
Theoretische Informatik II

Einheit 9

Theoretische Informatik im Rückblick

1. Berechenbarkeitsmodelle

2. Berechenbarkeitstheorie

3. Komplexitätstheorie

4. Methodik des Aufgabenlösens
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• µ-rekursive Funktionen
– Mathematischer Funktionenkalkül auf Zahlen

– Anwendung von Operationen (◦, Pr, µ) auf Grundfunktionen (s, prn
k , cn

k)

– Programmiertechniken simulierbar

– Primitiv-rekursive Funktionen als wichtige Teilklasse

– Äquivalent zu Register- und Turing-Berechenbarkeit
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– Äquivalent zu bisherigen Modellen

• λ-Kalkül

– Einfaches mathematisches Modell funktionaler Programmiersprachen

– Funktionsdefinition, -anwendung und -auswertung

– Datenstrukturen wie Zahlen, Listen, Boole’sche Operatoren codierbar

– Äquivalent zu µ-rekursiven Funktionen

• Weitere Modelle ebenfalls äquivalent

• Church’sche These

– Intuitiv berechenbar ≡ Turing-berechenbar

– Unbeweisbare Arbeitshypothese
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– M entscheidbar ⇔ M und M aufzählbar

– Abschlußeigenschaften: Vereinigung, Durchschnitt, Urbild

Entscheidbarkeit auch Komplement und Differenz
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– Universelle Funktion u(i, j) := φi(j) ist berechenbar

– Programme können effektiv kombiniert werden (φh(i,j) = φi◦φj)

– Rechenzeit Φi(n) = t ist entscheidbar

• Beweistechniken für unlösbare Probleme
– Diagonalisierung: konstruiere Widerspruch aus Annahme der Lösbarkeit

– Monotonieargumente: Funktion wächst zu stark, um berechenbar zu sein

– Problemreduktion: Abbildung auf bekanntes unlösbares Problem

– Satz von Rice: keine extensionale Eigenschaft berechenbarer Funktionen
ist entscheidbar
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– Zeit- und Platzkomplexität abhängig von Größe der Eingabe
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• Komplexität von Algorithmen

– Suchverfahren - lineare und logarithmische Laufzeit

– Sortierverfahren - quadratische Laufzeit und O(n ∗ log2 n)

• Komplexität von Problemen

– Untere Schranken für Komplexität von Sortieren: O(n ∗ log2 n)

– Nichtdeterministische Komplexität (Orakel oder Parallelverarbeitung)

– Komplexitätsklassen: ... LOGSPACE ⊆ P ⊆ NP ⊆ PSPACE ⊆ ..
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– Polynomielle Reduzierbarkeit ≤p

– NP-Vollständigkeit als schwierigste Klasse in NP

– Satz von Cook: Expliziter Vollständigkeitsbeweis für SAT
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– NP-Vollständigkeit als schwierigste Klasse in NP

– Satz von Cook: Expliziter Vollständigkeitsbeweis für SAT

– Vollständigkeitsbeweise via ≤p: 3SAT , CLIQUE, V C, KP , GC, . . .

– Klassen jenseits von NP :

• Grenzüberschreitung

– Pseudopolynomielle Algorithmen

– Approximationsalgorithmen

– Probabilistische Algorithmen
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– Welche Einzelschritte benötigt man, um das Problem zu lösen?

– Lösungen der einzelnen Schritte knapp, aber präzise aufschreiben

3. Argumente zu Lösung zusammenfassen

– Lösungen der Einzelschritte zu Gesamtergebnis zusammenführen

– Noch einmal hinschreiben, was jetzt insgesamt gezeigt ist
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– Die Grundfunktionen s, prn
k , und cn

k sind primitiv-rekursiv

– Primitiv-rekursive Funktionen aus Vorlesung, Übungen, Probeklausur

· p, sub, mul, exp, . . .

· Fallunterscheidung, Summierung, beschränkte Minimierung, . . .

