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Abstract

Proof systems for expressive type theories provide a foundation for the verification and
synthesis of programs. But despite their successful application to numerous programming
problems there remains an issue with scalability. Are proof environments capable of rea-
soning about large software systems? Can the support they offer be useful in practice?

In this article we answer this question by showing how the Nuprl proof development
system and its rich type theory have contributed to the design of reliable, high-performance
networks by synthesizing optimized code for application configurations of the Ensemble
group communication toolkit. We present a type-theoretical semantics of OCaml, the
implementation language of Ensemble, and tools for automatically importing system code
into the Nuprl system. We describe reasoning strategies for generating verifiably correct
fast-path optimizations of application configurations that substantially reduce end-to-end
latency in Ensemble. We also discuss briefly how to use Nuprl for checking configurations
against specifications and for the design of reliable adaptive network protocols.

1 Introduction

Advanced type systems have greatly increased our ability to produce reliable soft-
ware. In programming languages, type checking, certifying compilers, and extended
static checking (Schneider et al., 2000; Leino, 2000) help detecting subtle errors at
compile time. In theorem proving, type theories provide the logical foundation for
proving programs correct and synthesizing algorithms from formal specifications.
Numerous proof assistants have been built for these expressive formalisms and
been used successfully in a variety of applications in mathematics and program-
ming. Some of the most prominent of these systems are Alf (Altenkirch et al.,
1994; ALFA), Coq (Dowek & et. al, 1991; Coq), HOL (Gordon & Melham, 1993;
HOL), Isabelle (Paulson, 1990; Isabelle), Lego (Pollack, 1994), Nuprl (Consta-
ble et al., 1986; Allen et al., 2000; Nuprl), PVS (Owre et al., 1996; PVS), TPS

(Andrews et al., 1996; TPS), and Twelf (Pfenning & Schürmann, 1999). Most
applications, however, have dealt only with theoretical algorithms or idealizations
of real systems. It is not clear whether the proof methods used in them scale well
enough to offer practically useful support for software design.

In this article we will demonstrate that formal logical methods based on expres-
sive type systems are capable of supporting the formal design and implementation
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Fig. 1. Linking Ensemble and Nuprl

of large-scale, high-performance network systems. In particular we will show that
linking the Ensemble group communication toolkit (Hayden, 1998; Birman et al.,
2000) to the Nuprl proof development system (Constable et al., 1986; Allen et al.,
2000) provides an infrastructure for the application of logical inference techniques to
a real-world system. We call this infrastructure a logical programming environment
for Ensemble (Kreitz et al., 1998). Within the logical programming environment
we have developed logical optimization tools that can substantially increase the
performance of Ensemble and as well as mechanisms that support the verification
and formal design of Ensemble protocols.

Figure 1 illustrates the methodology of our approach. We link Ensemble and
Nuprl by developing tools for importing Ensemble’s system code into the Nuprl

proof development system and vice versa. These tools convert Ensemble code into
terms of Nuprl’s logical language and are based on a type-theoretical semantics of
Ensemble’s implementation language OCaml.

Within Nuprl we then optimize the (represented) code of application configu-
rations of Ensemble by applying semantics-preserving logical transformations and
export the result back into the OCaml programming environment. In addition to
that we provide a formal proof that the generated code, while being significantly
more efficient, has in fact the same functionality as the original one. We can also
apply formal reasoning strategies to verify Ensemble protocols and use formal
techniques to support the design new communication protocols for Ensemble.

Obviously, our approach is limited to distributed systems with a simple and
well-defined design structure. Importing and exporting system code into a formal
language like type theory requires the system’s implementation language to have a
precise mathematical semantics. For formal optimization and verification to become
feasible, the system must have components with precisely specified interfaces and
well-defined mechanisms for composing them. Fortunately, the Ensemble system
and its implementation language OCaml satisfy these requirements.



Building Reliable, High-Performance Networks 3

In the following section we will give a brief account of Nuprl and Ensemble. Sec-
tion 3 will describe the representation of OCaml programs in Nuprl’s type theory
as well as the tools for importing and exporting system code. Formal optimiza-
tion is presented in Section 4, while Section 5 describes research on the verification
and formal design of Ensemble protocols. Section 6 addresses related work. We
conclude by discussing insights gained from our research as well as future work.

2 Preliminaries

2.1 Nuprl

The Nuprl proof development system (Constable et al., 1986) is a framework for
the development of formal mathematical knowledge as well as for the synthesis,
verification, and optimization of software.

Nuprl’s logical language, summarized in Table 1, is a significant extension of
Martin-Löf’s intuitionistic Type Theory (Martin-Löf, 1984; Constable, 1998) that
includes formalizations of fundamental mathematical concepts, an expressive data
system, and a functional programming language similar to the core of ML. Each

Type Members and associated noncanonical expressions

Function Space S→T , x:S→T λx.t, f t
Product Space S×T , x:S×T <s,t>, let <x,y> = e in u
Disjoint Union S+T inl(s), inr(t),

case e of inl(x) 7→u | inr(y) 7→ v
Universes Uj — types of level j —

Equality Type s = t ∈ T Ax

Empty Type Void — no members — any(x)
Atoms Atom "token", if "a"="b" then s else t
Numbers Z 0, 1, -1, 2, -2,. . .

rec-case i of x<0 7→ [fx].s | 0 7→ b | y>0 7→ [fy].t
s+t, s-t, s*t, s÷t, s rem t,
if i=j then s else t, if i<j then s else t

i<j Ax

Lists S list [], t::list,
rec-case L of [] 7→ b | x::l 7→ [fl].t

Inductive Types rectype X =T [X] — members defined by unrolling T [X] —

let∗ f(x) = t in f(e),

Subset {x:S|P [x]}, — some members of S —

Intersection ∩x:S.T [x], — members that occur in all T [x] —

x:S∩T [x] — members x that occur S and T [x] —

Union ∪x:S.T [x] — members that occur in some T [x], tricky equality—

Quotient x,y :S//E[x, y] — members of S, new equality —

Very Dependent Functions — functions whose range types depend on the values

{f | x:S→T [f, x]} of their inputs and of the functions themselves —

Table 1. Expressions of Nuprl’s Type Theory
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Natural numbers N ≡ {i:Z|0≤i}
Logical connectives ∀ ∃ ∧ ∨ ⇒ ¬ True False — Curry-Howard isomorphism —

Singleton type Unit, () ≡ 0=0 ∈Z, Ax
Top type Top ≡ ∩x:Void.Void
Booleans B, tt, ff ≡ Unit + Unit, inl(()), inr(())
Boolean conditional if b then s else t ≡ case b of inl( ) 7→ s | inr( ) 7→ t
Y combinator Y ≡ λf. (λx.f (x x)) (λx.f (x x))
List operations hd(l), tl(l), l1@l2, length(l), map(f;l), rev(l), l[i], l[i..j−]

Table 2. Important user-defined Nuprl types and expressions

type comes with notions of (lazy) evaluation and extensional equality, which are
essential for defining the semantics of expressions. Nuprl’s type theory is open-
ended in the sense that new types may be added to the theory if needed. Recent
additions for reasoning about classes and objects include very dependent function
types, dependent intersection and records, and a union type (Hickey, 1996; Kopylov,
2000; Constable & Hickey, 2000; Hickey, 2001).

As Nuprl expressions are defined independently of their types, Y combinators
and similar constructs may be used within Nuprl terms, which makes it possible
to represent all computable functions in type theory. In the course of a formal
argument, however, expressions have to be proven to belong to some type. Nuprl

proofs are developed in a top down sequent calculus: proof goals are refined into
subgoals by application of inference rules until they can be handled by axioms or
already proven lemmata. For each type there is a a collection of inference rules
for reasoning about the formation and equality of types, members, and associated
noncanonical expressions, for reasoning about the use of variables of a type, and
for reasoning about computation. The latter are crucial for reasoning about values
of expressions and for proving properties of expressions that contain non-typeable
subexpressions like the Y combinator.

The Nuprl system (Constable et al., 1986; Allen et al., 2000; Nuprl) supports an
interactive development of formal mathematical theories and program verifications.
It provides a highly visual proof editor , a tactic mechanism for the development of
proof strategies through programmed application of inference rules, decision pro-
cedures for standard arithmetic and equality reasoning, mechanisms for extracting
programs from proofs and evaluating programs, and an extendable library of verified
knowledge from various domains. Furthermore, users may use definitional abstrac-
tions to extend the formal language of type theory in a conservative way (see
Table 2 for important user-defined concepts) and display forms to customize the
outer appearance of terms without changing their internal structure.

The system has been used in increasingly large applications in mathematics and
programming, such as constructive versions of Girard’s paradox (Howe, 1987), Hig-
man’s lemma (Murthy & Russell, 1990), abstract algebra (Jackson, 1994), verifi-
cations of a logic synthesis tool (Aagaard & Leeser, 1993) and of the SCI cache
coherency protocol (Howe, 1996), and in our current work on communication sys-
tems (Kreitz et al., 1998; Hickey et al., 1999; Liu et al., 1999; Bickford et al., 2001c).
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In its newest release (Allen et al., 2000), Nuprl features an open, distributed
architecture that is organized as a collection of independent communicating pro-
cesses centered around a persistent knowledge base (or library). This enables users
to connect external proof tools to Nuprl and to use them simultaneously and asyn-
chronously in complex proofs. Currently, users may invoke the MetaPRL proof
engine (Hickey & Nogin, 2000; Hickey, 2001; MetaPRL) and the intuitionistic first-
order theorem prover JProver (Schmitt et al., 2001). Additional proof systems
will be connected in the future.

2.2 Ensemble

Ensemble (Hayden, 1998; Ensemble) is a high-perfor-
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mance network protocol architecture that aims at securing
critical applications. It is a successor of the widely adopted
system Isis (Birman & van Renesse, 1994) and Horus (van
Renesse et al., 1996) and is designed particularly to sup-
port group membership and communication protocols. En-

semble is currently used in the BBN Aqua and Quo plat-
forms, a fault-tolerant test bed at JPL, the Adapt adap-
tive multimedia middleware system at Lancaster University,
a multi-player game by Segasoft, and in the Alier financial
database tools.

Ensemble’s architecture (Hayden & Rodeh, 2001) is
based on the notion of a protocol stack . The system is con-
structed from a library of over sixty micro-protocol modules,
or layers, which implement fragmentation and re-assembly,
flow control, message ordering, buffering and retransmission,
signing and encryption, group membership, synchronization,
and other functionality. Micro-protocols can be stacked in a
variety of ways to meet the communication demands of an application. Each mod-
ule adheres to a common interface consisting of a top-level and a bottom-level part.
The top-level interface of a module communicates with the bottom-level interface
of the module immediately on top of it. The interface is event-driven: modules pass
event objects to the adjacent modules. Certain types of events (e.g. send events)
travel down, while others (e.g. message delivery events) travel up the stack.

Ensemble is written almost entirely in OCaml (Leroy, 2000). The choice of
OCaml instead of C, which was used for implementing Ensemble’s predecessor
Horus, significantly reduced the size of micro-protocol code and made it easier to
develop and maintain Ensemble modules. The main benefit of OCaml, however,
is that it has a precise mathematical semantics, which can be employed for the au-
tomated verification, optimization, and generation of Ensemble protocol stacks.
These operations can be tedious and error-prone if performed manually. Using the
Nuprl proof development system enables us to address both problems: automa-
tion makes it possible to re-use common reasoning strategies, and formal reasoning
guarantees the correctness of code transformations.
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3 Representing OCaml programs in Nuprl

OCaml (Leroy, 2000), is a strongly typed, functional programming language that
has been extended by reference cells, exceptions, a module system, and an object
calculus. Its functional core is similar to the language of Nuprl’s type theory. But
it has a different, less rigid syntax and contains many additional features.

To support formal reasoning about systems implemented in OCaml we have to be
able to automatically convert OCaml programs into terms of Nuprl’s type theory
that capture the semantics of these programs. For this purpose we have developed
a shallow type-theoretical semantics of OCaml that is faithful with respect to the
informal semantics given in the OCaml manual (Leroy, 2000) and to the operational
semantics generated by the OCaml compiler.

We have “implemented” this formalization using Nuprl’s definition mechanism:
definitional abstractions add new terms to Nuprl’s type theory that capture both
the structure and the operational semantics of OCaml language constructs, while
display forms make sure that the outer appearance of these terms is identical to the
OCaml construct they represent. For instance, an OCaml function declaration,
as we will elaborate in Section 3.1, is represented by the following two objects.

ABS Function{}(p; e) ≡ λs,env. inr(λe1. p e1 e), s

DISP function p -> e ≡ Function{}(p; e)

The abstraction declares a new abstract term with operator identifier Function,
no parameters, and two subterm arguments p and e. The abstraction defines the
abstract term to be equal to the term on the right hand side. The corresponding
display form describes that the new term is to be displayed as function p -> e .
Together, abstraction and display form represent the structure, the semantics, and
the syntax of the OCaml function declaration. In the rest of this paper we will
omit the abstract description of new terms and simply write

function p -> e ≡ λs,env. inr(λe1. p e1 e), s

In addition to the formal representation we have also developed a formal pro-
gramming logic for reasoning about OCaml programs and their evaluation. The
programming logic is expressed in the form of inference rules that are implemented
as Nuprl tactics and are based on well-formedness theorems of each language con-
struct. This guarantees that the rules are correct with respect to the type-theoretical
semantics of OCaml and allows formal reasoning to be performed at the level of
OCaml programs instead of the underlying type-theoretical concepts.

