
Theoretische Informatik II

Einheit 8.5

Grenzen überwinden

1. Pseudopolynomielle Algorithmen

2. Approximationsalgorithmen

3. Probabilistische Algorithmen



Theoretische Informatik II §8: Komplexitätstheorie 1 NP-Vollständige Probleme
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• Approximierende und probabilistische Algorithmen

– Effiziente Bestimmung von nahezu optimalen Lösungen
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– Z.B. Primzahltest mit geringem Fehler (logarithmisch statt linear)

• Selbstorganisation statt vorformulierter Lösungen
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Suche nach neuen Wegen liefert tieferes Verständnis der Materie
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· 3SAT≤pKP benutzt exponentiell große Zahlen als Codierung

· 3SAT≤pCLIQUE codiert Formel durch gleichgroßen Graph

– Ist KP nur wegen der großen Zahlen NP-vollständig?
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– Sehr effizient, wenn das maximale Gewicht nicht zu groß wird
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⇓

(g1..gn, a1..an, G, A) ∈ KP ist IN O(n ∗ G) Schritten lösbar
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• KP hat pseudopolynomielle Lösung

– Ein Algorithmus für ein Zahlproblem M⊆X∗ ist pseudopolynomiell, wenn

seine Rechenzeit durch ein Polynom in |w| und MAX(w) beschränkt ist
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• TSP ist stark NP-vollständig
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⇓

Einschränkung auf kleine Zahlen ist nur zuweilen

eine Antwort auf das P−NP Dilemma
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– TSPopt: bestimme die kostengünstigste Rundreise

– BPPopt: bestimme die kleinste Anzahl der nötigen Behälter
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– R∞
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Approximationsschemata für das Rucksackproblem

KP = { (g1..gn, a1..an, G, A) | ∃J⊆{1..n}. Σi∈Jgi ≤G ∧ Σi∈Jai ≥A }

• Beliebig guter multiplikativer Fehler
– Für jedes ε gibt es einen Approximationsalgorithmus A mit

Laufzeit O(n3 ∗ ε−1) und Güte RA(w)≤1+ε für alle w
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• Kein konstanter additiver Fehler möglich
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– Die Reduktion PARTITION≤pBPP benutzt 2 Behälter
der Größe S :=
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– Direkte Verbindung ist kürzer als ein Umweg: ∀i, j, k. ci,j≤ci,k+ck,j

• Keine endliche Grenze für multiplikativen Fehler

– Es gibt keinen polynomiellen Algorithmus A mit R∞
A =r für ein r ∈N

Wenn es A geben würde, dann entscheiden wir HC polynomiell wie folgt

– Transformiere einen Graphen G = (V, E) in w = c12, ..., cn−1,n, |V |

mit cij = 1 falls {i, j} ∈E und cij = r|V | + 1 sonst

– Dann G ∈HC ⇒OPTTSP (w)=|V | und G 6∈HC ⇒OPTTSP (w)>(r+1)∗|V |

– Für große Graphen: A(w)≤r∗OPTTSP (w) also G ∈HC ⇔ A(w)≤r∗|V |

(Für kleine Graphen verwende den exponentiellen Entscheidungsalgorithmus)
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Beweistechnik: Reduktion auf NP-vollständiges Problem mit Multiplikation

des Kostenunterschieds zwischen positiver und negativer Antwort
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Travelling Salesman mit Dreiecksungleichung

TSP∆ = { c12, ..., cn−1,n, B | ∀i, j, k. ci,j≤ci,k+ck,j ∧ ∃π:{1..n}→{1..n}.

π bijektiv ∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• Approximationsalgorithmus
– Zu w = c12, ..., cn−1,n, B konstruiere vollständigen Graphen G = (V, E)
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Travelling Salesman mit Dreiecksungleichung

TSP∆ = { c12, ..., cn−1,n, B | ∀i, j, k. ci,j≤ci,k+ck,j ∧ ∃π:{1..n}→{1..n}.

π bijektiv ∧
∑n−1

i=1 cπ(i)π(i+1) + cπ(n)π(1) ≤ B }

• Approximationsalgorithmus
– Zu w = c12, ..., cn−1,n, B konstruiere vollständigen Graphen G = (V, E)
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– Einfaches Modell für probabilistische Algorithmen formulieren
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Probabilistische Berechnungsmodelle

• Probabilistische Turingmaschine

– Struktur: τ = (S, X , Γ, δ, s0, b)

– Zustandsüberführungsfunktion: δ:S×Γ → (S×Γ×{r,l,h})2

Jede Alternative wird mit Wahrscheinlichkeit 1/2 ausgewählt
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• Abstrakteres Modell: Probabilistische Algorithmen

– Programme mit zufälligen Entscheidungen

– Abstrakte Komplexität wie bisher

Was kann man mit polynomiell zeitbeschränkten

probabilistischen Algorithmen erreichen?
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• PP: Probabilistic Polynomial Monte-Carlo-Algorithmen

– Wahrscheinlichkeit für korrekte Antwort größer als 1/2

– PP = {L | ∃ PTM τ . ∀w. Prob( hτ(w)=χ
L
(w) ) > 1/2}
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– PP = {L | ∃ PTM τ . ∀w. Prob( hτ(w)=χ
L
(w) ) > 1/2}

• BPP: Bounded error Probabilistic Polynomial
– Wahrscheinlichkeit für korrekte Antwort größer als 1/2+ε
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• ZPP: Zero error PP Las-Vegas-Algorithmen

– Wahrscheinlichkeit für korrekte Antwort > 1/2, keine falschen Antworten

– ZPP = {L | ∃ PTM τ .

∀w ∈L. ( Prob( hτ(w)=1 ) > 1/2 ∧ Prob( hτ(w)=0 ) = 0 )

∧ ∀w 6∈L. Prob( hτ(w)=0 ) > 1/2 ∧ Prob( hτ(w)=1 ) = 0 )}
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Probabilistischer Primzahltest für n≥3 (Solovay/Strassen)

1. Wenn n gerade ist: Antwort “keine Primzahl”

2. Ansonsten wähle a ∈{1...n} zufällig

3. Falls gcd(n, a)6=1: Antwort “keine Primzahl”

4. Ansonsten setze ε := a(n−1)/2(mod n)

δ := J(a, n) (Jacobi Symbol)



Theoretische Informatik II §8: Komplexitätstheorie 14 NP-Vollständige Probleme
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Eigenschaften probabilistischer Sprachklassen

• k-fache Iteration von RP Algorithmen verringert die

Wahrscheinlichkeit einer falschen Antwort auf 2−k

– Ist τ die k-fache statistisch unabhängige Iteration einer PTM für L ∈RP ,

so gilt

∀w ∈L.Prob( hτ(w)=1 ) > 1−2−k
∧ ∀w 6∈L.Prob( hτ(w)=0 ) = 1

• t-fache Iteration eines BPP Algorithmus für t > k
− log(1−4ε2)

verringert die Wahrscheinlichkeit der falschen Antwort auf 2−k

– Sei τ t die (2t+1)-fache statistisch unabhängige Iteration einer PTM τ

für L ∈BPP , die genau dann akzeptiert, wenn τ mindestens t+1-mal

akzeptiert, so gilt für t > k−1
− log(1−4ε2)

∀w. Prob( hτ t(w)=χ
L
(w) ) > 1−2−k Wegener 75–77
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Sprachklassenhierarchie
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