– Zu tun:

Drücke fak durch obige Funktionen und Operatoren aus
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Beispiel I: fak ist primitiv-rekursiv

Zeige, daß fak : N→N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

• Kurze, aufgeschriebene Lösung

– Wir beschreiben fak durch das Schema der primitiven Rekursion

– Es ist fak(0) = 0! = 1 = f(),

fak(y+1) = (y+1)! = (y+1)∗y! = (y+1)∗fak(y) = g(y, fak(y))

– Es folgt f() = 1, also f = c0
1

und g(y, z) = (y+1)∗z = mul(s(y), z), also g = mul ◦ (s ◦ pr2
1, pr

2
2)

– Da f und g primitiv rekursiv sind, folgt daß fak primitiv-rekursiv ist

– Operatorenschema: fak = Pr[c0
1, (mul ◦ (s ◦ pr2

1, pr
2
2))]
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Beispiel I: fak ist primitiv-rekursiv

Zeige, daß fak : N→N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

• Kurze, aufgeschriebene Lösung

– Wir beschreiben fak durch das Schema der primitiven Rekursion

– Es ist fak(0) = 0! = 1 = f(),

fak(y+1) = (y+1)! = (y+1)∗y! = (y+1)∗fak(y) = g(y, fak(y))

– Es folgt f() = 1, also f = c0
1

und g(y, z) = (y+1)∗z = mul(s(y), z), also g = mul ◦ (s ◦ pr2
1, pr

2
2)

– Da f und g primitiv rekursiv sind, folgt daß fak primitiv-rekursiv ist

– Operatorenschema: fak = Pr[c0
1, (mul ◦ (s ◦ pr2

1, pr
2
2))]

– Nach Einsetzen

fak = Pr[c0
1, (Pr[c1

0, (Pr[pr1
1, s ◦ pr3

3] ◦ (pr3
1, pr

3
3))] ◦ (s ◦ pr2

1, pr
2
2))]
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Beispiel I: fak ist primitiv-rekursiv

Zeige, daß fak : N→N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

• Kurze, aufgeschriebene Lösung

– Wir beschreiben fak durch das Schema der primitiven Rekursion

– Es ist fak(0) = 0! = 1 = f(),

fak(y+1) = (y+1)! = (y+1)∗y! = (y+1)∗fak(y) = g(y, fak(y))

– Es folgt f() = 1, also f = c0
1

und g(y, z) = (y+1)∗z = mul(s(y), z), also g = mul ◦ (s ◦ pr2
1, pr

2
2)

– Da f und g primitiv rekursiv sind, folgt daß fak primitiv-rekursiv ist

– Operatorenschema: fak = Pr[c0
1, (mul ◦ (s ◦ pr2

1, pr
2
2))]

– Nach Einsetzen

fak = Pr[c0
1, (Pr[c1

0, (Pr[pr1
1, s ◦ pr3

3] ◦ (pr3
1, pr

3
3))] ◦ (s ◦ pr2

1, pr
2
2))]

In vielen Fällen greift ein anderes Schema (Komposition, Minimierung, etc.) besser



Theoretische Informatik II §9 10 Rückblick

Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

1. Voraussetzungen präzisieren
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

1. Voraussetzungen präzisieren

– M ist entscheidbar, wenn χ
M

berechenbar ist
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

1. Voraussetzungen präzisieren

– M ist entscheidbar, wenn χ
M

berechenbar ist

– Charakteristische Funktion χ
M

(~x) =







1 falls ~x ∈M,

0 sonst



Theoretische Informatik II §9 10 Rückblick

Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

1. Voraussetzungen präzisieren

– M ist entscheidbar, wenn χ
M

berechenbar ist

– Charakteristische Funktion χ
M

(~x) =







1 falls ~x ∈M,

0 sonst

– φ: Numerierung berechenbarer Funktionen,

Für jede berechenbare Funktion f gibt es in j mit f = φj
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

1. Voraussetzungen präzisieren

– M ist entscheidbar, wenn χ
M

berechenbar ist

– Charakteristische Funktion χ
M

(~x) =







1 falls ~x ∈M,

0 sonst

– φ: Numerierung berechenbarer Funktionen,

Für jede berechenbare Funktion f gibt es in j mit f = φj

– Zeige, daß die Annahme “RGφ ist entscheidbar” zum Widerspruch führt
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