Finally, we have created tools that convert OCaml programs into their formal
Nuprl representations and store them as objects of Nuprl’s library. These tools
make the actual OCaml-code of an Ensemble protocol stack available for formal
reasoning within Nuprl and help the reasoning system to keep track of modifica-
tions in Ensemble‘s implementation.

In the rest of this section we will describe the formalization of OCaml and the
tools that translate between OCaml programs and their formal representations.
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3.1 A Type-Theoretical Model for OCaml

The basic language of OCaml is centered around a functional core enhanced by
patterns, references, and exceptions. We will briefly discuss aspects of formalizing
these components and then describe a type-theoretical model for OCaml. We will
illustrate this model by representing OCaml’s language core in Table 3 and present
the complete formalization of OCaml based on this model in Section 3.3.

OCaml’s functional core is a simple applicative language with constants, higher-
order functions, local bindings, call-by-value application, and recursive definition.
Its expressions and values are

(Expressions) e ::= v | e1 e2 | let x=e1 in e2 | let rec x=e1 in e2

(Values) v ::= c | x | function x -> e

where x is a variable and c a constant. Apart from notational differences this lan-
guage is similar to the core of Nuprl’s type theory. OCaml’s function declaration
function x -> e has the same semantics as the lambda-abstraction λx.e in type
theory, function application in OCaml and Nuprl are the same, a let-binding
let x=e1 in e2 can be expressed as application of an abstraction (λx.e2) e1,
and a recursive definition let rec x=e1 in e2 as (λx.e2) (Y (λx.e1)). OCaml

variables are represented as Nuprl variables while the representation of constants
depends on the representation of the corresponding data types.

Patterns are language constructs that enable a programmer to decompose data
structures in a convenient way. A local binding of the form let p=e1 in e2 matches
the pattern p against the expression e1 and binds the variables of e2 that occur in p

accordingly. In contrast to a simple let-binding, the pattern p may contain several
variables that are grouped together by data structure constructors, which determine
the fragment of e1 that will be bound to the variables in e2.

As Nuprl’s type theory does not include general pattern matching, OCaml func-
tion declarations and let-bindings cannot be mapped directly onto corresponding
Nuprl constructs anymore. Therefore, we explicitly represent OCaml’s runtime
environment of variable bindings and separate expressions from patterns. OCaml

expressions are functions that evaluate variables and terms in this environment,
while patterns are functions that update the environment of some expression.

Formally, an environment env is represented as a table consisting of pairs of
variables and values. Table lookup (env[x]) and extending the table by a new
binding (env@{x 7→v}) are defined via predefined standard list and pair operations.

{} ≡ []

env@{x 7→v} ≡ <x,v> :: env

env[x] ≡ lookup x env

An OCaml variable expression x will be represented by a function that expects an
environment env as input and looks up the current value of x in that environment.
In contrast, a variable pattern xp will be represented by a function that takes two ex-
pressions e1 and e2 and modifies an environment env for evaluating e2 by binding xp

to the value of e1 in env. In this framework, a function definition function p -> e
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applies the pattern p to some input expression e1 and to e, while a let binding
let p=e1 in e2 is an application of p to e1 and e2. Evaluating let xp=e1 in e2

in the environment env would result in e2 (env@{xp 7→(e1env)}).

Reference cells in OCaml are special instances of mutable records, which are
associated with generalizations of the familiar operations ref e , !e , and e1:=e2.

As they may occur in arbitrary OCaml expressions, causing them to have side-
effects, we need to extend our formal model by explicitly representing a global state.

We represent OCaml expressions by functions that operate on an environment
env and a store s, evaluate a term with respect to env and s, and return both
the value and the possibly updated store. Similar to an environment, a store s is a
table of pairs of addresses (natural numbers) and values. The creation of new table
entries (New(s)), store lookup (!s[addr]), and updating the contents of a store
cell (s[addr←v]) are defined via standard list and pair operations.

[ ] ≡ []

New(s) ≡ max (map fst s) + 1

s[addr←v] ≡ <addr,v> :: s

!s[addr] ≡ lookup addr s

A reference ref e evaluates the expression e with respect to the current store
and environment, determines a free address in the updated store s1, assigns the
value v of x to that address, and then returns the address and the modified store
s1[addr←v] as result. Dereferencing !e means evaluating e and then looking up
the resulting address in the (updated) store (!s1[addr]). An assignment e1:=e2

first evaluates e2 and then e1. Afterwards it assigns the value of e2 to the store
address determined by e1. The result of the expression is the unit value ().

Exceptions are an ML concept for handling failure while ensuring typability of
expressions. Exceptions may be raised by runtime failures or by explicit calls to the
function raise and are handled using the expression try e1 with p -> e2 .

Exceptions can be viewed as alternative result of evaluating an expression and
belong to the same type. The exception Division by zero generated by evaluating
x/0, for instance, has the type int. Formally, OCaml data types are a disjoint
union EXCEPTION + T of the type of exceptions (represented as atoms) and the
type T of the data type’s values. Values v and exceptions exn have to be tagged
accordingly. For this purpose we use the Nuprl terms inr(v) and inl(exn) .

We represent raise exn as a function that for each environment env and store s
returns inl(exn) and an unchanged store. try e1 with p -> e2 is represented
by a function that returns the value of e1 unless the evaluation fails. Otherwise it
matches the resulting exception against the pattern p and proceeds with evaluating
e2 in an enriched environment.

As exceptions may occur in arbitrary OCaml expressions, our representation
of expressions and patterns must always check whether the result of evaluating an
expression is a value or an exception. To simplify the formalization, we introduce an
abbreviation let↓ inr(v),s = eval1 in eval2 that catches this failure check.
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let↓ <inr(v),s> = eval1 in eval2

≡ let <r,s1> = eval1 in
case r of inl(exn) 7→ inl(exn), s

| inr(v) 7→ eval2

The formal model. The combination of the functional core, patterns, references,
and exceptions describes all the essential features of the Caml part of OCaml,
i.e. the language fragment without the object and module system. The expressions,
values, and patterns of this core language are

(Expressions) e ::= v | e1 e2 | let p=e1 in e2 | let rec p=e1 in e2

(Values) v ::= c | x | function p -> e | ref | ! | :=
| raise | try e1 with p -> e2

(Patterns) p ::= xp

where x is a variable, xp a variable pattern, and c a constant. The type-theoretical
formalization of this language core is described by the Nuprl definitions in Table 3.
It represents OCaml expressions as elements of the type

EXPR ≡ s:STORE → env:ENV → (EXCEPTION + VALUE) × STORE

where ENV is the type of variable binding environments (tables of variable names and
values), STORE the type of stores (tables of addresses and values), EXCEPTION the
type of exceptions (atoms), and VALUE the type of values (Nuprl’s type Top). To
“lift” a value v to an expression that always evaluates to v, we use the abbreviation

dve ≡ λs,env. inr(v), s

Lifting is necessary to express the call-by-value evaluation order in the represen-
tation of function application and exception handling.

OCaml patterns are represented as elements of EXPR → EXPR → EXPR . The
language core contains only variable patterns. The representation of all other pat-
terns of OCaml is discussed in Appendix A.2.

OCaml types are represented in a way that the typing relation in OCaml can
be expressed by the built in membership relation of Nuprl’s type theory. Thus
OCaml types will be represented as subtypes of the type EXPR, i.e. as (dependent)
function types of the form s:STORE → env:ENV → (EXCEPTION + T) × STORE.

The representation of OCaml types is discussed in detail in Appendix A.3
It should be noted that, due to the use of formal abstractions, every OCaml

program corresponds to exactly one canonical representation in Nuprl. The type-
theoretical semantics of this term, defined in the abstractions, describes the oper-
ational semantics of the program. The structure of this term, built from abstract
Nuprl terms, describes its abstract syntax tree. The display of the term, defined
by the corresponding display forms, is identical to that of the program.

The OCaml program (function x -> x) x, for instance, is represented by the
Nuprl term Apply{}(Function{}(PatVar{x}(); Var{x}()); Var{x}()). The
semantics of this term, given by the definitions in Table 3, is a term that reduces to
λs,env. inr(env[xv]),s , the semantics of (the representation of) the variable x.
The term is displayed by the Nuprl system as (function x -> x) x.
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e1 e2 ≡ λs,env. let↓ <inr(v),s1> = e2 s env in

let↓ <inr(f),s2> = e1 s1 env in

(f dve) s2 env

let p = e1 in e2 ≡ p e1 e2

let rec p = e1 in e2 ≡ p (Y (λe. p e e1)) e2

xv ≡ λs,env. inr(env[xv]),s

function p -> e ≡ λs,env. inr(λe1. p e1 e), s

ref e ≡ λs,env. let↓ <inr(v),s1> = e s env in

let addr = NEW(s1) in

inr(addr), s1[addr←v]

!e ≡ λs,env. let↓ <inr(addr),s1> = e s env in

inr(!s1[addr]), s1

e1 := e2 ≡ λs,env. let↓ <inr(v),s1> = e2 s env in

let↓ <inr(addr),s2> = e1 s1 env in

inr (), s2[addr←v]

raise exn ≡ λs,env. inl(exn), s

try e1 with p -> e2 ≡ λs,env. let <r,s1> = e1 s env in

case r of inl(exn) 7→ (p dexne e2) s1 env

| inr(v) 7→ inr(v), s1

xp ≡ λe1,e2.λs,env. let↓ <inr(v),s1> = e1 s env in

e2 s1 (env@{xp 7→v})

Table 3. Nuprl representation of OCaml’s language core

3.2 Modules and Objects

Modules and compilation units are second class objects of the OCaml programming
language. They cannot be used as parts of expressions and have no operational
semantics per se. Instead, they provide a means for structuring code, for instance
by introducing names for user-defined types and functions and binding them to a
particular expression, describing the signature of an abstract data type, providing
alternative implementations of the same function, and disambiguating references to
names that are defined in multiple modules.

As Ensemble’s implementation uses neither functors nor the with operator (see
§6.10.4 of (Leroy, 2000)) in the specification of its modules, it suffices to represent
each module expression as a separate object of Nuprl’s library, i.e. as object on
the meta-level of Nuprl’s type theory. We use meta-level object generators to
map type and value definitions onto Nuprl abstractions that globally declare the
corresponding names, prefixed by the name of the module, as abbreviation for a
certain expression or type (see Appendix A.4). Module definitions and the open

command are instructions that influence the behavior of these object generators
and make sure that named references within type-theoretical expressions are linked
to the correct abstraction. As a consequence each module expression is accessible
as separate Nuprl object and can be reasoned about individually.

We are currently investigating a more general approach that formalizes module
expressions within type theory instead of its meta-level. In this approach we repre-
sent module expressions as functions that update a global environment. This allows
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treating named references as variables that consult the environment during evalu-
ation. The approach is theoretically more satisfactory and also allows representing
functors as functions on global environments. However, it is also more complex and
its consequences for practical reasoning need to be evaluated.

Objects, methods, classes and inheritance are not used in Ensemble’s imple-
mentation and currently not represented. Although objects could be understood
as generalization of reference cells, the current type theories do not offer sufficient
support for expressing the formal semantics of methods and inheritance. Prelimi-
nary studies by A. Kopylov indicate that a combination of dependent records and
union types may provide a foundation for representing objects in the future.

3.3 Extent of Formalization

As the main purpose of our formalization of OCaml is to provide a foundation
for the verification, optimization, and synthesis of Ensemble protocols and stack,
we have focused on developing type-theoretical representations of OCaml’s func-
tional core and the language constructs that are actually being used in the code
of Ensemble. Our formalization was originally based on OCaml-1.07 and later
migrated to OCaml-2.02. We are currently working on adding the new features of
OCaml-3.0x and making the representation more complete.

Chapter 6 of the OCaml manual (Leroy, 2000) describes the syntax of all OCaml

language constructs and their informal semantics. Our type-theoretical represen-
tation provides a formal semantics of these language constructs through Nuprl

abstractions and represents their syntax through the corresponding display forms.
Nuprl precedence objects are being used to control the automatic generation of
parentheses that follow OCaml’s rules for precedences and associativity. Finally
well-formedness theorems show that the Nuprl representation of a language con-
struct is faithful with respect to OCaml’s type system. For instance, Nuprl repre-
sentations of OCaml expressions must be members of (the Nuprl representations
of) the corresponding OCaml types. Our formalization, which we will describe in
detail in Appendix A, currently includes the following

• All expressions listed in §6.7, including the constants listed in §6.5, except
for bitwise logical and floating point operators, method invocation, object
creation, coercion, and object duplication (see Appendix A.1).

