
JProver: Integrating Connection-based Theorem
Proving into Interactive Proof Assistants

Stephan Schmitt1, Lori Lorigo2, Christoph Kreitz2, Aleksey Nogin2

1 Department of Sciences & Engineering, Saint Louis University, Madrid, Spain
schmitts@spmail.slu.edu

2 Department of Computer Science, Cornell-University, Ithaca, NY, U.S.A.
{lolorigo,kreitz,nogin}@cs.cornell.edu

R. Gore, A. Leitsch, T. Nipkow, eds. International Joint Conference on Automated Reasoning
(IJCAR 2001), LNAI 2083, pp. 421–426, c©Springer Verlag, 2001.

Abstract. JProver is a first-order intuitionistic theorem prover that cre-
ates sequent-style proof objects and can serve as a proof engine in in-
teractive proof assistants with expressive constructive logics. This paper
gives a brief overview of JProver’s proof technique, the generation of proof
objects, and its integration into the Nuprl proof development system.

1 Introduction

In large scale applications of automated reasoning, interactive proof assistants
such as Coq, HOL, Isabelle, Nuprl, and PVS are the tools of choice. Because of
their expressive logics, they are more generally applicable than first-order tools,
yet at a much lesser degree of automation.

JProver was developed in an effort to combine the expressive power of in-
teractive proof assistants with the automatic capabilities of first-order theorem
proving, both for reasoning about mathematics and for reasoning about pro-
grams. It provides a theorem prover for first-order intuitionistic and classical
logic based on the connection method [3,10], a tool for generating proof objects
in the style of sequent proofs [11], and is coupled with mechanisms for integrat-
ing the prover into the Nuprl proof/program development system [4,1] and the
MetaPRL proof environment [8,9]. These components enable a user to invoke
the automatic prover on proof goals that can be solved by first-order reasoning
while using the expressive logic of the proof assistant for the more demanding
proof parts. Furthermore, the proof information returned by JProver enables the
proof assistant to build a valid proof in its own calculus.

As an example, Figure 1 describes the link between JProver and Nuprl, which
is described in detail in Section 3. JProver is a stand-alone prover that com-
municates with a proof assistant through a logic module. Invoking JProver on a
Nuprl subgoal sequent causes this sequent to be sent to JProver. The proof-search
method in JProver will then generate a matrix proof from the corresponding for-
mula tree (provided the sequent is valid), which then will be converted into a
list of sequent rules that expresses a sequent proof for the formula. Upon receiv-
ing this list, Nuprl will build a sequent proof for the original goal sequent, thus
confirming that the proof found is valid. Information about the relation between
this sequent and the formula proven by JProver will be used during that step.

mailto:schmitts@spmail.slu.edu?subject=JProver�
mailto:lolorigo@cs.cornell.edu,kreitz@cs.cornell.edu,nogin@cs.cornell.edu?subject=JProver�

JP
rover

Nuprl
for Nuprl

M
athB

us

Logic module

Sequent

Sequent Proof
NuPRL

Sequent Rules
List of

Preprocess

Postprocess

Sequent
Formulas

Sequent Proof
First-Order

List of

Matrix Proof

Prover

Converter

Formula Trees

List of Subgoal

Fig. 1. Architecture of JProver in connection with Nuprl

Over the past years there have been various approaches to combining inter-
active proof assistants with automatic proof tools [2,17]. Our application differs
from these in that we provided a fully automatic theorem prover for classical and
intuitionistic first-order logic with a very compact search space. A user may trust
its results or expand them in order to inspect the proof. Furthermore, JProver
supports constructive logic and is thus well suited for reasoning about programs.

Although this paper focuses on the integration of JProver into Nuprl and
MetaPRL, the underlying mechanisms are quite general and might easily be
adapted to integrate JProver into other proof assistants for constructive and
classical logics. In the rest of this paper we shall briefly discuss JProver’s proof
search procedure, the tool for generating proof objects, and the mechanisms for
integrating JProver into the Nuprl and MetaPRL proof development systems.

2 JProver: Proof Search and Transformation

JProver implements a full first-order theorem prover for classical and intuition-
istic logic that realizes the connection-based proof procedure presented in [10].
It transforms a set of first-order sequent formulas into a set of formula trees,
that will be annotated by tableau types, polarities, and so-called prefixes. Dur-
ing the proof process, JProver identifies connections between pairs of atoms and
checks whether each path through the formulas contains such a connection. The
formula is valid if each of these connections is complementary , that is if the
connected atomic formulas can be unified by a global term substitution and –
for intuitionistic validity – if their prefixes can be unified. To compute the pre-
fix substitution, we use a specialized string unification algorithm based on [14].
The resulting matrix proof is a reduction ordering that consists of the original
formula trees together with the connections and non-permutability constraints
induced by the substitutions.

