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Einheit 8.5

Grenzen uberwinden

1. Pseudopolynomielle Algorithmen
2. Approximationsalgorithmen

3. Probabilistische Algorithmen
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WIE KANN MAN “UNLOSBARE” PROBLEME ANGEHEN? I

e Kiunstliche Intelligenz
— Heuristische Losung unentscheidbarer Probleme (ohne Erfolgsgarantie)

— Theorembeweisen, Programmverifikation und -synthese (unvollstandig)
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Suche nach neuen Wegen liefert tieferes Verstandnis der Materie
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PSEUDOPOLYNOMIELLE ALGORITHMEN I

Gibt es leichte N'P-vollstandige Probleme?
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— Man muf} nicht alle Kombinationen von {1..n} einzeln auswerten

— Man kann iterativ den optimalen Nutzen bestimmen,
indem man die Anzahl der Gegenstande und das Gewicht erhoht

— Sehr effizient, wenn das maximale Gewicht nicht zu grofl wird
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— Verwende Gegenstande 1, .., kK und Maximalgewicht ¢<G
— Bestimme optimalen Nutzen N (k, g)
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U

(91:-Gns @1..0p, G, A) € KP ist IN O(n x G) Schritten l6sbar
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e K P hat pseudopolynomielle Losung

— Ein Algorithmus fiir ein Zahlproblem McX™ ist pseudopolynomiell, wenn
seine Rechenzeit durch ein Polynom in |w| und M AX (w) beschrankt ist
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STARKE N P-VOLLSTANDIGKEIT I

e Pseudopolynomiell = effizient bei kleinen Zahlen

— Ist McX* pseudopolynomiell losbar, so ist fir jedes Polynom p
M, = {lweM | MAX (w)<p(Jw|)} € P
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U

Einschrankung auf kleine Zahlen ist nur zuweilen
eine Antwort auf das P—N P Dilemma
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APPROXIMATIONSALGORITHMEN FUR OPTIMIERUNGSPROBLEME I

e Viele Probleme haben Optimierungsvariante
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APPROXIMATIONSALGORITHMEN FUR OPTIMIERUNGSPROBLEME I

e Viele Probleme haben Optimierungsvariante
~ CLIQU E,:: bestimme die grofite Clique im Graphen
—~ T'SP,,: bestimme die kostengiinstigste Rundreise
— BPP,,: bestimme die kleinste Anzahl der notigen Behalter
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Beweistechnik: Multiplikation des Problems, nachtragliche Division des Fehlers
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Beweistechnik: Einbettung eines NP-vollstandigen Entscheidungsproblems

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 8 NP-VOLLSTANDIGE PROBLEME




APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={cia....cno1n, B| Im{l.n}—{1l..n}. 7 bijektiv
A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME




APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={cia....cno1n, B| Im{l.n}—{1l..n}. 7 bijektiv
A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

e R9° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME




APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={cia....cno1n, B| Im{l.n}—{1l..n}. 7 bijektiv
A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

e R9° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

e Keine endliche Grenze fur multiplikativen Fehler
— s gibt keinen polynomiellen Algorithmus A mit RY=r fir ein 7 eN

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME




APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={c2,....Chn-1n, B| Im{l.n}—{1l..n}. 7 bijektiv
" Z?:_ll Cr(iyr(it1) T Camn1) < B}

e R9° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

e Keine endliche Grenze fur multiplikativen Fehler
— s gibt keinen polynomiellen Algorithmus A mit RY=r fir ein 7 eN

Wenn es A geben wiirde, dann entscheiden wir HC' polynomiell wie folgt

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME




APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={cia....cno1n, B| Im{l.n}—{1l..n}. 7 bijektiv
A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

e R9° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

e Keine endliche Grenze fur multiplikativen Fehler
— s gibt keinen polynomiellen Algorithmus A mit RY=r fir ein 7 eN

Wenn es A geben wiirde, dann entscheiden wir HC' polynomiell wie folgt
— Transformiere einen Graphen G = (V) E) in w = ¢19, ..., ¢, |V
mit ¢;; = 1 falls {¢, 7} € F und ¢;; = r|V| 4+ 1 sonst

