
A Uniform Procedure for Converting
Matrix Proofs into Sequent-Style Systems

Christoph Kreitz Stephan Schmitt?

Department of Computer Science, Cornell University
Ithaca, NY 14853, USA

{kreitz,steph}@cs.cornell.edu

Journal of Information and Computation 162(1–2):226–254 c©Academic Press, 2000.

Abstract. We present a uniform algorithm for transforming machine-found ma-
trix proofs in classical, constructive, and modal logics into sequent proofs. It is
based on unified representations of matrix characterizations, of sequent calculi,
and of prefixed sequent systems for various logics. The peculiarities of an individ-
ual logic are described by certain parameters of these representations, which are
summarized in tables to be consulted by the conversion algorithm.

1 Introduction

Logical reasoning is a particularly precise form of human problem solving that is used
especially in scientific applications. Because of its precision it lends itself to automation
more easily than reasoning in general. In classical predicate logic, theorem provers based
on resolution [23, 31] and the connection method [5, 6, 14, 4] have demonstrated that logical
deduction can be simulated sufficiently well on a computer. Recently the characterizations
of logical validity, which underly these systems, have been extended to intuitionistic logic
and the modal logics K,K4, D,D4, T, S4, and S5 [17, 28, 29, 27]. On this basis the existing
proof methods have been extended accordingly [18, 19] in order to develop a coherent
theorem prover that can deal with a variety of logics and many applications requiring
mathematical reasoning.

The use of automated theorem proving (ATP) in practical applications, however,
causes another problem. As the efficiency of proof search strongly depends on a com-
pact representation of a proof, the actual proofs generated by ATP systems tend to have
a very technical look. Before they can be understood by experts of the envisaged appli-
cation they must be transformed into a more readable form.

Techniques for a humanly comprehensible presentation of machine-found proofs have
been described in [1, 32, 2, 21, 15, 16]. They transform classical resolution- or matrix proofs
into natural calculi such as LK or NK [11]. Other approaches try to present them even in
natural language [8]. In [24] we have developed an algorithm for converting intuitionistic
matrix proofs into the sequent calculus LJ to support program development in interactive
proof assistants [13].

In this paper we present a transformation procedure that allows a uniform treatment
of classical, constructive, and modal logics. It will support the integration of automated
theorem proving into a rich variety of application systems for mathematics, program
development, planning, and other areas of logical reasoning, as illustrated in Figure 1. A
proof task to be solved by the ATP system will be extracted by the user or a strategy of the
application system (e.g. Mathematica [30], NuPRL [7], and Isabelle [20]). After selecting the
particular logic (classical, intuitionistic, or modal) a uniform proof procedure will create a
machine-proof (e.g. a matrix proof in non-normal form). This proof will be converted by a
uniform procedure into a sequent or natural deduction proof and can then be interpreted
immediately by the application system.
? This work is supported by the German Academic Exchange Service DAAD with a fellowship

to the second author.

Isabelle
NuPRL

(Program Synthesis)Mathematica

???
Modal
formula

Intuitionistic
formula

Classical
formula

???
Matrix proof
(non-normal form)

???
NK/LK

proof
NJ /LJ

proof
NM/LM

proof

???
IsabelleNuPRLMathematica

Extraction of
proof tasks

Uniform
Proof Search
Procedure

Uniform
Conversion
Procedure

Integration of
solutions in
application

Fig. 1. Integrating Automated Theorem Proving into Application Systems

Since currently only matrix-based proof methods are able to handle different logics
in a uniform way [19] our starting point will be a proof according to Wallen’s matrix
characterizations [29] of logical validity. Here a formula F is valid if every path through a
matrix representation of F contains at least one complementary pair of atomic formulae.
In classical logic, complementarity means that the two atomic formulae have different
polarity and that their subterms can be unified. In non-classical logics, also the so-called
prefixes of the two atoms, i.e. strings describing their position in the formula tree, must
be unifiable. The tree ordering of F , together with the two unifiers, induces an ordering
∝? on the nodes of the formulae tree, which can be seen as an encoding of the order of
rule applications within a sequent proof for F – the goal of our transformation procedure.

The basic idea of our algorithm is simple. We traverse the ordering ∝?, select sequent
rules according to the subformula represented by each node and its polarity, and keep
track of all the subgoals of the sequent proof that are already solved. There are, however,
several subtle details that need to be dealt with.

To achieve uniformity we need unified representations of both the matrix characteriza-
tions and the sequent calculi for classical, intuitionistic, and modal logics. For the latter,
we had to develop schematic inference rules whose parameters encode a specific logic and
have to be consulted by our algorithm when it determines the sequent rule that “reduces”
a given node. Secondly, positions of tableau type β cause a sequent proof to split into two
independent subproofs. In each subproof the algorithm must determine which subrelations
of ∝? will still be relevant. Finally, the ordering ∝? does not uniquely determine the order
of sequent rules to be applied. In some cases the algorithm has to identify proof-relevant
positions that have priority over others and insert wait-labels at nodes that should not
yet be reduced. These wait-labels again depend on the underlying logic.

Methodically we proceed in two steps. Because of a similarity between matrix calculi
and Fitting’s prefixed tableau systems [10] we first show how to convert a matrix proof
into a prefixed sequent proof. This algorithm, which we present in Section 3, only requires
unified representations of the calculi. Afterwards we extend our algorithm into one that
creates conventional sequent proofs (Section 4). Here the absence of prefixes makes it
necessary to deal with proof-relevant positions and the effects of β-splits. A prerequisite
for both algorithms are unified representations of matrix characterizations, sequent calculi,
and prefixed sequent systems, which we will develop in Section 2.

α 〈A ∧B, 1〉 〈A ∨B, 0〉 〈A ⇒ B, 0〉 〈¬A, 1〉 〈¬A, 0〉
α1 〈A, 1〉 〈A, 0〉 〈A, 1〉 〈A, 0〉 〈A, 1〉
α2 〈B, 1〉 〈B, 0〉 〈B, 0〉 – –

β 〈A ⇒ B, 1〉 〈A ∨B, 1〉 〈A ∧B, 0〉
β1 〈A, 0〉 〈A, 1〉 〈A, 0〉
β2 〈B, 1〉 〈B, 1〉 〈B, 0〉
φ 〈∀x.A, 1〉 〈¬A, 1〉 〈A ⇒ B, 1〉 〈P, 1〉
φ0 〈∀x.A, 1〉 〈¬A, 1〉 〈A ⇒ B, 1〉 〈P, 1〉
ψ 〈∀x.A, 0〉 〈¬A, 0〉 〈A ⇒ B, 0〉 〈P, 0〉
ψ0 〈∀x.A, 0〉 〈¬A, 0〉 〈A ⇒ B, 0〉 〈P, 0〉

γ 〈∀x.A, 1〉 〈∃x.A, 0〉
γ0(t) 〈A[x\t], 1〉 〈A[x\t], 0〉

δ 〈∀x.A, 0〉 〈∃x.A, 1〉
δ0(a) 〈A[x\a], 0〉 〈A[x\a], 1〉

ν 〈2A, 1〉 〈3A, 0〉
ν0 〈A, 1〉 〈A, 0〉
π 〈2A, 0〉 〈3A, 1〉
π0 〈A, 0〉 〈A, 1〉

Table 1. Primary and secondary types of formulae

2 Unified Representations of Proof Calculi

We present unified representations of matrix calculi, sequent calculi, and prefixed sequent
systems for classical logic (C), intuitionistic logic (J), and the modal logics K, K4, D,D4,
T, S4, S5 with their cumulative, varying and constant domain variants concerning the
Kripke-semantics of these logics [9, 10]. In our representations we shall separate the aspects
common to all these logics from those that depend on a particular logic. This separation
allows a compact presentation of each calculus and is crucial for the development of a
uniform algorithm that translates between different calculi. The structure of the algorithm
will depend only on the invariant parts whereas the variant parts will be stored in tables
expressing the values of certain parameters in the uniform description.

2.1 Matrix Calculi

Matrix characterizations of logical validity are the basis for an efficient proof search in
classical and non-classical logics. They avoid notational redundancies contained in math-
ematical languages or sequent calculi and allow a very compact representation of a formal
proof. Originally developed as foundation of Bibel’s connection method for classical logic
[5, 6], they have later been extended to non-classical logics by Wallen [29] and serve as a
basis for a uniform proof method for a rich variety of logics [19]. Since our starting point
will be a given matrix proof we will present only the basic ideas and syntactical concepts
and refer to [29] or [19] for details, semantical justifications, and aspects of proof search.

Position trees, Types, and Prefixes. The basic structure for representing matrix
proofs is a tree ordering ¿, which will be constructed from a formula tree. We classify a
formula A and its subformulae according to the tableau scheme in Table 1. We use the
concept of signed formulae where each subformula B of A receives a polarity k ∈{0, 1}
depending on a positive (0) or negative (1) occurrence of B in A (starting with 〈A, 0〉).
Each signed (sub)formula 〈B, k〉 has primary type Ptype according to its tableau class
and a secondary type Stype according to its immediate parent formula.

We associate each subformula 〈B, k〉 of 〈A, 0〉 with a position x in ¿. B is called the
label lab(x) of x, k its polarity pol(x), and Ptype (x), Stype (x) its Ptype and Stype . We
denote a signed formula at position x by sform (x)=〈lab(x), pol(x)〉. At a γ- or δ-position
x the actual variable in lab(x) will be replaced in the successor formula by the name of the
corresponding γ0- or δ0-position. As a result the positions occur directly as variables in all
formulae and we can use a uniform mechanism to define substitutions on terms, positions,
and the reduction ordering. Within intuitionistic logic we additionally have to insert φ
and ψ positions into ¿ before all positions that represent so-called special formulae (see
Table 1, where 〈P, k〉 denotes an atom). These special positions do not encode reductions
and are necessary only for proof search.

