Theoretische Informatik 11

pIVersy,
N Q’a}

Einheit 9 ' !a’
. i

Theoretische Informatik im Riuckblick Jem

.
\O d

1. Berechenbarkeitsmodelle
2. Berechenbarkeitstheorie

3. Komplexitatstheorie

4. Methodik des Aufgabenlosens

BERECHENBARKEITSMODELLE I

e Turingmaschinen 7 = (S, X, I, 9, sg, b)
— Endlicher Automat mit unendlichem Band als Gedachtnis
— Beschreibung durch Zustandsuberfithrungstabellen
— Semantik definiert iiber Konfigurationen
— Berechenbarkeitsbegriff aut Worten, Zahlen, Mengen, . ..

— Viele Varianten

THEORETISCHE INFORMATIK IT §9 1 RUCKBLICK

BERECHENBARKEITSMODELLE I

e Turingmaschinen 7 = (S, X, I, 9, sg, b)
— Endlicher Automat mit unendlichem Band als Gedachtnis
— Beschreibung durch Zustandsuberfuhrungstabellen
— Semantik definiert iiber Konfigurationen
— Berechenbarkeitsbegrift aut Worten, Zahlen, Mengen, . . .

— Viele Varianten

e Registermaschinen p = (S, k, 4, sqg, F)
— Vereinfachte Standardarchitektur von Einprozessorsystemen
— Einfache Registeroperationen erweitert durch Unterprogrammtechnik
— Berechenbarkeitsbegriff aut Zahlen aquivalent zu Turing-Berechenbarkeit

THEORETISCHE INFORMATIK II §9 1 RUCKBLICK

BERECHENBARKEITSMODELLE I

e Turingmaschinen 7 = (S, X, I, 9, sg, b)
— Endlicher Automat mit unendlichem Band als Gedachtnis
— Beschreibung durch Zustandsuberfuhrungstabellen
— Semantik definiert iiber Konfigurationen
— Berechenbarkeitsbegrift aut Worten, Zahlen, Mengen, . . .

— Viele Varianten

® Registermaschinen p = (S, k, J, sg, F)
— Vereinfachte Standardarchitektur von Einprozessorsystemen
— Einfache Registeroperationen erweitert durch Unterprogrammtechnik
— Berechenbarkeitsbegriff aut Zahlen aquivalent zu Turing-Berechenbarkeit

e /-rekursive Funktionen
— Mathematischer Funktionenkalkiil aut Zahlen
— Anwendung von Operationen (°, Pr, p) auf Grundfunktionen (s, pry, ¢)
— Programmiertechniken simulierbar
— Primitiv-rekursive Funktionen als wichtige Teilklasse
— Aquivalent zu Register- und Turing-Berechenbarkeit

THEORETISCHE INFORMATIK IT §9 1 RUCKBLICK

BERECHENBARKEITSMODELLE I

e Typ-0 Grammatiken
— Regeln zur Produktion des Funktionsgraphen

— Aquivalent zu bisherigen Modellen

THEORETISCHE INFORMATIK IT §9 2 RUCKBLICK

BERECHENBARKEITSMODELLE I

e Typ-0 Grammatiken
— Regeln zur Produktion des Funktionsgraphen

— Aquivalent zu bisherigen Modellen

e \-Kalkul

— Einfaches mathematisches Modell funktionaler Programmiersprachen
— Funktionsdefinition, -anwendung und -auswertung
— Datenstrukturen wie Zahlen, Listen, Boole’sche Operatoren codierbar

— Aquivalent zu p-rekursiven Funktionen

THEORETISCHE INFORMATIK IT §9 2 RUCKBLICK

BERECHENBARKEITSMODELLE I

e Typ-0 Grammatiken
— Regeln zur Produktion des Funktionsgraphen

— Aquivalent zu bisherigen Modellen

e \-Kalkul

— Einfaches mathematisches Modell funktionaler Programmiersprachen
— Funktionsdefinition, -anwendung und -auswertung
— Datenstrukturen wie Zahlen, Listen, Boole’sche Operatoren codierbar

— Aquivalent zu p-rekursiven Funktionen

e Weitere Modelle ebenfalls aquivalent

THEORETISCHE INFORMATIK II §9 2 RUCKBLICK

BERECHENBARKEITSMODELLE I

e Typ-0 Grammatiken
— Regeln zur Produktion des Funktionsgraphen

— Aquivalent zu bisherigen Modellen

e \-Kalkul

— Einfaches mathematisches Modell funktionaler Programmiersprachen
— Funktionsdefinition, -anwendung und -auswertung
— Datenstrukturen wie Zahlen, Listen, Boole’sche Operatoren codierbar

— Aquivalent zu p-rekursiven Funktionen

e Weitere Modelle ebenfalls aquivalent

e Church’sche These

— Intuitiv berechenbar = Turing-berechenbar

— Unbeweisbare Arbeitshypothese

THEORETISCHE INFORMATIK II §9 2 RUCKBLICK

ELEMENTARE BERECHENBARKEITSTHEORIE I

e Aufzahlbarkeit und Entscheidbarkeit

— Berechenbarkeit der (partiellen) charakteristischen Funktion einer Menge

— Viele aquivalente Charakterisierungen

— M entscheidbar < M und M aufzahlbar

— Abschlufleigenschaften: Vereinigung, Durchschnitt, Urbild
Entscheidbarkeit auch Komplement und Differenz

THEORETISCHE INFORMATIK IT §9 3 RUCKBLICK

ELEMENTARE BERECHENBARKEITSTHEORIE I

e Aufzahlbarkeit und Entscheidbarkeit

— Berechenbarkeit der (partiellen) charakteristischen Funktion einer Menge

— Viele aquivalente Charakterisierungen

— M entscheidbar < M und M aufzahlbar

— Abschlufleigenschaften: Vereinigung, Durchschnitt, Urbild
Entscheidbarkeit auch Komplement und Differenz

e Universelle Maschinen
— Numerierung ¢ berechenbarer Funktionen (Aufzihlung der Programme)
— Universelle Funktion u(i, 7) := ¢;(7) ist berechenbar
— Programme konnen effektiv kombiniert werden (¢, ;) = ¢:°¢;)
— Rechenzeit ®;(n) = t ist entscheidbar

THEORETISCHE INFORMATIK IT §9 3 RUCKBLICK

ELEMENTARE BERECHENBARKEITSTHEORIE I

e Aufzahlbarkeit und Entscheidbarkeit

— Berechenbarkeit der (partiellen) charakteristischen Funktion einer Menge

— Viele aquivalente Charakterisierungen

— M entscheidbar < M und M aufzahlbar

— Abschlufleigenschaften: Vereinigung, Durchschnitt, Urbild
Entscheidbarkeit auch Komplement und Differenz

e Universelle Maschinen
— Numerierung ¢ berechenbarer Funktionen (Aufzihlung der Programme)
— Universelle Funktion u(i, 7) := ¢;(7) ist berechenbar
— Programme konnen effektiv kombiniert werden (¢, ;) = ¢:°¢;)
— Rechenzeit ®;(n) = t ist entscheidbar

e Beweistechniken fiir unlosbare Probleme
— Diagonalisierung: konstruiere Widerspruch aus Annahme der Losbarkeit
— Monotonieargumente: Funktion wachst zu stark, um berechenbar zu sein
— Problemreduktion: Abbildung auf bekanntes unlosbares Problem

— Satz von Rice: keine extensionale Eigenschaft berechenbarer Funktionen
ist entscheidbar

