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4. Methodik des Aufgabenlosens



BERECHENBARKEITSMODELLE I

e Turingmaschinen 7 = (S, X, I, 9, sg, b)
— Endlicher Automat mit unendlichem Band als Gedachtnis
— Beschreibung durch Zustandsuberfithrungstabellen
— Semantik definiert iiber Konfigurationen
— Berechenbarkeitsbegriff aut Worten, Zahlen, Mengen, . ..

— Viele Varianten
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— Viele Varianten

e Registermaschinen p = (S, k, 4, sqg, F)
— Vereinfachte Standardarchitektur von Einprozessorsystemen
— Einfache Registeroperationen erweitert durch Unterprogrammtechnik
— Berechenbarkeitsbegriff aut Zahlen aquivalent zu Turing-Berechenbarkeit
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BERECHENBARKEITSMODELLE I

e Turingmaschinen 7 = (S, X, I, 9, sg, b)
— Endlicher Automat mit unendlichem Band als Gedachtnis
— Beschreibung durch Zustandsuberfuhrungstabellen
— Semantik definiert iiber Konfigurationen
— Berechenbarkeitsbegrift aut Worten, Zahlen, Mengen, . . .

— Viele Varianten

® Registermaschinen p = (S, k, J, sg, F)
— Vereinfachte Standardarchitektur von Einprozessorsystemen
— Einfache Registeroperationen erweitert durch Unterprogrammtechnik
— Berechenbarkeitsbegriff aut Zahlen aquivalent zu Turing-Berechenbarkeit

e /-rekursive Funktionen
— Mathematischer Funktionenkalkiil aut Zahlen
— Anwendung von Operationen (°, Pr, p) auf Grundfunktionen (s, pry, ¢)
— Programmiertechniken simulierbar
— Primitiv-rekursive Funktionen als wichtige Teilklasse
— Aquivalent zu Register- und Turing-Berechenbarkeit
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e Typ-0 Grammatiken
— Regeln zur Produktion des Funktionsgraphen

— Aquivalent zu bisherigen Modellen
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BERECHENBARKEITSMODELLE I

e Typ-0 Grammatiken
— Regeln zur Produktion des Funktionsgraphen

— Aquivalent zu bisherigen Modellen

e \-Kalkul

— Einfaches mathematisches Modell funktionaler Programmiersprachen
— Funktionsdefinition, -anwendung und -auswertung
— Datenstrukturen wie Zahlen, Listen, Boole’sche Operatoren codierbar

— Aquivalent zu p-rekursiven Funktionen

e Weitere Modelle ebenfalls aquivalent

e Church’sche These

— Intuitiv berechenbar = Turing-berechenbar

— Unbeweisbare Arbeitshypothese
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ELEMENTARE BERECHENBARKEITSTHEORIE I

e Aufzahlbarkeit und Entscheidbarkeit

— Berechenbarkeit der (partiellen) charakteristischen Funktion einer Menge

— Viele aquivalente Charakterisierungen

— M entscheidbar < M und M aufzahlbar

— Abschlufleigenschaften: Vereinigung, Durchschnitt, Urbild
Entscheidbarkeit auch Komplement und Differenz
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e Universelle Maschinen
— Numerierung ¢ berechenbarer Funktionen (Aufzihlung der Programme)
— Universelle Funktion u(i, 7) := ¢;(7) ist berechenbar
— Programme konnen effektiv kombiniert werden (¢, ;) = ¢:°¢;)
— Rechenzeit ®;(n) = t ist entscheidbar
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— Viele aquivalente Charakterisierungen

— M entscheidbar < M und M aufzahlbar

— Abschlufleigenschaften: Vereinigung, Durchschnitt, Urbild
Entscheidbarkeit auch Komplement und Differenz

e Universelle Maschinen
— Numerierung ¢ berechenbarer Funktionen (Aufzihlung der Programme)
— Universelle Funktion u(i, 7) := ¢;(7) ist berechenbar
— Programme konnen effektiv kombiniert werden (¢, ;) = ¢:°¢;)
— Rechenzeit ®;(n) = t ist entscheidbar

e Beweistechniken fiir unlosbare Probleme
— Diagonalisierung: konstruiere Widerspruch aus Annahme der Losbarkeit
— Monotonieargumente: Funktion wachst zu stark, um berechenbar zu sein
— Problemreduktion: Abbildung auf bekanntes unlosbares Problem