To represent all the formulae that are necessary for proving 〈A, 0〉 we extend ¿ by
copies of subformulae used more than once in the matrix proof. These generative formulae
have Ptype γ for all logics and, in addition, ν for modal logics and φ for J . A multiplicity
µ(y) ∈ IN is assigned to all positions y in ¿, where µ(y)≥1 if Stype (y) ∈{γ0, ν0, φ0} and
µ(y)=1 otherwise. A generative position x with Ptype (x) ∈{γ, ν, φ} will receive n distinct
copies of successor trees with root y where x ¿ y, Stype (y) ∈{γ0, ν0, φ0}, and µ(y) = n.

In the resulting ordering the sets of γ0-, ν0-, and φ0-positions (Γ0, ν0, Φ0) are called
variables whereas δ0-, π0-, and ψ0-positions (∆0, Π0, Ψ0) are constants. For integrating
the Kripke-semantics of modal logics and J we associate each position x in ¿ with a
prefix pre (x), which is the string of positions y ∈ν0∪Π0 (for modal logics except S5) or
y ∈Φ0∪Ψ0 (for J) between the root of ¿ and x. The root of ¿ is counted as element of
Π0 or Ψ0. In S5 a prefix pre (x) is the greatest ancestor y ¿ x with y ∈ν0∪Π0.

Example 1. Consider the formula F ≡ 2∃x.2C(x)∧3B ⇒ 3(B ∧3∃x.C(x)) whose tree
ordering with is depicted below.

x pre (x)

b0, a1, a2, a6, a8 b0

ā3, a4 b0ā3

ā5 b0ā3ā5

a7 b0a7

ā9, a10, a11 b0ā9

ā12, ā13 b0ā9ā12

ā12 : ∃0

b0 :⇒0

a1 : ∧1 a8 : 30

a2 : 21 a6 : 31

a7 : B1ā3 : ∃1

a4 : 21

ā5 : C(a4)
1 ā13 : C(ā13)

0

a11 : 30a10 : B0

ā9 : ∧0

Each position has multiplicity 1. In ¿ we have associated each position x with the main
operator of lab(x) and pol(x). Variable positions are marked with an overbar. Ptype (x)
and Stype (x) can be derived using Table 1. The prefixes of the positions are given in the
table on the left. For S5 the prefixes consist only of the last position in these strings.

Paths, Unification, and Complementarity. Complementary paths through a formula
tree are the key concept for characterizing logical validity. We define paths via a process
starting at the root b0 of ¿ and successively replace positions in ¿ by their successors.
At a β-position we split into two paths, one containing β1, the other β2. If no reducible
positions are left we obtain a collection of sets of leaves in ¿. These sets are called paths
through the formula 〈A, 0〉. If A is valid, then every path through 〈A, 0〉 must contain a
connection that is complementary under a global substitution σ. The substitution σ con-
sists of two parts: a quantifier substitution σQ replacing quantified variables by terms and
a prefix substitution σL (L ∈{J,M}) for intuitionistic and modal logics, which replaces
variables in a prefix by strings of positions. These substitutions are defined as follows:
– Let TQ=Γ0∪∆0, C0 be a set of constants, and T be a set of terms over C0∪TQ

and a given signature of function symbols. A first order substitution is a mapping
σQ : Γ0 7→ T . It induces a relation <Q on ∆0×Γ0, which is defined by the condition:
If σQ(u)=t, then v<Qu for all v ∈∆0 that are subterms of t

– Let TM=Π0∪ν0, TJ=Ψ0∪Φ0, VM=ν0, VJ=Φ0, and L ∈{M, J}. Furthermore let T+
L

be the set of strings over TL and T ∗L=T+
L ∪{ε}. A prefix-substitution (or L-substitution)

is a mapping σL : VL 7→ T ∗L that fulfills certain restrictions depending on the logic L
(see [29] for details). σL induces a relation <L on TL × TL, which is defined by the
condition: If σL(u)=p and p 6∈VL, then for all v occurring in p, v <L u.

Let P be a path through 〈A, 0〉 and σ=〈σQ, σL〉 be a combined substitution. A connection
is a subpath {u, v}⊆P , where u, v have the same predicate symbol in their labels but
pol(u) 6=pol(v). {u, v} is called σ-complementary , iff (i) σ#

Q(lab(u))=σ#
Q(lab(v)) and (ii)

σ#
L (pre (u))=σ#

L (pre (v)), where σ#
Q , σ#

L are homeomorphic extensions of σQ, σL. P is σ-

complementary if it contains a σ-complementary connection. A set C of σ-complementary
connections spans a formula 〈A, 0〉 if every path through it contains an element of C.
Example 2. Consider again F ≡ 2∃x.2C(x) ∧3B ⇒ 3(B ∧3∃x.C(x)). Its two paths
{ā5, a7, a10} and {ā5, a7, ā13} contain the connections {a7, a10} and {ā5, ā13}. σM (ā9)=a7

unifies the prefixes of a7 (b0a7) and a10 (b0ā9). ā5 and ā13 (prefixes b0ā3ā5, b0ā9ā12;
labels C(a4), C(ā13)) are complementary for σM (ā3)=a7, σM (ā12)=ā5, and σQ(ā13)=a4.
Thus 〈σQ, σM 〉 makes both connections complementary and the connections span 〈F, 0〉.

The combination of the induced relations <L, <Q, and ¿ defines a reduction ordering
¢, which encodes the non-permutabilities of rules in sequent systems for the logic L. In
addition to the complementarity requirement there are certain admissibility conditions on
¢ that involve the interaction between σL and σQ when integrating the domain conditions.

Definition 1. The L-accessibility relation R0 on T ∗L × T ∗L is defined by
pR0q iff p, q ∈T ∗L and (i) q=pu, u ∈TL (general),

(ii) q=p (reflexivity),
(iii) q=pp′, p′ ∈T+

L (transitivity),
or (iv) p, q ∈TM (equivalence, for S5 only).

R0 reflects the conditions on the accessibility relation R for modal logics and J according
to their Kripke semantics.

Definition 2. A combined substitution σ=〈σQ, σL〉 is L-admissible provided:
1. For all p, q ∈T ∗L: pR0q implies σ#

L (p)R0σ
#
L (q).

2. ¢ := (¿ ∪ <)+ is irreflexive, where < := <L ∪ <Q.
3. If σQ(u)=t then for all pre (v) ∈P (t)={pre (v) | v ∈TQ∪C0 , v subterm of t}1

(i) varying domains: σ#
M (pre (v)) = σ#

M (pre (u))
(ii) cumulative domains: if v 6∈Γ0 either σ#

L (pre (v))=σ#
L (pre (u))

or σ#
L (pre (v))R0σ

#
L (pre (u))

(iii) constant domains: no conditions

The condition v 6∈Γ0 in 3.-(ii) ensures that no priorities between variables will be possible,
especially if they occur within k-ary function symbols fk, k ≥ 1. This requirement pre-
serves completeness, assuming non-empty domains in every world w as well as the closed
domain condition: fk(a1, . . . , ak) is in the domain of w if a1, . . . , ak are. For K, K4 there
are additional conditions, which are discussed in detail in [29]. Using the above definitions
the following theorem has been proven in [29].

Theorem 1. A formula A is L-valid iff there is a multiplicity µ, an L-admissible com-
bined substitution σ=〈σQ, σL〉, L ∈{M,J}, and a set of σ-complementary connections C
that spans the signed formula 〈A, 0〉.
Example 3. Consider again F ≡ 2∃x.2C(x) ∧ 3B ⇒ 3(B ∧ 3∃x.C(x)) from Example
1 and the combined substitution σ=〈σQ, σM 〉 from Example 2.

ā12 : ∃0

b0 :⇒0

a1 : ∧1 a8 : 30

a2 : 21 a6 : 31

a7 : B1ā3 : ∃1

a4 : 21

ā5 : C(a4)
1 ā13 : C(ā13)

0

a11 : 30a10 : B0

ā9 : ∧0

σM (ā3)=σM (ā9)=a7

σM (ā12)=ā5

<M ={(a7, ā3), (a7, ā9)}

σQ(ā13)=a4

<Q ={(a4, ā13)}

σ#
M (pre (a4))=b0a7

σ#
M (pre (ā13))=b0a7ā5

1 pre (v) is the root of ¿ if v ∈C0.

σ induces relations <Q and <M (curved arrows in the diagram), which together with
¿ yield an irreflexive relation ¢. σM respects R0 for D, D4, T, S4, S5 and satisfies the
cumulative and constant domain conditions. Thus σ is L-admissible in these logics and
F is L-valid. F can also be proven L-valid in T, S4 and S5 under varying domains by
extending σM : σM (ā5)=ε for T, S4 or σM (ā5)=a7 for S5.

2.2 Sequent Calculi

Proofs according to the matrix-characterization in Theorem 1 and the induced reduction
orderings are the starting point of our transformation. Sequent proofs – which are used
by many application systems requiring user interaction – will be the target of such a
transformation. For systems based on natural deduction these proofs can be translated in
a straightforward manner. Cut-free sequent calculi are known for classical logic, intuition-
istic logic, and for the cumulative and varying domain modal logics K,K4, D,D4, T, S4.
For constant domains and S5 such sequent calculi do not always exist (see [10]).

In our unified presentation we shall provide schematic rules containing parameters
whose values describe the individual logics. To achieve a compact representation we adopt
a notation based on tableau systems [3, 10] and encode a sequent Γ ` ∆ by a set S of
signed formulae, which we call the associated set . Formally, the associated set of Γ ` ∆
is defined as S=SΓ∪S∆ where SΓ ={〈F, 1〉 | F ∈Γ} and S∆={〈F, 0〉 | F ∈∆}.
Example 4. In modal logics the rules dealing with 2 in the succedent or 3 in the antecedent
are very similar. In D, for instance, they are presented as

{F | 2F ∈Γ} ` A, {F | 3F ∈∆}
Γ ` 2A, ∆

2r
{F | 2F ∈Γ}, A ` {F | 3F ∈∆}

Γ, 3A ` ∆ 3l

If we encode sequents by their associated sets, then 2r reads as follows
{〈F, 1〉 | 〈2F, 1〉 ∈SΓ }, 〈A, 0〉, {〈F, 0〉 | 〈3F, 0〉 ∈S∆}

SΓ , 〈2A, 0〉, S∆
2r

According to the tableau classification in Table 1 the formulae 〈2F, 1〉 and 〈3F, 0〉 are
of type ν. 〈F, 1〉 and 〈F, 0〉 are the corresponding ν0-subformulae. Furthermore 〈2A, 0〉
is of type π and 〈A, 0〉 is its π0 subformula. Similarly for 3l we have 〈3A, 1〉 of type π
in the conclusion and 〈A, 1〉 as its π0 subformula in the premise. Thus both rules can be
represented as {ν0 | ν ∈S}, π0

S, π
{2r, 3l}

We get the same result for K and T and slightly different rules for other logics.
{ν | ν ∈S}, π0

S, π
{2r, 3l} (S4)

{ν0 | ν ∈S}, {ν | ν ∈S}, π0

S, π
{2r, 3l} (K4, D4)

Thus the scheme S∗, π0

S, π
is the common form of 2r and 3l in all modal logics but the

value of the parameter S∗ in the premise depends on the particular logic.