1. Voraussetzungen präzisieren

– M ist entscheidbar, wenn χ
M

berechenbar ist

– Charakteristische Funktion χ
M

(~x) =







1 falls ~x ∈M,

0 sonst

– φ: Numerierung berechenbarer Funktionen,

Für jede berechenbare Funktion f gibt es in j mit f = φj

– Zeige, daß die Annahme “RGφ ist entscheidbar” zum Widerspruch führt

– Mögliche Techniken: Diagonalisierung, Monotonieargumente,

Problemreduktion, Satz von Rice
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Beispiel II: Diagonalisierung

2. Lösungsweg konkretisieren
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Beispiel II: Diagonalisierung

2. Lösungsweg konkretisieren
– Einzelschritte der Diagonalisierung

1. Annahme RGφ ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels χ

RGφ

3. Zeige, daß f berechenbar ist, also f = φj für ein j

4. Zeige, daß f auf seinem eigenen Index j widersprüchlich ist
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Beispiel II: Diagonalisierung

2. Lösungsweg konkretisieren
– Einzelschritte der Diagonalisierung

1. Annahme RGφ ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels χ

RGφ

3. Zeige, daß f berechenbar ist, also f = φj für ein j

4. Zeige, daß f auf seinem eigenen Index j widersprüchlich ist

zu 2.: definiere f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst
Schlüsselidee für Widerspruch auf (j, j)
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Beispiel II: Diagonalisierung

2. Lösungsweg konkretisieren
– Einzelschritte der Diagonalisierung

1. Annahme RGφ ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels χ

RGφ

3. Zeige, daß f berechenbar ist, also f = φj für ein j

4. Zeige, daß f auf seinem eigenen Index j widersprüchlich ist

zu 2.: definiere f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst
Schlüsselidee für Widerspruch auf (j, j)

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (i, i) ∈RGφ
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Beispiel II: Diagonalisierung

2. Lösungsweg konkretisieren
– Einzelschritte der Diagonalisierung

1. Annahme RGφ ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels χ

RGφ

3. Zeige, daß f berechenbar ist, also f = φj für ein j

4. Zeige, daß f auf seinem eigenen Index j widersprüchlich ist

zu 2.: definiere f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst
Schlüsselidee für Widerspruch auf (j, j)

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (i, i) ∈RGφ

Es gilt (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1, also f(i) = µz[χRGφ
(i, i) = 0] + i
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Beispiel II: Diagonalisierung
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{

⊥ falls (i, i) ∈RGφ
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Es gilt (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1, also f(i) = µz[χRGφ
(i, i) = 0] + i

Da f berechenbar ist, gibt es einen Index j mit f = φj
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Beispiel II: Diagonalisierung

2. Lösungsweg konkretisieren
– Einzelschritte der Diagonalisierung

1. Annahme RGφ ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels χ

RGφ

3. Zeige, daß f berechenbar ist, also f = φj für ein j

4. Zeige, daß f auf seinem eigenen Index j widersprüchlich ist

zu 2.: definiere f(i) =

{
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i sonst
Schlüsselidee für Widerspruch auf (j, j)

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (i, i) ∈RGφ

Es gilt (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1, also f(i) = µz[χRGφ
(i, i) = 0] + i

Da f berechenbar ist, gibt es einen Index j mit f = φj

zu 4.: Wir betrachten das Verhalten von f auf j

Es gilt (j, j) ∈RGφ
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Beispiel II: Diagonalisierung

2. Lösungsweg konkretisieren
– Einzelschritte der Diagonalisierung

1. Annahme RGφ ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels χ

RGφ

3. Zeige, daß f berechenbar ist, also f = φj für ein j

4. Zeige, daß f auf seinem eigenen Index j widersprüchlich ist

zu 2.: definiere f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst
Schlüsselidee für Widerspruch auf (j, j)

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (i, i) ∈RGφ

Es gilt (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1, also f(i) = µz[χRGφ
(i, i) = 0] + i

Da f berechenbar ist, gibt es einen Index j mit f = φj

zu 4.: Wir betrachten das Verhalten von f auf j

Es gilt (j, j) ∈RGφ

⇔ ∃n ∈N. φj(n) = j (nach Definition von RGφ)
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Beispiel II: Diagonalisierung

2. Lösungsweg konkretisieren
– Einzelschritte der Diagonalisierung

1. Annahme RGφ ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels χ

RGφ

3. Zeige, daß f berechenbar ist, also f = φj für ein j

4. Zeige, daß f auf seinem eigenen Index j widersprüchlich ist

zu 2.: definiere f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst
Schlüsselidee für Widerspruch auf (j, j)

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (i, i) ∈RGφ

Es gilt (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1, also f(i) = µz[χRGφ
(i, i) = 0] + i

Da f berechenbar ist, gibt es einen Index j mit f = φj

zu 4.: Wir betrachten das Verhalten von f auf j

Es gilt (j, j) ∈RGφ

⇔ ∃n ∈N. φj(n) = j (nach Definition von RGφ)

⇔ ∃n ∈N. f(n) = j (f = φj)
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Beispiel II: Diagonalisierung

2. Lösungsweg konkretisieren
– Einzelschritte der Diagonalisierung

1. Annahme RGφ ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels χ

RGφ

3. Zeige, daß f berechenbar ist, also f = φj für ein j

4. Zeige, daß f auf seinem eigenen Index j widersprüchlich ist

zu 2.: definiere f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst
Schlüsselidee für Widerspruch auf (j, j)

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (i, i) ∈RGφ

Es gilt (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1, also f(i) = µz[χRGφ
(i, i) = 0] + i

Da f berechenbar ist, gibt es einen Index j mit f = φj

zu 4.: Wir betrachten das Verhalten von f auf j

Es gilt (j, j) ∈RGφ

⇔ ∃n ∈N. φj(n) = j (nach Definition von RGφ)

⇔ ∃n ∈N. f(n) = j (f = φj)

⇔ (j, j) 6∈RGφ (nach Konstruktion von f)
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Beispiel II: Diagonalisierung

2. Lösungsweg konkretisieren
– Einzelschritte der Diagonalisierung

1. Annahme RGφ ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels χ

RGφ

3. Zeige, daß f berechenbar ist, also f = φj für ein j

4. Zeige, daß f auf seinem eigenen Index j widersprüchlich ist

zu 2.: definiere f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst
Schlüsselidee für Widerspruch auf (j, j)

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (i, i) ∈RGφ

Es gilt (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1, also f(i) = µz[χRGφ
(i, i) = 0] + i

Da f berechenbar ist, gibt es einen Index j mit f = φj

zu 4.: Wir betrachten das Verhalten von f auf j

Es gilt (j, j) ∈RGφ

⇔ ∃n ∈N. φj(n) = j (nach Definition von RGφ)

⇔ ∃n ∈N. f(n) = j (f = φj)

⇔ (j, j) 6∈RGφ (nach Konstruktion von f)

Dies ist ein Widerspruch. Also kann RGφ nicht entscheidbar sein
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

• Kurze, aufgeschriebene Lösung

Wir nehmen an RGφ sei entscheidbar.

Dann ist die charakteristische Funktion χ
RGφ

berechenbar.
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

• Kurze, aufgeschriebene Lösung

Wir nehmen an RGφ sei entscheidbar.

Dann ist die charakteristische Funktion χ
RGφ

berechenbar.

Wir konstruieren mit χ
RGφ

eine berechenbare Funktion f , die sich auf ihrer

eigenen Gödelnummer widersprüchlich verhält.
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

• Kurze, aufgeschriebene Lösung

Wir nehmen an RGφ sei entscheidbar.

Dann ist die charakteristische Funktion χ
RGφ

berechenbar.

Wir konstruieren mit χ
RGφ

eine berechenbare Funktion f , die sich auf ihrer

eigenen Gödelnummer widersprüchlich verhält.

Es sei f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

• Kurze, aufgeschriebene Lösung

Wir nehmen an RGφ sei entscheidbar.

Dann ist die charakteristische Funktion χ
RGφ

berechenbar.