— Satz von Rice: keine extensionale Eigenschaft berechenbarer Funktionen
ist entscheidbar
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KOMPLEXITATSTHEORIE I

e Komplexitatsmaile
— Zeit- und Platzkomplexitat abhangig von Grofie der Eingabe
— Vereinfachte Komplexitatsabschatzungen gentigen

— Asymptotische MeBgréfie O( f)
— Obergrenze fiir Handhabbarkeit ist polynomielles Wachstum
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— Zeit- und Platzkomplexitat abhangig von Grofle der Eingabe
— Vereinfachte Komplexitatsabschatzungen gentigen
— Asymptotische MeBgréfie O( f)
— Obergrenze fur Handhabbarkeit ist polynomielles Wachstum

e Komplexitat von Algorithmen
— Suchverfahren - lineare und logarithmische Laufzeit

— Sortierverfahren - quadratische Laufzeit und O(n * log, n)
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KOMPLEXITATSTHEORIE I

e Komplexitatsmaile
— Zeit- und Platzkomplexitat abhangig von Grofle der Eingabe
— Vereinfachte Komplexitatsabschatzungen gentigen

— Asymptotische MeBgréfie O( f)
— Obergrenze fur Handhabbarkeit ist polynomielles Wachstum

e Komplexitat von Algorithmen
— Suchverfahren - lineare und logarithmische Laufzeit

— Sortierverfahren - quadratische Laufzeit und O(n * log, n)

e Komplexitat von Problemen
— Untere Schranken fiir Komplexitat von Sortieren: O(n * log, n)

— Nichtdeterministische Komplexitat (Orakel oder Parallelverarbeitung)
— Komplexitatsklassen: ... LOGSPACE c P c NP c PSPACE < ..
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KOMPLEXITATSTHEORIE I

e \'P-Vollstandigkeit
— Polynomielle Reduzierbarkeit <,

— NP-Vollstandigkeit als schwierigste Klasse in NP
— Satz von Cook: Expliziter Vollstandigkeitsbeweis fiir S AT
— Vollstandigkeitsbeweise via <,: 3SAT. CLIQUE, VC, KP, GC, ...

— Klassen jenseits von NP:
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e \/P-Vollstandigkeit
— Polynomielle Reduzierbarkeit <,
— N'P-Vollstandigkeit als schwierigste Klasse in NP
— Satz von Cook: Expliziter Vollstandigkeitsbeweis fir S AT
— Vollstandigkeitsbeweise via <,: 3SAT CLIQUE, VC, KP, GC, ...

— Klassen jenseits von NP:

e Grenzuberschreitung
— Pseudopolynomielle Algorithmen

— Approximationsalgorithmen
— Probabilistische Algorithmen
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METHODIK DES AUFGABENLOSENS I

1. Voraussetzungen prazisieren
— Welche Begriffe sind zum Verstandnis der Aufgabe erforderlich

— Was ist eigentlich genau zu tun?
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1. Voraussetzungen prazisieren
— Welche Begriffe sind zum Verstandnis der Aufgabe erforderlich

— Was ist eigentlich genau zu tun?

2. Losungsweg konkretisieren
— Welche Einzelschritte benotigt man, um das Problem zu losen?

— Losungen der einzelnen Schritte knapp, aber prazise aufschreiben
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METHODIK DES AUFGABENLOSENS I

1. Voraussetzungen prazisieren
— Welche Begriffe sind zum Verstandnis der Aufgabe erforderlich

— Was ist eigentlich genau zu tun?