JProver’s converter component uses the algorithms described in [11,15] to
reconstruct a first-order sequent proof from the classical or intuitionistic matrix

422

proof. It essentially transforms the reduction ordering into a linear order and
constructs a sequent rule for each node, using the term substitution to instantiate
quantified variables. Since additional proof knowledge from the matrix proof is
exploited, proof reconstruction can be done without search [15,16].

The selection of the target sequent calculus for proof reconstruction depends
on the calculus underlying the connected proof assistant. For the intuitionistic
case, JProver first generates a multiple-conclusioned sequent proof [6] because
of its proof-theoretical closeness to the matrix proof. If needed, this proof can
further be transformed into a single-conclusioned sequent proof [7] using a sec-
ond conversion step as described in [5]. Nuprl, for instance, requires a single-
conclusioned proof whereas MetaPRL does not. The resulting sequent proofs can
be used to generate proof objects in order to validate, check, or guide proof
construction in the interactive proof assistants.

JProver is implemented in OCaml as a stand-alone theorem prover. How-
ever, it is embedded into the MetaPRL environment [9], which allows it to use
MetaPRL’s quantifier unification algorithm as well as its module system for com-
municating with interactive proof assistants.

3 Integration into Interactive Proof Assistants

JProver is implemented on top of the MetaPRL core, using MetaPRL as a toolkit
that provides the basic functionality — term structure, substitution, unification,
etc. JProver takes as its input a small JLogic module that represents the logic
of the proof assistant with which JProver will cooperate. The JLogic module
describes which terms implement logical connectives, how to access subterms
from those connectives, and how to convert JProver’s generic representation of
a sequent proof into the internal data structures of the proof assistant.

In order to be able to call JProver from some proof assistant, one would need
to write a logic module that consists of two components: a piece of OCaml code
for communicating with that proof assistant (using whatever communication
protocol developers would choose) and a JLogic module capable of decoding
the sequent received from that communication code and of encoding JProver’s
response into a form the communication code expects.

Currently we have integrated JProver into the MetaPRL and Nuprl systems.
The technical integration of JProver into MetaPRL is straightforward, as JProver
is a module in MetaPRL’s code base. MetaPRL can communicate with it simply
by making a function call. The logical module of the MetaPRL type theory passes
its formulas directly to JProver and the JLogic module for MetaPRL converts
JProver’s sequent proof into a MetaPRL tactic, which will generate a MetaPRL
proof for the proof goal.

The integration into Nuprl (Figure 1) is not as straightforward. Calling
JProver from a Nuprl sequent requires Nuprl to preprocess the goal and the list
of hypotheses and to send them to a MetaPRL process running JProver. The
preprocessing accounts for differences in the representation of variables and ap-
plications of terms, and also addresses differences in the type theory semantics.

423

For example, JProver, as a first-order intuitionistic prover, cannot understand
type information contained in Nuprl’s sequents. We can, however, encode the
type information as a logical predicate which is understood, and then later rein-
terpret JProver’s results to fit the original sequent. In most cases, however, the
logical proof does not depend on type information. We simply discard it if the
sequent mentions only a single type.

To communicate the processed sequent, the Nuprl/JProver link takes advan-
tage of the Nuprl Logical Programming Environment’s [1] open architecture,
which supports communication with external proof tools by sending terms in
MathBus format [13] over an INET socket. Since most of the terms in the sequent
are left unchanged, the common MathBus format is valuable in communicating
and understanding contrasting syntax of the linked systems. Once the sequent is
sent, the JLogic module for Nuprl describes how JProver can access the semanti-
cal information of its terms and also how to convert JProver’s resulting sequent
proof into a list of sequent rules with parameters, that Nuprl can then interpret.
From this list of rules, Nuprl then builds a proof tree for the original sequent in
a depth-first, left-to-right fashion.

Neither MetaPRL nor Nuprl rely on the correctness of JProver or the pro-
cessing. Instead, JProver’s output provides these systems with a proof strategy,
which is then executed on the original sequent in the respective environment.

4 Progress and Availability

The connection between JProver and Nuprl is an example in which hybrid proofs,
i.e. proofs created by multiple provers with different formalisms, have been suc-
cessfully and verifiably generated. It gives a user the full expressive power of the
proof assistant when dealing with complex proofs and verifications, while at the
same time taking advantage of well-understood and efficient proof techniques for
subproblems that only depend on first-order reasoning.