THEORETISCHE INFORMATIK IT §9 3 RUCKBLICK

KOMPLEXITATSTHEORIE I

e Komplexitatsmaile
— Zeit- und Platzkomplexitat abhangig von Grofie der Eingabe
— Vereinfachte Komplexitatsabschatzungen gentigen

— Asymptotische MeBgréfie O(f)
— Obergrenze fiir Handhabbarkeit ist polynomielles Wachstum

THEORETISCHE INFORMATIK IT §9 4 RUCKBLICK

KOMPLEXITATSTHEORIE I

e Komplexitatsmaile
— Zeit- und Platzkomplexitat abhangig von Grofle der Eingabe
— Vereinfachte Komplexitatsabschatzungen gentigen
— Asymptotische MeBgréfie O(f)
— Obergrenze fur Handhabbarkeit ist polynomielles Wachstum

e Komplexitat von Algorithmen
— Suchverfahren - lineare und logarithmische Laufzeit

— Sortierverfahren - quadratische Laufzeit und O(n * log, n)

THEORETISCHE INFORMATIK II §9 4 RUCKBLICK

KOMPLEXITATSTHEORIE I

e Komplexitatsmaile
— Zeit- und Platzkomplexitat abhangig von Grofle der Eingabe
— Vereinfachte Komplexitatsabschatzungen gentigen

— Asymptotische MeBgréfie O(f)
— Obergrenze fur Handhabbarkeit ist polynomielles Wachstum

e Komplexitat von Algorithmen
— Suchverfahren - lineare und logarithmische Laufzeit

— Sortierverfahren - quadratische Laufzeit und O(n * log, n)

e Komplexitat von Problemen
— Untere Schranken fiir Komplexitat von Sortieren: O(n * log, n)

— Nichtdeterministische Komplexitat (Orakel oder Parallelverarbeitung)
— Komplexitatsklassen: ... LOGSPACE c P c NP c PSPACE < ..

THEORETISCHE INFORMATIK II §9 4 RUCKBLICK

KOMPLEXITATSTHEORIE I

e \'P-Vollstandigkeit
— Polynomielle Reduzierbarkeit <,

— NP-Vollstandigkeit als schwierigste Klasse in NP
— Satz von Cook: Expliziter Vollstandigkeitsbeweis fiir S AT
— Vollstandigkeitsbeweise via <,: 3SAT. CLIQUE, VC, KP, GC, ...

— Klassen jenseits von NP:

THEORETISCHE INFORMATIK IT §9 5 RUCKBLICK

KOMPLEXITATSTHEORIE I

e \/P-Vollstandigkeit
— Polynomielle Reduzierbarkeit <,
— N'P-Vollstandigkeit als schwierigste Klasse in NP
— Satz von Cook: Expliziter Vollstandigkeitsbeweis fir S AT
— Vollstandigkeitsbeweise via <,: 3SAT CLIQUE, VC, KP, GC, ...

— Klassen jenseits von NP:

e Grenzuberschreitung
— Pseudopolynomielle Algorithmen

— Approximationsalgorithmen
— Probabilistische Algorithmen

THEORETISCHE INFORMATIK IT §9 5 RUCKBLICK

METHODIK DES AUFGABENLOSENS I

1. Voraussetzungen prazisieren
— Welche Begriffe sind zum Verstandnis der Aufgabe erforderlich

— Was ist eigentlich genau zu tun?

THEORETISCHE INFORMATIK II §9 6 RUCKBLICK

METHODIK DES AUFGABENLOSENS I

1. Voraussetzungen prazisieren
— Welche Begriffe sind zum Verstandnis der Aufgabe erforderlich

— Was ist eigentlich genau zu tun?

2. Losungsweg konkretisieren
— Welche Einzelschritte benotigt man, um das Problem zu losen?

— Losungen der einzelnen Schritte knapp, aber prazise aufschreiben

THEORETISCHE INFORMATIK IT §9 6 RUCKBLICK

METHODIK DES AUFGABENLOSENS I

1. Voraussetzungen prazisieren
— Welche Begriffe sind zum Verstandnis der Aufgabe erforderlich

— Was ist eigentlich genau zu tun?

2. Losungsweg konkretisieren
— Welche Einzelschritte benotigt man, um das Problem zu losen?

— Losungen der einzelnen Schritte knapp, aber prazise aufschreiben

3. Argumente zu Losung zusammenfassen
— Losungen der Einzelschritte zu Gesamtergebnis zusammenfiithren

— Noch einmal hinschreiben, was jetzt insgesamt gezeigt ist

THEORETISCHE INFORMATIK IT §9 6 RUCKBLICK

BEISPIEL I: PRIMITIV-REKURSIVE FUNKTIONEN I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

THEORETISCHE INFORMATIK II §9 7 RUCKBLICK

BEISPIEL I: PRIMITIV-REKURSIVE FUNKTIONEN I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

1. Voraussetzungen prazisieren

THEORETISCHE INFORMATIK II §9 7 RUCKBLICK

BEISPIEL I: PRIMITIV-REKURSIVE FUNKTIONEN I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

1. Voraussetzungen prazisieren
— £:N*—=N ist primitiv-rekursiv, wenn f aus primitiv-rekursiven Funktionen

durch Komposition oder primitive Rekursion entsteht

THEORETISCHE INFORMATIK II §9 7 RUCKBLICK

BEISPIEL I: PRIMITIV-REKURSIVE FUNKTIONEN

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

1. Voraussetzungen prazisieren
— £:N*—=N ist primitiv-rekursiv, wenn f aus primitiv-rekursiven Funktionen
durch Komposition oder primitive Rekursion entsteht

— Die Grundfunktionen s, pry’, und ¢; sind primitiv-rekursiv

THEORETISCHE INFORMATIK II §9 7 RUCKBLICK

BEISPIEL I: PRIMITIV-REKURSIVE FUNKTIONEN

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

1. Voraussetzungen prazisieren
— £:N*—=N ist primitiv-rekursiv, wenn f aus primitiv-rekursiven Funktionen
durch Komposition oder primitive Rekursion entsteht

— Die Grundfunktionen s, pry’, und ¢; sind primitiv-rekursiv

— Primitiv-rekursive Funktionen aus Vorlesung, Ubungen, Probeklausur

- p, sub, mul, exp, ...

- Fallunterscheidung, Summierung, beschrankte Minimierung, . ..

THEORETISCHE INFORMATIK II §9 7 RUCKBLICK

BEISPIEL I: PRIMITIV-REKURSIVE FUNKTIONEN

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.
Stelle fak explizit durch Operatoren und Grundfunktionen dar

1. Voraussetzungen prazisieren
— £:N*—=N ist primitiv-rekursiv, wenn f aus primitiv-rekursiven Funktionen
durch Komposition oder primitive Rekursion entsteht

— Die Grundfunktionen s, pry’, und ¢; sind primitiv-rekursiv

— Primitiv-rekursive Funktionen aus Vorlesung, Ubungen, Probeklausur
- p, sub, mul, exp, ...

- Fallunterscheidung, Summierung, beschrankte Minimierung, . ..