• All patterns listed in §6.6, except for float patterns and variant abbreviation
patterns (see Appendix A.2).

• All type expressions listed in §6.4, except for closed variant types, object and
class types. Labels in function types are not yet supported (see Appendix A.3).

• All type definitions listed in §6.8, except for constraint definitions and optional
prefixes for type parameters (see Appendix A.4).

• There is limited support for module specifications, module implementations
and compilation units, listed in §6.10–12, as described in Section 3.2.

• Classes, listed in §6.9, are not yet supported.
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Our formalization had to take into account that OCaml constructs have a more
flexible syntax than the terms of type theory. Record expressions {f1=e1;..;fn

=e
n
},

for instance, can have arbitrarily many components, while in Nuprl each term must
have a fixed number of subterms. Therefore, although we can formalize arbitrarily
sized record expressions by Nuprl terms, it is not possible to use a single Nuprl

abstraction for this purpose. Instead, we have to iterate primitive abstractions to
build a formal representation of record expressions, similarly to the way one would
build constant list expression by iteratively prepending elements to the empty list,
and provide appropriate iteration definitions in the corresponding display forms
to make sure that the resulting term is displayed as syntactically correct OCaml

record expression (see Appendix A.1 on page 41 for a detailed discussion).
Thus in general, OCaml language constructs do not correspond directly to

Nuprl abstractions but to Nuprl terms that are constructed by combining several
primitive abstractions. For each construct we have developed a meta-level term gen-
erator , i.e. an ML function that builds the Nuprl representation of the construct.
These term generators are crucial for automatically creating the formal representa-
tion of a piece of OCaml code and are used by the tools that import OCaml source
code into Nuprl as well as by the tools for synthesizing and optimizing code.

Our representation of the fundamental OCaml language constructs in Nuprl

currently includes 220 formal abstractions (to represent OCaml semantics), 230 dis-
play forms (to represent OCaml syntax), and 190 wellformedness theorems relating
formal abstractions to (OCaml) types. In addition to these we have imported a
large fragment of the OCaml libraries listed in §18–28 of (Leroy, 2000) into Nuprl

using the automatic tools described in Section 3.5 below. For externally defined
library functions this also meant providing “external” implementations, i.e. explicit
representations to which the external command could link.

3.4 A Programming Logic for OCaml

Formal reasoning about OCaml programs involves two types of arguments: reason-
ing about program properties (static semantics), and reasoning about the results
of program executions (dynamic semantics).

Program properties are usually expressed by a type system. The type of a pro-
gram can range from being its OCaml data type to a precise specification of its
behavior. Our formalization of OCaml enables us to use Nuprl’s built-in mem-
bership relation for both purposes: the OCaml types of OCaml expressions are
represented as the Nuprl types of their Nuprl representation. More specific pro-
gram specifications can be described using Nuprl’s subset constructor.

Reasoning about program executions involves reasoning about the semantic
equality of OCaml expressions that are syntactically different. Two OCaml ex-
pressions are semantically equal if their representations in Nuprl are. As Nuprl’s
type theory comes with built-in notions of extensional equality and evaluation of
terms, the equality of OCaml expressions can be shown by applying Nuprl’s proof
rules for reasoning about computation and equality of expressions.
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In theory, applying Nuprl’s inference rules is sufficient to support formal rea-
soning about OCaml programs: one would simply have to unfold the abstractions
in the formal representations of the programs and types and then reason about the
resulting term in type theory. This however would make formal reasoning about
OCaml programs impractical and formal arguments inaccessible to programmers,
as there is no visible relation between the formal proof and the original program.

To support formal reasoning on the level of OCaml, we have developed a pro-
gramming logic for OCaml, whose inference rules are derived from the formal
semantics of expressions and types. These rules preserve the “OCamlness” of ex-
pressions: they always return (representations of) valid OCaml expressions and do
not reveal the underlying type-theory. They are implemented as tactics, which in
turn are based on formal abstractions, formal lemmata about wellformedness and
evaluation, and the proof rules of Nuprl. This ensures that the implemented pro-
gramming logic is faithful with respect to the type-theoretical semantics of OCaml.

The rules for reasoning about program properties follow the style of reasoning in
Nuprl: they are top-down sequent rules that reason about the type of a program
expression by decomposing both the expression and the type into smaller fragments
such that proofs for the resulting fragment subgoals are sufficient to establish the
original goal. The derived rule for reasoning about function application in OCaml,
for instance, states that applying an expression f to an expression e is proven to be
of OCaml type T if we can prove f to be of type S -> T and e to be of type S.

∆ ` f e ∈ T
BY ApplyMem

∆ ` f ∈ S -> T
∆ ` e ∈ S

∆ is a placeholder for the sequent’s assumptions, which remain unchanged by
the rule. Its implementation as Nuprl tactic decomposes a proof goal into the two
subgoals described above, provided the goal matches the first line of the rule. A
complete list of the derived inference rules for reasoning about properties of OCaml

programs is given in (Kreitz, 1997).1

Similarly we have derived rules for the symbolic evaluation of OCaml expres-
sions from the formal operational semantics of OCaml expressions. The rule for
evaluating an OCaml function application, for instance, states that applying the
expression function x -> e to an expression e’ can be reduced to the OCaml

expression e [e’/x] , i.e. the expression e with occurrences of x replaced by e’.

(function x -> e) e’ −→ e [e’/x]
This rule can only be applied if e’ is free of side-effects, since side-effects may

evaluate differently on the left and right hand side. A tactic that executes the rule
through controlled applications of Nuprl rules would not be able to prove the two
expressions equal. The function body e, on the other hand, may include side-effects.

1 Although the formal model for OCaml in (Kreitz, 1997) is simpler than the one described here,
the derived rules remain the same. Only their implementation as tactics has changed.
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Appendix A.5 gives a detailed description of the inference rules for reasoning
about the computational behavior of OCaml programs. These rules can not only
be used for computing the result of executing a program in a specific context, but
also for transforming OCaml programs into equivalent ones. As such, they provide
a foundation for the formal optimizations that we will discuss in Section 4.

3.5 Import and Export of OCaml Code

The type-theoretical semantics of OCaml and its “implementation” as Nuprl ab-
stractions and display forms provide the foundation for formal reasoning about
OCaml programs. However, if we want to reason about real system implementa-
tions with ten thousands of lines of code, we have to provide mechanisms that auto-
matically translate the OCaml code into its Nuprl representation and vice versa.

Figure 3 illustrates our mechanisms for importing and exporting OCaml source
code. The tools for importing OCaml code into Nuprl have to analyze the syn-
tax of the OCaml source code, create the type-theoretical terms that represent it,
and store them as objects in Nuprl’s library. To ensure faithfulness with respect
to the OCaml programming environment we use the Camlp4 parser-preprocessor
(de Rauglaudre, 2000), an isolated version of the OCaml-parser, as tool for analyz-
ing program text. Camlp4 parses OCaml source code, generates its abstract syntax
tree, and then calls an output module for further processing, e.g. pretty-printing or
dumping the binary.

To convert the abstract syntax tree into Nuprl objects, we have implemented
a new output module for Camlp4 that creates intermediate code, which causes
Nuprl to build the corresponding abstractions and display forms. The module
generates pieces of this code for each node of the syntax tree, distinguishing the
various kinds of identifiers, expressions, patterns, types, signature items, and mod-
ule expressions as specified in Appendix A of (de Rauglaudre, 2000).

The intermediate code is a program in Nuprl’s meta-language ML that calls
the term and object generators described in Sections 3.3 and 3.2 above to build the
Nuprl representations of the OCaml code. It will be passed to the Nuprl system,
which generates abstractions and display forms for each function, type, and module
declared in the source code. In the process, the object generators also resolve issues
that arise when linking the code of several modules, which cannot be addressed by



Building Reliable, High-Performance Networks 15

the parser. These are name resolution (i.e. linking a named reference to a specific
object in some module), determining whether an identifier represents a variable or a
named reference, and resolving overloading of operator names. In addition to that,
the object generators also attempt to state and prove a well-formedness theorem
for each newly generated object, using its OCaml signature, if available, or a type
inference algorithm to determine its type.

To make synthesized OCaml programs available to the OCaml programming
environment, we have also implemented a mechanism for exporting Nuprl represen-
tations of OCaml code. Since we have designed the display forms and precedence
objects for each OCaml language construct in a way that they obey OCaml’s
syntax requirements, the Nuprl system displays and prints terms that represent
OCaml programs as syntactically correct OCaml source code. Exporting OCaml

code is therefore simply a matter of selecting the code pieces to be exported and
printing them into a file. The generated program text can then be compiled, linked,
and executed in the OCaml environment without further modifications.

We have used our tools to import a large fragment of the OCaml libraries
(44 modules containing about 10,000 lines of code) and the essential modules of
Ensemble (79 modules / 40,000 lines) into the Nuprl system. This resulted in the
creation of 2,320 formal abstractions and an equal number of display forms and
well-formedness theorems. Terms representing user-defined functions reach more
than 50KB in size and may grow to more than 1 MB if abstractions are unfolded.

4 Formal Optimization

Ensemble’s modular approach to building communication systems has many ad-
vantages over monolithic systems. Small components are easier to design, specify,
develop, test, verify, and optimize, while application systems may be more read-
ily adapted to new environments and extended at run-time with new components.
However, building systems from components usually comes with a performance
penalty: the abstraction barriers between the components impose high overheads
arising from additional function calls, redundant code, and code that is not used in a
particular configuration. In this section we will show how Ensemble’s performance
can be significantly improved by employing formal logical optimizations that turn
Ensemble into one of the fastest reliable multicast systems currently available.

(Hayden, 1998) suggests several optimizations that could be applied to stack-
based architectures implemented in functional programming languages.

1. Avoid garbage collection during message processing by freeing space allocated
for messages after they have been sent or delivered.

2. Avoid marshaling of small objects when sending data over the net.
3. Delay non-critical message processing by sending and delivering messages

before updating a module’s state and buffers.
4. Compress the module stack for common sequences of execution, creating a

fast-path that can be used in the common case.
5. Compress message headers that are added by micro-protocols while processing

a message that is being sent.
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The first three steps do not affect the modular approach as such and can be
addressed when implementing the system modules by adding low-level procedures
that overwrite the defaults of OCaml’s run-time system and by adopting a par-
ticular programming style. However, the final two optimizations require generating
special code after an application system has been configured from the modules.

Generating fast-paths for common cases and compressing headers is far beyond
the capabilities of current compiler optimization techniques. Therefore previous
work (Abbott & Peterson, 1993; Engler & Kaashoek, 1996; Hayden, 1998) involves
significant annotation of the code or hand-optimization, which is a difficult and
error-prone process. By using a formal logical tool like Nuprl, we can completely
automate these optimization steps and prove that they do not introduce any errors.

4.1 Fast-path Optimization

In most applications of communication systems it is easy to identify common se-
quences of execution. Data are being sent and received and there is no need for
message partitioning, retransmission, buffering, synchronization, etc. This means
that only a small fragment of the code of a protocol stack is involved in processing
the message and that some micro-protocols are not being activated at all. Fast-path
optimization aims at improving the system’s performance by identifying the code
that is actually used in the common case.

To understand fast-path optimization, it is useful to
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think of a protocol as a function that takes the internal
state of the protocol and an input event and produces an
updated state and a list of output events. In this view,
a protocol stack is a macro-protocol built by composing
protocol functions. A protocol can be optimized if we
can describe its regular state and common input events.
Formally, we use a Common Case Predicate (CCP), a
Boolean function on the state of a protocol and an in-
put event, for this purpose. CCPs are usually specified
by the programmer of a protocol or may be determined
from run-time statistics. For example, a CCP may ex-
press that the event is a deliver event whose sequence
number is equal to the next expected packet to arrive. If
the CCP is satisfied for a received message, then the mes-
sage may be delivered and the index of the next expected
packet incremented. Otherwise, the message would have
to be buffered.

Analyzing the path of events that satisfy the common
case predicate through the code of a protocol stack helps
isolating the code that is actually being used. We call this path a fast-path through
the protocol stack and the resulting code a bypass, which will be used to process
events in the common case. To decide whether a message can be handled by the
bypass code or has to go through the original stack, we use the same CCP that



Building Reliable, High-Performance Networks 17

was used to generate the bypass code, as illustrated in Figure 4 (The transport
module below the protocol stack provides marshaling of messages). It is necessary
to generate efficient code for this CCP, as it will be executed for every event.

In the following sections we will describe how to perform fast-path optimization
within the framework of a formal theorem proving environment.

4.2 A Knowledge-based Approach to Optimization

Formally, the optimizations necessary to generate bypass code can be expressed as
conditional rewrite steps that simplify and evaluate code fragments in the context
of a logical proposition, the common case predicate. To perform these steps, we use
the Nuprl proof development system. Nuprl enables us to automatically generate
bypass code and to wrap it by a module to be inserted into Ensemble. Additionally,
we can produce a formal proof that the generated code is equivalent to the original
one with respect to the formal semantics of the programming language.

Experience has shown that purely tactic-based rewrite techniques are not appro-
priate for optimizing protocol stacks. Although they are very useful for optimizing
individual micro-protocols (as described in Section 4.3) they scale badly when pro-
tocols are assembled into a stack. The reason for that is that the code for composing
protocols must provide for the situation that a protocol’s input event may generate
several output events to be sent to both adjacent protocols. Tracing the path of an
event thus requires an optimization tactic to deal with the formal representation of
the entire code of the protocol stack – more than 20,000 lines of code – at once.

Furthermore, although the optimization of individual micro-protocols is largely
automated, it occasionally requires expertise about the actual implementation to
be provided interactively. In contrast to the programmers who designed the micro-
protocols, application designers who configure the components of a communication
system to suit a particular application usually do not have this expertise.

Our approach to fast-path optimization takes into account that the implementa-
tion of the individual micro-protocols is static for each release of Ensemble, while
the configuration of application stacks is not. This allows us to provide formally
verified knowledge about fast-path optimizations of each micro-protocol a priori ,
i.e. together with the release of Ensemble, and to implement tactics that use this
knowledge to automatically generate fast-path optimizations of application stacks.
Formally, we do so by composing optimization theorems as illustrated in Figure 5.

There are two levels of formal optimizations. The first, or static, level (Section 4.3)
depends solely on the code of the individual micro-protocols and is performed semi-
automatically under the guidance of the developer of the micro-protocol and a
Nuprl expert, using a small collection of special-purpose tactics. At this level
we generate and prove optimization theorems about the result of optimizing micro-
protocols for four fundamental cases: down- or up-going events (sending or receiving
messages) for both point-to-point sending and broadcasting. These theorems may
take anything from 2 minutes to an entire afternoon to develop and are included in
the optimization tool that is made available to application developers.
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Fig. 5. Optimization methodology: composing optimization theorems.

The second, or dynamic, level (Section 4.4) depends on the protocol stack con-
figured by an application developer and cannot be provided a priori. Using compo-
sition theorems about the effect of applying Ensemble’s composition mechanism
to common combinations of fast-path optimizations, we generate and prove the-
orems about the result of optimizing the application stack. Header compression,
described in Section 4.5 may be integrated at this stage. We then synthesize bypass
code from these theorems and create a module for integrating it into Ensemble

(Section 4.6). This step is completely automated and requires only the names of
the micro-protocols used in the application stack as input.

It should be noted that optimization is orthogonal to verification. Our formal
tools prove that the resulting code is semantically equal to the original protocol
stack but do not make any assumptions about the correctness of the stack. In the
rest of this section we will explain the technical details of the optimization tool.

4.3 Optimization of Micro-Protocols

The static optimizations of Ensemble micro-protocols are based on an analysis of
possible fast-paths, or branches in the protocol code, which essentially describes a
simple state-event machine. In principle, each branch could be considered a fast-
path whose CCP is composed of the predicates in the corresponding conditionals.
However, a common case in communication is usually related to “ordinary” mes-
sages being sent or received, and not to handling errors, retransmissions, group man-
agement, etc. Identifying these paths requires insight into the code, which means
that the Ensemble programmer must either annotate the code or provide the
information explicitly when initiating the optimization of the micro-protocol.
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The optimization of a protocol layer proceeds by a series of code transformations
that preserve the semantics of a layer’s code under the assumption of a CCP and
are based on the following basic mechanisms:

Function inlining and symbolic evaluation simplifies code in the presence of con-
stants or function calls. Logically, this means rewriting the code by unfolding defini-
tions and controlled partial evaluation. Both techniques can be expressed in terms
of evaluation rules from our programming logic for OCaml (see Section 3.4, which
guarantees their correctness with respect to OCaml’s type-theoretical semantics).

To automate the application of these rules we have developed an evaluation
tactic Red, which searches top-down for the first reducible subterm of an OCaml

program fragment and reduces it. The search can be restricted by providing a
subterm address as additional argument. This allows a user to to leave certain
expressions unchanged while focusing on meaningful reductions.

Directed equality substitution such as the application of distributive laws lead to
further simplifications of the code. Technically, we apply lemmata from Nuprl’s
logical library. By adding to each lemma a direction that ensures formulas to become
simpler (e.g., indicating whether an equality lemma should be applied from left-to-
right or vice versa), we guarantee the termination of this process.

Context-dependent simplifications help in extracting the relevant code from a micro-
protocol. They trace the code path of messages that satisfy the CCPs and isolate
the corresponding code fragments. Technically, a CCP is expressed as an equality
that describes the value of a piece of code in a case split or a conditional. We use
this equality to substitute a piece of the code by a value and and then rewrite
the result with the above two mechanisms. A tactic UseAssumption performs these
steps automatically for a given assumption. Its implementation is straightforward,
as Nuprl supports equality reasoning and the management of hypotheses.

Tailored transformations take advantage of the fact that micro-protocols in En-

semble are coded according to a certain discipline. This discipline is illustrated in
Table 4 by the code of Ensemble’s Pt2pt micro-protocol, which implements fault-
tolerant point-to-point message delivery. Each protocol layer l is built from an
initialization function init and an event handler hdlrs, which describes how input
events affect the state of the protocol and what events will be sent to adjacent proto-
cols. The function hdlrs is split into five subhandlers for up- and down-going events
with full, local, or no message headers. Each of these subhandlers performs a case
analysis over type of the input event (sending, broadcasting, group management,
error handling, etc.) and triggers state updates and outgoing events accordingly.

Sending events to adjacent micro-protocols is done by calling their respective
event handlers rather than sending the events explicitly. This particular program-
ming style makes it possible to create a functional, imperative, or threaded version
of Ensemble (with different implementations of event queueing and layer composi-
tion) from a single reference implementation by packing the layer’s initial state and
event handler with a function called Layer.hdr. The conversion into functional,
imperative, or threaded mode will take place when a protocol stack is built.
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type header = NoHdr | Data of seqno | Ack of seqno | Nak of seqno * seqno
type state = {sweep: Time.t; mutable next sweep: Time.t; ... }
let init (ls,vs) = {sweep = Param.time vs.params "pt2pt sweep"; ... }
let hdlrs s (ls,vs) {up out=up; upnm out=upnm;

dn out=dn; dnlm out=dnlm; dnnm out=dnnm}
= let log = Trace.log "PT2PT" ls.name in

let up hdlr ev abv hdr = ...
and uplm hdlr ev hdr = ...
and upnm hdlr ev = ...
and dn hdlr ev abv =

match getType ev with
| ESend ->

let dest = getPeer ev in
if dest = ls.rank then failwith "PT2PT: send to myself";
let sends = Arraye.get s.sends dest in

let seqno = Iq.hi sends in
let iov = getIov ev in

Iq.add sends iov abv ;
dn ev abv (Data seqno)

| -> dn ev abv NoHdr
and dnnm hdlr = dnnm

in {up in=up hdlr; uplm in=uplm hdlr; upnm in=upnm hdlr;
dn in=dn hdlr; dnnm in=dnnm hdlr}

let l args vs = Layer.hdr init hdlrs args vs
let = Layer.install "PT2PT" l

Table 4. Excerpt from the code of Ensemble’s Pt2pt micro-protocol.

The coding discipline for Ensemble micro-protocols enabled us to write a tactic
EvaluateCodeStructure that applies a predetermined series of controlled unfold
and evaluation steps, η-reductions, distributive laws, and other “undirected” equal-
ities to isolate the relevant action in the event handler of a protocol. The tactic
performs the tedious initial steps of a micro-protocol optimization automatically
and is very efficient, since it does not require search.

Optimizations for each micro-protocol proceed in two phases. In the first phase
we use tactic-based forward reasoning to isolate the fast-path that corresponds to
the CCP and to optimize its code. Optimizations are initiated for four fundamental
cases: down- or up-going events for both point-to-point sending and broadcasting.
Basic CCPs for these cases are created automatically and the Ensemble program-
mer may add additional CCPs to describe the common case.

To initialize the optimization of (the event handler of) a protocol layer l, we
generate a Nuprl optimization object that contains an expression of the form

CCP
l
⇒ let (s0,hdlr) = convert Functional l args (ls, vs)

in hdlr(sl, event)

where convert is an Ensemble library function that converts the code for the
micro-protocol l into a functional protocol stack, which consists of an initial state
s0 and an event handler hdlr. sl is the current state of l and event an input event,
which must be of the form UpM(ev,hdr) or DnM(ev,hdr), i.e. up- or down-going
events ev with a message header hdr. The common case predicate CCP

l
for the layer l

usually characterizes the type of the event ev (send or broadcast), the structure of
the header hdr (full header, no header, or a local header), and the state sl.
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For the sake of clarity we suppress irrelevant formal details in the top-level pre-
sentation by introducing a formal abbreviation (i.e. an abstraction and the corre-
sponding display form) for the above expression and write

OPTIMIZE LAYER l FOR EVENT event AND STATE sl ASSUMING CCP
l

A formal optimization begins by unfolding the formal abbreviation and moving
the common case predicate into the hypothesis list. Using EvaluateCodeStructure

we then isolate the case distinction within the relevant event handler of the function
hdlrs (see Table 4). Afterwards we apply the tactic UseAssumption whenever the
code to be optimized is a conditional or a case expression that fits one of the
assumptions of the CCP, and the tactic Red as long as top-level reductions make
progress. The process that applies these steps has been completely automated.

Usually the optimization may stop at this point. However, we give the Ensemble

programmer an opportunity to invoke additional simplifications with the tactic Red
before committing the result to Nuprl’s library. Often, the (Nuprl representations
of) about 250-500 lines of OCaml code will be reduced to a single update of the
protocol’s state and a single output event to be sent to the next layer.

We illustrate our method by an optimization of Ensemble’s Pt2pt protocol with respect
to point-to-point sending. The basic CCP for this situation states that input events have
the form DnM(ev, hdr), where the constructor DnM indicates a down-going input event, ev is
a point-to-point send event (getType ev = ESend), and hdr is an arbitrary message header.
The Ensemble programmer also adds the CCP that applications do not send to themselves
(getPeer ev 6= ls.rank). Formally, we create the following optimization object.

OPTIMIZE LAYER Pt2pt
FOR EVENT DnM(ev, hdr)
AND STATE s pt2pt
ASSUMING getType ev = ESend ∧ not (getPeer ev = ls.rank)

After applying EvaluateCodeStructure we reach a choice point, i.e. a case distinction,
in the code of the event handler dn hdlr (see Table 4) .

1. (getType ev) = ESend
2. not (getPeer ev = ls.rank)
` match getType ev with

ESend -> ..... Code hidden ....
| -> ..... Code hidden ....

The CCP now appears in the form of two assumptions. Details of the code are tem-
porarily hidden from the display, as they are not relevant at this point and may not fit on
the screen. We call UseAssumption 1, which leads to an evaluation of the first case of the
case expression and eliminates all the other cases from the code.

1. (getType ev) = ESend
2. not (getPeer ev = ls.rank)
` if getPeer ev = ls.rank then failwith "PT2PT: send to myself";

let sends = Arraye.get s.sends (getPeer ev) in
let seqno = Iq.hi sends in

let iov = getIov ev in
Iq.add sends iov hdr ;
dn ev (Full (Data seqno), hdr)
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Next, we apply UseAssumption 2, which leads to an elimination of the conditional and
to subsequent reductions of the let-abstractions.

1. (getType ev) = ESend
2. not (getPeer ev = ls.rank)
` Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr;

dn ev (Full (Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))

No further reductions are meaningful at this point, since the remaining code contains
only a single update to the state s pt2pt and a single call to an down-going event handler,
which receives the incoming message header, extended by additional data, as input.

In the second phase, we create an optimization theorem, which proves that, under
the CCP, the bypass code is semantically equal to the protocol from which it was
generated. It verifies the correctness of the optimizations and will later be used
for the optimization of protocol stacks, described in Section 4.4. To create it, we
compose the initial optimization object with its final result into a statement of a
formal Nuprl theorem, which requires us to prove a conditional equality of the form

` ∀sl:l.state. ∀Hdr,Args:U. ∀ls:View.local, vs:View.state.
∀ev:Event.t. ∀hdr:Hdr. ∀args:Args.

CCP
l
⇒ let (s0,hdlr) = convert Functional l args (ls, vs)

in hdlr(sl, event)
= updates; handlers

where the left equand is the starting point of the optimization and the right equand
its final result, consisting of a series of state updates and calls to event handlers. To
make the presentation of this formal theorem more accessible to programmers, we
introduce a formal abbreviation that allows us to present statements of the above
kind in the Nuprl system as follows.

OPTIMIZING LAYER l FOR EVENT event AND STATE sl ASSUMING CCP
l

YIELDS HANDLERS handlers AND UPDATES updates

To prove the optimization theorem, we use the trace of the formal optimization
as proof plan that triggers the application of Nuprl proof tactics that perform
exactly the same steps on the left hand side of an equation as the rewrite tactics
Red, UseAssumption, and EvaluateCodeStructure did on the code of the micro-
protocol. As a consequence, the optimization theorem is created and proven auto-
matically, even if the original optimization required considerable interaction. We
have written a tactic CreateOptVerify, which performs all these steps. Since it is
is guaranteed to succeed, it can be triggered as background process when the result
of an optimization is being committed. Applying this tactic to the optimization of
Pt2pt with respect to point-to-point sending, for instance, leads to the optimization
theorem presented in Table 5.