Wir konstruieren mit χ
RGφ

eine berechenbare Funktion f , die sich auf ihrer

eigenen Gödelnummer widersprüchlich verhält.

Es sei f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst

f ist berechenbar, da (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1.
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

• Kurze, aufgeschriebene Lösung

Wir nehmen an RGφ sei entscheidbar.

Dann ist die charakteristische Funktion χ
RGφ

berechenbar.

Wir konstruieren mit χ
RGφ

eine berechenbare Funktion f , die sich auf ihrer

eigenen Gödelnummer widersprüchlich verhält.

Es sei f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst

f ist berechenbar, da (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1.

Damit gibt es einen Index j mit f = φj
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

• Kurze, aufgeschriebene Lösung

Wir nehmen an RGφ sei entscheidbar.

Dann ist die charakteristische Funktion χ
RGφ

berechenbar.
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RGφ

eine berechenbare Funktion f , die sich auf ihrer

eigenen Gödelnummer widersprüchlich verhält.

Es sei f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst

f ist berechenbar, da (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1.

Damit gibt es einen Index j mit f = φj

Wir betrachten das Verhalten von f auf j

Es gilt (j, j) ∈RGφ
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

• Kurze, aufgeschriebene Lösung

Wir nehmen an RGφ sei entscheidbar.

Dann ist die charakteristische Funktion χ
RGφ

berechenbar.

Wir konstruieren mit χ
RGφ

eine berechenbare Funktion f , die sich auf ihrer

eigenen Gödelnummer widersprüchlich verhält.

Es sei f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst

f ist berechenbar, da (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1.

Damit gibt es einen Index j mit f = φj

Wir betrachten das Verhalten von f auf j

Es gilt (j, j) ∈RGφ ⇔ ∃n ∈N. φj(n)=j
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

• Kurze, aufgeschriebene Lösung

Wir nehmen an RGφ sei entscheidbar.

Dann ist die charakteristische Funktion χ
RGφ

berechenbar.

Wir konstruieren mit χ
RGφ

eine berechenbare Funktion f , die sich auf ihrer

eigenen Gödelnummer widersprüchlich verhält.

Es sei f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst

f ist berechenbar, da (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1.

Damit gibt es einen Index j mit f = φj

Wir betrachten das Verhalten von f auf j

Es gilt (j, j) ∈RGφ ⇔ ∃n ∈N. φj(n)=j ⇔ ∃n ∈N. f(n)=j
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

• Kurze, aufgeschriebene Lösung

Wir nehmen an RGφ sei entscheidbar.

Dann ist die charakteristische Funktion χ
RGφ

berechenbar.

Wir konstruieren mit χ
RGφ

eine berechenbare Funktion f , die sich auf ihrer

eigenen Gödelnummer widersprüchlich verhält.

Es sei f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst

f ist berechenbar, da (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1.

Damit gibt es einen Index j mit f = φj

Wir betrachten das Verhalten von f auf j

Es gilt (j, j) ∈RGφ ⇔ ∃n ∈N. φj(n)=j ⇔ ∃n ∈N. f(n)=j ⇔ (j, j) 6∈RGφ
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Beispiel II: Diagonalisierung

Zeige, daß RGφ = {(i, y) | ∃n ∈ N. φi(n)=y} nicht entscheidbar ist

• Kurze, aufgeschriebene Lösung

Wir nehmen an RGφ sei entscheidbar.

Dann ist die charakteristische Funktion χ
RGφ

berechenbar.

Wir konstruieren mit χ
RGφ

eine berechenbare Funktion f , die sich auf ihrer

eigenen Gödelnummer widersprüchlich verhält.

Es sei f(i) =

{

⊥ falls (i, i) ∈RGφ

i sonst

f ist berechenbar, da (i, i) ∈RGφ ⇔ χ
RGφ

(i, i) = 1.