Table 2 uniformly describes the rules of all sequent calculi. The rules are arranged
according to the tableau classification and directly usable for cumulative domains. We
apply them from bottom to top in order to reduce a certain formula, which is determined
by the name of the rule, i.e. by the logical operator and its polarity. We further abbreviate
these reduction-formulae by their Ptypes (e.g. as α in ∧l and ∨r). No structural rules are
necessary since we use associated sets in our formulation. To retain completeness we have
to copy some reduction-formulae explicitly into the rule’s premises, as in the case of γ-
formulae for all logics and ν-formulae for modal logics T, S4. Further modal multiplicities
will be handled by forming the sets described below (recall that there are no ν-rules
for K, K4). When applying δ-rules an eigenvariable-condition has to be respected: the
constant a has to be new in the premises.

L: C J K, D, T K4, D4 S4

S# S {〈A, 1〉|〈A, 1〉 ∈S} S S S

S∗ – – {ν0|ν ∈S} {ν0|ν ∈S}∪{ν|ν ∈S} {ν|ν ∈S}
S+ S S ∪ {〈C, 1〉} S S S

axiom : S, 〈P, 1〉, 〈P, 0〉 axiom

α :
S+, 〈A, 0〉
S, 〈¬A, 1〉 ¬l

S#, 〈A, 1〉
S, 〈¬A, 0〉 ¬r

S#, 〈A, 1〉, 〈B, 0〉
S, 〈A ⇒ B, 0〉 ⇒ r S, α1, α2

S, α
{∧l,∨r}

β :
S+, 〈A, 0〉 S, 〈B, 1〉

S, 〈A ⇒ B, 1〉 ⇒ l
S, β1 S, β2

S, β
{∧r,∨l}

δ :
S, 〈A[x\a], 1〉
S, 〈∃x.A, 1〉 ∃l S#, 〈A[x\a], 0〉

S, 〈∀x.A, 0〉 ∀r
γ :

S, γ, γ0(t)
S, γ

{∀l, ∃r}

π :
S∗, π0

S, π
{2r, 3l}

ν : {D, D4} :
S∗
S {T, S4} :

S, ν, ν0

S, ν
{2l, 3r}

Table 2. Sequent calculi and their conditions depending on the selected logic

The table on top of the rules describes the logic L by providing conditions for forming
the sets S#, S∗, and S+. S∗ (for π- and ν-rules) encodes which of the conclusion’s formulae
from S will occur in the premise. S# and S+ occur in sequent rules of all logics but cause
changes only in J . The set S# plays the role of S∗ in modal logics whereas S+ encodes
the duplication of the actual reduction-formulae (denoted by 〈C, 1〉) within ⇒ l or ¬l.

If we consider varying domains we have to check an additional condition (see [10]):
Let CB be the set of alive constants on a branch B in the sequent proof. Only ground
terms t over CB are allowed to be introduced with γ0(t) when applying a γ-rule on B.
For this, the set CB is defined as follows: (i) Starting with 〈A, 0〉, CB consists of all
constants occurring in A. If there exists no constant, then CB := {c} where c is new since
we deal with non-empty domains. (ii) When applying a δ-rule, then CB := CB∪{a}. (iii)
When applying a modal, i.e. a π-rule for all modal logics or a π/ν-rule for D, D4, again
CB := {c′} for a new c′. (iv) For α- and β-rules CB will not be modified.

A sequent proof for a formula A is constructed by successively applying reductions
starting with 〈A, 0〉. The reductions form a derivation tree, splitting into two independent
branches at β-reductions. A branch is closed if its leaf is marked with axiom. A derivation
is a sequent proof if all branches are closed.

Example 5. In the modal logics D,D4 (cumulative domains) the following series of re-
ductions proves the formula F ≡ 2∃x.2C(x) ∧ 3B ⇒ 3(B ∧ 3∃x.C(x)) from Example
1. The positions mentioned after a rule indicate the positions in the formula tree that will
be reduced.

2C(a4), B ` B

C(a4) ` C(a4)

C(a4) ` ∃x.C(x)
∃r (ā12, ā13)

2C(a4), B ` 3∃x.C(x)
3r (a11) [a4, ā5]

2C(a4), B ` B ∧3∃x.C(x)
∧r (ā9, a10)

∃x.2C(x), B ` B ∧3∃x.C(x)
∃l (ā3)

2∃x.2C(x), 3B ` 3(B ∧3∃x.C(x))
3l (a6, a7) [a2, a8]

` 2∃x.2C(x) ∧3B ⇒ 3(B ∧3∃x.C(x))
⇒r (b0), ∧l (a1)

Recall that the ν-positions [a2, a8] are reduced when applying the π-rule 3l at a6. Similarly
[a4, ā5] are reduced using the ν-rule 3r at a11.

If we consider varying domains instead we must begin with CB={c1} since F contains
no constants. After the π-rule 3l we obtain a new set CB={c2} which will be extended to
CB={c2, a4} when introducing the eigenvariable (∃l). After splitting we obtain CB2={c3}
applying the ν-rule 3r. Since c3 is the only constant alive on branch B2 we reach C(a4) `
C(c3) after applying ∃r. Hence F is no theorem in varying domains for D,D4.

L: C J K, K4 D, D4, T, S4, S5

S+ S S ∪ {r : 〈C, 1〉} S S

r, s ε
axiom φ ψ
rR0s rR0s and usext (r, s)

used (s) or usext (r, s)
r = s r = s

p, q – –
ν π

pR0q and usext (p, q)
used (q)

ν π
pR0q and usext (p, q)

used (q) or usext (p, q)

Stype cumulative varying constant domains

q : γ0(t) t over
⋃
{Cp

0 | pR0q or p = q} t over Cq
0 t over C0

q : δ0(a) a ∈ Cq
0 , new(a) a ∈ C0, new(a)

L Properties of R
C no relation R

K, D general
T general, reflexive

K4, D4 general, transitive
S4, J gen., refl., transitive
S5 wRv for all w, v

ax : S, r : 〈P, 1〉, s : 〈P, 0〉 axiom

α :
S+, s : 〈A, 0〉
S, r : 〈¬A, 1〉 ¬l

S, s : 〈A, 1〉
S, r : 〈¬A, 0〉 ¬r

S, s : 〈A, 1〉, s : 〈B, 0〉
S, r : 〈A ⇒ B, 0〉 ⇒ r

S, r : α1, r : α2
S, r : α

{∧l,∨r}

β :
S+, s : 〈A, 0〉 S, s : 〈B, 1〉

S, r : 〈A ⇒ B, 1〉 ⇒ l
S, r : β1 S, r : β2

S, r : β
{∧r,∨l}

δ :
S, s : 〈A[x\a], 0〉
S, r : 〈∀x.A, 0〉 ∀r

S, r : δ0(a)

S, r : δ ∃l γ :
S, r : 〈∀x.A, 1〉, s : 〈A[x\t], 1〉

S, r : 〈∀x.A, 1〉 ∀l
S, r : γ, r : γ0(t)

S, r : γ ∃r

π :
S, q : π0
S, p : π

{2r, 3l}
ν :

S, p : ν, q : ν0
S, p : ν

{2l, 3r}

Table 3. Prefixed sequent systems with conditions on prefixes and domains

2.3 Prefixed Sequent Systems

Prefixed sequent systems are an extension of sequent calculi that is closer to tableau and
matrix calculi. They are also important for dealing with logics which do not have a cut-free
sequent calculus such as modal logics with constant domains. We have constructed them
from prefixed tableau systems [10] for K, K4, D, D4, T, S4 in all domain variants and for
S5 in varying and constant domains. We have also developed a prefixed sequent system
for intuitionistic logic. Prefixes may be ignored in classical logic. In our presentation we
shall again use schematic rules containing parameters and tables listing their values.

We define a prefix p to be a finite sequence of positive integers like p=1121. We extend
signed formulae to prefixed signed formulae of the form ‘p : 〈A, k〉’ where 〈A, k〉 is a signed
formula and p a prefix. The conditions on the accessibility relation R (see Table 3) will
now be encoded into the use of the prefixes. For this we have to define an accessibility
relation R0 on prefixes and two conditions for manipulating prefixes in sequent systems,
denoted by used (q) and usext (p, q).

Definition 3. Let p, q be two prefixes. q is accessible from p, pR0q,
if q=pn for some n ∈ IN (general),

q=p (reflexivity),
or q=pt for some non-empty sequence t (transitivity).

q is called used , used (q), if there exists some r : 〈A, k〉 in the associated set S where q is
an initial sequence of r (q ¹ r). q is an unrestricted simple extension of p, usext (p, q), if
q=pn for some n ∈ IN and q 6¹ r for any prefix r in S.

By combining the properties of the accessibility relation R0 with the conditions used
and usext we have developed a mechanism for constructing prefixes while applying a
reduction rule. In the resulting rule-system presented in Table 3 the prefixes occurring
in the premises of a rule are constructed from those in the conclusions according to the
conditions given in the table on top.2

2 We abbreviate S5-prefixes by integers instead of sequences. Then nR0m for all n, m ∈ IN,
used (m) means that m exists in S, and usext (n, m) stands for m is new in S.