Our library currently contains more than 100 optimization theorems for common
Ensemble micro-protocols. These theorems were generated from optimization ob-
jects that we developed using the tactics described above and CCP information
provided by the developers of Ensemble.
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OPTIMIZING LAYER Pt2pt
FOR EVENT DnM(ev, hdr)
AND STATE s pt2pt
ASSUMING getType ev = ESend ∧ not (getPeer ev = ls.rank)

YIELDS HANDLERS dn ev (Full (Data (Iq.hi
(Arraye.get s pt2pt.sends (getPeer ev))), hdr))

AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr

BY InitReconf

GIVEN: s pt2pt, Msg, Args, ls, vs, ev, msg, args
9. (getType ev) = ESend
10. not (getPeer ev = ls.rank)

` let (s0,hdlr) = convert Functional Pt2pt.l args (ls, vs)
in hdlr(s pt2pt, DnM (ev, hdr))

= Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr;
dn ev (Full (Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))

BY EvaluatingCodeStructure

` match getType ev with
ESend -> ..... Code hidden ....

| -> ..... Code hidden ....

= Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr;
dn ev (Full (Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))

BY UsingAssumptions [9;10]

` Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr;
dn ev (Full (Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))

= Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr;
dn ev (Full (Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))

BY Equality

In top-down sequent proofs tactics refine a sequent and write the remaining subgoal sequent(s) below
the tactic name, which is recorded next to the BY. Variable declarations in hypotheses are abbreviated
and hypotheses that do not change are not repeated. A proof is complete if there are no more subgoals.
In the Nuprl system, details of tactic executions may be revealed on demand.

Table 5. Optimization theorem for Pt2pt wrt. point-to-point sending (snapshot)

4.4 Stack Optimization

In contrast to micro-protocol layers, application protocol stacks cannot be optimized
a priori, as thousands of possible configurations can be generated with the Ensem-

ble toolkit. Since the application developer has little or no knowledge about En-

semble’s code, the process of optimizing an application stack has to be completely
automatic. We have developed a tool for optimizing arbitrary protocol stacks that
uses formal composition theorems to compose optimization theorems for individual
micro-protocols into optimization theorems for protocol stacks (c.f. Figure 5).

Composition theorems give an abstract, yet precise description of the effect of
applying Ensemble’s stack composition mechanism to common combinations of
fast-paths, such as linear traces (events pass straight through a layer), bouncing
events (events generate callback events), and trace splitting (events cause several
events to be emitted from a layer) — both for up- and down-going input events.

The following composition theorem, for instance, expresses the obvious effect of
composing down-going linear fast-paths: if an event passes straight down through
the upper layer and then through the lower one, then it passes straight through the
composed layers (Upper ||| Lower) as well. The state update for the combined layer
is the combination of the individual updates.
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OPTIMIZING LAYER Upper
FOR EVENT DnM(ev, hdr) AND STATE s upper

YIELDS HANDLERS dn ev hdr1 AND UPDATES stmt1

∧ OPTIMIZING LAYER Lower
FOR EVENT DnM(ev, hdr1) AND STATE s lower

YIELDS HANDLERS dn ev hdr2 AND UPDATES stmt2

⇒ OPTIMIZING LAYER Upper ||| Lower
FOR EVENT DnM(ev, hdr) AND STATE (s upper, s lower)

YIELDS HANDLERS dn ev hdr2 AND UPDATES stmt1; stmt2

Again, we have used formal abbreviations to make the presentation of the composi-
tion theorem in the Nuprl system easier to comprehend. With all the abbreviations
unfolded the theorem would read as follows.

` ∀Statel,Stateu,Stacks,Msq,Args:U. ∀Lower,Upper:Stacks.
∀sl:Statel. ∀su:Stateu. ∀args:Args. ∀ls:View.local. ∀vs:View.state.
∀ev:Event.t. ∀stmt1,stmt2,dn:EXPR. ∀hdr,hdr1,hdr2:Hdr.

let (s0,hdlr) = convert Functional Upper args (ls, vs)
in hdlr(su, DnM(ev, hdr))

= stmt1; dn ev hdr1

∧ let (s0,hdlr) = convert Functional Lower args (ls, vs)
in hdlr(sl, DnM(ev, hdr1))

= stmt2; dn ev hdr2

⇒ let (s0,hdlr) = convert Functional (compose Upper Lower) args (ls, vs)
in hdlr((su, sl), DnM(ev, hdr))

= stmt1;stmt2; dn ev hdr2

While the use of formal abbreviations makes the statement of a composition the-
orem appear almost trivial, its formal proof is complex, as it requires reasoning
about the function compose, the actual OCaml code of Ensemble’s composition
mechanism. The implementation of compose uses general recursion to handle the
traffic of events between the individual layers, which in principle may circulate up
and down through a stack several times before they leave.

By proving theorems about the result of applying this code to the most common
combinations of fast-paths we lift the optimization process to a higher conceptual
level: instead of reasoning about code, we reason about composition as such, using
composition theorems as derived inference rules. Optimizing composed protocols is
now a single reasoning step, while purely tactic-based optimizations would have to
apply thousands of simplification steps to the code to achieve the same result.

Like optimization theorems for individual micro-protocols, composition theorems
are included in the optimization tool, as they do not depend on a particular ap-
plication stack. We have proven 12 composition theorems for the most common
combinations of fast-paths for up- and down-going events. As a consequence, opti-
mization theorems for protocol stacks can be created and proven automatically.

We have implemented a tactic CreateOptStack, which takes the names of the
micro-protocols in the application stack as input, creates statements of optimization
theorems for the complete stack, proves them correct, and stores the theorems
in the Nuprl library. Optimization theorems are created separately for the four
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OPTIMIZING LAYER Pt2pt ||| Mnak ||| Bottom
FOR EVENT DnM (ev, hdr)
AND STATE (s pt2pt, s mnak, s bottom)
ASSUMING getType ev = ESend ∧ not (getPeer ev = ls.rank) ∧ s bottom.enabled

YIELDS HANDLERS dn ev (Full nohdr (Full nohdr (Full
(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))))

AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr

BY InitStackReconf

GIVEN: s pt2pt, s mnak, s bottom, Hdr, Args, ls, vs, ev, hdr, args
11. (getType ev) = ESend
12. not (getPeer ev = ls.rank)
13. (s bottom.enabled)

` OPTIMIZING LAYER Pt2pt ||| Mnak ||| Bottom
FOR EVENT DnM (ev, hdr)
AND STATE (s pt2pt, s mnak, s bottom)

YIELDS HANDLERS dn ev (Full nohdr (Full nohdr (Full
(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))))

AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr

BY QuoteLayerVerifs

14. OPTIMIZING LAYER Bottom
FOR EVENT DnM (ev, Full nohdr (Full

(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr)))
AND STATE s bottom

YIELDS HANDLERS dn ev (Full nohdr (Full nohdr (Full
(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))))

AND UPDATES ()
15. OPTIMIZING LAYER Mnak

FOR EVENT DnM (ev, Full (Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))),hdr))
AND STATE s mnak

YIELDS HANDLERS dn ev (Full nohdr (Full
(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr)))

AND UPDATES ()
16. OPTIMIZING LAYER Pt2pt

FOR EVENT DnM (ev, hdr)
AND STATE s pt2pt

YIELDS HANDLERS dn ev (Full
(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))

AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr

BY Repeat ComposeReconfigurations

14. OPTIMIZING LAYER Pt2pt ||| Mnak ||| Bottom
FOR EVENT DnM (ev, hdr)
AND STATE (s pt2pt, s mnak, s bottom)

YIELDS HANDLERS dn ev (Full nohdr (Full nohdr (Full
(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))))

AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr

BY Hypothesis 17

Table 6. Generated optimization theorem for the stack Pt2pt ||| Mnak ||| Bottom

fundamental cases – down- and up-going events for both point-to-point sending and
broadcasting – to allow for the creation of independent bypass code fragments.

The statement of the optimization theorem for a protocol stack has the same
basic form as one for micro-protocols. To create it, the tactic composes the state-
ments of the corresponding layer optimization theorems top down. It matches in-
and outgoing events according to the statement of the corresponding composition
theorem and accumulates the (instantiated) CCPs, states, and updates accordingly.

To prove the theorem, the tactic partially unfolds the formal abbreviations and
moving the CCP’s into the hypothesis list. It then instantiates the optimization
theorems of the micro-protocols in the stack with the actual input event that will
enter them. It then applies, step-by-step, the appropriate composition theorems
to compose the fast-paths through the micro-protocols into one for the stack and
finally shows that this is exactly the result that had to be proven.
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The proof is stored in the Nuprl library with only these macro steps visible at
the top-level. Thus users inspecting it will first see the basic line of reasoning, which
is particularly important for realistic application stacks with 10–30 protocol layers.
Further details of the corresponding tactic executions may be revealed on demand.

As an example, we illustrate the optimization of the stack Pt2pt ||| Mnak ||| Bottom with
respect to point-to-point sending. To state the optimization theorem, CreateOptStack

looks up the corresponding optimization theorems of Pt2pt (Table 5), Mnak, and Bottom:

OPTIMIZING LAYER Mnak

FOR EVENT DnM(ev, hdr)
AND STATE s mnak
ASSUMING getType ev = ESend

YIELDS HANDLERS dn ev (Full nohdr hdr)

AND UPDATES ()

OPTIMIZING LAYER Bottom

FOR EVENT DnM(ev, hdr)
AND STATE s bottom
ASSUMING getType ev = ESend

∧ s bottom.enabled
YIELDS HANDLERS dn ev (Full nohdr hdr)

AND UPDATES ()

Since all three optimizations show a linear behavior, they can be combined according to
the composition theorem for down-going linear traces. The input event for the three-layer
stack is the input of Pt2pt. The layer states are composed into a tuple and the CCP’s are
accumulated by conjunction. The handler code results from matching the input and output
events of adjacent micro-protocols. The resulting update is composed from the individual
updates. The generated optimization theorem and its proof are shown in Table 6.

4.5 Header Compression

Optimization theorems do not only describe a fast-path through a protocol stack
but also provide the means for an additional optimization that cannot be achieved
by partial evaluation or related techniques. They state exactly which headers are
added to a typical data message by the sender’s stack and how the receiver’s stack
processes these headers in the respective layers. As most of the header fields are
now fixed, we only have to transmit the header fields that may vary. In the stack
Pt2pt ||| Mnak ||| Bottom, for instance, point-to-point sending creates the header

Full nohdr (Full nohdr (Full (Data
(Iq.hi(Arraye.get s pt2pt.sends (getPeer ev)), hdr))))

in which only the italicized field contains essential information. Transmitting only
this field will reduce the net load and improve the performance of communication.

For this purpose, we generate code for compressing and expanding headers,
and wrap the protocol stack with these two functions (using Ensemble’s built-
in function wrap msg). Both functions are generated automatically by consider-
ing the free variables of the events in the optimization theorems. For the stack
Pt2pt ||| Mnak ||| Bottom we generate the following functions

let compress hdr = match hdr with
Full nohdr (Full nohdr (Full (Data seqno, hdr))) -> OptSend(seqno, hdr)

| Full nohdr (Full (Data (seqno), Full nohdr hdr)) -> OptCast(seqno, hdr)
| hdr -> Normal(hdr)

let expand hdr = match hdr with
OptSend(seqno, hdr) -> Full nohdr (Full nohdr (Full (Data seqno, hdr)))

| OptCast(seqno, hdr) -> Full nohdr (Full (Data (seqno), Full nohdr hdr))
| Normal(hdr) -> hdr
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We then optimize the code of the wrapped protocol stack using the same method-
ology as before. We have provided generic compression and expansion theorems,
which describe the outcome of optimizing a wrapped stack relatively to the result
of optimizing a regular stack. We use them to generate optimization theorems for
the wrapped stack from those of the regular stack. This step is fully automated.

For point-to-point sending in the stack Pt2pt ||| Mnak ||| Bottom, for instance, com-
bining fast-path optimization with compression leads to the following theorem,
which again uses formal abbreviations to make its presentation more accessible.

OPTIMIZING LAYER Pt2pt ||| Mnak ||| Bottom WRAPPED WITH COMPRESSION
FOR EVENT DnM(ev, hdr)
AND STATE (s pt2pt, s mnak, s bottom)
ASSUMING getType ev = ESend ∧ not (getPeer ev = ls.rank)

∧ s bottom.enabled
YIELDS HANDLERS dn ev (OptSend (Iq.hi

(Arraye.get s pt2pt.sends (getPeer ev))), hdr)
AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev))

(getIov ev) hdr

Integrating compression into the optimization process will always lead to an
improvement in the common case, because the optimized code will directly generate
(or analyze) events with compressed headers, instead of creating a full header first
and compressing it afterwards. Only for the non-common case there will be a slight
(but hardly measurable) overhead, as the functions compress and expand have to
be executed explicitly.