2. Losungsweg konkretisieren
— Welche Einzelschritte benotigt man, um das Problem zu losen?

— Losungen der einzelnen Schritte knapp, aber prazise aufschreiben

3. Argumente zu Losung zusammenfassen
— Losungen der Einzelschritte zu Gesamtergebnis zusammenfiithren

— Noch einmal hinschreiben, was jetzt insgesamt gezeigt ist
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BEISPIEL I: PRIMITIV-REKURSIVE FUNKTIONEN I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar
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BEISPIEL I: PRIMITIV-REKURSIVE FUNKTIONEN

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.
Stelle fak explizit durch Operatoren und Grundfunktionen dar

1. Voraussetzungen prazisieren
— £:N*—=N ist primitiv-rekursiv, wenn f aus primitiv-rekursiven Funktionen
durch Komposition oder primitive Rekursion entsteht

— Die Grundfunktionen s, pry’, und ¢; sind primitiv-rekursiv

— Primitiv-rekursive Funktionen aus Vorlesung, Ubungen, Probeklausur
- p, sub, mul, exp, ...

- Fallunterscheidung, Summierung, beschrankte Minimierung, . ..

— Zu tun:

Driicke fak durch obige Funktionen und Operatoren aus
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BEISPIEL I: fak IST PRIMITIV-REKURSIV I

2. Losungsweg konkretisieren
—Einzelschritte: versuche fak durch ein Operatorenschema zu beschreiben
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—Einzelschritte: versuche fak durch ein Operatorenschema zu beschreiben
- Einfache Komposition bekannter Funktionen reicht nicht
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—Einzelschritte: versuche fak durch ein Operatorenschema zu beschreiben
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— Da f und g primitiv rekursiv sind, folgt daf§ fak primitiv-rekursiv ist
— Operatorenschema: fak = Pr|c), (mul o (s o pri, pr3))
— Wir setzen ein: mul = Prlc}, (add o (pr{, pr3))] und add = Pr{pri, s o prs)]

fak = Pr(ct, (Prlch, (Priprl, sopri]o(pré, pri))] o (sopr?, pri))
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BEISPIEL I: fak IST PRIMITIV-REKURSIV I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

e Kurze, aufgeschriebene Losung
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und g(y, 2) = (y+1)*xz = mul(s(y), 2), also g=mul o (sopri,pr3)

— Da f und ¢ primitiv rekursiv sind, folgt daf§ fak primitiv-rekursiv ist

— Operatorenschema: fak = Pr|c!, (mul o (s o pr?, pr3))
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BEISPIEL I: fak IST PRIMITIV-REKURSIV I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

e Kurze, aufgeschriebene Losung
— Wir beschreiben fak durch das Schema der primitiven Rekursion
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Fak(y+1) = (y+1)! = (y+1)x! = (y+1)x fak(y) = gy, fak(y)
— Es folgt f() =1, also f=cd
und g(y, 2) = (y+1)*xz = mul(s(y), 2), also g=mul o (sopri,pr3)

— Da f und ¢ primitiv rekursiv sind, folgt daf§ fak primitiv-rekursiv ist

— Operatorenschema: fak = Pr|c!, (mul o (s o pr?, pr3))

— Nach Einsetzen

fak = Pr[c), (Pr(c}, (Prlpri,s o pri] o (pri,pri))] o (s o pri, pri))]
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Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

e Kurze, aufgeschriebene Losung
— Wir beschreiben fak durch das Schema der primitiven Rekursion
—Esist fak(0) =0!=1= f(),
Fak(y+1) = (y+1)! = (y+1)x! = (y+1)x fak(y) = gy, fak(y)
— Es folgt f() =1, also f=cd
und g(y, 2) = (y+1)*xz = mul(s(y), 2), also g=mul o (sopri,pr3)

— Da f und ¢ primitiv rekursiv sind, folgt daf§ fak primitiv-rekursiv ist

— Operatorenschema: fak = Pr|c!, (mul o (s o pr?, pr3))

— Nach Einsetzen

fak = Pr[c), (Pr(c}, (Prlpri,s o pri] o (pri,pri))] o (s o pri, pri))]

In vielen Fallen greift ein anderes Schema (Komposition, Minimierung, etc.) besser
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BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

1. Voraussetzungen prazisieren
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1. Voraussetzungen prazisieren

— M 1st entscheidbar, wenn x,, berechenbar ist
1 falls €M,

— Charakteristische Funktion x, (Z) =
0 sonst

— ¢: Numerierung berechenbarer Funktionen,

Fir jede berechenbare Funktion f gibt es in 7 mit f = ¢;
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Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