We also had to give conditions for introducing terms in γ- and δ-rules depending on
the domain variants. For this purpose we have divided a set C0 of constants into countably
many disjoint classes such that each prefix p has an associated countable set of constants
Cp

0 . The prefixed Stype-formula stands for term introduction at prefix q and is part of the
premise in a γ- or δ-rule. For γ-reductions the introduction of a ground term t over sets
of constants Cp

0 has to respect the prefixes p or q. For the δ-rule the constant a is only
related to the actual prefix q, where new(a) indicates the eigenvariable condition.

Example 6. In the modal logics D, D4, T, S4 the following prefixed sequent proof proves
the formula F ≡ 2∃x.2C(x) ∧3B ⇒ 3(B ∧3∃x.C(x)) from Example 1.

075 : C(a4), 07 : B ` 07 : B

075 : C(a4), 07 : B ` 075 : C(a4)

075 : C(a4), 07 : B ` 075 : ∃x.C(x)
∃r (ā12, ā13)

075 : C(a4), 07 : B ` 07 : 3∃x.C(x)
3r (a11)

075 : C(a4), 07 : B ` 07 : B ∧3∃x.C(x)
∧r (ā9, a10)

075 : C(a4), 07 : B ` 0 : 3(B ∧3∃x.C(x))
3r (a8)

07 : 2C(a4), 07 : B ` 0 : 3(B ∧3∃x.C(x))
2l (a4, ā5)

07 : ∃x.2C(x), 07 : B ` 0 : 3(B ∧3∃x.C(x))
∃l (ā3)

0 : 2∃x.2C(x), 07 : B ` 0 : 3(B ∧3∃x.C(x))
2l (a2)

0 : 2∃x.2C(x), 0 : 3B ` 0 : 3(B ∧3∃x.C(x))
3l (a6, a7)

` 0 : 2∃x.2C(x) ∧3B ⇒ 3(B ∧3∃x.C(x))
⇒r (b0), ∧l (a1)

We assume a4 ∈C07
0 when introducing the eigenvariable (∃l at ā3). To reduce 075 : ∃x.C(x)

we can again instantiate x with a4 (∃r at ā12) since 07R0075.
When considering varying domains the proof fails since a4 6∈C075

0 . For the reflexive
logics T, S4, however, the proof can be revised by constructing prefixes with the used (07)
rule instead of applying usext (07, 075), since 07R007 holds. Then no prefix 075 occurs in
the whole proof and 07 : ∃x.C(x) is now reducible at ā12 with a4 ∈C07

0 . This results in a
proof for T, S4 also with varying domains.

3 A Uniform Transformation Procedure

We now develop the basic transformation algorithm. It takes a logic L and a matrix proof
in L and generates a proof in the corresponding prefixed sequent system without any ad-
ditional search. The presence of prefixes in our target calculi makes it possible to focus on
uniformity and to postpone issues that are only relevant for conventional sequent calculi.

3.1 Relating Matrix Proofs and Prefixed Sequent Proofs

Our algorithm has to traverse the reduction ordering ∝? – created from ¢ (Definition 2)
by adding a new root w – and to mark all the visited positions x with solved. The
specific sequent rules and their parameters (i.e. prefixes and terms) are determined by the
nodes of the formula tree and the substitutions σL and σQ. Because of their admissibility
these substitutions reflect exactly the semantics of the logic L and are all we need for
constructing prefixed sequent proofs.

For a precise description of this process we introduce a few notations. The set of
immediate successors of a position x in ¿ is denoted by succ (x) = {x1,xm} while
pred (x) results in the immediate predecessor of x. The successors succ (x) are assumed
to be ordered in ¿ and can be chosen by a selection function succi(x) = xi, 1 ≤ i ≤ m.
With succ+(x) we denote the set of all successors of x in ¿. Moreover, we abbreviate
succ+

j (x) = {succj(x)} ∪ succ+(succj(x)). Traversal selects an open position x in ∝? to
be visited next, provided it is not blocked by <, i.e. if there exists no (y, x) ∈ <. In this
case, x can be marked solved and the sequent rule can be constructed at x. Otherwise,
this step must be delayed until y has been solved and hence, x became unblocked.

Definition 4. Let ∝? be a reduction ordering and x be a position. We define
1. the set of elements blocking x as Wx = {(v1, v2) | (v1, v2) ∈ < and v2 = x}.
2. the set of open position as Po = {x | pred (x) solved and x not solved in ∝?}.
3. the selection function ’x := select unblocked Po’ ⇔ x ∈Po ∧ Wx = ∅.

Besides traversing ∝? we have to map the prefixes from of the matrix proof to prefixes
in the sequent proof. In almost all cases, we can directly use a prefix σ#

L (pre (x)) in
∝? without violating the construction principle for prefixes in the sequent systems.

Definition 5. (prefix mapping) Let ∝? be a reduction ordering and TL be the set of
all prefix positions in ¿. Moreover, let PσL be the image set of all prefixes in ∝? under
σL. Then we provide an injective mapping n : TL 7→IN and a prefix mapping fp : PσL

7→IN∗

such that fp(x1x2 · · ·xm) = n(x1)n(x2) · · ·n(xm) for each prefix σ#
L (p) ∈PσL

with
σ#

L (p) = x1x2 · · ·xm. We abbreviate fp(σ
#
L (pre (x))) by fσL

p (x) wrt. a position x.

The basic justification for such a simple mapping arises from the admissibility con-
ditions on the combined substitution σ (Definition 2): all substituted prefixes have to
respect the relation R0 on prefixes in ∝?. Secondly, <L ensures that a new prefix fσL

p (x)
at a position x is either an unrestricted simple extension of fσL

p (pred (x)), or Wx 6= ∅
holds. In the latter case all positions leading to the same prefix under σ#

L have to be
visited before x while traversing ∝?. After this the prefix fσL

p (x) at x can be introduced
with length |fσL

p (x)| ≥ 2 satisfying the used condition in the actual sequent. Thus the
reduction ordering ∝? together with the prefix mapping fp guarantees that a prefix q in
the premise of a sequent rule will be accessible via the relation R0 from a prefix p in the
conclusion and respects the conditions used (q) or usext (p, q) in Table 3.

Remark 1. As mentioned above, this concept is not complete for all cases. In the transitive
logics D4, S4, J , we may obtain Wx = ∅ although |fσL

p (x)| − |fσL
p (pred (x))| ≥ 2, which

would violate the construction principle. This phenomenon requires a slightly modification
of the prefixed sequent calculi for D4, S4, J in order to provide proof reconstruction for
all matrix proofs. The usext (p, q) condition from Definition 3 has to be replaced by a
transitive extension as follows: q is an unrestricted extension of p, uext (p, q), if q=pp′ for
some |p′| ≥ 1, and q 6¹ r for any prefix r in S. The complete treatise of this problem as
well as correctness proofs for the modified prefixed sequent calculi can be found in [26].

3.2 The Algorithm TOTAL

The uniform transformation algorithm TOTAL is presented in Figure 2. It takes as input
a logic L and a partial reduction ordering ∝? that represents a matrix proof in L. The
result is a (total ly ordered) list of reduction rules S-list representing a proof in the prefixed
sequent system for L. TOTAL (∝?,L) begins with global initializations of the solved-marks
and local initializations within the subprocedure TOT (∝?,L). Then it steps into the main
loop by selecting an unblocked position x that shall be solved next. This is done within
the procedure SOLVE (x,∝?,L) by forming appropriate sequent rules at x.

The sequent rules will be constructed according to Ptype (x) and Stype (x) using Ta-
ble 1. If pred (x) ∈{γ, ν} is a generative position then its reduction rule r1 has to be
constructed before working on x. This special treatment of generative positions is nec-
essary because the blocking elements from < are related to their immediate successors,
i.e. within the sets Wx. Thus an actual generative position must be skipped (see case
{γ, ν}) and the corresponding rule construction r1 will be done when its successor x be-
comes the actual position. We refer to this step as a look-back reduction at x. Afterwards
x will be marked solved and all elements in < caused by x are removed from ∝? using

function TOTAL (∝?,L) : S-list

(1) for all positions x in ∝? do set x not solved

set the root w of ∝? solved;
return TOT (∝?,L)

function TOT (∝?,L) : S-list
set ∝? not proven; S∝? := [];
compute the set Po;
for all positions x in ∝? do compute the set Wx

while not proven ∝? do

(2) x := select unblocked Po;

S∝? := append (S∝? ,SOLVE (x,∝?,L))
return S∝?

function SOLVE (x,∝?,L) : S-list
(3) if Stype (x) ∈{γ0, ν0} then r1 := Rule (Stype, x,L) else r1 := 2

set x solved;
if Ptype (u) 6∈{β, π} then Po := (Po \ {x}) ∪ succ (x)
if Stype (x) ∈{ν0, ψ0, φ0} then ∝?:= update (x,∝?)
if Ptype (x) ∈{π, δ} then ∝?:= update (succ1(x),∝?)
case Ptype (x) of
{γ, ν, φ, ψ} : return [r1]
{−} : if exists {x, y} ∈C with y solved then

set ∝? proven;
return [r1, Rule (axiom, {x, y},L)]

else return [r1]
{δ, α} : return [r1, Rule (Ptype, x,L)]

(4)
{π} : Po := (Po \ {x}) ∪ succ (x);

return [r1, Rule (π, x,L)]

(5) {β} : [∝?
1,∝?

2] := β-split (∝?, x);

p0 := [r1, Rule (β, x,L)];
p1 := TOT (∝?

1,L);
p2 := TOT (∝?

2,L);
set ∝? proven;
return append (p0, append (p1, p2))

function update (x,∝?) =
for all {(v1, v2) | (v1, v2) ∈ < and v1 = x} do

< := < \ {(v1, v2)}; Wv2 := Wv2 \ {(v1, v2)}

Fig. 2. The uniform transformation procedure

the function update. Moreover, the set Po is updated, except if Ptype (x) ∈{β, π}: the
first exception will be covered after the split-operation below, the second one becomes
relevant in Section 4. If x has no Ptype it must be part of a connection {x, y} ∈C. We can
terminate with setting ∝? proven if y has already been solved. At a β-position x we have
to split ∝? into two independent suborderings ∝?