Damit gibt es einen Index j mit f = φj

Wir betrachten das Verhalten von f auf j

Es gilt (j, j) ∈RGφ ⇔ ∃n ∈N. φj(n)=j ⇔ ∃n ∈N. f(n)=j ⇔ (j, j) 6∈RGφ

Dies ist ein Widerspruch. Also kann RGφ nicht entscheidbar sein
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Beispiel III: NP-Vollständigkeit

Zeige, daß V C (das Vertex Cover Problem) NP-vollständig ist

• Voraussetzungen präzisieren
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Beispiel III: NP-Vollständigkeit

Zeige, daß V C (das Vertex Cover Problem) NP-vollständig ist

• Voraussetzungen präzisieren
– L ist NP-vollständig, falls L ∈NP und L′≤pL für jedes L′ ∈NP
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Beispiel III: NP-Vollständigkeit

Zeige, daß V C (das Vertex Cover Problem) NP-vollständig ist
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– L ist NP-vollständig, falls L ∈NP und L′≤pL für jedes L′ ∈NP

– L ∈NP , falls L von einer NTM in polynomieller Zeit entschieden wird

– L′≤pL, falls es eine polynomiell bb. Funktion f gibt mit x ∈L′ ⇔ f(x) ∈L



Theoretische Informatik II §9 13 Rückblick

Beispiel III: NP-Vollständigkeit
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– L ist NP-vollständig, falls L ∈NP und L′≤pL für jedes L′ ∈NP

– L ∈NP , falls L von einer NTM in polynomieller Zeit entschieden wird

– L′≤pL, falls es eine polynomiell bb. Funktion f gibt mit x ∈L′ ⇔ f(x) ∈L

– V C = { (G, k) | ∃V ′⊆V . |V ′|≤k ∧ V ′ Knotenüberdeckung von G }
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Zeige, daß V C (das Vertex Cover Problem) NP-vollständig ist
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c) Zeige, daß das Prüfverfahren polynomiell ist

Zeige ∃L′ ∈NPC.L′≤pV C
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b) Prüfe |V ′|≤k maximal |V ′| Schritte
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Prüfe: ∀{v, v′} ∈E. v ∈V ′
∨v′ ∈V ′

maximal |V ′| ∗ |E|≤|V |3 Schritte

c) Gesamte Anzahl der Schritte ist in O(|V |3)

Zeige ∃L′ ∈NPC. L′≤pV C
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Zeige V C ∈NP :

a) Rate eine Kantenmenge V ′⊆V
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⇔ G hat Clique Vc der Mindestgröße k

⇔ Gc hat Knotenüberdeckung V ′ = V −Vc der Maximalgröße |V |−k

⇔ f(G, k) = (Gc, |V |−k) ∈V C

g) f ist in polynomieller Zeit O(|V |2) berechenbar
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Beispiel III: NP-Vollständigkeit von V C

Zeige V C ∈NP :

a) Rate eine Kantenmenge V ′⊆V

b) Prüfe |V ′|≤k maximal |V ′| Schritte

Prüfe: ∀{v, v′} ∈E. v ∈V ′
∨v′ ∈V ′

maximal |V ′| ∗ |E|≤|V |3 Schritte

c) Gesamte Anzahl der Schritte ist in O(|V |3)

Zeige ∃L′ ∈NPC. L′≤pV C

d) Wähle das NP-vollständige Cliquen Problem und zeige CLIQUE≤pV C

e) Es ist V ′ eine Clique in G = (V, E)

⇔ ∀v, v′ ∈V ′. v 6=v′⇒{v, v′} ∈E ⇔ ∀v, v′ ∈V ′.{v, v′} 6∈Ec

⇔ ∀{v, v′} ∈Ec.v ∈V −V ′
∨v′ ∈V −V

⇔ V −V ′ Knotenüberdeckung von Gc = (V, Ec)

Setze f(G, k) := (Gc, |V |−k)

f) Es folgt (G, k) ∈CLIQUE

⇔ G hat Clique Vc der Mindestgröße k

⇔ Gc hat Knotenüberdeckung V ′ = V −Vc der Maximalgröße |V |−k

⇔ f(G, k) = (Gc, |V |−k) ∈V C

g) f ist in polynomieller Zeit O(|V |2) berechenbar

Aus V C ∈NP und CLIQUE≤pV C folgt V C ist NP-Vollständig
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Theoretische Informatik- kurzgefaßt

FRAGEN ?