1. Voraussetzungen prazisieren

— M 1st entscheidbar, wenn x,, berechenbar ist

1 fallsdeM
— Charakteristische Funktion y M(f) = alls b & M

0 sonst

— ¢: Numerierung berechenbarer Funktionen,

Fir jede berechenbare Funktion f gibt es in 7 mit f = ¢;

— Zeige, daf3 die Annahme “RG ist entscheidbar” zum Widerspruch fithrt
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Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

1. Voraussetzungen prazisieren

— M 1st entscheidbar, wenn x,, berechenbar ist
1 falls €M,

— Charakteristische Funktion x, (Z) =
0 sonst

— ¢: Numerierung berechenbarer Funktionen,

Fir jede berechenbare Funktion f gibt es in 7 mit f = ¢;

— Zeige, daf3 die Annahme “RG ist entscheidbar” zum Widerspruch fithrt

— Mogliche Techniken: Diagonalisierung, Monotonieargumente,

Problemreduktion, Satz von Rice
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BEISPIEL 1I: DIAGONALISIERUNG I

2. Losungsweg konkretisieren
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BEISPIEL 1I: DIAGONALISIERUNG I

2. Losungsweg konkretisieren

— Einzelschritte der Diagonalisierung
1. Annahme RG ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
4. Zeige, da3 f auf seinem eigenen Index 7 widerspriichlich ist
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2. Losungsweg konkretisieren
— Einzelschritte der Diagonalisierung
1. Annahme RG ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
4. Zeige, da3 f auf seinem eigenen Index 7 widerspriichlich ist

, , 1 falls (2,2) e RG
7zu 2. definiere f(@) — { . <Z Z) © ? Schliisselidee fiir Widerspruch auf (j, j)
1 sonst
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1 falls (4,7) e RGy

1 sonst
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zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (¢,7) € RG
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Es gilt (7,7) € RGy
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Es gilt (i,7) e RG, < XR%(?L,Z') =1, also f(i) = ,LLZ[XR%(i,i) = 0]+
Da f berechenbar ist, gibt es einen Index j mit [ = ¢;
zu 4.. Wir betrachten das Verhalten von f auf 5
Es gilt (7,7) € RGy
& dneN ¢;(n) =7 (nach Definition von RG )
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— Einzelschritte der Diagonalisierung
1. Annahme RG ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
4. Zeige, da3 f auf seinem eigenen Index 7 widerspriichlich ist

1 falls (4,7) e RGy

. Schliisselidee fiir Widerspruch auf (7, j)
1 sonst

zu 2.: definiere f(i) = {

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (¢,7) € RG
Es gilt (¢,7) e RGy < XRG(b(i,i) =1, also f(i) = /LZ[XRG¢(i,i) = 0]+
Da f berechenbar ist, gibt es einen Index j mit [ = ¢;

zu 4.. Wir betrachten das Verhalten von f auf 5
Es gilt (7,7) € RGy
& dneN ¢;(n) =7 (nach Definition von RG )
< dneN. f(n)=j (f = ¢j)
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Es gilt (7,7) € RGy

& dneN. ¢](n> = (nach Definition von RG )
o IneN. f(n) = (f = ¢5)
& (4,7) ¢ RGy (nach Konstruktion von f)
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2. Losungsweg konkretisieren

— Einzelschritte der Diagonalisierung
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2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
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1 falls (4,7) e RGy

. Schliisselidee fiir Widerspruch auf (7, j)
1 sonst

zu 2.: definiere f(i) = {

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (¢,7) € RG
Es gilt (¢,7) e RGy < XRG(b(i,i) =1, also f(i) = /LZ[XRG¢(i,i) = 0]+
Da f berechenbar ist, gibt es einen Index j mit [ = ¢;

zu 4.. Wir betrachten das Verhalten von f auf 5
Es gilt (7,7) € RGy

& dneN. @(n) = (nach Definition von RG )
o IneN. f(n) = (f = ¢5)
& (4,7) ¢ RGy (nach Konstruktion von f)

Dies ist ein Widerspruch. Also kann RG 4 nicht entscheidbar sein
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BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

e Kurze, aufgeschriebene Losung
Wir nehmen an RGy sei entscheidbar.

Dann ist die charakteristische Funktion R, berechenbar.
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1 falls (7,7) e RG
Esseif(i){. alls (6,1) € RGo

7 sonst
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Wir nehmen an RGy sei entscheidbar.
Dann ist die charakteristische Funktion R, berechenbar.
Wir konstruieren mit y Ra, eine berechenbare Funktion f, die sich auf ihrer

eigenen Godelnummer widersprichlich verhalt.

1 falls (2,7) € RG
Esseif(i){. alls (6,1) € RGo

1 sonst
[ ist berechenbar, da (¢,7) e RG, < XRG¢(i,i) = 1.
Damit gibt es einen Index j mit [ = ¢;

Wir betrachten das Verhalten von f auf j

Es gilt (7,7) e RGy

THEORETISCHE INFORMATIK IT §9 12 RUCKBLICK




BEISPIEL 1I: DIAGONALISIERUNG I
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Dann ist die charakteristische Funktion R, berechenbar.
Wir konstruieren mit y Ra, eine berechenbare Funktion f, die sich auf ihrer

eigenen Godelnummer widersprichlich verhalt.

1 falls (2,7) € RG
Esseif(i){. alls (6,1) € RGo

1 sonst
[ ist berechenbar, da (¢,7) e RG, < XRG¢(i,i) = 1.
Damit gibt es einen Index j mit [ = ¢;

Wir betrachten das Verhalten von f auf j

Es gilt (j,7) e RGy < dneN. ¢;(n)=j
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1 falls (2,7) € RG
Esseif(i){. alls (6,1) € RGo

1 sonst
[ ist berechenbar, da (¢,7) e RG, < XRG¢(i,i) = 1.
Damit gibt es einen Index j mit [ = ¢;

Wir betrachten das Verhalten von f auf j

Es gilt (7,7) e RGy < dneN. ¢;(n)=j < IneN. f(n)=j
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7 sonst
[ ist berechenbar, da (¢,7) e RG, < XRG¢(i,i) = 1.
Damit gibt es einen Index j mit [ = ¢;
Wir betrachten das Verhalten von f auf j

Es gilt (7,7)e RGy < IneN. ¢j(n)=j & IneN. f(n)=7 & (J,7)¢RG,
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BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dafl VC (das Vertex Cover Problem) N P-vollstiandig ist

e Voraussetzungen prazisieren
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e Voraussetzungen prazisieren
— L ist N'P-vollstindig, falls L e NP und L'<,L fiir jedes L' e N'P
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BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren
— L ist N'P-vollstandig, falls L e NP und L'<,L fiir jedes L' e N'P
— L e NP, falls L von einer NTM in polynomieller Zeit entschieden wird
— L'<, L, falls es eine polynomiell bb. Funktion f gibt mit x € L' < f(z)eL
-VC ={(G, k)| FIV'cV.|V'|<k A V' Knoteniiberdeckung von G }

e Standard-Losungsweg
Zeige VC e NP
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e Voraussetzungen prazisieren
— L ist N'P-vollstandig, falls L e NP und L'<,L fiir jedes L' e N'P
— L e NP, falls L von einer NTM in polynomieller Zeit entschieden wird
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e Standard-Losungsweg
Zeige VC e NP
a) Beschreibe, welchen Losungsvorschlag das Orakel generiert
b) Beschreibe, wie Losungsvorschlag tiberprift wird
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e) Beschreibe Transformationsfunktion f, welche Eingaben aus
der Sprache fiir L' in Worte der Sprache fiir VC' umwandelt
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— L ist N'P-vollstindig, falls L e NP und L'<,L fiir jedes L' e N'P
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Zeige VC e N'P:
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Zeige VC e N'P:

a) Rate eine Kantenmenge V'cV
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Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazximal |V'| Schritte
Priife: V{v,v'} e E.veV'vo' eV’ mazimal |V'| % |E|<|V|? Schritte
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Aus VO e NP und CLIQUE<,VC folgt VC ist N'P-Vollstandig

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK




THEORETISCHE INFORMATIK- KURZGEFASST

FRAGEN 7

THEORETISCHE INFORMATIK IT §9 15 RUCKBLICK