4.6 Code Generation

The above optimization steps describe logical operations within the Nuprl system.
In a final step, their results are converted into OCaml code that can be compiled
and linked to the rest of the communication system. To generate this code, we
compose the code fragments from the four optimization theorems into a single
program, which also delays state updates until events have been sent or delivered,
using the CCPs as conditionals that select either one of the fast-paths or the original
stack. The bypass code is wrapped by code fragments that convert it into a module,
which then can be compiled and linked to Ensemble without further modifications.

We have developed a tactic Optimize that combines stack optimization, header
compression, code generation, and exporting the result into the Ensemble source
tree into a single operation. Given a list of names of the micro-protocols in the
protocol stack it takes less than 30 seconds to generate the optimized code and
prove it to be equivalent to the original stack. In the process, it creates 8 stack
optimization theorems (with and without compression) as well as 28 abstractions
representing the new code module.

Experiments in (Liu et al., 1999) have shown that in common applications with 10
or more layers the optimized code is significantly more efficient than the original En-

semble application stack. Although the synthesized code has to be integrated into
the functional version of Ensemble, which typically is about 50% slower than the
imperative one, it outperforms the best version of Ensemble by a factor of 3 to 5.
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5 Verification and Formal Design

In the previous sections we have focused on reasoning about the code of modular
systems and on logic-based tools for optimizing their performance. We will now
briefly address the remaining aspects of a formal infrastructure for building reliable,
high-performance networks, namely verification and formal design.

5.1 Specification and Correctness

The goal of specification is to give a precise description of a system and to define
and document its features. Specifications can be used to guide the configuration of
application systems from modules, to support the design of new modules, and to
determine whether an implementation is correct .

Specifications range from specifying the behavior of a system to specifying its
properties. Both kinds of specifications are important. Properties describe the sys-
tem at the highest level while behavioral specifications describe how to implement
the properties. Behavioral specifications can be either concrete or abstract . Abstract
specifications are non-deterministic descriptions of a system’s global behavior. Con-
crete specifications give deterministic descriptions of a system’s components and can
easily be mapped onto executable code.

As example consider a FIFO network, which is characterized by the property that
messages are received in the same order in which they were sent . An abstract be-
havioral specification would introduce a global queue of events in transit and state
that messages may be appended to the end of the queue and be removed from its be-
ginning . A concrete behavioral specification would describe a protocol that attaches
sequence numbers to messages and require that incoming messages whose sequence
number is too big will be buffered . At the lowest level we find the implementation
of this protocol, for instance as Ensemble’s Pt2pt module.

The relation between the four levels of
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Code Verification

Verification

PropertiesConcrete Behavioral

Abstract Behavioral

Specification

Specification (global)

(local)

Scheduling

Refinement

Implementation

Nondeterministic I/O Automaton

High−level Mathematics

Deterministic I/O Automaton

Programming Language (OCaml, ...)

Abstract
Network

Model

specification can be pictured as follows.
Properties of an abstract specification are
derived by proof . A concrete specifica-
tion is derived from the abstract specifica-
tion by refinement , which involves design-
ing a protocol that implements the ab-
stract requirements with respect to some
abstract network model. The implemen-
tation is linked to the concrete specifica-
tion by scheduling the order of actions
and coding them in a specific programming language.

Introducing several levels of abstraction makes it feasible to prove properties
of a system’s implementation or to derive an implementation from properties –
establishing a direct link between properties and implementation would be much
harder. Formal verification and design of networked systems in Nuprl therefore
requires a representation of all four level is Nuprl’s type theory.
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For the highest level, the abstract system properties, we have developed a formal
model of communication (Bickford et al., 2001a; Bickford et al., 2001b; Bickford
et al., 2001c) that enables us to reason in Nuprl about properties of global traces
of events such as reliability, confidentiality, message ordering, etc. Abstract and
concrete system specifications are expressed in terms of non-deterministic and de-
terministic IO-automata (IOA) (Lynch, 1996), which are abstractions of the state-
event machines implicitly used in the descriptions of network protocols. A type-
theoretic representation of IO-automata has been developed in (Hickey et al., 1999;
Bickford & Hickey, 1999). The implementation level of Ensemble is the program-
ming language OCaml (Leroy, 2000), whose representation is discussed in Section 3.

A formal verification exploits the above relationship between the four levels. As
in the case of fast-path optimizations, a compositional approach is taken: individual
micro-protocols are verified independently and the verification of protocol stacks is
based on IOA composition, which is proven to preserve all safety properties of the
components. A good example of such a proof can be found in (Hickey et al., 1999),
which demonstrates the correctness of one of Ensemble’s total ordering protocols
and located a subtle bug in the original implementation.

5.2 Formal Design

Formal methods can have a large impact when being engaged at the earliest stages
of design and implementation. At this stage it is possible to state assumptions and
goals that drive the system design and to use proof environments to clarify these
goals, to explore ideas, and to detect flaws in the design before it is being coded.

In (Liu et al., 2001; Bickford et al., 2001a; Bickford et al., 2001c) we show how
the Nuprl system has contributed to the design and implementation of a verifiably
correct adaptive network protocol for Ensemble. The protocol was realized as a
hybrid protocol that switches between specialized protocols and formally proven
correct with the Nuprl system. In the process we have developed a characteriza-
tion of communication properties that can be preserved by dynamic switching. We
have introduced the concept of meta-properties to abstractly describe switchable
properties and have shown that six meta-properties are sufficient for protocols to
work correctly under a switch. We also have characterized a switch-invariant that
an implementation of the switch has to satisfy to preserve switchable properties.

The verification efforts revealed hidden assumptions that are crucial for the cor-
rectness of the implementation and showed limitations for the use of such a generic
protocol that might otherwise have gone unnoticed. This demonstrates that engag-
ing proof systems such as Nuprl at the earliest stages of design and implementation
adds value to all subsequent stages and creates valuable information needed for the
maintenance and evolution of software.
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6 Related Work

The CMU Fox project (Biagioni, 1994) uses an extension of Standard ML for
building protocol stacks. Its broader goal is to investigate the extent to which high
level languages like ML are suitable for systems programming.

Integrated Layer Processing (ILP) (Clark & Tennenhouse, 1990) is an approach
to reduce the overhead of layered protocols (Abbott & Peterson, 1993). The Filter
Fusion Compiler (FFC) (Proebsting & Watterson, 1996) implements ILP using
partial evaluation, but has only been applied to very simple protocols. Furthermore,
the code generated by FFC has to be hand-modified to get good performance.

The Esterel compiler (Castelluccia & Dabbous, 1996) is used to convert a
protocol specification into a sequential finite automaton, from which efficient C

code is generated. Esterel was used to specify and implement a large subset of the
TCP protocol, but it does not scale easily to arbitrary protocol stacks. Furthermore
it cannot formally ensure the correctness of the optimization or the protocol itself.

In operating system research there is related work on locating and optimizing
common paths. Synthesis (Massalin, 1992) uses a run-time code generator to
optimize the most frequently used kernel routines. (Pu et al., 1995) describes work
on optimizing Synthetix kernel functions by reducing the length of common paths.

HOL-ML (VanInwegen & Gunter, 1994; VanInwegen, 1996) is an encoding of a
subset of SML and its dynamic semantics in HOL (Gordon & Melham, 1993). It
formalizes the abstract syntax of SML expressions on the object level of HOL and
defines the static and dynamic semantics by a collection of explicitly introduced
inference rules. The main emphasis of HOL-ML was proving properties of the
programming language within the framework of a formal theorem prover.

Filliâtre (Filliâtre, 1998; Filliâtre, 2002) developed a calculus for reasoning about
functional programs with references in Coq (Dowek & et. al, 1991; Coq). The calcu-
lus is based on an ML-like model programming language that translates imperative
programs into the functional calculus of inductive constructions using a memory
model similar to ours. The focus of this work is exploring Floyd-Hoare style rea-
soning for a richer programming language within the framework of type theory.

The LOOP project (van den Berg et al., 2000; van den Berg & Jacobs, 2001;
Jacobs & Poll, 2001) provides a tool for translating Java classes into the formal the-
ories of PVS (Owre et al., 1996; PVS) and Isabelle/HOL (Paulson, 1990; Isabelle).
It formalizes a subset of Java in a type-theoretical model of untyped memory cells
(similar to our model of store), which are used for storing Java objects and arrays.
The main emphasis of the project is the formal verification of Java programs.

Our representation of OCaml in Nuprl provides an infrastructure for reasoning
about large-scale programs and for applying semantics-preserving optimizations.
Nuprl abstractions and display forms enable us to represent the abstract syntax
of OCaml programs, their operational semantics, and the original syntax in which
they were written. Inference rules for reasoning about the static and dynamic se-
mantics of OCaml are derived from this representation and operate entirely on the
level of the programming language instead of revealing the underlying logic. This
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makes formal reasoning accessible to programmers and allows exporting the result
of formal transformations back into the programming environment.

A variety of formal systems has been used for verifying and synthesizing hardware
and software systems. Model checking (McMillan, 1993; Manna & Pnueli, 1995;
Clarke et al., 1999) has been very successful in the verification of hardware and
finite state software systems. Numerous systems (Cleaveland & et. al, 1994; Dill,
1996; Holzmann, 1997) have been used in a variety of case studies. But so far they
are restricted to finite state systems and of limited value for reasoning about the
complete code of real distributed systems. Deductive model checking (Finkbeiner
et al., 1998; Sipma et al., 1999) combines model checking with automated deduction
for the verification of infinite-state and real-time systems. Although this approach
is very promising, it is not yet applicable to distributed systems.

There have been numerous applications of Isabelle (Paulson, 1990; Paulson,
1998; Paulson, 1999), PVS (Lincoln & Rushby, 1993; Owre et al., 1996; Rushby,
1994; Rushby, 1997; Rushby, 1999), and ACL2 (Kaufmann et al., 2000; ACL2) to
verifying abstract communication protocols. Few projects, however, deal with the
actual code of real-world systems.

The KIDS system (Smith, 1991) and its successor SPECWARE (Srinivas &
Jüllig, 1995) support the modular construction of formal specifications and their
refinement into executable code. These systems have been successful in practical ap-
plications (Smith & Parra, 1993; Gomes et al., 1996; Blaine et al., 1998; Westfold &
Smith, 2001) but are currently limited to the development of sequential algorithms.

7 Conclusion

We have described an embedding of the Ensemble group communication toolkit
to the Nuprl proof development system that is based on a type-theoretical seman-
tics of Ensemble’s implementation language OCaml. The formal link between
Ensemble and Nuprl provides an infrastructure for the application of logical in-
ference techniques to the actual code of a modular, real-world system. Using this
infrastructure we have shown how to build logic-based optimization tools that can
significantly improve the performance of the already optimized Ensemble system
in concrete applications and are guaranteed not to introduce any errors. Our results
show that logical methods for program synthesis, verification, and optimization can
be made to scale effectively to large software systems.

This article extends preliminary work reported in (Kreitz, 1997; Kreitz et al.,
1998; Kreitz, 1999), which now has matured into pushbutton technology and is
based on an advanced semantical model for OCaml, which allows for a type-
theoretical representation of a larger fragment of the programming language.

Although we chose a limited application domain – all Ensemble configurations
are stacks of micro-protocols, which can be considered state-event machines – we
believe that our approach could generalize and scale to more general configuration
and component types. We believe that the following ingredients were key to the
success of our approach:
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1. Using small and simple system components, which are easier to reason about.

2. Using a well-defined configuration operation on components.

3. Using a mostly functional implementation of components in a language with
a formal semantics, which allows formal manipulations.

4. Using and continuously expanding a tactical proof system for a rich specifi-
cation language such as Nuprl, which makes verification and optimization
techniques scale and more accessible to system developers.

5. Using several layers of formal abstraction, libraries of verified formal knowl-
edge, and compositional reasoning, which makes formal techniques indepen-
dent from a particular application domain.

6. Using a collaboration between systems and theorem proving groups, as the
joint expertise is required for making formal methods apply to real systems.

We believe that it may be possible to use our approach in other complex sys-
tems such as file systems, atomic transaction protocols, optimizing compilers, and
perhaps eventually an entire operating system kernel, as the formal techniques
described here can be applied to other modular systems whose components and
composition mechanisms can be described semantically.

We also hope to elaborate our optimization technique into one that would allow
us to detect common combinations at run-time, and generate the optimized code
dynamically, using layer optimization theorems for all possible bypass paths. We can
then make use of Ensemble’s support for dynamically loading layers and switching
protocol stacks on the fly (van Renesse et al., 1999).

We also intend to extend our work on formalizing the semantics of programming
languages. Our methods would have a wider impact if we could express the type
theoretical semantics of OCaml’s classes and object and also target other back-
end languages such as Java, using ideas developed for the LOOP project (van den
Berg et al., 2000) and preliminary work in (Attalli et al., 1998; Naumov, 1998).
This may, however, require expanding our logical foundations, as type theories do
not yet offer sufficient support for objects, methods, classes, and inheritance.

Finally we will continue our research on the verification and formal design of
distributed systems. We plan to refine and extend our formal models to include
reasoning about embedded systems with bandwidth and resource limitations, and
time constraints.
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Andrews, Peter B., Bishop, Matthew, Issar, Sunil, Nesmith, Dan, Pfenning, Frank, & Xi,
Hongwei. (1996). TPS: A theorem proving system for classical type theory. Journal of
automated reasoning, 16(3), 321–353.

Attalli, Isabelle, Caromel, Denise, & Russo, Marjorie. (1998). A formal executable seman-
tics for Java. OOPSLA’98 workshop on the formal underpinnings of Java.

Biagioni, E. (1994). A structured TCP in Standard ML. Pages 36–45 of: ACM SIGCOMM
conference.

Bickford, Mark, & Hickey, Jason. (1999). Predicate transformers for infinite-state au-
tomata in Nuprl type theory. Irish formal methods workshop.

Bickford, Mark, Kreitz, Christoph, van Renesse, Robbert, & Constable, Robert. (2001a).
An experiment in formal design using meta-properties. Pages 100–107 of: Lala, J.,
Maughan, D., McCollum, C., & Witten, B. (eds), Darpa Information Survivability Con-
ference and Exposition II, vol. II. IEEE Computer Society Press.

Bickford, Mark, Kreitz, Christoph, & van Renesse, Robbert. (2001b). Formally verifying
hybrid protocols with the Nuprl logical programming environment. Tech. rept. Cornell
CS:2001-1839. Cornell University. Department of Computer Science.

Bickford, Mark, Kreitz, Christoph, van Renesse, Robbert, & Liu, Xiaoming. (2001c). Prov-
ing hybrid protocols correct. Pages 105–120 of: Boulton, Richard, & Jackson, Paul (eds),
14th International Conference on Theorem Proving in Higher Order Logics. LNCS 2152.
Springer Verlag.

Birman, Ken, Constable, Robert, Hayden, Mark, Hickey, Jason, Kreitz, Christoph, van
Renesse, Robbert, Rodeh, Ohad, & Vogels, Werner. (2000). The Horus and Ensem-
ble projects: Accomplishments and limitations. Pages 149–160 of: Darpa Information
Survivability Conference and Exposition. IEEE Computer Society Press.

Birman, K.P., & van Renesse, Robbert. (1994). Reliable Distributed Computing with the
Isis Toolkit. IEEE Computer Society Press.

Blaine, Lee, Gilham, Li-Mei, Liu, Junbo, Smith, Douglas R., & Westfold, Stephen. (1998).
Planware – domain-specific synthesis of high-performance schedulers. Pages 270–280
of: 13th Automated Software Engineering Conference. IEEE Computer Society Press.

Castelluccia, C., & Dabbous, W. (1996). Generating efficient protocol code from an ab-
stract specification. Pages 60–72 of: ACM SIGCOMM conference.

Clark, D., & Tennenhouse, D. (1990). Architectural consideration for a new generation of
protocols. Pages 200–208 of: ACM SIGCOMM conference.

Clarke, E. M., Grumberg, O., & Peled, D. (1999). Model checking. MIT Press.

Cleaveland, R., & et. al. (1994). The concurrency factory – practical tools for the specifica-
tion, simulation, verification, and implementation of concurrent systems. Pages 75–90

http://www.cs.utexas.edu/users/moore/acl2�
http://www.cs.chalmers.se/~hallgren/Alfa�


34 Christoph Kreitz

of: Blelloch, G.E., Chandy, K.M., & Jagannathan, S. (eds), Specification of parallel
algorithms.

Constable, Robert L. (1998). Types in logic, mathematics, and programming. Pages
684–786 of: Buss, S. R. (ed), Handbook of Proof Theory. Elsevier Science Publishers.

Constable, Robert L., & Hickey, Jason. (2000). Nuprl’s Class Theory and its Applications.
Pages 91–116 of: Bauer, Friedrich L., & Steinbrueggen, Ralf (eds), Foundations of secure
computation. NATO ASI Series, Series F: Computer & System Sciences. IOS Press.

Constable, Robert L., Allen, Stuart F., Bromley, H. Mark, Cleaveland, W. Rance, Cremer,
J. F., Harper, Robert W., Howe, Douglas J., Knoblock, Todd B., Mendler, Nax Paul,
Panangaden, Prakash, Sasaki, Jim T., & Smith, Scott F. (1986). Implementing mathe-
matics with the Nuprl proof development system. Prentice Hall.

Coq. Coq home page. http://pauillac.inria.fr/coq/coq-eng.html.

de Rauglaudre, Daniel. (2000). Camlp4 version 3.00. Institut National de Recherche en
Informatique et en Automatique.

Dill, David. (1996). The Murphi verification system. Pages 390–393 of: Alur, R., &
Henzinger, T. (eds), Computer Aided Verification. LNCS 1102. Springer Verlag.

Dowek, G., & et. al. (1991). The Coq proof assistant user’s guide. Institut National de
Recherche en Informatique et en Automatique. Report RR 134.

Engler, D., & Kaashoek, M. (1996). DPF: Fast, flexible message demultiplexing using
dynamic code generation. Pages 53–59 of: ACM SIGCOMM conference.

Ensemble. Ensemble home page.
http://www.cs.cornell.edu/Info/Projects/Ensemble/index.htm.
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A The Type-Theoretical Formalization of OCaml

The type-theoretical formalization of OCaml’s semantics is based on the model
described in Section 3.1. It represents OCaml expressions as functions that operate
on a store s and an environment env, and return a value (or an exception) and a
possibly updated store. Expressions may include patterns, which are represented
as functions that take two expressions e1 and e2 and modify the environment of e2

according to the result of matching e1 against the pattern template. OCaml types
are represented as (dependent) function types, which enables us to express OCaml

typings by the membership relation of Nuprl’s type theory.
Our embedding of OCaml into type theory is shallow : instead of describing the

type of all possible OCaml expressions and defining an evaluation function for these
terms, we describe OCaml expressions by Nuprl terms that directly represent
their operational semantics. All tactics for manipulating OCaml expressions are
based on derived inference rules that preserve the “OCaml-ness” of Nuprl terms,
which makes sure that the internal representation will not be revealed.

Our formalization only covers OCaml programs that are type-correct , as these
are the only expressions that actually have a semantics. It does not handle compile-
time errors like detecting an attempt to match an integer against a list, but only
run-time errors, which will result in raising exceptions. Our tools for importing
OCaml code into Nuprl (Section 3.5) make sure that only programs accepted by
OCaml’s type checker will be translated into a type-theoretical representation.

Although the OCaml manual (Leroy, 2000) does not specify the evaluation order
of subexpressions in OCaml programs, the evaluation order of a formal represen-
tation has to be fixed in order to guarantee a deterministic behavior of programs in
formal reasoning. To ensure faithfulness with respect to the OCaml compiler our
formalization usually encodes a right-most depth-first strategy.

In addition to the basic type theory of Nuprl (Table 1) our formalization of a
type theoretical model of OCaml utilizes a variety of user-defined operations on
lists, booleans (see Table 2), tables, numbers, etc. that are included in Nuprl’s
standard libraries, the definitions given in Section 3.1, and the following notions.

IDENT ≡ Atom

LABEL ≡ Atom

VALUE ≡ Top

ENV ≡ (IDENT × VALUE) List

ADDR ≡ N
STORE ≡ (ADDR × VALUE) List

EXCEPTION ≡ Atom

EXPR ≡ s:STORE → env:ENV → (EXCEPTION + VALUE) × STORE

A.1 Expressions

The syntax and meaning of OCaml expressions is described in §6.7 of the OCaml

manual (Leroy, 2000). As described above, we represent OCaml expressions as
elements of the type EXPR , i.e. as functions of the form λs,env. value,s’ , where
value is the result of evaluating the expression and s’ the updated store.
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x ≡ λs,env. inr(env[x]),s

raise e ≡ λ↓[v,s1/e, env]. inl(v), s

i ≡ die
’chr’ ≡ d"chr"e
() ≡ dAxe
false ≡ dffe
true ≡ dtte
if e then e1 else e2 ≡ λ↓[v,s1/e, env]. (if v then e1 else e2) s1 env

if e then e1 ≡ if e then e1 else ()

[] ≡ d[]e
e1::e2 ≡ λ↓[v2,v1,s1/e2,e1, env]. inr(dv1e::dv2e), s1

[e1; ..; en] ≡ e1::...::en::[]

cconstr ≡ d<"cconstr",()>e
ncconstr e ≡ λ↓[v,s1/e, env]. inr(<"ncconstr",dve>, s1

‘tag ≡ d<"tag",()>e
‘tag e ≡ λ↓[v,s1/e, env]. inr(<"tag",dve>, s1

(e1,e2) ≡ λ↓[v2,v1,s1/e2,e1, env]. inr(<dv1e,dv2e>), s1

e1 e2 ≡ λ↓[v2,v1,s1/e2,e1, env]. (v1 dv2e) s1 env

{} ≡ dλfield.-1e
{f1=e1}⊗e2 ≡ λ↓[v2,v1,s1/e2,e1, env].

let addr = if v2f1< 0 then NEW(s1) else v2f1 in

inr(λf. if f = f1 then addr1 else v2f), s1[addr←v1]

{e with f1=e1; ..; fn=en} ≡ {"f1"=e1}⊗..⊗{"fn"=en}⊗e
{f1=e1; ..; fn=en} ≡ { {} with f1=e1; ..; fn=en}
e.f ≡ λ↓[v,s1/e, env]. inr(!s1[v "f"]), s1

e1.f <- e2 ≡ {"f1"=e1}⊗e2; ()

ref e ≡ {contents=e}
!e ≡ e.contents

e1 := e2 ≡ e1.contents <- e2

[|e0; ..; en|] ≡ dref e0::...::ref en::[]e
e1.(e2) ≡ λ↓[v2,v1,s1/e2,e1, env]. !(v1[v2]) s1 env

e1.(e2) <- e3 ≡ λ↓[v3,v2,v1,s1/e3,e2,e1, env]. (v1[v2] := dv3e) s1 env

"c0..cn" ≡ [|’c0’;..;’cn’|]

e1.[e2] ≡ e1.(e2)

e1.[e2] <- e3 ≡ e1.(e2) <- e3

e1; e2 ≡ λ↓[v,s1/e, env]. e2 s1 env

while e do e1 done ≡ Y(λwhile. if e then (e1; while))

e[v/x] ≡ λs,env. e s (env@{x7→v})
for i = e1 to e2 ≡ λ↓[v2,v1,s1/e2,e1, env].

do e3 done (rec-case v2-v1 of n<0 7→ [loop]. ()

0 7→ e3[v1/i]

n>0 7→ [loop]. loop; e3[vl+n/i]

) s1 env

for i = e1 downto e2 ≡ λ↓[v2,v1,s1/e2,e1, env].

do e3 done (rec-case v2-v1 of n<0 7→ [loop]. loop; e3[vl+n/i]

0 7→ e3[v1/i]

n>0 7→ [loop]. ()

) s1 env

Table A 1. Nuprl representation of OCaml expressions (I)
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e when e1 ≡ if e1 then e else ↑
p when e1 -> e ≡ λv. p v (e when e1)

p -> e ≡ p when true -> e

p when e1 -> e | matching ≡ λv.λs,env.
let <match,s1> = p v (e when e1) s env in

case match of inl(exn) 7→ matching v s1 env

| inr(val) 7→ inr(val), s1

p -> e | matching ≡ p when true -> e | matching

matching ≡ λe.λs,env. let↓ <inr(v),s1> = e s env in

matching v s1 env

match e with matching ≡ matching e

function matching ≡ d matching e
fun p1...pn when e1 -> e ≡ function p1 -> ... function pn when e1 -> e

try e with matching ≡ λs,env. let <result,s1> = e s env in

case result of inl(exn) 7→ matching exn s1 env
| inr(v) 7→ inr(v), s1

pat ≡ λe1,e2.λs,env. let↓ <inr(v),s1> = e1 s env in

pat v e2 s1 env

p = e ≡ p e

p = e and binding ≡ λe’. binding (p e e’)

x p1..pn = e ≡ x = fun p1..pn-> e

x p1..pn = e and binding ≡ x = fun p1..pn-> e and binding

rec p = e ≡ p (Y (λe’. p e’ e))

rec p1= e1 and ... pn= en ≡ rec p1,..,pn = e1,..,en

rec x p1..pn = e ≡ rec x = fun p1..pn-> e

let bindings in e ≡ bindings e

(e) ≡ e

begin e end ≡ e

(e:T) ≡ e

Table A 2. Nuprl representation of OCaml expressions (II)

Tables A 1 and A2 give a complete description of the formal representation of
OCaml expressions in Nuprl. In the tables we use the following abbreviations.

dve ≡ λs,env. inr(v), s

↑ ≡ λs,env. inl("Match failure"), s

λ↓[v,s1/e, env]. e′ ≡ λs,env. let↓ <inr(v),s1> = e s env in e′

λ↓[v2,v1,s1/e2,e1, env]. e′ ≡ λs,env. let↓ <inr(v2),s2> = e2 s env in

let↓ <inr(v1),s1> = e1 s2 env in e′

λ↓[v3,v2,v1,s1/e3,e2,e1, env]. e′ ≡ λs,env. let↓ <inr(v3),s3> = e3 s env in

let↓ <inr(v2),s2> = e2 s3 env in

let↓ <inr(v1),s1> = e1 s2 env in e′

The terms {}, {f1=e1}⊗e2, and e[v/x] do not belong to the language of OCaml.
They are used only for describing the semantics of record expressions and for loops.