A snapshot from a proof of the “Agatha Murder Puzzle” is depicted in Fig-
ure 2 and illustrates the cooperation of JProver with Nuprl. After the first step
the user invokes JProver through a Nuprl tactic, which completely proves the
goal (left window). To inspect proof details, the user may request the complete
sequent proof with elementary rules to be displayed (right window). Experience
has shown that this option has considerable educational value.

It should be noted that JProver is not restricted to the syntax of first-order
logic: unknown terms are simply treated as uninterpreted function or predicate
symbols. This allows us to apply JProver to proof problems that are usually out-
side the range of first-order provers and to combine it with other proof techniques
that are available to proof assistants.

In the future we intend to extend JProver’s capabilities by coupling it with
Nuprl tactics and decision procedures. We also intend to strengthen the prover
component by adding mechanisms for inductive theorem proving described in
[12] and modules for handling modal logics and fragments of linear logic [10,11].

424

Fig. 2. The Nuprl/JProver link: proving the “Agatha Murder Puzzle”

These modules will make JProver valuable for a variety of other proof assistants.
We plan to build the corresponding interfaces as well.

Although JProver’s main emphasis is not high-performance but bringing the
advantages of connection-based theorem proving such as complete and efficient
search into tactic-based proof assistants, we plan to incorporate well-known tech-
niques for speeding up automated theorem provers in order to improve JProver’s
performance as a stand-alone prover.

JProver is a part of the MetaPRL code base and can be downloaded from
MetaPRL’s home page [9]. An executable copy of Nuprl running under Linux is
available at http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl5/index.html

References

1. S. Allen, R. Constable, R. Eaton, C. Kreitz & L. Lorigo. The Nuprl open logical en-
vironment. In D. McAllester, ed., CADE-17 , LNAI 1831, pages 170–176. Springer
Verlag, 2000.

2. C. Benzmüller et. al. Ωmega: Towards a mathematical assistant. In W. McCune,
ed., CADE-14 , LNAI 1249, pages 252–256. Springer Verlag, 1997.

3. W. Bibel. Automated Theorem Proving. Vieweg Verlag, 1987.
4. R. L. Constable et. al. Implementing Mathematics with the Nuprl proof development

system. Prentice Hall, 1986.
5. U. Egly & S. Schmitt. On intuitionistic proof transformations, their complex-

ity, and application to constructive program synthesis. Fundamenta Informaticae
39(1–2):59–83, 1999.

6. M. C. Fitting. Intuitionistic logic, model theory and forcing. Studies in logic and
the foundations of mathematics. North–Holland, 1969.

7. G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeit-
schrift, 39:176–210, 405–431, 1935.

425

http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl5/index.html�

8. J. Hickey & A. Nogin. Fast tactic-based theorem proving. In J. Harrison & M. Aa-
gaard, eds., TPHOLs 2000, LNCS 1869, pages 252–266. Springer,2000.

9. Jason J. Hickey, Aleksey Nogin, et al. MetaPRL home page. http://metaprl.org/.
10. C. Kreitz & J. Otten. Connection-based theorem proving in classical and non-

classical logics. Journal for Universal Computer Science 5(3):88–112, 1999.
11. C. Kreitz & S. Schmitt. A uniform procedure for converting matrix proofs

into sequent-style systems. Journal of Information and Computation 162(1–2):
226–254, 2000.

12. C. Kreitz & B. Pientka. Matrix-based inductive theorem proving. In R. Dyckhoff,
ed., TABLEAUX-2000, LNAI 1847, pages 294–308. Springer Verlag, 2000.

13. The MathBus Term Structure.
http://www.cs.cornell.edu/simlab/papers/mathbus/mathTerm.htm

14. J. Otten & C. Kreitz. T-string-unification: unifying prefixes in non-classical proof
methods. In U. Moscato, ed., TABLEAUX’96 , LNAI 1071, pages 244–260. Springer
Verlag, 1996.

15. S. Schmitt. Proof reconstruction in classcial and non-classical logics, Dissertatio-
nen zur Künstlichen Intelligenz 239. Infix, 2000.

16. S. Schmitt. A tableau-like representation framework for efficient proof reconstruc-
tion. In R. Dyckhoff, ed., TABLEAUX-2000, LNAI 1847, pages 398–414. Springer
Verlag, 2000.

17. K. Slind, M. Gordon, R. Boulton & A. Bundy. An interface between CLAM and
HOL. In C. Kirchner & H. Kirchner, eds., CADE-15, LNAI 1421, pages 134–138.
Springer Verlag, 1998.

426

http://metaprl.org/�
http://www.cs.cornell.edu/simlab/papers/mathbus/mathTerm.htm�

