für alle g

· N(k, g) = max{N(k−1, g−gk) + ak, N(k−1, g)}

• Löse Rucksackproblem KP
– Es gilt (g1..gn, a1..an, G, A) ∈ KP ⇔ N(n,G)≥A

– Gleichungen beschreiben rekursiven Algorithmus für N(n,G)

– Tabellarischer Algorithmus bestimmt alle N(k, g) mit k≤n und g≤G

– Laufzeit ist O(n ∗ G)

Theoretische Informatik II §8: Komplexitätstheorie 3 NP-Vollständige Probleme

Iterative Lösung für KP

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Betrachte Subprobleme KP (k, g)
– Verwende Gegenstände 1, .., k und Maximalgewicht g≤G

– Bestimme optimalen Nutzen N(k, g)

· N(k, 0) = 0 für alle k

· N(0, g) = 0 für alle g

· N(k, g) = max{N(k−1, g−gk) + ak, N(k−1, g)}

• Löse Rucksackproblem KP
– Es gilt (g1..gn, a1..an, G, A) ∈ KP ⇔ N(n,G)≥A

– Gleichungen beschreiben rekursiven Algorithmus für N(n,G)

– Tabellarischer Algorithmus bestimmt alle N(k, g) mit k≤n und g≤G

– Laufzeit ist O(n ∗ G)

⇓

(g1..gn, a1..an, G, A) ∈ KP ist IN O(n ∗ G) Schritten lösbar

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Liegt das Rucksackproblem KP etwa in P ?

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Liegt das Rucksackproblem KP etwa in P ?

• Lösung für KP ist nicht wirklich polynomiell

– n ∗ G kann exponentiell wachsen relativ zur Größe der Eingabe

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Liegt das Rucksackproblem KP etwa in P ?

• Lösung für KP ist nicht wirklich polynomiell

– n ∗ G kann exponentiell wachsen relativ zur Größe der Eingabe

– Größe von (g1..gn, a1..an, G, A) ist O(n ∗ (logG + logA))

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Liegt das Rucksackproblem KP etwa in P ?

• Lösung für KP ist nicht wirklich polynomiell

– n ∗ G kann exponentiell wachsen relativ zur Größe der Eingabe

– Größe von (g1..gn, a1..an, G, A) ist O(n ∗ (logG + logA))

• KP ist ein Zahlproblem

– M⊆X∗ ist Zahlproblem, wenn es kein Polynom p gibt

mit MAX(w)≤p(|w|) für alle w ∈X∗

MAX(w) ist die größte im Wort w codierte Zahl

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Liegt das Rucksackproblem KP etwa in P ?

• Lösung für KP ist nicht wirklich polynomiell

– n ∗ G kann exponentiell wachsen relativ zur Größe der Eingabe

– Größe von (g1..gn, a1..an, G, A) ist O(n ∗ (logG + logA))

• KP ist ein Zahlproblem

– M⊆X∗ ist Zahlproblem, wenn es kein Polynom p gibt

mit MAX(w)≤p(|w|) für alle w ∈X∗

MAX(w) ist die größte im Wort w codierte Zahl

– Weitere Zahlprobleme: PARTITION , BPP , TSP , MSP , . . .

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Liegt das Rucksackproblem KP etwa in P ?

• Lösung für KP ist nicht wirklich polynomiell

– n ∗ G kann exponentiell wachsen relativ zur Größe der Eingabe

– Größe von (g1..gn, a1..an, G, A) ist O(n ∗ (logG + logA))

• KP ist ein Zahlproblem

– M⊆X∗ ist Zahlproblem, wenn es kein Polynom p gibt

mit MAX(w)≤p(|w|) für alle w ∈X∗

MAX(w) ist die größte im Wort w codierte Zahl

– Weitere Zahlprobleme: PARTITION , BPP , TSP , MSP , . . .

– Keine Zahlprobleme: CLIQUE, V C, IS, SGI , LCS, DHC, HC,

GC,. . .

Theoretische Informatik II §8: Komplexitätstheorie 4 NP-Vollständige Probleme

Pseudopolynomielle Algorithmen

Liegt das Rucksackproblem KP etwa in P ?

• Lösung für KP ist nicht wirklich polynomiell

– n ∗ G kann exponentiell wachsen relativ zur Größe der Eingabe

– Größe von (g1..gn, a1..an, G, A) ist O(n ∗ (logG + logA))

• KP ist ein Zahlproblem

– M⊆X∗ ist Zahlproblem, wenn es kein Polynom p gibt

mit MAX(w)≤p(|w|) für alle w ∈X∗

MAX(w) ist die größte im Wort w codierte Zahl

– Weitere Zahlprobleme: PARTITION , BPP , TSP , MSP , . . .

– Keine Zahlprobleme: CLIQUE, V C, IS, SGI , LCS, DHC, HC,

GC,. . .

• KP hat pseudopolynomielle Lösung

– Ein Algorithmus für ein Zahlproblem M⊆X∗ ist pseudopolynomiell, wenn

seine Rechenzeit durch ein Polynom in |w| und MAX(w) beschränkt ist

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Starke NP-vollständigkeit

• Pseudopolynomiell =̂ effizient bei kleinen Zahlen

– Ist M⊆X∗ pseudopolynomiell lösbar, so ist für jedes Polynom p

Mp ≡ {w ∈M |MAX(w)≤p(|w|)} ∈ P

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Starke NP-vollständigkeit

• Pseudopolynomiell =̂ effizient bei kleinen Zahlen

– Ist M⊆X∗ pseudopolynomiell lösbar, so ist für jedes Polynom p

Mp ≡ {w ∈M |MAX(w)≤p(|w|)} ∈ P

– Die Restriktion von KP auf polynomiell große Gewichte liegt in P

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Starke NP-vollständigkeit

• Pseudopolynomiell =̂ effizient bei kleinen Zahlen

– Ist M⊆X∗ pseudopolynomiell lösbar, so ist für jedes Polynom p

Mp ≡ {w ∈M |MAX(w)≤p(|w|)} ∈ P

– Die Restriktion von KP auf polynomiell große Gewichte liegt in P

– Hat jedes Zahlproblem eine pseudopolynomielle Lösung?

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Starke NP-vollständigkeit

• Pseudopolynomiell =̂ effizient bei kleinen Zahlen

– Ist M⊆X∗ pseudopolynomiell lösbar, so ist für jedes Polynom p

Mp ≡ {w ∈M |MAX(w)≤p(|w|)} ∈ P

– Die Restriktion von KP auf polynomiell große Gewichte liegt in P

– Hat jedes Zahlproblem eine pseudopolynomielle Lösung?

• TSP ohne pseudopolynomielle Lösung (falls P6=NP)

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Starke NP-vollständigkeit

• Pseudopolynomiell =̂ effizient bei kleinen Zahlen

– Ist M⊆X∗ pseudopolynomiell lösbar, so ist für jedes Polynom p

Mp ≡ {w ∈M |MAX(w)≤p(|w|)} ∈ P

– Die Restriktion von KP auf polynomiell große Gewichte liegt in P

– Hat jedes Zahlproblem eine pseudopolynomielle Lösung?

• TSP ohne pseudopolynomielle Lösung (falls P6=NP)

– Der Reduktionsbeweis HC≤pTSP zeigt HC≤pTSPn

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Starke NP-vollständigkeit

• Pseudopolynomiell =̂ effizient bei kleinen Zahlen

– Ist M⊆X∗ pseudopolynomiell lösbar, so ist für jedes Polynom p

Mp ≡ {w ∈M |MAX(w)≤p(|w|)} ∈ P

– Die Restriktion von KP auf polynomiell große Gewichte liegt in P

– Hat jedes Zahlproblem eine pseudopolynomielle Lösung?

• TSP ohne pseudopolynomielle Lösung (falls P6=NP)

– Der Reduktionsbeweis HC≤pTSP zeigt HC≤pTSPn

– Eine Restriktion von TSP auf kleine Zahlen bleibt NP-vollständig

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Starke NP-vollständigkeit

• Pseudopolynomiell =̂ effizient bei kleinen Zahlen

– Ist M⊆X∗ pseudopolynomiell lösbar, so ist für jedes Polynom p

Mp ≡ {w ∈M |MAX(w)≤p(|w|)} ∈ P

– Die Restriktion von KP auf polynomiell große Gewichte liegt in P

– Hat jedes Zahlproblem eine pseudopolynomielle Lösung?

• TSP ohne pseudopolynomielle Lösung (falls P6=NP)

– Der Reduktionsbeweis HC≤pTSP zeigt HC≤pTSPn

– Eine Restriktion von TSP auf kleine Zahlen bleibt NP-vollständig

• TSP ist stark NP-vollständig

– M⊆X∗ stark NP-vollständig ≡ Mp NP-vollständig für ein Polynom p

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Starke NP-vollständigkeit

• Pseudopolynomiell =̂ effizient bei kleinen Zahlen

– Ist M⊆X∗ pseudopolynomiell lösbar, so ist für jedes Polynom p

Mp ≡ {w ∈M |MAX(w)≤p(|w|)} ∈ P

– Die Restriktion von KP auf polynomiell große Gewichte liegt in P

– Hat jedes Zahlproblem eine pseudopolynomielle Lösung?

• TSP ohne pseudopolynomielle Lösung (falls P6=NP)

– Der Reduktionsbeweis HC≤pTSP zeigt HC≤pTSPn

– Eine Restriktion von TSP auf kleine Zahlen bleibt NP-vollständig

• TSP ist stark NP-vollständig

– M⊆X∗ stark NP-vollständig ≡ Mp NP-vollständig für ein Polynom p

– M stark NP-vollständig ⇒ M hat keine pseudopolynomielle Lösung

Theoretische Informatik II §8: Komplexitätstheorie 5 NP-Vollständige Probleme

Starke NP-vollständigkeit

• Pseudopolynomiell =̂ effizient bei kleinen Zahlen

– Ist M⊆X∗ pseudopolynomiell lösbar, so ist für jedes Polynom p

Mp ≡ {w ∈M |MAX(w)≤p(|w|)} ∈ P

– Die Restriktion von KP auf polynomiell große Gewichte liegt in P

– Hat jedes Zahlproblem eine pseudopolynomielle Lösung?

• TSP ohne pseudopolynomielle Lösung (falls P6=NP)

– Der Reduktionsbeweis HC≤pTSP zeigt HC≤pTSPn

– Eine Restriktion von TSP auf kleine Zahlen bleibt NP-vollständig

• TSP ist stark NP-vollständig

– M⊆X∗ stark NP-vollständig ≡ Mp NP-vollständig für ein Polynom p

– M stark NP-vollständig ⇒ M hat keine pseudopolynomielle Lösung

⇓

Einschränkung auf kleine Zahlen ist nur zuweilen

eine Antwort auf das P−NP Dilemma

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Approximationsalgorithmen für Optimierungsprobleme

• Viele Probleme haben Optimierungsvariante

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Approximationsalgorithmen für Optimierungsprobleme

• Viele Probleme haben Optimierungsvariante
– CLIQUEopt: bestimme die größte Clique im Graphen

– TSPopt: bestimme die kostengünstigste Rundreise

– BPPopt: bestimme die kleinste Anzahl der nötigen Behälter

– KPopt: bestimme das geringstmögliche Gewicht für einen festen Nutzen

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Approximationsalgorithmen für Optimierungsprobleme

• Viele Probleme haben Optimierungsvariante
– CLIQUEopt: bestimme die größte Clique im Graphen

– TSPopt: bestimme die kostengünstigste Rundreise

– BPPopt: bestimme die kleinste Anzahl der nötigen Behälter

– KPopt: bestimme das geringstmögliche Gewicht für einen festen Nutzen

Alle Probleme sind NP-hart

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Approximationsalgorithmen für Optimierungsprobleme

• Viele Probleme haben Optimierungsvariante
– CLIQUEopt: bestimme die größte Clique im Graphen

– TSPopt: bestimme die kostengünstigste Rundreise

– BPPopt: bestimme die kleinste Anzahl der nötigen Behälter

– KPopt: bestimme das geringstmögliche Gewicht für einen festen Nutzen

Alle Probleme sind NP-hart

Wie effizient kann man eine optimale Lösung annähern?

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Approximationsalgorithmen für Optimierungsprobleme

• Viele Probleme haben Optimierungsvariante
– CLIQUEopt: bestimme die größte Clique im Graphen

– TSPopt: bestimme die kostengünstigste Rundreise

– BPPopt: bestimme die kleinste Anzahl der nötigen Behälter

– KPopt: bestimme das geringstmögliche Gewicht für einen festen Nutzen

Alle Probleme sind NP-hart

Wie effizient kann man eine optimale Lösung annähern?

• Optimierungsproblem M⊆X∗

– Für w ∈X∗ gibt es ggf. mehrere (akzeptable) Lösungen x mit (w, x) ∈M

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Approximationsalgorithmen für Optimierungsprobleme

• Viele Probleme haben Optimierungsvariante
– CLIQUEopt: bestimme die größte Clique im Graphen

– TSPopt: bestimme die kostengünstigste Rundreise

– BPPopt: bestimme die kleinste Anzahl der nötigen Behälter

– KPopt: bestimme das geringstmögliche Gewicht für einen festen Nutzen

Alle Probleme sind NP-hart

Wie effizient kann man eine optimale Lösung annähern?

• Optimierungsproblem M⊆X∗

– Für w ∈X∗ gibt es ggf. mehrere (akzeptable) Lösungen x mit (w, x) ∈M

– OPTM(w): Wert einer optimalen (maxi-/minimalen) Lösung für w ∈X∗

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Approximationsalgorithmen für Optimierungsprobleme

• Viele Probleme haben Optimierungsvariante
– CLIQUEopt: bestimme die größte Clique im Graphen

– TSPopt: bestimme die kostengünstigste Rundreise

– BPPopt: bestimme die kleinste Anzahl der nötigen Behälter

– KPopt: bestimme das geringstmögliche Gewicht für einen festen Nutzen

Alle Probleme sind NP-hart

Wie effizient kann man eine optimale Lösung annähern?