1 and ∝?
2. We then recursively call the

local initializations (recomputing the sets Po) and subproof-transformations for each of
these two suborderings. Afterwards ∝? is set proven. The following definitions introduce
the mechanism for splitting at β-positions.

Definition 6. Let x be a position of ∝? and ¿x the subtree ordering with root x and
position set pos (x) (including x). 3 The restriction of ∝? involving positions from pos (x) is
defined as tx :=¿x∪<x, where <x:= {(x1, x2) ∈ < | x1 ∈pos (x) ∨x2 ∈pos (x)}. Moreover,
Cx := {{c1, c2} ∈C | c1 ∈pos (x)}.
3 For this we assume (pred(x), x) ∈ ¿x although pred(x) 6∈pos (x).

Rule (Stype, x,L) Rule (Ptype, x,L) Rule (axiom, {x, y},L)

Stype sequent rule Ptype sequent rule sequent rule

γ0 γ(sform (pred (x)), σQ(x)) {α, β, π} Ptype(sform (x)) axiom (sform (x), sform (y))
ν0 ν(sform (pred (x))) δ δ(sform (x), succ1(x))

J Modal Logics

Reduction old prefix new prefix Reduction old prefix new prefix

special {α, β, δ} fσL
p (pred (x)) fσL

p (x) π fσL
p (x) fσL

p (succ1(x))
special γ fσL

p (pred (pred (x))) fσL
p (pred (x)) ν fσL

p (pred (x)) fσL
p (x)

other fσL
p (x) fσL

p (x) other fσL
p (x) fσL

p (x)

Table 4. Rule instantiations for various logics

Definition 7. (β-split) Let x be a β-position in ∝? with succ (x)={x1, x2}. The β-split at
x is defined by β-split (∝?, x) := [∝?

1,∝?
2], where ∝?

1=∝? \ tx2 and ∝?
2=∝? \ tx1 . For the

subrelations and connections we have <i := < \ <xj , ¿i := ¿ \ ¿xj , and Ci := C \ Cxj

where i, j ∈{1, 2}, j 6= i.

The prefixed sequent proof constructed by our algorithm starts with 0 : 〈A, 0〉, pro-
vided n(b0) = 0 for the original root b0 in ¿ and sform (b0)=〈A, 0〉. In order to solve an
actual position x in ∝? we first construct a look-back reduction r1 if Stype (x) ∈{γ0, ν0}.
We instantiate Rule (Stype, x,L) according to Table 4: The sequent rule will be constructed
using the secondary type of x and the signed formula sform (pred (x)) (upper table). For
instance, at a γ0-position x we uniquely construct a γ-reduction for sform (pred (x)) using
σQ(x) for term instantiation. In addition, the prefix in the rule’s conclusion is derived
from the entry ’old prefix’ (lower table) via the prefix mapping fp. From the classification
Table 1 we get the subformulae that have been processed by rule application. The new
prefix belonging to these subformulae is determined from the entry ’new prefix’.

After possible look-back reductions, the rule at x itself has to be constructed. For this,
we instantiate Rule (Ptype, x,L) and extract the required prefixes in a similar way. The
eigenvariable to be introduced at a δ-position x is uniquely determined by succ1(x).

In matrix proofs for J the prefixes will be constructed between φ and φ0, or between ψ
and ψ0 positions. Therefore, the reduction of a special formula at a position x requires the
’old prefix’ from pred (x), i.e. the φ- or ψ-position, whereas the ’new prefix’ has already
been developed at x. Recall, that this process iterates for a special γ-reduction, which
takes place as a look-back reduction at a γ0-position x. Hence, the φ-position for ’old
prefix’ is given by pred (pred (x)).

Because of the admissible interactions between σQ and σL, the instantiated terms
and eigenvariables directly satisfy the domain conditions for the prefixed sequent systems
(Table 3). Considering all the above insights as well as the remark on p. 10, we can prove
our transformation procedure to be correct and complete.

Theorem 2. (correctness and completeness) The algorithm TOTAL for converting ma-
trix proofs into prefixed sequent proofs is correct and complete for the logics C, J and for
K,K4, D, D4, T, S4, S5 in constant, cumulative, and varying domains.
The proof is similar to the one of Theorem 3, which we will comment on in Section 4.3.

Example 7. We take the formula F ≡ 2∃x.2C(x) ∧ 3B ⇒ 3(B ∧ 3∃x.C(x)) and the
substitutions σM , σQ from Example 3. The reduction ordering ∝? is generated from ¢ by
adding a new root w. We choose the mapping n(b0)=0 and n(ai)=i, i ∈{1, . . . , 13}, and
obtain fσL

p for all positions as follows:
x b0, a1, a2, a6, a8 ā3, a4, a7, ā9, a10, a11 ā5, ā12, ā13

fσL
p (x) 0 07 075

We start traversing the reduction ordering ∝? for D,D4, T, S4 with cumulative domains.
The prefixed sequent proof begins with 0 : 〈F, 0〉. For the α-positions b0, a1 we construct
the rules ⇒r : 0 and ∧l : 0 (we write the ’new prefix’ and parameters next to the rule
names) using the above table and Table 4.

After skipping the ν-position a8 we are blocked at ā9 because Wā9 = {(a7, ā9)}. We
select a6, create 3l : 07, and update <L at a7. Solving a7 yields the atom B1 : 07. We skip
a2 and reach ā3: We construct the look-back reduction 2l : 07 for a2 as well as ∃l : 07; a4,
introducing the eigenvariable succ1(ā3) = a4 and updating < at a4. Visiting a4 and ā5

constructs the look-back reduction 2l : 075 and isolates C(a4)1 : 075 in the sequent proof.
Solving ā9 we first construct 3r : 07 as look-back reduction for a8. The reduction

∧r : 07 at ā9 forces a split of ∝? according to Definition 7. For ∝?
1 we solve a10 having the

atom B0 : 07 and hence apply an axiom rule with B1 : 07 (a7 already solved). For reducing
∝?

2 we visit a11, ā12 and ā13 obtaining 3r : 075 and ∃r : 075; a4, where σQ(ā13) = a4

has been used at the γ0-position ā13. Finally, we solve ā13 and apply the axiom rule with
C(a4)0 : 075. The resulting prefixed sequent proof is presented in Example 6 (Section 2.3).

The eigenvariable a4 is associated with 07 and the prefix at ā13 is 075. We use a4 for
the quantifier reduction ∃r satisfying the cumulative domain condition 07 R0 075 (Table 3).
The sequent proof can be extended to T, S4 for varying domains by integrating σL(ā5)=ε
into the prefix mapping fσL

p above.

4 Transformation into Conventional Sequent Calculi

While prefixed sequent systems are rather artificial constructs, conventional sequent cal-
culi are the basis of many application systems. In order to transform matrix proofs into
these calculi we have extended our basic conversion procedure into one which explicitly
takes care of the non-permutabilities of inference rules. This makes it necessary to identify
additional positions whose reduction has priority over others, and to eliminate redundant
subrelations from ∝? after β-splits . The latter requires some subtle refinements for the
logics K, K4, which are beyond the scope of this article. An appropriate extension of the
presented concepts to K,K4 can be found in [26].

4.1 Dealing with Proof Relevant Positions

The reduction ordering ∝? only proves the existence of a rule ordering but does not
uniquely determine it. In fact, the non-permutabilities of sequent rules are not com-
pletely encoded by ∝?. The missing ordering constraints depend on the application of
certain reduction rules which cause the deletion of sequent formulae in intuitionistic and
modal logics. In addition for some modal logics, these rules reduce all ν-formulae in the
actual sequent and cause global changes of the current ordering conditions. Both kinds
of reduction rules will be controlled by extending our algorithm with the following con-
cepts. First, we denote as ν0-unclosed those ν0-positions in ∝? that are not necessarily
open but whose corresponding sequent formulae would be reduced when applying such
a global ν-reduction. Second, we provide an operation reduced marks for distributing so-
called reduced-marks to every ν0-position that has been completely reduced by global
ν-reductions. Thus, when reaching a reduced position during further traversal no look-
back ν-reduction must be constructed. Obviously, both concepts depend on each other,
e.g. positions already marked reduced cannot be ν0-unclosed .

Finally, we introduce so-called wait-labels which avoid the deletion of relevant sequent
formulae and ensure a correct distribution of reduced-marks. These labels will be assigned
dynamically to several positions in ∝? according to a table of conditions that depend on
the different logics.

Definition 8. (ν0-unclosed) A position x in ∝? is called ν0-unclosed , provided

– Stype (x) = ν0 and
– x is the smallest position wrt. ¿ such that

a. either x ∈Po and x is not marked reduced,
b. or pred (x) ∈Po and Stype (pred (x)) 6= γ0.

By Uν0 we denote the set of all ν0-unclosed positions in ∝?.

The ν0-unclosed property captures all possibilities in which a ν-formula, already iso-
lated in the actual sequent S, can be represented in ∝?. Especially we have to consider a
ν0-position y even if only pred(y) is open and not hidden behind a look-back γ-reduction.
In this case pred(y) will be skipped by further traversing ∝? and the corresponding ν-rule
will be applied as a look-back reduction when reaching y. But in the sequent proof the
ν-formula corresponding to pred(y) is already isolated and hence reducible in S. Thus y
must be considered before solving pred(y), which is achieved by calling it ν0-unclosed.

Several reductions cause the deletion of sequent formulae in intuitionistic and modal
logics resulting in the premise sets S# or S∗. Moreover, applications of π-reductions in
D,D4, T and ν-reductions in D, D4 force the reduction of all ν-formulae in the actual
sequent S. For T,D only the resulting ν0-formulae, for D4 the ν0- and ν-formulae will be
saved in S∗. We refer to this operation as macro reduction in the sequent proof.

In order to control these macro reduction during proof reconstruction, reduced-marks
will be assigned to ν0-positions, depending on the peculiarities of the different logics. Let
U ′

ν0
= {y | y ∈Uν0 ∧ ∃y′. (y, y′) ∈ <L} and P ′o = {y | y ∈Po ∧ succ (y) ⊆ Uν0}. For D4 we

define a reduction counter as a mapping c : ν0 7→ IN. It is globally initialized for every
ν0-position y in ∝? by c(y) = |σL(y)|. During proof reconstruction in D4, the assignment
of reduced-marks is guided by updating this counter.

Definition 9. Let x be the currently visited position, encoding either a look-back ν-
reduction in D, D4 or a π-reduction in D, D4, T . We define reduced marks (x,∝?,L) as:

– For all y ∈P ′o, set y solved.
– Let Po := (Po \ P ′o) ∪ Uν0 .
– For D, T : Set the reduced-mark to all y ∈Uν0 .
– For D4: Let cmin = min {c(x) | x ∈Uν0}. For all y ∈Uν0 :

(i) update c(y) := c(y)− cmin, if x encodes a look-back ν-reduction, or
update c(y) := c(y)− 1, if x encodes a π-reduction.

(ii) If c(y) = 0, then set the reduced-mark to y.
For all x ∈U ′

ν0
, call update (x,∝?).

1. Obviously, Ptype (y) = ν for all y ∈P ′o. Hence, all positions P ′o can be set solved since
they only cause skip-operations in the sequent proof. Consequently, the set of open
positions Po is updated by all elements of Uν0 .

2. For D, T , no generative ν-formula in S will be saved into the premise S∗ after a π-
reduction. Similarly for a ν-reduction in D. Hence, each ν0-unclosed position y receives
the reduced-mark, indicating that no look-back ν-reduction must be constructed for
the ν-position pred (y) when solving y by further traversal of ∝?.

3. For D4, each ν-formula is also copied into S∗ since it can be re-used several times
(transitivity). The number of re-uses is initially given by |σL(y)| for each ν0-position
y in ∝?. Updating the reduction counter c(y) wrt. the actual set Uν0 eventually sets
the reduced-mark to y after the last re-use of pred (y), i.e. if c(y) = 0. Recall, that
c(y) > |Wy| may hold during the reconstruction process due to global substitutions
σL. A similar problem occurred for prefixed sequent calculi (see remark 1).

Finally, we have to guarantee correct applications of the operation reduced marks
wrt. the ordering <. First, consider modal reductions at the actual position x. All blocking
elements (z, y) ∈ <L, z = succ1(x) for a π-reduction in T, D, D4, or z = x for a look-back
ν-reduction in D4, will be deleted via update in the current step. Second, interaction
with the assignment of additional wait-labels during the reconstruction process provides
correct conditions for respecting < (see [26] for details). Besides guiding the distribution
of reduced-marks, wait-labels avoid the deletion of relevant sequent formulae in all modal
logics and J . Depending on the traversal order of ∝?, they will be dynamically assigned
to π-positions in S4, T,D, D4, to ν0-positions in D, D4, and to ψ0-positions in J .

For positions x, y let W y
x = Wx \ {(y, x)}. For y ∈Po we introduce the predicate

Uν0(y) ⇔ y ∈Uν0 ∨ succ (y) ⊆ Uν0 , and associate either ŷ = y or ŷ ∈ succ (y) such that
ŷ ∈Uν0 . Let Pa be the set of atomic positions already solved in ∝?, and Pu = Po ∪ Pa be
the set of usable positions. Dynamic wait-labels are then uniformly defined as follows:

Definition 10. (wait-labels) Let x ∈Po in ∝? with the set Uν0 of ν0-unclosed positions.
We define a relation wait ⊆ Pu × Po dynamically as

wait = {(y, x) | y 6= x ∧ x ∈Po ∧ y ∈Pu ∧ pcond (x) ∧ scond (y)},
where pcond (x) denotes the primary conditions and scond (y) the secondary conditions,
depending on the different logics:

J T S4 D, D4
pcond (x) Stype (x) = ψ0 Ptype (x) = π Stype (x) = ν0 (not reduced), or

(except atom) Ptype (x) = π
scond (y) pol (y) = 0 ¬Uν0(y), or ¬Uν0(y)

∃ŷ.W
succ1(x)
ŷ 6= ∅

A position x is blocked by a wait-label, denoted by waitx, iff there exists a (v1, v2) ∈wait
such that v2 = x. Similarly, ¬waitx denotes that x is not blocked by a wait-label.

Observe that waitx may hold in all modal logics if Ptype (x) = π and Stype (x) = γ0.
Although the look-back γ-reduction could be applied without any difficulties, it will be
postponed together with the succeeding π-reduction at x. This is justified by the fact that
the γ-reduction cannot change the wait-label at x and must not be applied separately.
A similar treatment is given in S4, T if Ptype (x) = π and Stype (x) = ν0 (where x
not reduced in T), i.e. the look-back ν-reduction will also be postponed if waitx holds.
Finally, the integration of wait-labels causes a slightly modification of the selection of
open positions: ’x := select unblocked Po’ ⇔ x ∈Po ∧ Wx = ∅ ∧ ¬waitx.

4.2 Redundancy deletion and β-splits

While reducing β-positions our transformation algorithm has to split the reduction
ordering ∝? into two independent suborderings ∝?

1 and ∝?
2. These were constructed by

eliminating the subrelations involving positions that do not occur in the corresponding
subtree (Definition 7). This simple technique was sufficient for creating prefixed sequent
proofs. When dealing with conventional sequent calculi, however, the presence of wait-
labels requires the deletion of redundant subrelations from each ∝?

i after a β-split. Oth-
erwise the algorithm might run into a deadlock and become incomplete.

For this purpose we refine our algorithm by two reductions: First, the split-operation
β-split is extended by a non-normal form (β,Θ)-purity ; second, a so-called [tz]-reduction
provides the selection of relevant subrelations from ∝?, requiring “little” search when
integrated into the algorithm. These refinements are necessary for ensuring completeness
of the transformation into conventional sequent calculi. They also optimize the algorithm
TOTAL when reconstructing prefixed sequent proofs.

Definition 11. The ¿-greatest predecessor y of x with succ (y) ≥ 2 is called the asso-
ciated β-node of x if Ptype (y) = β, and the associated Θ-node of x if Ptype (y) 6= β. We
write y ¿β x and y ¿Θ x, respectively.

For the purity reduction we use the fact that an unconnected leaf b of ∝? cannot be
relevant for the remaining subproof. We distinguish two sorts of purity. If y ¿β b then
y has an unconnected β-related subgoal b and hence, cannot contribute to the subproof.
Therefore, the whole subtree with root y can be eliminated from ∝? and the predecessor
position of y inherits the purity property. If y ¿Θ b then then the unconnected position
b is α-related to y. Hence, only the branch s of y containing b must be deleted.

Definition 12. ((β, Θ)-purity) Let P be the actual set of positions in ∝?. Moreover, let
the set of pure leaf positions in ∝? be given by Pr = { b | b ∈P ∧ succ (b) = ∅ ∧ ∀c ∈C. b 6∈ c}.
Then the (β, Θ)-purity reduction is defined as:

function (β, Θ)-purity (∝?, C) : reduction-ordering =
while Pr 6= ∅ do

select b ∈Pr; Pr := Pr \ {b}; let y be the associated node of b
if y ¿β b then % β-purity
∝? := ∝? \ ty; C := C \ Cy; < := < \ <y; P := P \ pos (y)
recompute the set Pr

else % y ¿Θ b % Θ-purity
compute s such that b ∈ succ+

s (y);
∝? := ∝? \ tsuccs(y); < := < \ <succs(y); P := P \ pos (succs(y))

The combined function (β, Θ)-purity will be applied to each subrelation ∝?
i after

β-split , which yields the following split-operation.

Definition 13. (split) At a β-position x we define [∝?
1,∝?

2] := split (∝?, x), provided
∝?

i = (β,Θ)-purity (∝?
i′ , Ci), for i = 1, 2, and [∝?

1′ ,∝?
2′] = β-split (∝?, x).

Besides the deletion of branches corresponding to redundant leaves we have to apply
a more subtle reduction, the [tz]-reduction, to ∝? in order to avoid any deadlocks that
might occur during the reconstruction process.

Definition 14. (deadlock) A reduction ordering ∝? is called a deadlock iff Pr = ∅ and
for all x ∈Po there exists some position y such that (y, x) ∈ < ∪ wait.

The required reduction makes sure that all remaining subrelations in ∝? have root
positions y from the set of usable positions Pu and are transitively connected via the
actual set C of connections. For this purpose we group all restrictions of ∝? with roots
y ∈Pu into equivalence classes [tz] such that exactly one class is relevant for completing
the sequent proof. This comes from the fact that all equivalence classes are α-related
in ∝?, i.e. each class corresponds to a set of sequent formulae in the actual sequent,
and no connection from C occurs between two of those classes. Finally, the [tz]-reduction
selects one class [tz] and eliminates all elements from ∝? that do not belong to [tz]. Proof
reconstruction then tries to finish the sequent proof with the selected class.

Formally, this operation depends on the concept of a connection relation in ∝?. Let
To = {ty | y ∈Po} and Tu = To ∪ Pa corresponding to the set Pu.

Definition 15. (connection relation) Let Tu = {tx1 , . . . , txn} be the restrictions of the
usable positions Pu in ∝?. The connection relation RC ⊆ Tu × Tu is defined as:

RC = { (txi , txj) | 1 ≤ i, j ≤ n ∧ ∃{c1, c2} ∈C. c1 ∈pos (xi) ∧ c2 ∈pos (xj) }
By R∗C we denote the transitive closure of RC .

It is easy to see that R∗C defines an equivalence relation on Tu if Pr = ∅. In this case
we will write ∼C instead of R∗C . An equivalence class [tx] ∈Tu/∼C is defined by [tx] := {ty |
ty∼C tx}. In the following we use the fact, that all tx ∈Tu are α-related in ∝? and hence,
only one [tx] ∈Tu/∼C might be relevant to represent a proof.

Definition 16. Let Pr = ∅ and Tu/∼C = {[tx1], . . . , [txn]}. The decomposition problem
in ∝? is the problem of selecting the proof relevant class [txi] ∈Tu/∼C .

If ∝? is a deadlock, then ’x := select unblocked Po’ does not terminate, since Wx 6= ∅
or waitx holds for all x ∈Po. In this case, a solution for a decomposition problem is neces-
sary in order to guarantee completeness of proof reconstruction. Such a solution is charac-
terized by the following key-lemma, which uniformly relates deadlocks to decomposition
problems in ∝? for all non-classical logics under consideration.

Lemma 1. Let Pr = ∅. If ∝? is a deadlock then there exist two constant positions
{w1, w2} ⊆ Po such that waitw1 , waitw2 , and [tw1] 6= [tw2].

The proof proceeds by induction on the distance between tw1 and tw2 , i.e. the number
of connections establishing tw1∼C tw2 . The detailed proof can be found in [26].

Lemma 1 says that deadlocks can only occur if there is also a decomposition problem
Tu/∼C = {[tw1], [tw2]} in ∝?. Consequently, completeness of proof reconstruction can be
guaranteed if the decomposition problem can either be avoided or solved. Otherwise, proof
relevant formulae might be deleted in the sequent proof. By contraposition of Lemma 1
we obtain the basic property for completeness of the reconstruction approach.

Corollary 1. If |Tu/∼C | = 1 then ’x := select unblocked Po’ always terminates.

A complete solution of the decomposition problem consists of establishing a selection
function f∼C that chooses the only relevant class [tz] from Tu/∼C whenever a decomposi-
tion problem (not necessarily a deadlock) occurs in ∝?. The following reduction operation
in ∝? computes such a function f∼C after the relevant class [tz] has been decided.

Definition 17. ([tz]-reduction) Let Pr = ∅ and [tz] ∈Tu/∼C be an equivalence class.
Moreover, let Du = {y | y ∈Pu ∧ [ty] 6= [tz] }. Then the [tz]-reduction of ∝? wrt. the
connection set C is defined as:

function [tz]-reduction (∝?, C) : reduction-ordering =
for all y ∈Du do ∝? :=∝? \ [ty]; C := C \ Cy; < :=< \ <y

∝?
z := (β, Θ)-purity (∝?, C)

Recall, that only Θ-purity is finally applied since all predecessors of the pure leaves
pred (y), y ∈Du, have already been solved. Unfortunately, “little” search is needed in or-
der to find the relevant class [tz] during the reconstruction process. Application of the
[tz]-reduction has to be applied whenever a decomposition problem might occur, that is
(i) after α-reductions and skip-operations at a position x if succ (x) ≥ 2, (ii) after dis-
tributing reduced-marks since ν-positions P ′o will be solved, and (ii) after β-splits . In the
worst case, the function f∼C has to try all classes [ty] ∈Tu/∼C for every decomposition
problem in ∝? until a subproof can be reconstructed with the relevant class [tz].

We will neither present the realization of the search function f∼C nor the integration of
the [tz]-reduction when developing the algorithm for proof reconstruction in conventional
sequent claculi. Searching through all equivalence classes is a straight-forward extension
of the resulting algorithm given in Section 4.3. Instead, we assume that |Tu/∼C | = 1
(provided by some selection function f∼C) in order to focus on the cacluli specific proper-
ties within the algorithm. A complete integration of the selection function as well as the
realization of the search during proof reconstruction is presented in [26].

It should be noted that the above reduction concepts may fail for the logics K, K4. In
these logics, there are theorems that have pure relevant subformulae not involved in any
connection of the matrix proof. In a sequent proof of the K-theorem 2A ∧ 3B ⇒ 3A,
for instance, the π-reduction of the pure subformula 3B is relevant since there are no
ν-rules for K. For all other logics we were able to show that this effect cannot occur. Thus
our transformation algorithm will be applicable to matrix proofs in C, J and D, D4, T, S4
for cumulative and varying domains. Apart from the above restriction, the deletion of
redundancies should also be applied when creating prefixed sequent proofs. An extension
of the purity concept to K, K4 can be found in [26], which generalizes the algorithm for
reconstructing conventional sequent proofs even in K,K4.

4.3 Adapting the Transformation Algorithm

Using the above considerations we lift TOTAL to an algorithm TOTAL? that converts
matrix proofs into conventional sequent proofs for C, J and S4, T, D, D4 with cumulative
and varying domains. For this purpose we present extensions of our algorithm in Fig-
ure 2 by replacing the boxed areas (1) – (5). Thereby, we omit the integration of search
behaviour, which becomes necessary for a complete solution of decomposition problems.

(1) Within global initializations, we additionally set all positions to not reduced. This has
no impact in C, J , and S4 where no macro reductions take place. Furthermore, we
apply (β, Θ)-purity in order to remove initial redundancies from ∝?.

for all positions x in ∝? do
set x not solved; set x not reduced

∝? := (β, Θ)-purity (∝?, C);

(2) The relation wait is computed dynamically before every selection of an open position
x ∈Po. In order to analyze x to be unblocked wrt. waitx we assume that the sets Uν0

and W
succ1(x)
ŷ , ŷ ∈Uν0 (for T only), have already been computed.

compute the relation wait;
x := select unblocked Po;

(3) The construction of the look-back ν-reduction r1 at a ν0-position x has to be modified,
depending on distributed reduced-marks in T, D,D4. If x is already marked reduced
then r1 is set to the empty rule (observe that this will never be the case in S4 since
no reduced-marks are distributed).
In addition for D,D4, a look-back ν-reduction itself causes macro reductions when
forming the premise S∗ and hence, the operation reduced marks (x,∝?,L) has to
be applied (Definition 9). Then we have to re-compute the relation wait: Although
¬waitx holds before the look-back ν-reduction, it may change to waitx afterwards if
Ptype (x) = π. For this we assume a new set Uν0 wrt. the updated set of open posi-
tions Po. Moreover, c(x) 6= 0 is possible for the reduction counter at x, i.e. the actual
position x itself must not receive the reduced-mark. Finally, x is locally set to blocked
if either waitx or not reduced x after the operation reduced marks. If x is blocked
in D, D4 after construction of the look-back ν-reduction, only r1 will be returned.
Otherwise we proceed with the rule construction at x itself.

if Stype (x) = γ0 then r1 := Rule (γ0, x,L)
else

if Stype (x) = ν0 and not reduced x then
case L of
{T, S4} : r1 := Rule (ν0, x,L)
{D, D4} : r1 := Rule (ν0, x,L);

perform reduced marks (x,∝?,L);
compute the relation wait;
if not reduced x or waitx then set blocked x

else r1 := 2

if L ∈{D, D4} and blocked x then return [r1]
else

(4) When solving a π-position x we have to distribute reduced-marks in D,D4, T via the
operation reduced marks (x,∝?,L). In order to use the correct set Uν0 , the set of open
positions Po has to be updated after this operation has been applied. In contrast to
that, the relation <L has already been updated wrt. succ1(x).

{π} : if L ∈{D, D4, T} then
perform reduced marks (x,∝?,L)

Po := (Po \ {x}) ∪ {succ1(x)};
return [r1, Rule (π, x,L)]

(5) At a β-position x the new operation split (∝?, x) is used, comprising (β, Θ)-purity .

{β} : [∝?
1,∝?

2] := split (∝?, x);

For instantiating the sequent rules we use again the upper table of Table 4. We start
with sform (b0) = 〈A, 0〉 where b0 is the original root of ¿. When transforming modal
matrix proofs with varying domains, the admissible interaction between σQ and σM (Def-
inition 2) ensures correct instantiations during the quantifier reductions.

Assuming that a complete search function f∼C on decomposition problems in ∝? is
provided, we obtain:

Theorem 3. (correctness and completeness) The algorithm TOTAL? for converting ma-
trix proofs into conventional sequent proofs is correct and complete for the logics C, J and
D, D4, T, S4 in cumulative and varying domains.

Proof. (Sketch) We prove the following facts:
(1) Every expansion of the output S-list at a position x is correctly constructed respecting

<L,<Q and using either sform (x) or sform (pred (x)), the substitutions σQ, σL, as
well as the required prefixes from the matrix proof. Then, S-list, forms a sequence of
correct reduction steps in the sequent calculus for the logic L.

(2) The split-operation at a β-position x, containing β-split and (β, Θ)-purity , is cor-
rect. That is, all positions deleted from ∝?

1,∝?
2 are no longer relevant for the cor-

responding subproofs. (Proof reconstruction in prefixed sequent systems prohibits
(β, Θ)-purity after β-splits for K, K4.)

(3) Correctness of the operation reduced marks while solving x is provided by interacting
with the unblocking conditions on wait-labels at x.

(4) The deletion of sequent formulae is correct due to the secondary conditions on dynamic
wait-labels: The positions corresponding to deleted sequent formulae either do no
longer exist in ∝?, or they are ν0-positions in D4 which are not reduced in ∝?. In the
latter case, the preceding ν-positions will be reused and thus, the deleted ν0-formulae
will be reproduced.

(5) Assume that ’x := select unblocked Po’ always terminates, using a function f∼C
that directly selects the relevant class [tz] from decomposition problems in ∝?. Then,
termination of the recursion and basic loop is guaranteed since every step yields a
decrease either of the set of unsolved positions (solving a position x), or of the set of
unreduced positions (assigning a reduced-mark to x), or of the sum of all reduction
counters in D4 (decreasing a counter c(x)). Moreover, the algorithm terminates with
the construction of axiom-rules in every developed branch of the sequent proof. (For
prefixed sequent systems the function f∼C must not be considered.)

(6) Correctness of the algorithms follows from (1) – (5): Every output S-list forms a
correct (prefixed) sequent proof within the corresponding calculus for L.

(7) Assume that we have a function f∼C combined with the selection [tz]-reduction which
completely searches through every decomposition problem occurring in ∝?. This en-
sures |Tu/∼C | = 1 before selecting an open position. Due to Lemma 1 and Corollary 1
no deadlocks can arise and hence, ’x := select unblocked Po’ always terminates. (For
prefixed sequent calculi, deadlocks are impossible since additional wait-labels do not
exist). Consequently, the algorithms are complete since every input matrix proof is
converted into a (prefixed) sequent proof within the corresponding calculus for L.