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME




APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={cia....cno1n, B| Im{l.n}—{1l..n}. 7 bijektiv
A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

e R9° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

e Keine endliche Grenze fur multiplikativen Fehler
— s gibt keinen polynomiellen Algorithmus A mit RY=r fir ein 7 eN
Wenn es A geben wiirde, dann entscheiden wir HC' polynomiell wie folgt
— Transformiere einen Graphen G = (V) E) in w = ¢19, ..., ¢, |V
mit ¢;; = 1 falls {¢, 7} € F und ¢;; = r|V| 4+ 1 sonst
—Dann Ge HC = OPTpsp(w)=|V|und G¢ HC = OPTpgp(w)>(r+1)x|V|

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME




APPROXIMATION DES TRAVELING SALESMAN PROBLEMS I

TSP ={cia....cno1n, B| Im{l.n}—{1l..n}. 7 bijektiv
A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

e R9° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

e Keine endliche Grenze fur multiplikativen Fehler
— s gibt keinen polynomiellen Algorithmus A mit RY=r fir ein 7 eN

Wenn es A geben wiirde, dann entscheiden wir HC' polynomiell wie folgt
— Transformiere einen Graphen G = (V) E) in w = ¢19, ..., ¢, |V
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A Z?z_ll Cr(i)m(i41) - Cr(n)m(1) < B }

e RY° = 3/2 erreichbar bei Dreiecksungleichung

— Direkte Verbindung ist kurzer als ein Umweg: Vi, 7, k. ¢; ;<¢; p+ci.

e Keine endliche Grenze fur multiplikativen Fehler
— s gibt keinen polynomiellen Algorithmus A mit RY=r fir ein 7 eN

Wenn es A geben wiirde, dann entscheiden wir HC' polynomiell wie folgt
— Transformiere einen Graphen G = (V, E) in w = ¢19, ..., ¢h—1.p, |V
mit ¢;; = 1 falls {¢, 7} € F und ¢;; = r|V| 4+ 1 sonst
—Dann Ge HC = OPTpsp(w)=|V|und G¢ HC = OPTpgp(w)>(r+1)x|V|
— Fiir grofie Graphen: A(w)<rxOPTrsp(w) also Ge HC' < A(w)<rx|V|

(Fiir kleine Graphen verwende den exponentiellen Entscheidungsalgorithmus)

Beweistechnik: Reduktion auf A/P-vollstandiges Problem mit Multiplikation
des Kostenunterschieds zwischen positiver und negativer Antwort

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 9 NP-VOLLSTANDIGE PROBLEME




TRAVELLING SALESMAN MIT DREIECKSUNGLEICHUNG I
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e Approximationsalgorithmus

—Zuw = c¢j9,...,Ch—1,, B konstruiere vollstandigen Graphen G = (V| F)
mit V' = {vy, .., v, } und Gewichten ¢; ; fiir {v;,v,} € E
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- Wahle Kante {v;, v;} mit minimalem Gewicht, so daf$ v; e Vp, v; ¢ Vp
- Setze Vp .= VpU{v,} und Ep = EpU{v;, v}
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— Durchlaufe 7" so, dafl jede Kante genau zweimal benutzt wird

— Verkiirze den entstandenen Rundweg so, dafl einem Knoten
zum nachsten noch nicht angesteuerten Knoten verzweigt wird
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—Zuw = c¢j9,...,Ch—1,, B konstruiere vollstandigen Graphen G = (V| F)
mit V' = {vy, .., v, } und Gewichten ¢; ; fiir {v;,v,} € E

— Konstruiere spannenden Baum T" = (V, Ep) mit minimaler Kantensumme
Beginnend mit B = (), Vp = {v;} wiederhole bis Vp =V
- Wahle Kante {v;, v;} mit minimalem Gewicht, so daf$ v; e Vp, v; ¢ Vp
- Setze Vp .= VpU{v,} und Ep = EpU{v;, v}

— Durchlaufe T' so, daf} jede Kante genau zweimal benutzt wird

— Verkiirze den entstandenen Rundweg so, dafi einem Knoten
zum nachsten noch nicht angesteuerten Knoten verzweigt wird

e Laufzeit des Algorithmus ist O(n?)
e Giite des Algorithmus ist R < 3/2 (aufwendig)
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PROBABILISTISCHE ALGORITHMEN I

“Approximation” einer Entscheidung

e Verhalten gesteuert durch Zufallszahlen

— Falsche Entscheidung kann nicht ausgeschlossen werden
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— Approximation = Verringerung der Fehlerwahrscheinlichkeit

— Fehlerwahrscheinlichkeit unter 27 1% besser als die von Hardwarefehlern
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e Anwendungen
— Primzahltest in linearer Zeit

— Optimierung von Quicksort auf O(nxlogn) (Bestimmung Pivotelement)
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e Wie weist man gut Eigenschaften nach?

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 NP-VOLLSTANDIGE PROBLEME




PROBABILISTISCHE ALGORITHMEN I

“Approximation” einer Entscheidung

e Verhalten gesteuert durch Zufallszahlen
— Falsche Entscheidung kann nicht ausgeschlossen werden
— Approximation = Verringerung der Fehlerwahrscheinlichkeit

— Fehlerwahrscheinlichkeit unter 271 besser als die von Hardwarefehlern

e Anwendungen
— Primzahltest in linearer Zeit

— Optimierung von Quicksort auf O(nxlogn) (Bestimmung Pivotelement)

e Wie weist man gut Eigenschaften nach?

— Einfaches Modell fiir probabilistische Algorithmen formulieren

THEORETISCHE INFORMATIK IT §8: KOMPLEXITATSTHEORIE 11 NP-VOLLSTANDIGE PROBLEME




PROBABILISTISCHE ALGORITHMEN I

“Approximation” einer Entscheidung

e Verhalten gesteuert durch Zufallszahlen
— Falsche Entscheidung kann nicht ausgeschlossen werden
— Approximation = Verringerung der Fehlerwahrscheinlichkeit

— Fehlerwahrscheinlichkeit unter 271 besser als die von Hardwarefehlern

e Anwendungen
— Primzahltest in linearer Zeit

— Optimierung von Quicksort auf O(nxlogn) (Bestimmung Pivotelement)

e Wie weist man gut Eigenschaften nach?
— Einfaches Modell fiir probabilistische Algorithmen formulieren

— Eigenschaften abstrakter probabilistischer Sprachklassen analysieren
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PROBABILISTISCHE BERECHNUNGSMODELLE I

e Probabilistische Turingmaschine
— Struktur: 7 = (S, X, I', 4, sg, b)
— Zustandsiiberfithrungsfunktion: §:SxI" — (SxI'x{r,[,h})?
Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewihlt
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— Struktur: 7 = (S, X, I', 4, sg, b)
— Zustandsiiberfithrungsfunktion: §:SxI" — (SxI'x{r,[,h})?
Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewihlt
— Ausgabe: h.(w) € {0,1,7} (Akzeptieren — Verwerfen — keine Aussage)
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— Rechenzeit: maximale Rechenzeit aller moglichen Rechenwege
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e Abstrakteres Modell: Probabilistische Algorithmen

— Programme mit zufalligen Entscheidungen

— Abstrakte Komplexitat wie bisher
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PROBABILISTISCHE BERECHNUNGSMODELLE I

e Probabilistische Turingmaschine
— Struktur: 7 = (S, X, I', 4, sg, b)
— Zustandsiiberfithrungsfunktion: §:SxI" — (SxI'x{r,[,h})?
Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewihlt
— Ausgabe: h.(w) € {0,1,7} (Akzeptieren — Verwerfen — keine Aussage)
— Rechenzeit: maximale Rechenzeit aller moglichen Rechenwege

— PT'M: polynomiell zeitbeschrankte probabilistische Turingmaschine

e Abstrakteres Modell: Probabilistische Algorithmen

— Programme mit zufalligen Entscheidungen

— Abstrakte Komplexitat wie bisher

Was kann man mit polynomiell zeitbeschrankten

probabilistischen Algorithmen erreichen?
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WICHTIGE PROBABILISTISCHE SPRACHKLASSEN I

e PP: Probabilistic Polynomial Monte-Carlo-Algorithmen
— Wahrscheinlichkeit fiir korrekte Antwort grofier als 1/2
-~ PP ={L|3PTM 7. Vw. Prob( h.(w)=x,(w) ) > 1/2}
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e RP: Random Polynomial
— Nichtzugehorige korrekt identifiziert, andere mit Wahrscheinlichkeit > 1/2
—~RP={L|3PTM 7. VweL. Prob( h(w)=1) > 1/2
rnYwegL. Prob( h.(w)=0) =1}
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WICHTIGE PROBABILISTISCHE SPRACHKLASSEN I

e PP: Probabilistic Polynomial Monte-Carlo-Algorithmen
— Wahrscheinlichkeit fiir korrekte Antwort grofier als 1/2
~PP={L|3PTM 7. Vw. Prob( h.(w)=x,(w) ) > 1/2}

e BPP: Bounded error Probabilistic Polynomial
— Wahrscheinlichkeit fiir korrekte Antwort grofer als 1/2+-¢
~BPP ={L |3 PTM 7. de> 0 Vw. Prob( h;(w)=x,(w) ) > 1/2+€}

e RP: Random Polynomial
— Nichtzugehorige korrekt identifiziert, andere mit Wahrscheinlichkeit > 1/2
—~RP ={L|3IPTM 7. VweL. Prob( h;(w)=1) > 1/2
rnYwegL. Prob( h.(w)=0) =1}

e ZPP: Zero error PP Las-Vegas-Algorithmen
— Wabhrscheinlichkeit fiir korrekte Antwort > 1/2; keine falschen Antworten

- 7ZPP ={L |3 PTM 7.
VwelL. ( Prob( h.(w)=1)>1/2 n Prob( h.(w)=0)=0)
rnYwgL. Prob( h(w)=0)>1/2 n Prob( h.(w)=1)=20)}
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PROBABILISTISCHER PRIMZAHLTEST FUR 7.>>3 [(Solovay/Strassen)

1. Wenn 1 gerade ist: Antwort “keine Primzahl”
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3. Falls ged(n, a)#1: Antwort “keine Primzahl”

4. Ansonsten setze € := a(""Y/2(mod n)
0 :=J(a,n) (Jacobi Symbol)
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4. Ansonsten setze € := a(""Y/2(mod n)

0 :=J(a,n) (Jacobi Symbol)
5. Falls € = 9§: Antwort “Primzahl”
6. Ansonsten: Antwort “keine Primzahl”

RP-Algorithmus
— Korrekte Ausgabe, falls n Primzahl

— Fehlerwahrscheinlichkeit unter 1/2, falls n keine Primzahl
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PROBABILISTISCHER PRIMZAHLTEST FUR 1>>3 [(Solovay/Strassen)
1. Wenn n gerade ist: Antwort “keine Primzahl”
2. Ansonsten wahle a € {1...n} zufillig
3. Falls ged(n, a)#1: Antwort “keine Primzahl”
4. Ansonsten setze € := a(""Y/2(mod n)
0 :=J(a,n) (Jacobi Symbol)
5. Falls € = 9§: Antwort “Primzahl”
6. Ansonsten: Antwort “keine Primzahl”

RP-Algorithmus
— Korrekte Ausgabe, falls n Primzahl

— Fehlerwahrscheinlichkeit unter 1/2, falls n keine Primzahl

Rechenzeit <6 x logn
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EIGENSCHAFTEN PROBABILISTISCHER SPRACHKLASSEN I

e k-fache Iteration von RP Algorithmen verringert die

Wabhrscheinlichkeit einer falschen Antwort auf 2%
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EIGENSCHAFTEN PROBABILISTISCHER SPRACHKLASSEN I

e k-fache Iteration von RP Algorithmen verringert die
Wahrscheinlichkeit einer falschen Antwort auf 27

— Ist 7 die k-fache statistisch unabhangige Iteration einer PTM fir L € RP,
so gilt

Vwe L.Prob( h,(w)=1) > 1-2"% A Yw¢L.Prob( h,(w)=0) =1
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k
— log(1—4¢€2)

verringert die Wahrscheinlichkeit der falschen Antwort auf 27

e t-fache Iteration eines BPP Algorithmus fur t >
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EIGENSCHAFTEN PROBABILISTISCHER SPRACHKLASSEN I

e k-fache Iteration von RP Algorithmen verringert die
Wahrscheinlichkeit einer falschen Antwort auf 27

— Ist 7 die k-fache statistisch unabhangige Iteration einer PTM fiir L € RP,
so gilt

Vwe L.Prob( h,(w)=1) > 1-2"% A Yw¢L.Prob( h,(w)=0) =1

k
— log(1—4¢€2)

verringert die Wahrscheinlichkeit der falschen Antwort auf 27

— Sei 7" die (2t+1)-fache statistisch unabhéangige Iteration einer PTM

fir L e BPP, die genau dann akzeptiert, wenn 7 mindestens ¢+1-mal
k—1
—log(1—4¢€?)

YVw. P?"Ob( hTt(w):XL(w) ) > 127 Wegener 75-77

e t-fache Iteration eines BPP Algorithmus fur t >

akzeptiert, so gilt fur ¢ >
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