• Optimierungsproblem M⊆X∗

– Für w ∈X∗ gibt es ggf. mehrere (akzeptable) Lösungen x mit (w, x) ∈M

– OPTM(w): Wert einer optimalen (maxi-/minimalen) Lösung für w ∈X∗

• Approximationsalgorithmus A für M⊆X∗

– A berechnet für w ∈X∗ ein x = A(w) mit (w, x) ∈M

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Approximationsalgorithmen für Optimierungsprobleme

• Viele Probleme haben Optimierungsvariante
– CLIQUEopt: bestimme die größte Clique im Graphen

– TSPopt: bestimme die kostengünstigste Rundreise

– BPPopt: bestimme die kleinste Anzahl der nötigen Behälter

– KPopt: bestimme das geringstmögliche Gewicht für einen festen Nutzen

Alle Probleme sind NP-hart

Wie effizient kann man eine optimale Lösung annähern?

• Optimierungsproblem M⊆X∗

– Für w ∈X∗ gibt es ggf. mehrere (akzeptable) Lösungen x mit (w, x) ∈M

– OPTM(w): Wert einer optimalen (maxi-/minimalen) Lösung für w ∈X∗

• Approximationsalgorithmus A für M⊆X∗

– A berechnet für w ∈X∗ ein x = A(w) mit (w, x) ∈M

– RA(w): Güte des Algorithmus A (normiertes Verhältnis OPTM(w) zu A(w))

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Approximationsalgorithmen für Optimierungsprobleme

• Viele Probleme haben Optimierungsvariante
– CLIQUEopt: bestimme die größte Clique im Graphen

– TSPopt: bestimme die kostengünstigste Rundreise

– BPPopt: bestimme die kleinste Anzahl der nötigen Behälter

– KPopt: bestimme das geringstmögliche Gewicht für einen festen Nutzen

Alle Probleme sind NP-hart

Wie effizient kann man eine optimale Lösung annähern?

• Optimierungsproblem M⊆X∗

– Für w ∈X∗ gibt es ggf. mehrere (akzeptable) Lösungen x mit (w, x) ∈M

– OPTM(w): Wert einer optimalen (maxi-/minimalen) Lösung für w ∈X∗

• Approximationsalgorithmus A für M⊆X∗

– A berechnet für w ∈X∗ ein x = A(w) mit (w, x) ∈M

– RA(w): Güte des Algorithmus A (normiertes Verhältnis OPTM(w) zu A(w))

– R∞
A : asymptotische worst-case Güte von A (inf{r≥1 | ∀∞ w ∈X∗.RA(w)≤r})

Theoretische Informatik II §8: Komplexitätstheorie 6 NP-Vollständige Probleme

Approximationsalgorithmen für Optimierungsprobleme

• Viele Probleme haben Optimierungsvariante
– CLIQUEopt: bestimme die größte Clique im Graphen

– TSPopt: bestimme die kostengünstigste Rundreise

– BPPopt: bestimme die kleinste Anzahl der nötigen Behälter

– KPopt: bestimme das geringstmögliche Gewicht für einen festen Nutzen

Alle Probleme sind NP-hart

Wie effizient kann man eine optimale Lösung annähern?

• Optimierungsproblem M⊆X∗

– Für w ∈X∗ gibt es ggf. mehrere (akzeptable) Lösungen x mit (w, x) ∈M

– OPTM(w): Wert einer optimalen (maxi-/minimalen) Lösung für w ∈X∗

• Approximationsalgorithmus A für M⊆X∗

– A berechnet für w ∈X∗ ein x = A(w) mit (w, x) ∈M

– RA(w): Güte des Algorithmus A (normiertes Verhältnis OPTM(w) zu A(w))

– R∞
A : asymptotische worst-case Güte von A (inf{r≥1 | ∀∞ w ∈X∗.RA(w)≤r})

– Rmin(M, w): = inf{R∞
A (w) | A approximiert M in polynomieller Zeit}

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Approximationsschemata für das Rucksackproblem

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Approximationsschemata für das Rucksackproblem

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Beliebig guter multiplikativer Fehler
– Für jedes ε gibt es einen Approximationsalgorithmus A mit

Laufzeit O(n3 ∗ ε−1) und Güte RA(w)≤1+ε für alle w

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Approximationsschemata für das Rucksackproblem

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Beliebig guter multiplikativer Fehler
– Für jedes ε gibt es einen Approximationsalgorithmus A mit

Laufzeit O(n3 ∗ ε−1) und Güte RA(w)≤1+ε für alle w

• Kein konstanter additiver Fehler möglich
– Für kein k gibt es einen polynomiellen Algorithmus AKP

mit der Eigenschaft |OPTKP (w) − AKP (w)|≤k für alle w

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Approximationsschemata für das Rucksackproblem

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Beliebig guter multiplikativer Fehler
– Für jedes ε gibt es einen Approximationsalgorithmus A mit

Laufzeit O(n3 ∗ ε−1) und Güte RA(w)≤1+ε für alle w

• Kein konstanter additiver Fehler möglich
– Für kein k gibt es einen polynomiellen Algorithmus AKP

mit der Eigenschaft |OPTKP (w) − AKP (w)|≤k für alle w

Wenn es AKP geben würde, dann entscheiden wir KP polynomiell wie folgt

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Approximationsschemata für das Rucksackproblem

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Beliebig guter multiplikativer Fehler
– Für jedes ε gibt es einen Approximationsalgorithmus A mit

Laufzeit O(n3 ∗ ε−1) und Güte RA(w)≤1+ε für alle w

• Kein konstanter additiver Fehler möglich
– Für kein k gibt es einen polynomiellen Algorithmus AKP

mit der Eigenschaft |OPTKP (w) − AKP (w)|≤k für alle w

Wenn es AKP geben würde, dann entscheiden wir KP polynomiell wie folgt

– Transformiere w = (g1..gn, a1..an, G, A) in

w′ = (g1..gn, a1∗(k+1)..an∗(k+1), G, A∗(k+1))

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Approximationsschemata für das Rucksackproblem

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Beliebig guter multiplikativer Fehler
– Für jedes ε gibt es einen Approximationsalgorithmus A mit

Laufzeit O(n3 ∗ ε−1) und Güte RA(w)≤1+ε für alle w

• Kein konstanter additiver Fehler möglich
– Für kein k gibt es einen polynomiellen Algorithmus AKP

mit der Eigenschaft |OPTKP (w) − AKP (w)|≤k für alle w

Wenn es AKP geben würde, dann entscheiden wir KP polynomiell wie folgt

– Transformiere w = (g1..gn, a1..an, G, A) in

w′ = (g1..gn, a1∗(k+1)..an∗(k+1), G, A∗(k+1))

– Wegen |OPTKP (w′) − AKP (w′)|≤k folgt

|OPTKP (w) − bAKP (w′)/(k+1)c | ≤ bk/(k+1)c = 0

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Approximationsschemata für das Rucksackproblem

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Beliebig guter multiplikativer Fehler
– Für jedes ε gibt es einen Approximationsalgorithmus A mit

Laufzeit O(n3 ∗ ε−1) und Güte RA(w)≤1+ε für alle w

• Kein konstanter additiver Fehler möglich
– Für kein k gibt es einen polynomiellen Algorithmus AKP

mit der Eigenschaft |OPTKP (w) − AKP (w)|≤k für alle w

Wenn es AKP geben würde, dann entscheiden wir KP polynomiell wie folgt

– Transformiere w = (g1..gn, a1..an, G, A) in

w′ = (g1..gn, a1∗(k+1)..an∗(k+1), G, A∗(k+1))

– Wegen |OPTKP (w′) − AKP (w′)|≤k folgt

|OPTKP (w) − bAKP (w′)/(k+1)c | ≤ bk/(k+1)c = 0

– Also gilt w ∈KP ⇔ bAKP (w′)/(k+1)c≥A

Theoretische Informatik II §8: Komplexitätstheorie 7 NP-Vollständige Probleme

Approximationsschemata für das Rucksackproblem

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Beliebig guter multiplikativer Fehler
– Für jedes ε gibt es einen Approximationsalgorithmus A mit

Laufzeit O(n3 ∗ ε−1) und Güte RA(w)≤1+ε für alle w

• Kein konstanter additiver Fehler möglich
– Für kein k gibt es einen polynomiellen Algorithmus AKP

mit der Eigenschaft |OPTKP (w) − AKP (w)|≤k für alle w

Wenn es AKP geben würde, dann entscheiden wir KP polynomiell wie folgt

– Transformiere w = (g1..gn, a1..an, G, A) in

w′ = (g1..gn, a1∗(k+1)..an∗(k+1), G, A∗(k+1))

– Wegen |OPTKP (w′) − AKP (w′)|≤k folgt

|OPTKP (w) − bAKP (w′)/(k+1)c | ≤ bk/(k+1)c = 0

– Also gilt w ∈KP ⇔ bAKP (w′)/(k+1)c≥A

Beweistechnik: Multiplikation des Problems, nachträgliche Division des Fehlers

Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme

Approximationsschemata für Binpacking

BPP = { a1, ...an, b, k) | ∃f : {1..n}→{1..k}. ∀j ≤ k.
∑

i ∈{i|f(i)=j} ai ≤ b }

• Asymptotische Güte 11/9 erreichbar

Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme

Approximationsschemata für Binpacking

BPP = { a1, ...an, b, k) | ∃f : {1..n}→{1..k}. ∀j ≤ k.
∑

i ∈{i|f(i)=j} ai ≤ b }

• Asymptotische Güte 11/9 erreichbar
– FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge

und packe sie jeweils in die erste freie Kiste, in der genügend Platz ist

Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme

Approximationsschemata für Binpacking

BPP = { a1, ...an, b, k) | ∃f : {1..n}→{1..k}. ∀j ≤ k.
∑

i ∈{i|f(i)=j} ai ≤ b }

• Asymptotische Güte 11/9 erreichbar
– FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge

und packe sie jeweils in die erste freie Kiste, in der genügend Platz ist

– Es gilt FFD(w) = 11/9∗OPTBPP (w) + 4 für alle w

7→ Polynomielle Approximation mit R∞
A = 11/9

Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme

Approximationsschemata für Binpacking

BPP = { a1, ...an, b, k) | ∃f : {1..n}→{1..k}. ∀j ≤ k.
∑

i ∈{i|f(i)=j} ai ≤ b }

• Asymptotische Güte 11/9 erreichbar
– FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge

und packe sie jeweils in die erste freie Kiste, in der genügend Platz ist

– Es gilt FFD(w) = 11/9∗OPTBPP (w) + 4 für alle w

7→ Polynomielle Approximation mit R∞
A = 11/9

• Keine absolute Güte besser als 3/2 (falls P6=NP)

– Kein polynomieller Approximationsalgorithmus mit RA < 3/2 möglich

Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme

Approximationsschemata für Binpacking

BPP = { a1, ...an, b, k) | ∃f : {1..n}→{1..k}. ∀j ≤ k.
∑

i ∈{i|f(i)=j} ai ≤ b }

• Asymptotische Güte 11/9 erreichbar
– FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge

und packe sie jeweils in die erste freie Kiste, in der genügend Platz ist

– Es gilt FFD(w) = 11/9∗OPTBPP (w) + 4 für alle w

7→ Polynomielle Approximation mit R∞
A = 11/9

• Keine absolute Güte besser als 3/2 (falls P6=NP)

– Kein polynomieller Approximationsalgorithmus mit RA < 3/2 möglich

– Die Reduktion PARTITION≤pBPP benutzt 2 Behälter
der Größe S :=

∑n
i=1 ai/2, auf die Zahlen verteilt werden

Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme

Approximationsschemata für Binpacking

BPP = { a1, ...an, b, k) | ∃f : {1..n}→{1..k}. ∀j ≤ k.
∑

i ∈{i|f(i)=j} ai ≤ b }

• Asymptotische Güte 11/9 erreichbar
– FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge

und packe sie jeweils in die erste freie Kiste, in der genügend Platz ist

– Es gilt FFD(w) = 11/9∗OPTBPP (w) + 4 für alle w

7→ Polynomielle Approximation mit R∞
A = 11/9

• Keine absolute Güte besser als 3/2 (falls P6=NP)

– Kein polynomieller Approximationsalgorithmus mit RA < 3/2 möglich

– Die Reduktion PARTITION≤pBPP benutzt 2 Behälter
der Größe S :=

∑n
i=1 ai/2, auf die Zahlen verteilt werden

– Jeder Approximationsalgorithmus A mit RA < 3/2 liefert

A(w) = 2, falls w ∈PARTITION und sonst A(w)≥3

Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme

Approximationsschemata für Binpacking

BPP = { a1, ...an, b, k) | ∃f : {1..n}→{1..k}. ∀j ≤ k.
∑

i ∈{i|f(i)=j} ai ≤ b }

• Asymptotische Güte 11/9 erreichbar
– FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge

und packe sie jeweils in die erste freie Kiste, in der genügend Platz ist

– Es gilt FFD(w) = 11/9∗OPTBPP (w) + 4 für alle w

7→ Polynomielle Approximation mit R∞
A = 11/9

• Keine absolute Güte besser als 3/2 (falls P6=NP)

– Kein polynomieller Approximationsalgorithmus mit RA < 3/2 möglich

– Die Reduktion PARTITION≤pBPP benutzt 2 Behälter
der Größe S :=

∑n
i=1 ai/2, auf die Zahlen verteilt werden

– Jeder Approximationsalgorithmus A mit RA < 3/2 liefert

A(w) = 2, falls w ∈PARTITION und sonst A(w)≥3

– Wegen PARTITION ∈NPC kann A nicht polynomiell sein

Theoretische Informatik II §8: Komplexitätstheorie 8 NP-Vollständige Probleme

Approximationsschemata für Binpacking

BPP = { a1, ...an, b, k) | ∃f : {1..n}→{1..k}. ∀j ≤ k.
∑

i ∈{i|f(i)=j} ai ≤ b }

• Asymptotische Güte 11/9 erreichbar
– FIRST-FIT DECREASING: Sortiere Objekte in absteigender Reihenfolge

und packe sie jeweils in die erste freie Kiste, in der genügend Platz ist

– Es gilt FFD(w) = 11/9∗OPTBPP (w) + 4 für alle w

7→ Polynomielle Approximation mit R∞
A = 11/9

• Keine absolute Güte besser als 3/2 (falls P6=NP)

– Kein polynomieller Approximationsalgorithmus mit RA < 3/2 möglich

– Die Reduktion PARTITION≤pBPP benutzt 2 Behälter
der Größe S :=

∑n
i=1 ai/2, auf die Zahlen verteilt werden

– Jeder Approximationsalgorithmus A mit RA < 3/2 liefert

A(w) = 2, falls w ∈PARTITION und sonst A(w)≥3

– Wegen PARTITION ∈NPC kann A nicht polynomiell sein

Beweistechnik: Einbettung eines NP-vollständigen Entscheidungsproblems

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Approximation des Traveling Salesman Problems

TSP = { c12, ..., cn−1,n, B | ∃π:{1..n}→{1..n}. π bijektiv

∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Approximation des Traveling Salesman Problems

TSP = { c12, ..., cn−1,n, B | ∃π:{1..n}→{1..n}. π bijektiv

∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• R∞
A = 3/2 erreichbar bei Dreiecksungleichung

– Direkte Verbindung ist kürzer als ein Umweg: ∀i, j, k. ci,j≤ci,k+ck,j

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Approximation des Traveling Salesman Problems

TSP = { c12, ..., cn−1,n, B | ∃π:{1..n}→{1..n}. π bijektiv

∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• R∞
A = 3/2 erreichbar bei Dreiecksungleichung

– Direkte Verbindung ist kürzer als ein Umweg: ∀i, j, k. ci,j≤ci,k+ck,j

• Keine endliche Grenze für multiplikativen Fehler

– Es gibt keinen polynomiellen Algorithmus A mit R∞
A =r für ein r ∈N

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Approximation des Traveling Salesman Problems

TSP = { c12, ..., cn−1,n, B | ∃π:{1..n}→{1..n}. π bijektiv

∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• R∞
A = 3/2 erreichbar bei Dreiecksungleichung

– Direkte Verbindung ist kürzer als ein Umweg: ∀i, j, k. ci,j≤ci,k+ck,j

• Keine endliche Grenze für multiplikativen Fehler

– Es gibt keinen polynomiellen Algorithmus A mit R∞
A =r für ein r ∈N

Wenn es A geben würde, dann entscheiden wir HC polynomiell wie folgt

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Approximation des Traveling Salesman Problems

TSP = { c12, ..., cn−1,n, B | ∃π:{1..n}→{1..n}. π bijektiv

∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• R∞
A = 3/2 erreichbar bei Dreiecksungleichung

– Direkte Verbindung ist kürzer als ein Umweg: ∀i, j, k. ci,j≤ci,k+ck,j

• Keine endliche Grenze für multiplikativen Fehler

– Es gibt keinen polynomiellen Algorithmus A mit R∞
A =r für ein r ∈N

Wenn es A geben würde, dann entscheiden wir HC polynomiell wie folgt

– Transformiere einen Graphen G = (V, E) in w = c12, ..., cn−1,n, |V |

mit cij = 1 falls {i, j} ∈E und cij = r|V | + 1 sonst

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Approximation des Traveling Salesman Problems

TSP = { c12, ..., cn−1,n, B | ∃π:{1..n}→{1..n}. π bijektiv

∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• R∞
A = 3/2 erreichbar bei Dreiecksungleichung

– Direkte Verbindung ist kürzer als ein Umweg: ∀i, j, k. ci,j≤ci,k+ck,j

• Keine endliche Grenze für multiplikativen Fehler

– Es gibt keinen polynomiellen Algorithmus A mit R∞
A =r für ein r ∈N

Wenn es A geben würde, dann entscheiden wir HC polynomiell wie folgt

– Transformiere einen Graphen G = (V, E) in w = c12, ..., cn−1,n, |V |

mit cij = 1 falls {i, j} ∈E und cij = r|V | + 1 sonst

– Dann G ∈HC ⇒OPTTSP (w)=|V | und G 6∈HC ⇒OPTTSP (w)>(r+1)∗|V |

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Approximation des Traveling Salesman Problems

TSP = { c12, ..., cn−1,n, B | ∃π:{1..n}→{1..n}. π bijektiv

∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• R∞
A = 3/2 erreichbar bei Dreiecksungleichung

– Direkte Verbindung ist kürzer als ein Umweg: ∀i, j, k. ci,j≤ci,k+ck,j

• Keine endliche Grenze für multiplikativen Fehler

– Es gibt keinen polynomiellen Algorithmus A mit R∞
A =r für ein r ∈N

Wenn es A geben würde, dann entscheiden wir HC polynomiell wie folgt

– Transformiere einen Graphen G = (V, E) in w = c12, ..., cn−1,n, |V |

mit cij = 1 falls {i, j} ∈E und cij = r|V | + 1 sonst

– Dann G ∈HC ⇒OPTTSP (w)=|V | und G 6∈HC ⇒OPTTSP (w)>(r+1)∗|V |

– Für große Graphen: A(w)≤r∗OPTTSP (w) also G ∈HC ⇔ A(w)≤r∗|V |

(Für kleine Graphen verwende den exponentiellen Entscheidungsalgorithmus)

Theoretische Informatik II §8: Komplexitätstheorie 9 NP-Vollständige Probleme

Approximation des Traveling Salesman Problems

TSP = { c12, ..., cn−1,n, B | ∃π:{1..n}→{1..n}. π bijektiv

∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• R∞
A = 3/2 erreichbar bei Dreiecksungleichung

– Direkte Verbindung ist kürzer als ein Umweg: ∀i, j, k. ci,j≤ci,k+ck,j

• Keine endliche Grenze für multiplikativen Fehler

– Es gibt keinen polynomiellen Algorithmus A mit R∞
A =r für ein r ∈N

Wenn es A geben würde, dann entscheiden wir HC polynomiell wie folgt

– Transformiere einen Graphen G = (V, E) in w = c12, ..., cn−1,n, |V |

mit cij = 1 falls {i, j} ∈E und cij = r|V | + 1 sonst

– Dann G ∈HC ⇒OPTTSP (w)=|V | und G 6∈HC ⇒OPTTSP (w)>(r+1)∗|V |

– Für große Graphen: A(w)≤r∗OPTTSP (w) also G ∈HC ⇔ A(w)≤r∗|V |

(Für kleine Graphen verwende den exponentiellen Entscheidungsalgorithmus)

Beweistechnik: Reduktion auf NP-vollständiges Problem mit Multiplikation

des Kostenunterschieds zwischen positiver und negativer Antwort

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Travelling Salesman mit Dreiecksungleichung

TSP∆ = { c12, ..., cn−1,n, B | ∀i, j, k. ci,j≤ci,k+ck,j ∧ ∃π:{1..n}→{1..n}.

π bijektiv ∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• Approximationsalgorithmus
– Zu w = c12, ..., cn−1,n, B konstruiere vollständigen Graphen G = (V, E)

mit V = {v1, .., vn} und Gewichten ci,j für {vi, vj} ∈E

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Travelling Salesman mit Dreiecksungleichung

TSP∆ = { c12, ..., cn−1,n, B | ∀i, j, k. ci,j≤ci,k+ck,j ∧ ∃π:{1..n}→{1..n}.

π bijektiv ∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• Approximationsalgorithmus
– Zu w = c12, ..., cn−1,n, B konstruiere vollständigen Graphen G = (V, E)

mit V = {v1, .., vn} und Gewichten ci,j für {vi, vj} ∈E

– Konstruiere spannenden Baum T = (V, ET) mit minimaler Kantensumme

Beginnend mit ET = ∅, VT = {v1} wiederhole bis VT = V

· Wähle Kante {vi, vj} mit minimalem Gewicht, so daß vi ∈VT , vj 6∈VT

· Setze VT := VT∪{vj} und ET := ET∪{vi, vj}

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Travelling Salesman mit Dreiecksungleichung

TSP∆ = { c12, ..., cn−1,n, B | ∀i, j, k. ci,j≤ci,k+ck,j ∧ ∃π:{1..n}→{1..n}.

π bijektiv ∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• Approximationsalgorithmus
– Zu w = c12, ..., cn−1,n, B konstruiere vollständigen Graphen G = (V, E)

mit V = {v1, .., vn} und Gewichten ci,j für {vi, vj} ∈E

– Konstruiere spannenden Baum T = (V, ET) mit minimaler Kantensumme

Beginnend mit ET = ∅, VT = {v1} wiederhole bis VT = V

· Wähle Kante {vi, vj} mit minimalem Gewicht, so daß vi ∈VT , vj 6∈VT

· Setze VT := VT∪{vj} und ET := ET∪{vi, vj}

– Durchlaufe T so, daß jede Kante genau zweimal benutzt wird

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Travelling Salesman mit Dreiecksungleichung

TSP∆ = { c12, ..., cn−1,n, B | ∀i, j, k. ci,j≤ci,k+ck,j ∧ ∃π:{1..n}→{1..n}.

π bijektiv ∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• Approximationsalgorithmus
– Zu w = c12, ..., cn−1,n, B konstruiere vollständigen Graphen G = (V, E)

mit V = {v1, .., vn} und Gewichten ci,j für {vi, vj} ∈E

– Konstruiere spannenden Baum T = (V, ET) mit minimaler Kantensumme

Beginnend mit ET = ∅, VT = {v1} wiederhole bis VT = V

· Wähle Kante {vi, vj} mit minimalem Gewicht, so daß vi ∈VT , vj 6∈VT

· Setze VT := VT∪{vj} und ET := ET∪{vi, vj}

– Durchlaufe T so, daß jede Kante genau zweimal benutzt wird

– Verkürze den entstandenen Rundweg so, daß einem Knoten
zum nächsten noch nicht angesteuerten Knoten verzweigt wird

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Travelling Salesman mit Dreiecksungleichung

TSP∆ = { c12, ..., cn−1,n, B | ∀i, j, k. ci,j≤ci,k+ck,j ∧ ∃π:{1..n}→{1..n}.

π bijektiv ∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• Approximationsalgorithmus
– Zu w = c12, ..., cn−1,n, B konstruiere vollständigen Graphen G = (V, E)

mit V = {v1, .., vn} und Gewichten ci,j für {vi, vj} ∈E

– Konstruiere spannenden Baum T = (V, ET) mit minimaler Kantensumme

Beginnend mit ET = ∅, VT = {v1} wiederhole bis VT = V

· Wähle Kante {vi, vj} mit minimalem Gewicht, so daß vi ∈VT , vj 6∈VT

· Setze VT := VT∪{vj} und ET := ET∪{vi, vj}

– Durchlaufe T so, daß jede Kante genau zweimal benutzt wird

– Verkürze den entstandenen Rundweg so, daß einem Knoten
zum nächsten noch nicht angesteuerten Knoten verzweigt wird

• Laufzeit des Algorithmus ist O(n3)

Theoretische Informatik II §8: Komplexitätstheorie 10 NP-Vollständige Probleme

Travelling Salesman mit Dreiecksungleichung

TSP∆ = { c12, ..., cn−1,n, B | ∀i, j, k. ci,j≤ci,k+ck,j ∧ ∃π:{1..n}→{1..n}.

π bijektiv ∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• Approximationsalgorithmus
– Zu w = c12, ..., cn−1,n, B konstruiere vollständigen Graphen G = (V, E)

mit V = {v1, .., vn} und Gewichten ci,j für {vi, vj} ∈E

– Konstruiere spannenden Baum T = (V, ET) mit minimaler Kantensumme

Beginnend mit ET = ∅, VT = {v1} wiederhole bis VT = V

· Wähle Kante {vi, vj} mit minimalem Gewicht, so daß vi ∈VT , vj 6∈VT

· Setze VT := VT∪{vj} und ET := ET∪{vi, vj}

– Durchlaufe T so, daß jede Kante genau zweimal benutzt wird

– Verkürze den entstandenen Rundweg so, daß einem Knoten
zum nächsten noch nicht angesteuerten Knoten verzweigt wird

• Laufzeit des Algorithmus ist O(n3)

• Güte des Algorithmus ist R∞
A ≤ 3/2 (aufwendig)

Theoretische Informatik II §8: Komplexitätstheorie 11 NP-Vollständige Probleme

Probabilistische Algorithmen

“Approximation” einer Entscheidung

• Verhalten gesteuert durch Zufallszahlen

– Falsche Entscheidung kann nicht ausgeschlossen werden

Theoretische Informatik II §8: Komplexitätstheorie 11 NP-Vollständige Probleme

Probabilistische Algorithmen

“Approximation” einer Entscheidung

• Verhalten gesteuert durch Zufallszahlen

– Falsche Entscheidung kann nicht ausgeschlossen werden

– Approximation ≡ Verringerung der Fehlerwahrscheinlichkeit

– Fehlerwahrscheinlichkeit unter 2−100 besser als die von Hardwarefehlern

Theoretische Informatik II §8: Komplexitätstheorie 11 NP-Vollständige Probleme

Probabilistische Algorithmen

“Approximation” einer Entscheidung

• Verhalten gesteuert durch Zufallszahlen

– Falsche Entscheidung kann nicht ausgeschlossen werden

– Approximation ≡ Verringerung der Fehlerwahrscheinlichkeit

– Fehlerwahrscheinlichkeit unter 2−100 besser als die von Hardwarefehlern

• Anwendungen

– Primzahltest in linearer Zeit

– Optimierung von Quicksort auf O(n∗logn) (Bestimmung Pivotelement)

Theoretische Informatik II §8: Komplexitätstheorie 11 NP-Vollständige Probleme

Probabilistische Algorithmen

“Approximation” einer Entscheidung

• Verhalten gesteuert durch Zufallszahlen

– Falsche Entscheidung kann nicht ausgeschlossen werden

– Approximation ≡ Verringerung der Fehlerwahrscheinlichkeit

– Fehlerwahrscheinlichkeit unter 2−100 besser als die von Hardwarefehlern

• Anwendungen

– Primzahltest in linearer Zeit

– Optimierung von Quicksort auf O(n∗logn) (Bestimmung Pivotelement)

• Wie weist man gut Eigenschaften nach?

Theoretische Informatik II §8: Komplexitätstheorie 11 NP-Vollständige Probleme

Probabilistische Algorithmen

“Approximation” einer Entscheidung

• Verhalten gesteuert durch Zufallszahlen

– Falsche Entscheidung kann nicht ausgeschlossen werden

– Approximation ≡ Verringerung der Fehlerwahrscheinlichkeit

– Fehlerwahrscheinlichkeit unter 2−100 besser als die von Hardwarefehlern

• Anwendungen

– Primzahltest in linearer Zeit

– Optimierung von Quicksort auf O(n∗logn) (Bestimmung Pivotelement)

• Wie weist man gut Eigenschaften nach?

– Einfaches Modell für probabilistische Algorithmen formulieren

Theoretische Informatik II §8: Komplexitätstheorie 11 NP-Vollständige Probleme

Probabilistische Algorithmen

“Approximation” einer Entscheidung

• Verhalten gesteuert durch Zufallszahlen

– Falsche Entscheidung kann nicht ausgeschlossen werden

– Approximation ≡ Verringerung der Fehlerwahrscheinlichkeit

– Fehlerwahrscheinlichkeit unter 2−100 besser als die von Hardwarefehlern

• Anwendungen

– Primzahltest in linearer Zeit

– Optimierung von Quicksort auf O(n∗logn) (Bestimmung Pivotelement)

• Wie weist man gut Eigenschaften nach?

– Einfaches Modell für probabilistische Algorithmen formulieren

– Eigenschaften abstrakter probabilistischer Sprachklassen analysieren

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Probabilistische Berechnungsmodelle

• Probabilistische Turingmaschine

– Struktur: τ = (S, X , Γ, δ, s0, b)

– Zustandsüberführungsfunktion: δ:S×Γ → (S×Γ×{r,l,h})2

Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewählt

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Probabilistische Berechnungsmodelle

• Probabilistische Turingmaschine

– Struktur: τ = (S, X , Γ, δ, s0, b)

– Zustandsüberführungsfunktion: δ:S×Γ → (S×Γ×{r,l,h})2

Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewählt

– Ausgabe: hτ(w) ∈ {0, 1, ?} (Akzeptieren – Verwerfen – keine Aussage)

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Probabilistische Berechnungsmodelle

• Probabilistische Turingmaschine

– Struktur: τ = (S, X , Γ, δ, s0, b)

– Zustandsüberführungsfunktion: δ:S×Γ → (S×Γ×{r,l,h})2

Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewählt

– Ausgabe: hτ(w) ∈ {0, 1, ?} (Akzeptieren – Verwerfen – keine Aussage)

– Rechenzeit: maximale Rechenzeit aller möglichen Rechenwege

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Probabilistische Berechnungsmodelle

• Probabilistische Turingmaschine

– Struktur: τ = (S, X , Γ, δ, s0, b)

– Zustandsüberführungsfunktion: δ:S×Γ → (S×Γ×{r,l,h})2

Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewählt

– Ausgabe: hτ(w) ∈ {0, 1, ?} (Akzeptieren – Verwerfen – keine Aussage)

– Rechenzeit: maximale Rechenzeit aller möglichen Rechenwege

– PTM: polynomiell zeitbeschränkte probabilistische Turingmaschine

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Probabilistische Berechnungsmodelle

• Probabilistische Turingmaschine

– Struktur: τ = (S, X , Γ, δ, s0, b)

– Zustandsüberführungsfunktion: δ:S×Γ → (S×Γ×{r,l,h})2

Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewählt

– Ausgabe: hτ(w) ∈ {0, 1, ?} (Akzeptieren – Verwerfen – keine Aussage)

– Rechenzeit: maximale Rechenzeit aller möglichen Rechenwege

– PTM: polynomiell zeitbeschränkte probabilistische Turingmaschine

• Abstrakteres Modell: Probabilistische Algorithmen

– Programme mit zufälligen Entscheidungen

– Abstrakte Komplexität wie bisher

Theoretische Informatik II §8: Komplexitätstheorie 12 NP-Vollständige Probleme

Probabilistische Berechnungsmodelle

• Probabilistische Turingmaschine

– Struktur: τ = (S, X , Γ, δ, s0, b)

– Zustandsüberführungsfunktion: δ:S×Γ → (S×Γ×{r,l,h})2

Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewählt

– Ausgabe: hτ(w) ∈ {0, 1, ?} (Akzeptieren – Verwerfen – keine Aussage)

– Rechenzeit: maximale Rechenzeit aller möglichen Rechenwege

– PTM: polynomiell zeitbeschränkte probabilistische Turingmaschine

• Abstrakteres Modell: Probabilistische Algorithmen

– Programme mit zufälligen Entscheidungen

– Abstrakte Komplexität wie bisher

Was kann man mit polynomiell zeitbeschränkten

probabilistischen Algorithmen erreichen?

Theoretische Informatik II §8: Komplexitätstheorie 13 NP-Vollständige Probleme

Wichtige Probabilistische Sprachklassen

• PP: Probabilistic Polynomial Monte-Carlo-Algorithmen

– Wahrscheinlichkeit für korrekte Antwort größer als 1/2

– PP = {L | ∃ PTM τ . ∀w. Prob(hτ(w)=χ
L
(w)) > 1/2}

Theoretische Informatik II §8: Komplexitätstheorie 13 NP-Vollständige Probleme

Wichtige Probabilistische Sprachklassen

• PP: Probabilistic Polynomial Monte-Carlo-Algorithmen

– Wahrscheinlichkeit für korrekte Antwort größer als 1/2

– PP = {L | ∃ PTM τ . ∀w. Prob(hτ(w)=χ
L
(w)) > 1/2}

• BPP: Bounded error Probabilistic Polynomial
– Wahrscheinlichkeit für korrekte Antwort größer als 1/2+ε

– BPP = {L | ∃ PTM τ . ∃ε> 0 ∀w. Prob(hτ(w)=χ
L
(w)) > 1/2+ε}

Theoretische Informatik II §8: Komplexitätstheorie 13 NP-Vollständige Probleme

Wichtige Probabilistische Sprachklassen

• PP: Probabilistic Polynomial Monte-Carlo-Algorithmen

– Wahrscheinlichkeit für korrekte Antwort größer als 1/2

– PP = {L | ∃ PTM τ . ∀w. Prob(hτ(w)=χ
L
(w)) > 1/2}

• BPP: Bounded error Probabilistic Polynomial
– Wahrscheinlichkeit für korrekte Antwort größer als 1/2+ε

– BPP = {L | ∃ PTM τ . ∃ε> 0 ∀w. Prob(hτ(w)=χ
L
(w)) > 1/2+ε}

• RP: Random Polynomial
– Nichtzugehörige korrekt identifiziert, andere mit Wahrscheinlichkeit > 1/2

– RP = {L | ∃ PTM τ . ∀w ∈L. Prob(hτ(w)=1) > 1/2

∧ ∀w 6∈L. Prob(hτ(w)=0) = 1}

Theoretische Informatik II §8: Komplexitätstheorie 13 NP-Vollständige Probleme

Wichtige Probabilistische Sprachklassen

• PP: Probabilistic Polynomial Monte-Carlo-Algorithmen

– Wahrscheinlichkeit für korrekte Antwort größer als 1/2

– PP = {L | ∃ PTM τ . ∀w. Prob(hτ(w)=χ
L
(w)) > 1/2}

• BPP: Bounded error Probabilistic Polynomial
– Wahrscheinlichkeit für korrekte Antwort größer als 1/2+ε

– BPP = {L | ∃ PTM τ . ∃ε> 0 ∀w. Prob(hτ(w)=χ
L
(w)) > 1/2+ε}

• RP: Random Polynomial
– Nichtzugehörige korrekt identifiziert, andere mit Wahrscheinlichkeit > 1/2

– RP = {L | ∃ PTM τ . ∀w ∈L. Prob(hτ(w)=1) > 1/2

∧ ∀w 6∈L. Prob(hτ(w)=0) = 1}

• ZPP: Zero error PP Las-Vegas-Algorithmen

– Wahrscheinlichkeit für korrekte Antwort > 1/2, keine falschen Antworten

– ZPP = {L | ∃ PTM τ .