Detailed correctness and completeness proofs for the reconstruction algorithms, compris-
ing the integration of the search function f∼C , can be found in [26].

Complexity results. For describing the complexity of our algorithms, we use the fol-
lowing measures: The length of a matrix proof is the number of inference steps that are
necessary to prove that a set C of connections is spanning for the input formula. (This
number can grow exponentially in the number of connections |C|.) The length of (cut-free)
sequent proofs is given by the number of required axiom-rules. For all logics under consid-
eration we have established a class of formulae Fn, n ≥ 1, such that the following holds:
Every (prefixed) sequent proof for Fn has an exponential length wrt. the length of a given
matrix proof for Fn (see [26] for details and proofs). From this general result it follows
that TOTAL as well as TOTAL? can only have an exponential worst case complexity in
the length of the given matrix proofs.

Apart from that we achieve that both algorithms have the same reconstruction behav-
ior, provided that (β, Θ)-purity is integrated into the split-operation for TOTAL. This is
based on the fact that redundant reconstruction steps created by the search in TOTAL?

are also encoded into TOTAL: traversing redundant subrelations [tz] in ∝? yields redun-
dant proof steps in the prefixed sequent proof. Hence, the search behavior in TOTAL?,
although essential for completeness, is no real deterioration wrt. additional reconstruc-
tion steps when comparing it with the search-free algorithm TOTAL. To the contrary,
the search is completely provided within the reconstruction process and does not appear
in the output, i.e. the resulting sequent proofs. Since the [tz]-reduction is also correct for
proof reconstruction in prefixed sequent calculi (extending the concepts for K, K4 appro-
priately), one could integrate a search function f∼C on decomposition problems Tu/∼C
into TOTAL, similar as provided for TOTAL?. Hence, the reconstructed sequent proofs
from both algorithms would only contain relevant inferences.

Example 8. We take the formula F ≡ 2∃x.2C(x) ∧ 3B ⇒ 3(B ∧ 3∃x.C(x)) from
Example 3, the substitutions σM , σQ, and the reduction ordering ∝? generated from ¢

by adding a new root w. We develop sequent proofs for D, D4 with cumulative domains.
We start with b0, a1 obtaining the rules ⇒ r,∧l, skip a2, and become blocked because
Wā3 = {(a7, ā3)}. To select a6 we have to check if waita6 holds. With Uν0 = {ā3, ā9}
(where pred(ā9) = a8 is still open) we obtain ¬waita6 and hence, solve a6 constructing
the π-rule 3l. The operation reduced marks (a6,∝?,L) sets the ν-position a8 to solved and

distributes the reduced-mark to the ν0-positions ā3, ā9. Observe that <L has already been
updated wrt. succ1(a6) = a7 when performing this operation. Solving a7 then isolates the
atom B1 in the sequent proof.

No look-back ν-reduction has to be created when solving ā3 because of its reduced-
mark. We construct the ∃l-rule, introducing the eigenvariable succ1(ā3) = a4 and deleting
blocking elements from <Q via update (a4,∝?). Then the ν-position a4 itself will be skipped.
The selection of ā5 ∈Po = {ā5, a7, ā9} fails because Stype (ā5) = ν0 and y 6∈Uν0 = {ā5}
for y ∈{a7, ā9}. Hence, waitā5 holds. We select the β-position ā9, which has the reduced-
mark and thus, prevents us from constructing a look-back ν-reduction for a8. The rule ∧r
is constructed and the operation split (∝?, ā9) is applied. In the resulting subrelations ∝?

1

and ∝?
2 we delete ta2 and ta6 via (β, Θ)-purity , respectively.

The subproof ∝?
1 will be finished solving a10 and providing the axiom-rule with posi-

tion a7 (already solved). For ∝?
2 we skip a11 and select ā12 (since Po = Uν0 = {ā12, ā5}

we obtain ¬waitā12). We complete the look-back ν-reduction 3r for a11 while giving
the reduced-mark to ā5. Moreover, the ∃r rule is constructed using σQ(ā13) = a4. Fi-
nally we solve ā13 and ā5 with the axiom rule. The resulting sequent proof is similar
the one presented in Example 5. It is not a proof in D, D4 with varying domains since
σ#

M (pre (a4)) = b0a7 6=b0a7ā5 = σ#
M (pre (ā13)).

5 Conclusion and Future Work

We have presented uniform algorithms for transforming non-classical and classical ma-
trix proofs into sequent proofs within two different types of target calculi, i.e. prefixed
sequent systems and conventional sequent calculi. The procedure is based on a unified
representation of matrix characterizations of logical validity and of the sequent calculi
for various logics. It relies on comparably small tables for encoding the peculiarities of a
particular logic. Its modular design allows us to treat a rich variety of logics in a uniform
and simple way. It would be easy to extend our algorithm to logics not yet considered
by extending the tables appropriately. Therefore it is one of the most important steps in
the development of a coherent ATP-system that can deal with a rich variety of logics and
with different applications in a tailored way.

Both algorithms have a similar behavior when reconstructing sequent proofs, but
only for conventional sequent calculi some search on decomposition problems is required
in order to ensure completeness. In general, decomposition problems give evidence that
redundancies are not completely removed form ∝?. However, avoiding the decomposition
problem and hence, search behavior during the transformation demands the integration
of additional knowledge from the proof search into the reconstruction process [25, 26].

Future work will involve combining our transformation algorithm with a proof proce-
dure for various non-classical logics in order to guide the derivation of proofs in one of the
existing generic tools for interactive proof development. We have already extended our
procedure to the multiplicative fragment of linear logic [12, 26] and will investigate the
integration of further fragments into our approach. Finally, we will consider the combina-
tion of induction techniques with logical reasoning (e.g. [22]) for a uniform representation
within a matrix-based framework. This will eventually extend our proof reconstruction
approach to ATP-systems comprising inductive prover components.

References

1. P. Andrews. Transforming matings into natural deduction proofs. CADE–5, LNCS 87,
pp. 281–292. Springer, 1980.

2. P. Andrews. More on the problem of finding a mapping between clause representation and
natural-deduction representation. JAR, 7:285–286, 1991.

3. E. W. Beth. The foundations of mathematics. North–Holland, 1959.
4. W. Bibel, S. Brüning, U. Egly, T. Rath. KoMet. CADE–12, LNAI 814, pp. 783–787.

Springer, 1994.
5. W. Bibel. On matrices with connections. JACM, 28:633–645, 1981.
6. W. Bibel. Automated Theorem Proving. Vieweg, 1987.
7. R. L. Constable et. al. Implementing Mathematics with the NuPRL proof development

system. Prentice Hall, 1986.
8. B. I. Dahn, J. Gehne, Th. Honigmann, L. Walther, A. Wolf. Integrating Logical

Functions with ILF; Preprint 94-10, Humboldt University Berlin, 1994.
9. M. C. Fitting. Intuitionistic logic, model theory and forcing. Studies in logic and the

foundations of mathematics. North–Holland, 1969.
10. M. C. Fitting. Proof Methods for Modal and Intuitionistic Logic. D.Reidel, 1983.
11. G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,

39:176–210, 405–431, 1935.
12. C. Kreitz, H. Mantel, J. Otten, S. Schmitt. Connection-Based Proof Construction in

Linear Logic. CADE–14, LNAI 1249, pp. 207–221, Springer, 1997.
13. C. Kreitz, J. Otten, S. Schmitt. Guiding Program Development Systems by a Connec-

tion Based Proof Strategy. LoPSTR–95, LNCS 1048, pp. 137–151, 1996.
14. R. Letz, J. Schumann, S. Bayerl, W. Bibel. Setheo: A high-performance theorem

prover. JAR, 8:183–212, 1992.
15. C. Lingenfelder. Structuring computer generated proofs. IJCAI-89, 1989.
16. C. Lingenfelder. Transformation and Structuring of Computer Generated Proofs. PhD

thesis, 1990.
17. H. J. Ohlbach. A resolution calculus for modal logics. Ph.D. Thesis, 1988.
18. J. Otten, C. Kreitz. A connection based proof method for intuitionistic logic.

TABLEAUX–95, LNAI 918, pp. 122–137, Springer, 1995.
19. J. Otten, C. Kreitz. A Uniform Proof Procedure for Classical and Non-Classical Logics

KI-96, LNAI 1137, pp. 307–319, Springer, 1996.
20. L. C. Paulson. Isabelle: The next 700 theorem provers. Logic and Computer Science,

pp. 361–386. Academic Press, 1990.
21. F. Pfenning. Proof Transformations in Higher-Order Logic. PhD thesis, 1987.
22. B. Pientka, C. Kreitz. Instantiation of existentially quantified variables in inductive

specification proofs. AISC–98 , LNAI 1476, pp. 247–258, Springer 1998.
23. J. A. Robinson. A machine-oriented logic based on the resolution principle. JACM,

12(1):23–41, 1965.
24. S. Schmitt, C. Kreitz. On transforming intuitionistic matrix proofs into standard-sequent

proofs. TABLEAUX–95, LNAI 918, pp. 106–121, Springer, 1995.
25. S. Schmitt, C. Kreitz. Deleting redundancy in proof reconstruction. TABLEAUX–98,

LNAI 1397, pp. 262–276, Springer, 1998.
26. S. Schmitt. Uniform algorithms for proof reconstruction in classical and non-classical logics.

Technical report, FG Intellektik, FB Informatik, TU Darmstadt, 1998.
27. T. Tammet A Resolution Theorem Prover for Intuitionistic Logic CADE–13, LNAI 1104,

pp. 2–16, 1996.
28. L. Wallen. Matrix proof methods for modal logics. IJCAI-87, pp. 917–923. 1987.
29. L. Wallen. Automated deduction in nonclassical logic. MIT Press, 1990.
30. S. Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addison-

Wesley, 1991.
31. L. Wos et. al. Automated reasoning contributes to mathematics and logic. CADE–10,

LNCS 449, p. 485–499. Springer 1990.
32. L. Wos. The problem of finding a mapping between clause representation and natural-

deduction representation. JAR, 6:211–212, 1990.