— Zu tun:

Driicke fak durch obige Funktionen und Operatoren aus

THEORETISCHE INFORMATIK II §9 7 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

2. Losungsweg konkretisieren
—Einzelschritte: versuche fak durch ein Operatorenschema zu beschreiben

THEORETISCHE INFORMATIK IT §9 8 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

2. Losungsweg konkretisieren
—Einzelschritte: versuche fak durch ein Operatorenschema zu beschreiben
- Einfache Komposition bekannter Funktionen reicht nicht

THEORETISCHE INFORMATIK IT §9 8 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

2. Losungsweg konkretisieren
—Einzelschritte: versuche fak durch ein Operatorenschema zu beschreiben
- Einfache Komposition bekannter Funktionen reicht nicht
- Fallunterscheidung und Minimierung passen nicht

THEORETISCHE INFORMATIK IT §9 8 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

2. Losungsweg konkretisieren
—Einzelschritte: versuche fak durch ein Operatorenschema zu beschreiben
- Einfache Komposition bekannter Funktionen reicht nicht
- Fallunterscheidung und Minimierung passen nicht
- Versuche Schema der primitiven Rekursion

- fak=Pr|f,g] gilt, wenn fak(Z,0)=f(Z), fak(Z,y+1)=g(Z,y, fak(Z, y))

THEORETISCHE INFORMATIK IT §9 8 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

2. Losungsweg konkretisieren

—Einzelschritte: versuche fak durch ein Operatorenschema zu beschreiben

- Einfache Komposition bekannter Funktionen reicht nicht

- Fallunterscheidung und Minimierung passen nicht

- Versuche Schema der primitiven Rekursion
— fak=Pr(f,g] gilt, wenn fak(Z,0)=f(Z), fak(Z, y+1)=g(Z,y, fak(Z,y))
— Dabei muB f:N’—N und ¢:N?>—N sein, also fallt Z ganz weg.
— Eingesetzt: fak(0) =0l =1= f(),

fak(y+1) = (y+1)! = (y+1)*xy! = (y+1)* fak(y) = g(y, fak(y))

THEORETISCHE INFORMATIK IT §9 8 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

2. Losungsweg konkretisieren
—Einzelschritte: versuche fak durch ein Operatorenschema zu beschreiben
- Einfache Komposition bekannter Funktionen reicht nicht
- Fallunterscheidung und Minimierung passen nicht
- Versuche Schema der primitiven Rekursion
— fak=Pr(f,g] gilt, wenn fak(Z,0)=f(Z), fak(Z, y+1)=g(Z,y, fak(Z,y))
— Dabei muB f:N’—N und ¢:N?>—N sein, also fallt Z ganz weg.
— Eingesetzt: fak(0) =0l =1= f(),
fak(y+1) = (y+1)! = (y+1)*xy! = (y+1)* fak(y) = g(y, fak(y))
— Es folgt f() =1, also f=d<
und ¢(y, z) = (y+1)xz = mul(s(y), 2), also g = mul o (s o pr?, pr3)

THEORETISCHE INFORMATIK IT §9 8 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

2. Losungsweg konkretisieren
—Einzelschritte: versuche fak durch ein Operatorenschema zu beschreiben
- Einfache Komposition bekannter Funktionen reicht nicht
- Fallunterscheidung und Minimierung passen nicht
- Versuche Schema der primitiven Rekursion
— fak=Pr|f,g] gilt, wenn fak(Z,0)=f(Z), fak(Z, y+1)=9(Z,y, fak(Z,y))
— Dabei mufl f:N"—N und ¢:N?—N sein, also fallt Z ganz weg.
— Eingesetzt: fak(0) =0l =1= f(),
fak(y+1) = (y+1)! = (y+1)*xy! = (y+1)* fak(y) = g(y, fak(y))
— Es folgt f() =1, also f=d<
und ¢(y, z) = (y+1)xz = mul(s(y), 2), also g = mul o (s o pr?, pr3)

3. Argumente zu Losung zusammenfassen

THEORETISCHE INFORMATIK IT §9 8 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

2. Losungsweg konkretisieren
—Einzelschritte: versuche fak durch ein Operatorenschema zu beschreiben
- Einfache Komposition bekannter Funktionen reicht nicht
- Fallunterscheidung und Minimierung passen nicht
- Versuche Schema der primitiven Rekursion
— fak=Pr(f,g] gilt, wenn fak(Z,0)=f(Z), fak(Z, y+1)=g(Z,y, fak(Z,y))
— Dabei muB f:N’—N und ¢:N?>—N sein, also fallt Z ganz weg.
— Eingesetzt: fak(0) =0l =1= f(),
fak(y+1) = (y+1)! = (y+1)*xy! = (y+1)* fak(y) = g(y, fak(y))
— Es folgt f() =1, also f=d<
und ¢(y, 2) = (y+1)xz = mul(s(y), z), also g = mul o (s o pr?, pr3

3. Argumente zu Losung zusammenfassen
— Da f und g primitiv rekursiv sind, folgt daf§ fak primitiv-rekursiv ist

THEORETISCHE INFORMATIK IT §9 8 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

2. Losungsweg konkretisieren
—Einzelschritte: versuche fak durch ein Operatorenschema zu beschreiben
- Einfache Komposition bekannter Funktionen reicht nicht
- Fallunterscheidung und Minimierung passen nicht
- Versuche Schema der primitiven Rekursion
— fak=Pr(f,g] gilt, wenn fak(Z,0)=f(Z), fak(Z, y+1)=g(Z,y, fak(Z,y))
— Dabei muB f:N’—N und ¢:N?>—N sein, also fallt Z ganz weg.
— Eingesetzt: fak(0) =0l =1= f(),
fak(y+1) = (y+1)! = (y+1)*xy! = (y+1)* fak(y) = g(y, fak(y))
— Es folgt f() =1, also f=d<
und ¢(y, 2) = (y+1)xz = mul(s(y), z), also g = mul o (s o pr?, pr3

3. Argumente zu Losung zusammenfassen
— Da f und g primitiv rekursiv sind, folgt daf§ fak primitiv-rekursiv ist
— Operatorenschema: fak = Pr|c), (mul o (s o pri, pr3))

THEORETISCHE INFORMATIK IT §9 8 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

2. Losungsweg konkretisieren
—Einzelschritte: versuche fak durch ein Operatorenschema zu beschreiben
- Einfache Komposition bekannter Funktionen reicht nicht
- Fallunterscheidung und Minimierung passen nicht
- Versuche Schema der primitiven Rekursion
— fak=Pr(f,g] gilt, wenn fak(Z,0)=f(Z), fak(Z, y+1)=g(Z,y, fak(Z,y))
— Dabei muB f:N’—N und ¢:N?>—N sein, also fallt Z ganz weg.
— Eingesetzt: fak(0) =0l =1= f(),
fak(y+1) = (y+1)! = (y+1)*xy! = (y+1)* fak(y) = g(y, fak(y))
— Es folgt f() =1, also f=d<
und ¢(y, z) = (y+1)xz = mul(s(y), 2), also g = mul o (s o pr?, pr3)

3. Argumente zu Losung zusammenfassen
— Da f und g primitiv rekursiv sind, folgt daf§ fak primitiv-rekursiv ist
— Operatorenschema: fak = Pr|c), (mul o (s o pri, pr3))
— Wir setzen ein: mul = Prlc}, (add o (pr{, pr3))] und add = Pr{pri, s o prs)]

fak = Pr(ct, (Prlch, (Priprl, sopri]o(pré, pri))] o (sopr?, pri))

THEORETISCHE INFORMATIK IT §9 8 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

e Kurze, aufgeschriebene Losung

THEORETISCHE INFORMATIK II §9 9 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

e Kurze, aufgeschriebene Losung

— Wir beschreiben fak durch das Schema der primitiven Rekursion

THEORETISCHE INFORMATIK II §9 9 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

e Kurze, aufgeschriebene Losung

— Wir beschreiben fak durch das Schema der primitiven Rekursion
—Esist fak(0) =0!=1= f(),
fak(y+1) = (y+1)! = (y+1)xy! = (y+1)x fak(y) = g(y, fak(y))

THEORETISCHE INFORMATIK IT §9 9 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

e Kurze, aufgeschriebene Losung
— Wir beschreiben fak durch das Schema der primitiven Rekursion
—Esist fak(0) =0!=1= f(),
Fak(y+1) = (y+1)! = (y+1)x! = (y+1)x fak(y) = gy, fak(y)
— Es folgt f() =1, also f=cd
und g(y, 2) = (y+1)*xz = mul(s(y), 2), also g=mul o (sopri,pr3)

THEORETISCHE INFORMATIK IT §9 9 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

e Kurze, aufgeschriebene Losung
— Wir beschreiben fak durch das Schema der primitiven Rekursion
—Esist fak(0) =0!=1= f(),
Fak(y+1) = (y+1)! = (y+1)x! = (y+1)x fak(y) = gy, fak(y)
— Es folgt f() =1, also f=cd
und g(y, 2) = (y+1)*xz = mul(s(y), 2), also g=mul o (sopri,pr3)

— Da f und ¢ primitiv rekursiv sind, folgt daf§ fak primitiv-rekursiv ist

THEORETISCHE INFORMATIK IT §9 9 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

e Kurze, aufgeschriebene Losung
— Wir beschreiben fak durch das Schema der primitiven Rekursion
—Esist fak(0) =0!=1= f(),
Fak(y+1) = (y+1)! = (y+1)x! = (y+1)x fak(y) = gy, fak(y)
— Es folgt f() =1, also f=cd
und g(y, 2) = (y+1)*xz = mul(s(y), 2), also g=mul o (sopri,pr3)

— Da f und ¢ primitiv rekursiv sind, folgt daf§ fak primitiv-rekursiv ist

— Operatorenschema: fak = Pr|c!, (mul o (s o pr?, pr3))

THEORETISCHE INFORMATIK IT §9 9 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

e Kurze, aufgeschriebene Losung
— Wir beschreiben fak durch das Schema der primitiven Rekursion
—Esist fak(0) =0!=1= f(),
Fak(y+1) = (y+1)! = (y+1)x! = (y+1)x fak(y) = gy, fak(y)
— Es folgt f() =1, also f=cd
und g(y, 2) = (y+1)*xz = mul(s(y), 2), also g=mul o (sopri,pr3)

— Da f und ¢ primitiv rekursiv sind, folgt daf§ fak primitiv-rekursiv ist

— Operatorenschema: fak = Pr|c!, (mul o (s o pr?, pr3))

— Nach Einsetzen

fak = Pr[c), (Pr(c}, (Prlpri,s o pri] o (pri,pri))] o (s o pri, pri))]

THEORETISCHE INFORMATIK II §9 9 RUCKBLICK

BEISPIEL I: fak IST PRIMITIV-REKURSIV I

Zeige, daf3 fak:N—N mit fak(n) = n! primitiv rekursiv ist.

Stelle fak explizit durch Operatoren und Grundfunktionen dar

e Kurze, aufgeschriebene Losung
— Wir beschreiben fak durch das Schema der primitiven Rekursion
—Esist fak(0) =0!=1= f(),
Fak(y+1) = (y+1)! = (y+1)x! = (y+1)x fak(y) = gy, fak(y)
— Es folgt f() =1, also f=cd
und g(y, 2) = (y+1)*xz = mul(s(y), 2), also g=mul o (sopri,pr3)

— Da f und ¢ primitiv rekursiv sind, folgt daf§ fak primitiv-rekursiv ist

— Operatorenschema: fak = Pr|c!, (mul o (s o pr?, pr3))

— Nach Einsetzen

fak = Pr[c), (Pr(c}, (Prlpri,s o pri] o (pri,pri))] o (s o pri, pri))]

In vielen Fallen greift ein anderes Schema (Komposition, Minimierung, etc.) besser

THEORETISCHE INFORMATIK IT §9 9 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

1. Voraussetzungen prazisieren

THEORETISCHE INFORMATIK II §9 10 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

1. Voraussetzungen prazisieren

— M 1st entscheidbar, wenn x,, berechenbar ist

THEORETISCHE INFORMATIK II §9 10 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

1. Voraussetzungen prazisieren

— M 1st entscheidbar, wenn x,, berechenbar ist
1 falls €M,

— Charakteristische Funktion x, (Z) =
0 sonst

THEORETISCHE INFORMATIK II §9 10 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

1. Voraussetzungen prazisieren

— M 1st entscheidbar, wenn x,, berechenbar ist
1 falls €M,

— Charakteristische Funktion x, (Z) =
0 sonst

— ¢: Numerierung berechenbarer Funktionen,

Fir jede berechenbare Funktion f gibt es in 7 mit f = ¢;

THEORETISCHE INFORMATIK II §9 10 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

1. Voraussetzungen prazisieren

— M 1st entscheidbar, wenn x,, berechenbar ist

1 fallsdeM
— Charakteristische Funktion y M(f) = alls b & M

0 sonst

— ¢: Numerierung berechenbarer Funktionen,

Fir jede berechenbare Funktion f gibt es in 7 mit f = ¢;

— Zeige, daf3 die Annahme “RG ist entscheidbar” zum Widerspruch fithrt

THEORETISCHE INFORMATIK II §9 10 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

1. Voraussetzungen prazisieren

— M 1st entscheidbar, wenn x,, berechenbar ist
1 falls €M,

— Charakteristische Funktion x, (Z) =
0 sonst

— ¢: Numerierung berechenbarer Funktionen,

Fir jede berechenbare Funktion f gibt es in 7 mit f = ¢;

— Zeige, daf3 die Annahme “RG ist entscheidbar” zum Widerspruch fithrt

— Mogliche Techniken: Diagonalisierung, Monotonieargumente,

Problemreduktion, Satz von Rice

THEORETISCHE INFORMATIK II §9 10 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

2. Losungsweg konkretisieren

THEORETISCHE INFORMATIK IT §9 11 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

2. Losungsweg konkretisieren

— Einzelschritte der Diagonalisierung
1. Annahme RG ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
4. Zeige, da3 f auf seinem eigenen Index 7 widerspriichlich ist

THEORETISCHE INFORMATIK IT §9 11 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

2. Losungsweg konkretisieren
— Einzelschritte der Diagonalisierung
1. Annahme RG ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
4. Zeige, da3 f auf seinem eigenen Index 7 widerspriichlich ist

, , 1 falls (2,2) e RG
7zu 2. definiere f(@) — { . <Z Z) © ? Schliisselidee fiir Widerspruch auf (j, j)
1 sonst

THEORETISCHE INFORMATIK II §9 11

RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

2. Losungsweg konkretisieren

— Einzelschritte der Diagonalisierung
1. Annahme RG ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
4. Zeige, da3 f auf seinem eigenen Index 7 widerspriichlich ist

1 falls (4,7) e RGy

1 sonst

Schliisselidee fiir Widerspruch auf (j, j)

zu 2.: definiere f(i) = {

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (¢,7) € RG

RUCKBLICK

THEORETISCHE INFORMATIK II §9 11

BEISPIEL 1I: DIAGONALISIERUNG I

2. Losungsweg konkretisieren

— Einzelschritte der Diagonalisierung
1. Annahme RG ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
4. Zeige, da3 f auf seinem eigenen Index 7 widerspriichlich ist

1 falls (4,7) e RGy

1 sonst

Schliisselidee fiir Widerspruch auf (7, j)

zu 2.: definiere f(i) = {

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (¢,7) € RG
Es gilt (¢,7) e RGy < XRG(b(i,i) =1, also f(i) = /LZ[XRG¢(i,i) = 0]+

RUCKBLICK

THEORETISCHE INFORMATIK II §9 11

BEISPIEL 1I: DIAGONALISIERUNG I

2. Losungsweg konkretisieren

— Einzelschritte der Diagonalisierung
1. Annahme RG ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
4. Zeige, da3 f auf seinem eigenen Index 7 widerspriichlich ist

1 falls (4,7) e RGy

1 sonst

Schliisselidee fiir Widerspruch auf (7, j)

zu 2.: definiere f(i) = {

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (¢,7) € RG
Es gilt (¢,7) e RGy < XRG(b(i,i) =1, also f(i) = /LZ[XRG¢(i,i) = 0]+
Da f berechenbar ist, gibt es einen Index j mit [= ¢;

RUCKBLICK

THEORETISCHE INFORMATIK II §9 11

BEISPIEL 1I: DIAGONALISIERUNG I

2. Losungsweg konkretisieren

— Einzelschritte der Diagonalisierung
1. Annahme RG ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
4. Zeige, da3 f auf seinem eigenen Index 7 widerspriichlich ist

1 falls (4,7) e RGy

1 sonst

Schliisselidee fiir Widerspruch auf (j, j)

zu 2.: definiere f(i) = {

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (¢,7) € RG
Es gilt (¢,7) e RGy < XRG(b(i,i) =1, also f(i) = ,LLZ[XR%(i,i) = 0]+
Da f berechenbar ist, gibt es einen Index j mit [= ¢;

zu 4.. Wir betrachten das Verhalten von f auf 5
Es gilt (7,7) € RGy

RUCKBLICK

THEORETISCHE INFORMATIK II §9 11

BEISPIEL 1I: DIAGONALISIERUNG I

2. Losungsweg konkretisieren

— Einzelschritte der Diagonalisierung
1. Annahme RG ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
4. Zeige, da3 f auf seinem eigenen Index 7 widerspriichlich ist

1 falls (4,7) e RGy

1 sonst

Schliisselidee fiir Widerspruch auf (7, j)

zu 2.: definiere f(i) = {

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (¢,7) € RG
Es gilt (i,7) e RG, < XR%(?L,Z') =1, also f(i) = ,LLZ[XR%(i,i) = 0]+
Da f berechenbar ist, gibt es einen Index j mit [= ¢;
zu 4.. Wir betrachten das Verhalten von f auf 5
Es gilt (7,7) € RGy
& dneN ¢;(n) =7 (nach Definition von RG)

RUCKBLICK

THEORETISCHE INFORMATIK II §9 11

BEISPIEL 1I: DIAGONALISIERUNG I

2. Losungsweg konkretisieren

— Einzelschritte der Diagonalisierung
1. Annahme RG ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
4. Zeige, da3 f auf seinem eigenen Index 7 widerspriichlich ist

1 falls (4,7) e RGy

. Schliisselidee fiir Widerspruch auf (7, j)
1 sonst

zu 2.: definiere f(i) = {

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (¢,7) € RG
Es gilt (¢,7) e RGy < XRG(b(i,i) =1, also f(i) = /LZ[XRG¢(i,i) = 0]+
Da f berechenbar ist, gibt es einen Index j mit [= ¢;

zu 4.. Wir betrachten das Verhalten von f auf 5
Es gilt (7,7) € RGy
& dneN ¢;(n) =7 (nach Definition von RG)
< dneN. f(n)=j (f = ¢j)

THEORETISCHE INFORMATIK IT §9 11 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

2. Losungsweg konkretisieren

— Einzelschritte der Diagonalisierung
1. Annahme RG ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
4. Zeige, da3 f auf seinem eigenen Index 7 widerspriichlich ist

1 falls (4,7) e RGy

. Schliisselidee fiir Widerspruch auf (7, j)
1 sonst

zu 2.: definiere f(i) = {

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (¢,7) € RG
Es gilt (¢,7) e RGy < XRG(b(i,i) =1, also f(i) = /LZ[XRG¢(i,i) = 0]+
Da f berechenbar ist, gibt es einen Index j mit [= ¢;

zu 4.. Wir betrachten das Verhalten von f auf 5
Es gilt (7,7) € RGy

& dneN. ¢](n> = (nach Definition von RG)
o IneN. f(n) = (f = ¢5)
& (4,7) ¢ RGy (nach Konstruktion von f)

THEORETISCHE INFORMATIK IT §9 11 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

2. Losungsweg konkretisieren

— Einzelschritte der Diagonalisierung
1. Annahme RG ist entscheidbar
2. Konstruiere eine Diagonalfunktion f mittels y e,
3. Zeige, dal f berechenbar ist, also f = ¢; fir ein j
4. Zeige, da3 f auf seinem eigenen Index 7 widerspriichlich ist

1 falls (4,7) e RGy

. Schliisselidee fiir Widerspruch auf (7, j)
1 sonst

zu 2.: definiere f(i) = {

zu 3.: f berechenbar, da erzeugt durch Fallunterscheidung mit Test (¢,7) € RG
Es gilt (¢,7) e RGy < XRG(b(i,i) =1, also f(i) = /LZ[XRG¢(i,i) = 0]+
Da f berechenbar ist, gibt es einen Index j mit [= ¢;

zu 4.. Wir betrachten das Verhalten von f auf 5
Es gilt (7,7) € RGy

& dneN. @(n) = (nach Definition von RG)
o IneN. f(n) = (f = ¢5)
& (4,7) ¢ RGy (nach Konstruktion von f)

Dies ist ein Widerspruch. Also kann RG 4 nicht entscheidbar sein

THEORETISCHE INFORMATIK IT §9 11 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

e Kurze, aufgeschriebene Losung
Wir nehmen an RGy sei entscheidbar.

Dann ist die charakteristische Funktion R, berechenbar.

THEORETISCHE INFORMATIK IT §9 12 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

e Kurze, aufgeschriebene Losung
Wir nehmen an RGy sei entscheidbar.
Dann ist die charakteristische Funktion R, berechenbar.
Wir konstruieren mit y Ra, eine berechenbare Funktion f, die sich auf ihrer

eigenen Godelnummer widersprichlich verhalt.

THEORETISCHE INFORMATIK IT §9 12 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

e Kurze, aufgeschriebene Losung
Wir nehmen an RGy sei entscheidbar.
Dann ist die charakteristische Funktion R, berechenbar.
Wir konstruieren mit y Ra, eine berechenbare Funktion f, die sich auf ihrer

eigenen Godelnummer widersprichlich verhalt.

1 falls (7,7) e RG
Esseif(i){. alls (6,1) € RGo

7 sonst

THEORETISCHE INFORMATIK IT §9 12 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

e Kurze, aufgeschriebene Losung
Wir nehmen an RGy sei entscheidbar.
Dann ist die charakteristische Funktion R, berechenbar.
Wir konstruieren mit y Ra, eine berechenbare Funktion f, die sich auf ihrer

eigenen Godelnummer widersprichlich verhalt.

1 falls (7,7) e RG
Esseif(i){. alls (6,1) € RGo

7 sonst

[ist berechenbar, da (¢,7) e RG, < XRG¢(i,i) = 1.