∀w ∈L. (Prob(hτ(w)=1) > 1/2 ∧ Prob(hτ(w)=0) = 0)

∧ ∀w 6∈L. Prob(hτ(w)=0) > 1/2 ∧ Prob(hτ(w)=1) = 0)}

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Probabilistischer Primzahltest für n≥3 (Solovay/Strassen)

1. Wenn n gerade ist: Antwort “keine Primzahl”

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Probabilistischer Primzahltest für n≥3 (Solovay/Strassen)

1. Wenn n gerade ist: Antwort “keine Primzahl”

2. Ansonsten wähle a ∈{1...n} zufällig

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Probabilistischer Primzahltest für n≥3 (Solovay/Strassen)

1. Wenn n gerade ist: Antwort “keine Primzahl”

2. Ansonsten wähle a ∈{1...n} zufällig

3. Falls gcd(n, a)6=1: Antwort “keine Primzahl”

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Probabilistischer Primzahltest für n≥3 (Solovay/Strassen)

1. Wenn n gerade ist: Antwort “keine Primzahl”

2. Ansonsten wähle a ∈{1...n} zufällig

3. Falls gcd(n, a)6=1: Antwort “keine Primzahl”

4. Ansonsten setze ε := a(n−1)/2(mod n)

δ := J(a, n) (Jacobi Symbol)

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Probabilistischer Primzahltest für n≥3 (Solovay/Strassen)

1. Wenn n gerade ist: Antwort “keine Primzahl”

2. Ansonsten wähle a ∈{1...n} zufällig

3. Falls gcd(n, a)6=1: Antwort “keine Primzahl”

4. Ansonsten setze ε := a(n−1)/2(mod n)

δ := J(a, n) (Jacobi Symbol)

5. Falls ε = δ: Antwort “Primzahl”

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Probabilistischer Primzahltest für n≥3 (Solovay/Strassen)

1. Wenn n gerade ist: Antwort “keine Primzahl”

2. Ansonsten wähle a ∈{1...n} zufällig

3. Falls gcd(n, a)6=1: Antwort “keine Primzahl”

4. Ansonsten setze ε := a(n−1)/2(mod n)

δ := J(a, n) (Jacobi Symbol)

5. Falls ε = δ: Antwort “Primzahl”

6. Ansonsten: Antwort “keine Primzahl”

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Probabilistischer Primzahltest für n≥3 (Solovay/Strassen)

1. Wenn n gerade ist: Antwort “keine Primzahl”

2. Ansonsten wähle a ∈{1...n} zufällig

3. Falls gcd(n, a)6=1: Antwort “keine Primzahl”

4. Ansonsten setze ε := a(n−1)/2(mod n)

δ := J(a, n) (Jacobi Symbol)

5. Falls ε = δ: Antwort “Primzahl”

6. Ansonsten: Antwort “keine Primzahl”

RP -Algorithmus

– Korrekte Ausgabe, falls n Primzahl

– Fehlerwahrscheinlichkeit unter 1/2, falls n keine Primzahl

Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme

Probabilistischer Primzahltest für n≥3 (Solovay/Strassen)

1. Wenn n gerade ist: Antwort “keine Primzahl”

2. Ansonsten wähle a ∈{1...n} zufällig

3. Falls gcd(n, a)6=1: Antwort “keine Primzahl”

4. Ansonsten setze ε := a(n−1)/2(mod n)

δ := J(a, n) (Jacobi Symbol)

5. Falls ε = δ: Antwort “Primzahl”

6. Ansonsten: Antwort “keine Primzahl”

RP -Algorithmus

– Korrekte Ausgabe, falls n Primzahl

– Fehlerwahrscheinlichkeit unter 1/2, falls n keine Primzahl

Rechenzeit ≤6 ∗ log n

Theoretische Informatik II §8: Komplexitätstheorie 15 NP-Vollständige Probleme

Eigenschaften probabilistischer Sprachklassen

• k-fache Iteration von RP Algorithmen verringert die

Wahrscheinlichkeit einer falschen Antwort auf 2−k

Theoretische Informatik II §8: Komplexitätstheorie 15 NP-Vollständige Probleme

Eigenschaften probabilistischer Sprachklassen

• k-fache Iteration von RP Algorithmen verringert die

Wahrscheinlichkeit einer falschen Antwort auf 2−k

– Ist τ die k-fache statistisch unabhängige Iteration einer PTM für L ∈RP ,

so gilt

∀w ∈L.Prob(hτ(w)=1) > 1−2−k
∧ ∀w 6∈L.Prob(hτ(w)=0) = 1

Theoretische Informatik II §8: Komplexitätstheorie 15 NP-Vollständige Probleme

Eigenschaften probabilistischer Sprachklassen

• k-fache Iteration von RP Algorithmen verringert die

Wahrscheinlichkeit einer falschen Antwort auf 2−k

– Ist τ die k-fache statistisch unabhängige Iteration einer PTM für L ∈RP ,

so gilt

∀w ∈L.Prob(hτ(w)=1) > 1−2−k
∧ ∀w 6∈L.Prob(hτ(w)=0) = 1

• t-fache Iteration eines BPP Algorithmus für t > k
− log(1−4ε2)

verringert die Wahrscheinlichkeit der falschen Antwort auf 2−k

Theoretische Informatik II §8: Komplexitätstheorie 15 NP-Vollständige Probleme

Eigenschaften probabilistischer Sprachklassen

• k-fache Iteration von RP Algorithmen verringert die

Wahrscheinlichkeit einer falschen Antwort auf 2−k

– Ist τ die k-fache statistisch unabhängige Iteration einer PTM für L ∈RP ,

so gilt

∀w ∈L.Prob(hτ(w)=1) > 1−2−k
∧ ∀w 6∈L.Prob(hτ(w)=0) = 1

• t-fache Iteration eines BPP Algorithmus für t > k
− log(1−4ε2)

verringert die Wahrscheinlichkeit der falschen Antwort auf 2−k

– Sei τ t die (2t+1)-fache statistisch unabhängige Iteration einer PTM τ

für L ∈BPP , die genau dann akzeptiert, wenn τ mindestens t+1-mal

akzeptiert, so gilt für t > k−1
− log(1−4ε2)

∀w. Prob(hτ t(w)=χ
L
(w)) > 1−2−k Wegener 75–77

Theoretische Informatik II §8: Komplexitätstheorie 16 NP-Vollständige Probleme

Sprachklassenhierarchie

P

ZPP

RP ∩ co-RP

PP

RP

BPP

NP∩co−NP

NP

NP∪co−NP

6

:y

6

:

:

6

6

y