THEORETISCHE INFORMATIK IT §9 12 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

e Kurze, aufgeschriebene Losung
Wir nehmen an RGy sei entscheidbar.
Dann ist die charakteristische Funktion R, berechenbar.
Wir konstruieren mit y Ra, eine berechenbare Funktion f, die sich auf ihrer

eigenen Godelnummer widersprichlich verhalt.

1 falls (7,7) e RG
Esseif(i){. alls (6,1) € RGo

7 sonst
[ist berechenbar, da (¢,7) e RG, < XRG¢(i,i) = 1.
Damit gibt es einen Index j mit [= ¢;

THEORETISCHE INFORMATIK IT §9 12 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

e Kurze, aufgeschriebene Losung
Wir nehmen an RGy sei entscheidbar.
Dann ist die charakteristische Funktion R, berechenbar.
Wir konstruieren mit y Ra, eine berechenbare Funktion f, die sich auf ihrer

eigenen Godelnummer widersprichlich verhalt.

1 falls (2,7) € RG
Esseif(i){. alls (6,1) € RGo

1 sonst
[ist berechenbar, da (¢,7) e RG, < XRG¢(i,i) = 1.
Damit gibt es einen Index j mit [= ¢;

Wir betrachten das Verhalten von f auf j

Es gilt (7,7) e RGy

THEORETISCHE INFORMATIK IT §9 12 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

e Kurze, aufgeschriebene Losung
Wir nehmen an RGy sei entscheidbar.
Dann ist die charakteristische Funktion R, berechenbar.
Wir konstruieren mit y Ra, eine berechenbare Funktion f, die sich auf ihrer

eigenen Godelnummer widersprichlich verhalt.

1 falls (2,7) € RG
Esseif(i){. alls (6,1) € RGo

1 sonst
[ist berechenbar, da (¢,7) e RG, < XRG¢(i,i) = 1.
Damit gibt es einen Index j mit [= ¢;

Wir betrachten das Verhalten von f auf j

Es gilt (j,7) e RGy < dneN. ¢;(n)=j

THEORETISCHE INFORMATIK IT §9 12 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

e Kurze, aufgeschriebene Losung
Wir nehmen an RGy sei entscheidbar.
Dann ist die charakteristische Funktion R, berechenbar.
Wir konstruieren mit y Ra, eine berechenbare Funktion f, die sich auf ihrer

eigenen Godelnummer widersprichlich verhalt.

1 falls (2,7) € RG
Esseif(i){. alls (6,1) € RGo

1 sonst
[ist berechenbar, da (¢,7) e RG, < XRG¢(i,i) = 1.
Damit gibt es einen Index j mit [= ¢;

Wir betrachten das Verhalten von f auf j

Es gilt (7,7) e RGy < dneN. ¢;(n)=j < IneN. f(n)=j

THEORETISCHE INFORMATIK IT §9 12 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

e Kurze, aufgeschriebene Losung
Wir nehmen an RGy sei entscheidbar.
Dann ist die charakteristische Funktion R, berechenbar.
Wir konstruieren mit y Ra, eine berechenbare Funktion f, die sich auf ihrer
eigenen Godelnummer widersprichlich verhalt.
Es sei (i) { J_ falls (i,7) e RGy
7 sonst
[ist berechenbar, da (¢,7) e RG, < XRG¢(i,i) = 1.
Damit gibt es einen Index j mit [= ¢;
Wir betrachten das Verhalten von f auf j

Es gilt (7,7)e RGy < IneN. ¢j(n)=j & IneN. f(n)=7 & (J,7)¢RG,

THEORETISCHE INFORMATIK IT §9 12 RUCKBLICK

BEISPIEL 1I: DIAGONALISIERUNG I

Zeige, dafl RGy = {(¢,y) | In eN. ¢;(n)=y} nicht entscheidbar ist

e Kurze, aufgeschriebene Losung
Wir nehmen an RGy sei entscheidbar.
Dann ist die charakteristische Funktion R, berechenbar.
Wir konstruieren mit y Ra, eine berechenbare Funktion f, die sich auf ihrer

eigenen Godelnummer widersprichlich verhalt.
Es sei (i) { J_ falls (i,7) e RGy
7 sonst
[ist berechenbar, da (¢,7) e RG, < XRG¢(i,i) = 1.
Damit gibt es einen Index j mit [= ¢;
Wir betrachten das Verhalten von f auf j
Es gilt (7,7)e RGy < IneN. ¢j(n)=j & IneN. f(n)=7 & (J,7)¢RG,

Dies ist ein Widerspruch. Also kann RG 4 nicht entscheidbar sein

THEORETISCHE INFORMATIK IT §9 12 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dafl VC (das Vertex Cover Problem) N P-vollstiandig ist

e Voraussetzungen prazisieren

THEORETISCHE INFORMATIK II §9 13 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren
— L ist N'P-vollstindig, falls L e NP und L'<,L fiir jedes L' e N'P

THEORETISCHE INFORMATIK II §9 13 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren

— L ist N'P-vollstindig, falls L e NP und L'<,L fiir jedes L' e N'P
— L e NP, falls L von einer NTM in polynomieller Zeit entschieden wird

THEORETISCHE INFORMATIK II §9 13 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren

— L ist N'P-vollstindig, falls L e NP und L'<,L fiir jedes L' e N'P

— L e NP, falls L von einer NTM in polynomieller Zeit entschieden wird
— L'<, L, falls es eine polynomiell bb. Funktion f gibt mit x € L' < f(z)eL

THEORETISCHE INFORMATIK II §9 13 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren
— L ist N'P-vollstindig, falls L e NP und L'<,L fiir jedes L' e N'P
— L e NP, falls L von einer NTM in polynomieller Zeit entschieden wird
— L'<, L, falls es eine polynomiell bb. Funktion f gibt mit x € L' < f(z)eL
-VC ={(G, k)| FIV'cV.|V'|<k A V' Knoteniiberdeckung von G }

THEORETISCHE INFORMATIK II §9 13 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren
— L ist N'P-vollstandig, falls L e NP und L'<,L fiir jedes L' e N'P
— L e NP, falls L von einer NTM in polynomieller Zeit entschieden wird
— L'<, L, falls es eine polynomiell bb. Funktion f gibt mit x € L' < f(z)eL
-VC ={(G, k)| FIV'cV.|V'|<k A V' Knoteniiberdeckung von G }

e Standard-Losungsweg
Zeige VC e NP

THEORETISCHE INFORMATIK IT §9 13 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren
— L ist N'P-vollstandig, falls L e NP und L'<,L fiir jedes L' e N'P
— L e NP, falls L von einer NTM in polynomieller Zeit entschieden wird
— L'<, L, falls es eine polynomiell bb. Funktion f gibt mit x € L' < f(z)eL
-VC ={(G, k)| FIV'cV.|V'|<k A V' Knoteniiberdeckung von G }

e Standard-Losungsweg
Zeige VC e NP

a) Beschreibe, welchen Losungsvorschlag das Orakel generiert

THEORETISCHE INFORMATIK IT §9 13 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren
— L ist N'P-vollstandig, falls L e NP und L'<,L fiir jedes L' e N'P
— L e NP, falls L von einer NTM in polynomieller Zeit entschieden wird
— L'<, L, falls es eine polynomiell bb. Funktion f gibt mit x € L' < f(z)eL
-VC ={(G, k)| FIV'cV.|V'|<k A V' Knoteniiberdeckung von G }

e Standard-Losungsweg
Zeige VC e NP
a) Beschreibe, welchen Losungsvorschlag das Orakel generiert
b) Beschreibe, wie Losungsvorschlag tiberprift wird

THEORETISCHE INFORMATIK IT §9 13 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren
— L ist N'P-vollstindig, falls L e NP und L'<,L fiir jedes L' e N'P
— L e NP, falls L von einer NTM in polynomieller Zeit entschieden wird
— L'<, L, falls es eine polynomiell bb. Funktion f gibt mit x € L' < f(z)eL
-VC ={(G, k)| FIV'cV.|V'|<k A V' Knoteniiberdeckung von G }
e Standard-Losungsweg
Zeige VC e NP
a) Beschreibe, welchen Losungsvorschlag das Orakel generiert
b) Beschreibe, wie Losungsvorschlag tiberprift wird
c) Zeige, dafl das Priifverfahren polynomiell ist

THEORETISCHE INFORMATIK IT §9 13 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren
— L ist N'P-vollstindig, falls L e NP und L'<,L fiir jedes L' e N'P
— L e NP, falls L von einer NTM in polynomieller Zeit entschieden wird
— L'<, L, falls es eine polynomiell bb. Funktion f gibt mit x € L' < f(z)eL
-VC ={(G, k)| FIV'cV.|V'|<k A V' Knoteniiberdeckung von G }

e Standard-Losungsweg
Zeige VC e NP
a) Beschreibe, welchen Losungsvorschlag das Orakel generiert
b) Beschreibe, wie Losungsvorschlag tiberprift wird

c) Zeige, dafl das Priifverfahren polynomiell ist
Zeige AL e N'PC. L'<,VC

THEORETISCHE INFORMATIK IT §9 13 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren
— L ist N'P-vollstindig, falls L e NP und L'<,L fiir jedes L' e N'P
— L e NP, falls L von einer NTM in polynomieller Zeit entschieden wird
— L'<, L, falls es eine polynomiell bb. Funktion f gibt mit x € L' < f(z)eL
-VC ={(G, k)| FIV'cV.|V'|<k A V' Knoteniiberdeckung von G }

e Standard-Losungsweg
Zeige VC e NP
a) Beschreibe, welchen Losungsvorschlag das Orakel generiert
b) Beschreibe, wie Losungsvorschlag tiberprift wird
c) Zeige, dafl das Priifverfahren polynomiell ist
Zeige AL e N'PC. L'<,VC
d) Wahle ein ahnliches, bekanntes Problem L' e N'PC

THEORETISCHE INFORMATIK IT §9 13 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren
— L ist N'P-vollstindig, falls L e NP und L'<,L fiir jedes L' e N'P
— L e NP, falls L von einer NTM in polynomieller Zeit entschieden wird
— L'<, L, falls es eine polynomiell bb. Funktion f gibt mit x € L' < f(z)eL
-VC ={(G, k)| FIV'cV.|V'|<k A V' Knoteniiberdeckung von G }

e Standard-Losungsweg
Zeige VC e NP
a) Beschreibe, welchen Losungsvorschlag das Orakel generiert
b) Beschreibe, wie Losungsvorschlag tiberprift wird
c) Zeige, dafl das Priifverfahren polynomiell ist
Zeige AL e N'PC. L'<,VC
d) Wahle ein ahnliches, bekanntes Problem L' e N'PC

e) Beschreibe Transformationsfunktion f, welche Eingaben aus
der Sprache fiir L' in Worte der Sprache fiir VC' umwandelt

THEORETISCHE INFORMATIK IT §9 13 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren
— L ist N'P-vollstindig, falls L e NP und L'<,L fiir jedes L' e N'P
— L e NP, falls L von einer NTM in polynomieller Zeit entschieden wird
— L'<, L, falls es eine polynomiell bb. Funktion f gibt mit x € L' < f(z)eL
-VC ={(G, k)| FIV'cV.|V'|<k A V' Knoteniiberdeckung von G }

e Standard-Losungsweg
Zeige VC e NP
a) Beschreibe, welchen Losungsvorschlag das Orakel generiert
b) Beschreibe, wie Losungsvorschlag tiberprift wird
c) Zeige, dafl das Priifverfahren polynomiell ist
Zeige AL e N'PC. L'<,VC
d) Wahle ein ahnliches, bekanntes Problem L' e N'PC

e) Beschreibe Transformationsfunktion f, welche Eingaben aus
der Sprache fiir L' in Worte der Sprache fiir VC' umwandelt

f) Zeige fiir alle x: zel/ < f(x)eVC

THEORETISCHE INFORMATIK IT §9 13 RUCKBLICK

BEISPIEL III: N'P-VOLLSTANDIGKEIT I

Zeige, dal VC (das Vertex Cover Problem) N P-vollstandig ist

e Voraussetzungen prazisieren
— L ist N'P-vollstindig, falls L e NP und L'<,L fiir jedes L' e N'P
— Le NP, falls L von einer NTM in polynomieller Zeit entschieden wird
— L'<, L, falls es eine polynomiell bb. Funktion f gibt mit x € L' < f(z)eL
-VC ={(G, k)| FIV'cV.|V'|<k A V' Knoteniiberdeckung von G }

e Standard-Losungsweg
Zeige VC e NP
a) Beschreibe, welchen Losungsvorschlag das Orakel generiert
b) Beschreibe, wie Losungsvorschlag tiberprift wird
c) Zeige, dafl das Priifverfahren polynomiell ist
Zeige AL e N'PC. L'<,VC
d) Wahle ein ahnliches, bekanntes Problem L' e N'PC

e) Beschreibe Transformationsfunktion f, welche Eingaben aus
der Sprache fiir L' in Worte der Sprache fiir VC' umwandelt

f) Zeige fiir alle x: zel/ < f(x)eVC
g) Zeige, dal f in polynomieller Zeit berechnet werden kann

THEORETISCHE INFORMATIK IT §9 13 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:

THEORETISCHE INFORMATIK II §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:

a) Rate eine Kantenmenge V'cV

THEORETISCHE INFORMATIK II §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazximal |V'| Schritte
Priife: V{v,v'} e E.veV'vo' eV’ mazimal |V'| % |E|<|V|? Schritte

THEORETISCHE INFORMATIK II §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazximal |V'| Schritte
Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte
¢) Gesamte Anzahl der Schritte ist in O(|V]?)

THEORETISCHE INFORMATIK II §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazximal |V'| Schritte
Priife: V{v,v'} e E.veV'vo' eV’ mazimal |V'| % |E|<|V|? Schritte
¢) Gesamte Anzahl der Schritte ist in O(|V]?)
Zeige L' e NPC. L'<,VC

THEORETISCHE INFORMATIK II §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazximal |V'| Schritte
Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte
¢) Gesamte Anzahl der Schritte ist in O(|V]?)
Zeige L' e NPC. L'<,VC
d) Wéhle das N'P-vollstindige Cliquen Problem und zeige CLIQU E<,VC

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazximal |V'| Schritte

Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte

¢) Gesamte Anzahl der Schritte ist in O(|V]?)

Zeige L' e NPC. L'<,VC
d) Wéhle das N'P-vollstindige Cliquen Problem und zeige CLIQU E<,VC
e) Es ist V' eine Clique in G = (V, E)

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazimal |V'| Schritte

Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte

¢) Gesamte Anzahl der Schritte ist in O(|V]?)

Zeige L' e NPC. L'<,VC
d) Wéhle das N'P-vollstindige Cliquen Problem und zeige CLIQU E<,VC
e) Es ist V' eine Clique in G = (V, E)

< Vo, v eVivE = {v, v} eE

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazimal |V'| Schritte
Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte
¢) Gesamte Anzahl der Schritte ist in O(|V]?)
Zeige L' e NPC. L'<,VC
d) Wéhle das N'P-vollstindige Cliquen Problem und zeige CLIQU E<,VC
e) Es ist V' eine Clique in G = (V, E)
& Yo, v eVivt={v, v} eE & Yo, o' eV {v,v'} ¢ E°

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazimal |V'| Schritte
Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte
¢) Gesamte Anzahl der Schritte ist in O(|V]?)
Zeige L' e NPC. L'<,VC
d) Wéhle das N'P-vollstindige Cliquen Problem und zeige CLIQU E<,VC
e) Es ist V' eine Clique in G = (V, E)
& Yo, v eVivt={v, v} eE & Yo, o' eV {v,v'} ¢ E°
& V{v,v'}e ECvoeV-V'vi/eV-V

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazimal |V'| Schritte
Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte
¢) Gesamte Anzahl der Schritte ist in O(|V]?)
Zeige L' e NPC. L'<,VC
d) Wéhle das N'P-vollstindige Cliquen Problem und zeige CLIQU E<,VC
e) Es ist V' eine Clique in G = (V, E)
& Yo, v eVivt={v, v} eE & Yo, o' eV {v,v'} ¢ E°
& V{v,v'}e ECvoeV-V'vi/eV-V
< V=V’ Knotentiberdeckung von G° = (V, E°)

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazimal |V'| Schritte
Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte
¢) Gesamte Anzahl der Schritte ist in O(|V]?)
Zeige L' e NPC. L'<,VC
d) Wéhle das N'P-vollstindige Cliquen Problem und zeige CLIQU E<,VC
e) Es ist V' eine Clique in G = (V, E)
& Yo, v eVivt={v, v} eE & Yo, o' eV {v,v'} ¢ E°
& V{v,v'}e ECvoeV-V'vi/eV-V
< V=V’ Knotentiberdeckung von G° = (V, E°)
Setze f(G, k) = (G |V |-k)

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazimal |V'| Schritte
Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte
¢) Gesamte Anzahl der Schritte ist in O(|V]?)
Zeige L' e NPC. L'<,VC
d) Wéhle das N'P-vollstindige Cliquen Problem und zeige CLIQU E<,VC
e) Es ist V' eine Clique in G = (V, E)
& Yo, v eVivt={v, v} eE & Yo, o' eV {v,v'} ¢ E°
& V{v,v'}e ECvoeV-V'vi/eV-V
< V=V’ Knotentiberdeckung von G° = (V, E°)
Setze f(G, k) = (G |V |-k)
f) Es folgt (G, k) e CLIQUFE

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazimal |V'| Schritte
Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte
¢) Gesamte Anzahl der Schritte ist in O(|V]?)
Zeige L' e NPC. L'<,VC
d) Wéhle das N'P-vollstindige Cliquen Problem und zeige CLIQU E<,VC
e) Es ist V' eine Clique in G = (V, E)
& Yo, v eVivt={v, v} eE & Yo, o' eV {v,v'} ¢ E°
& V{v,v'}e ECvoeV-V'vi/eV-V
< V=V’ Knotentiberdeckung von G° = (V, E°)
Setze f(G, k) = (G |V |-k)
f) Es folgt (G, k) e CLIQUFE
& G hat Clique V. der Mindestgrofle k£

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazimal |V'| Schritte
Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte
¢) Gesamte Anzahl der Schritte ist in O(|V]?)
Zeige L' e NPC. L'<,VC
d) Wéhle das N'P-vollstindige Cliquen Problem und zeige CLIQU E<,VC
e) Es ist V' eine Clique in G = (V, E)
& Yo, v eVivt={v, v} eE & Yo, o' eV {v,v'} ¢ E°
& V{v,v'}e ECvoeV-V'vi/eV-V
< V=V’ Knotentiberdeckung von G° = (V, E°)
Setze f(G, k) = (G |V |-k)
f) Es folgt (G, k) e CLIQUFE
& G hat Clique V. der Mindestgrofle k£
< G° hat Knotentiberdeckung V' = V —V, der Maximalgrofe |V |—k

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazimal |V'| Schritte
Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte
¢) Gesamte Anzahl der Schritte ist in O(|V]?)
Zeige L' e NPC. L'<,VC
d) Wéhle das N'P-vollstindige Cliquen Problem und zeige CLIQU E<,VC
e) Es ist V' eine Clique in G = (V, E)
& Yo, v eVivt={v, v} eE & Yo, o' eV {v,v'} ¢ E°
& V{v,v'}e ECvoeV-V'vi/eV-V
< V=V’ Knotentiberdeckung von G° = (V, E°)
Setze f(G, k) = (G |V |-k)
f) Es folgt (G, k) e CLIQUFE
& G hat Clique V. der Mindestgrofle k£
< G° hat Knotentiberdeckung V' = V —V, der Maximalgrofe |V |—k
& f(G k)= (G |V]|-k)eVC

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazimal |V'| Schritte
Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte
¢) Gesamte Anzahl der Schritte ist in O(|V]?)
Zeige L' e NPC. L'<,VC
d) Wéhle das N'P-vollstindige Cliquen Problem und zeige CLIQU E<,VC
e) Es ist V' eine Clique in G = (V, E)
& Yo, v eVivt={v, v} eE & Yo, o' eV {v,v'} ¢ E°
& V{v,v'}e ECvoeV-V'vi/eV-V
< V=V’ Knotentiberdeckung von G° = (V, E°)
Setze f(G, k) = (G |V |-k)
f) Es folgt (G, k) e CLIQUFE
& G hat Clique V. der Mindestgrofle k£
< G° hat Knotentiberdeckung V' = V —V, der Maximalgrofe |V |—k
& f(G k)= (G |V]|-k)eVC
g) f ist in polynomieller Zeit O(|V|?) berechenbar

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK

BEeIsPIEL III: NP-VOLLSTANDIGKEIT VON V(C I

Zeige VC e N'P:
a) Rate eine Kantenmenge V'cV
b) Priife |[V'|<k mazimal |V'| Schritte
Priife: V{v,v'} e E.veV/vv eV’ mazimal |V'| % |E|<|V|? Schritte
¢) Gesamte Anzahl der Schritte ist in O(|V]?)
Zeige L' e NPC. L'<,VC
d) Wéhle das N'P-vollstindige Cliquen Problem und zeige CLIQU E<,VC
e) Es ist V' eine Clique in G = (V, E)
& Yo, v eVivt={v, v} eE & Yo, o' eV {v,v'} ¢ E°
& V{v,v'}e ECvoeV-V'vi/eV-V
< V=V’ Knotentiberdeckung von G° = (V, E°)
Setze f(G, k) = (G |V |-k)
f) Es folgt (G, k) e CLIQUFE
& G hat Clique V. der Mindestgrofle k£
< G° hat Knotentiberdeckung V' = V —V, der Maximalgrofe |V |—k
& f(G k)= (G |V]|-k)eVC
g) f ist in polynomieller Zeit O(|V|?) berechenbar
Aus VO e NP und CLIQUE<,VC folgt VC ist N'P-Vollstandig

THEORETISCHE INFORMATIK IT §9 14 RUCKBLICK

THEORETISCHE INFORMATIK- KURZGEFASST

FRAGEN 7

THEORETISCHE INFORMATIK IT §9 15 RUCKBLICK