The formalization does not yet include expressions for float constants, bitwise
logical and floating point operators, labels in matchings that may affect function
evaluation, and operations on objects (new obj, e#method, (e:>T), (e:T1:>T2),
{v1=e1,..,vn=en}). Expressions of the language core described in Table 3, such as
function p -> e and let p = e1 in e2 , are subsumed by more general versions.
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ref e is now an abbreviation for a mutable singleton record. The representation
of the operators listed in §6.7.4 of the manual is not included in the tables, as they
are defined explicitly in the OCaml library module pervasives.ml.

It should be noted that there is some overlap between the native syntax of OCaml

and Nuprl’s type theory. The list prepend operation, for instance, is written as
e1::e2 in both formal languages, and the decomposition of pairs in Nuprl is written
as let <x,y>=e1 in e2 while the application of a pair pattern in an OCaml let-
binding is written as let (x,y)=e1 in e2 . Usually, it is clear from the context
which formal construct is being used. For instance, the representation of constant
list expressions is based on (the representation of) OCaml’s list append operation,
while the representation of constant array expressions is based on Nuprl’s list
append and lifting. For Nuprl’s proof system, the distinction is obvious, since the
terms for Nuprl’s and OCaml’s list append operations have different operator
identifiers and the similarity is only a matter of term display.

Our tables use a dot-notation to describe the formalization of OCaml constructs
that do not have a fixed size, such as constant list, array, and record expressions,
and multiple matchings and bindings. Since formal definitions in Nuprl require
terms to have a fixed number of subterms, the actual representation of these con-
structs has to be based on iterated abstractions. For instance, the representation of a
record expression {f1=e1; ..; fn=en} is built from the representation of the empty
record {} and n applications of the record composition operator {f=e}⊗e’ . The
display form for the latter has to make sure that the resulting term is displayed as
syntactically correct record expression and not as {f1=e1; {..; {fn=en}..}} .

In some rare cases, such as the definition of mutually recursive let bindings, it is
not possible to use an iteration of basic abstractions to represent the OCaml lan-
guage construct: to build rec p1,p2 = e1,e2 from rec p1 = e1 and rec p2 = e2

we would have to distribute the second abstraction over two subterms of the first.
Therefore, our implementation provide a series of abstractions for each fixed number
of mutually recursive bindings.

To simplify the representation of records, we represent all their components as
mutable reference cells, even if they are not declared mutable. Attempts to assign a
new value to a non-mutable component will be caught by the OCaml type checker,
while otherwise the outward behavior of mutable and non-mutable components is
identical. For the same reason, we simply represent parenthesized expressions with
type constraints (e:T) by the expression e , as the type constraint is checked at
compile time and has no influence on the operational semantics.

A.2 Patterns

Patterns, described in §6.6 of the OCaml manual, are templates that allow select-
ing data structures of a given shape and binding identifiers to components of this
structure. As discussed in Section 3.1, we represent patterns as functions that mod-
ify an expression e by updating its environment according to the result of matching
a value v against the template. These functions decompose the values of expressions
that are built using the language constructs listed in Table A 1.
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≡ λv,e. e

x ≡ λv,e. e[v/x]

p as x ≡ λv,e. (p v e)[v/x]

i ≡ λv,e. if i=v then e else ↑
’chr’ ≡ λv,e. if "chr"=v then e else ↑
"str" ≡ λv,e. if str=strv then e else ↑
true ≡ λv,e. if v then e else ↑
false ≡ λv,e. if v then ↑ else e

[] ≡ λv,e. rec-case v of [] 7→ e | vhd::vtl 7→ ↑
p1::p2 ≡ λv,e. rec-case v of [] 7→ ↑ | vhd::vtl 7→ p1vhd (p2vtl e)

[p1; ..; pn] ≡ p1::p2::...::pn::[]

cconstr ≡ λv,e. let <v1,v2>=v in if v1="cconstr" then e else ↑
ncconstr p ≡ λv,e. let <v1,v2>=v in if v1="ncconstr" then p v2 e else ↑
‘tag ≡ λv,e. let <v1,v2>=v in if v1="tag" then e else ↑
‘tag p ≡ λv,e. let <v1,v2>=v in if v1="tag" then p v2 e else ↑
p1, p2 ≡ λv,e. let <v1,v2>=v in p1 v1 (p2 v2 e)

{f1=p1; ..; fn=pn} ≡ λv,e. p1 !s[v "f1"] ( ..(pn !s[v "fn"] e)..)

[|p0; ..; pn|] ≡ λv,e. p0 !s[v[0] "contents"]

( ..(pn !s[v[n] "contents"] e)..)

(p) ≡ p

(p:T) ≡ p

() ≡ ( :unit)

p1 | p2 ≡ λv,e. (p1 v e) ? (p2 v e)

Table A 3. Nuprl representation of OCaml patterns

Table A 3 gives a complete description of the formal representation of OCaml

patterns in Nuprl. In the table we use the following abbreviation.

e1 ? e2 ≡ λs,env. let <result,s1> = e1 s env in

case result of inl(exn) 7→ e2 s1 env

| inr(v) 7→ inr(v), s1

The formalization does not yet include patterns for float constants and for type
constructors abbreviating polymorphic variants (# typeconstr).

In the Nuprl implementation, the variable-sized patterns for constant list, array,
and record expressions are represented by an iterated application of basic abstrac-
tions, similar to the way the corresponding expressions are represented. Parenthe-
sized patterns with type constraints (p:T) are represented by the pattern p , as
the type constraint is checked at compile time.

Since patterns match templates against values, they have to be lifted to functions
on expressions instead of values in order to become applicable within bindings and
matchings. Applying a lifted pattern pat (see Table A 2 for a formal definition) to an
expression e1 first evaluates e1 and then applies the pattern to the resulting value.

A.3 Type Expressions

Type expressions, described in §6.4 and $6.8 of the OCaml manual, are used to
denote the data types of OCaml as well as type constraints within patterns and
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’id ≡ id

int ≡ dinte

char ≡ dAtome

string ≡ char array

bool ≡ dBe
unit ≡ dUnite

array ≡ λT.dREF(T) Liste

list ≡ λT.dT Liste

exn ≡ dEXCEPTIONe

(T) ≡ T

T1->T2 ≡ dT1→T2
e

T1 * T2 ≡ dT1 × T2
e

T typeconstr ≡ typeconstr T

(T1,..,Tn) typeconstr ≡ typeconstr <T1,..,Tn>

T as ’id ≡ rectype id = T

T1[T as ’id/z] ≡ rectype id = T1[T/z]

{mutable f1:T1} ≡ df:FIELD → (if f = f1 then REF(T1) else EXPR)e

{f1:T1} ≡ {mutable f1:T1}
{fielddecl1;..;fielddecln} ≡ {fielddecl1}∩ ..∩{fielddecln}
cconstr ≡ dc:CONSTR × if c="cconstr" then unit else EXPRe

ncconstr of T ≡ dc:CONSTR × if c="ncconstr" then T else EXPRe

constr1|...| constrn ≡ constr1 ∩ ..∩ constrn

‘tag ≡ dtg:TAG × (if tg = "tag" then unit else EXPR)e

‘tag of T ≡ dtg:TAG × (if tg = "tag" then T else Top)e

[> variant1|...| variantn] ≡ variant1 ∩ ..∩ variantn

[variant1|...| variantn] ≡ [> variant1|...| variantn]

Table A 4. Nuprl representation of OCaml types

expressions. Our formalization of OCaml type expressions aims at representing
the typing relation in OCaml by the built-in membership relation of Nuprl’s type
theory. Thus OCaml types will be represented as (dependent) function types of
the form s:STORE → env:ENV → (EXCEPTION + T) × STORE .

Table A 4 gives a complete description of the formal representation of OCaml

type expressions, including record and variant (constructor) types, in Nuprl. In
the table we use the following abbreviations.
dTe ≡ s:STORE → env:ENV → (EXCEPTION + T) × STORE

REF(T) ≡ s:STORE → env:ENV → ({i:ADDR | d!s[i]e ∈T} + VALUE) × STORE

FIELD ≡ LABEL

CONSTR ≡ LABEL

TAG ≡ Atom

The formalization does not yet include the types constants float, id option,
and (’id1, ’id2, ’id3) format, which are defined explicitly in OCaml’s library
module pervasives.ml, closed variant types [< variant1|..| variantn], ob-
ject types (<..>, <m1:T1;..;mn:Tn;..>), and class types (# class, T # class,
(T1,..,Tn) # class). Labels in function types are not yet supported.
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Type variables usually occur only in type definitions and type constraints. In
the former, they are linked to the data type parameters of a type constructor (see
Appendix A.4), while in the latter they represent unspecified types that can be in-
stantiated to satisfy the constraint. As type constraints are checked at compile time
and ignored at runtime, we represent OCaml type variables as Nuprl variables.

Although type constructors are usually defined by users, OCaml has a few prede-
fined constructors such as list and array. Note that type constructor application
in OCaml uses postfix notation. The type exn of exceptions describes the result
type of error messages that are returned when an exception is “raised”. Formally,
it is a type like any other OCaml type.

Record types are defined as dependent function types that assign different types
to different values of a field. A record type declaration {f1:T1; ..; fn

:T
n
} is rep-

resented by the type

f:FIELD → if f = f1 then T1 else ... else if f = fn then Tn else Top

As record type declarations are variable-sized, we need to build their formal rep-
resentation an iterated application of basic abstractions. We use Nuprl’s intersec-
tion type constructor for this purpose, since (the representation of) {f1:T1;f2:T2}
has the same members as {f1:T1} ∩ {f2:T2} . As explained in Appendix A.1, all
component types are represented as mutable types, even if they are not explicitly
declared mutable. Note, that in OCaml record types and variant constructor types
always have to be defined types, i.e. they may only occur on the top-level of type
definitions. Polymorphic variant types may occur in arbitrary type expressions.

Building the representation of complex recursive types (T1[T as ’id]) involves a
meta-level construction that detects the occurrence of T as ’id in T1, replaces it by
T and wraps the whole expression with Nuprl’s constructor for inductive types.

A.4 Type and Value Definitions

Type and value definitions, described in §6.8 and $6.11 of the OCaml manual,
bind type constructors and value names to data types and expressions. They do
not have an object level semantics in OCaml, but have to be considered meta-level
operations that link names to actual types and expressions.

As a consequence, type and value definitions are not represented by object-level
terms of type theory. Instead, they are mapped onto definition objects of the Nuprl

system, i.e. meta-level objects that bind new abstract terms to type theoretical
expressions. Nuprl abstractions represent the links between user-defined type and
expression variables and their definitions, while display forms make sure that the
syntactical appearance of the abstract term is identical to the original OCaml code.

Our mechanisms for importing OCaml code into Nuprl (Section 3.5) make sure
that the abstraction objects corresponding to user-defined types and values allow
identifying both the name chosen by the user and the module within which it was
defined. References to these names within a piece of code will be disambiguated at
“compile time” and mapped onto the appropriate abstract terms. Thus evaluating
user-defined OCaml types and values simply means unfolding the corresponding
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type typeconstr = T ≡ typeconstr ≡ Y (λtypeconstr.T)
type ’id typeconstr = T ≡ type typeconstr = λid.T
type (’id1,..,’idn) typeconstr = T

≡ type typeconstr = λtypes.
let <id1,..,idn> = types in T

let id = e ≡ id ≡ e

let id p1..pn = e ≡ let id = fun p1..pn-> e

let rec id = e ≡ id ≡ Y (λid.e)
let rec id p1..pn = e ≡ let rec id = fun p1..pn-> e

Table A 5. Nuprl representation of OCaml type and value definitions

Nuprl abstraction. As an additional feature, this approach enables Nuprl users
to look up definitions of OCaml functions by clicking on the abstract term.

Table A 5 describes the formal definitions that are needed to build a formal
representation of OCaml’s type and value definitions. Note that these definitions
map OCaml definitions to (the contents of) Nuprl definition objects, as indicated
by the “≡ ” symbol on the right hand side of a definition.

The formalization accounts for the fact that type definitions may be recursive
but does not yet include type constraints and optional prefixes for type parame-
ters, which indicate whether a type constructor is to be co- or contravariant with
respect to that parameter. Furthermore, as all OCaml definitions are mapped
onto individual definition objects in Nuprl, multiple top level bindings as in
type typedef1 and ... typedefn and let [rec] binding1 and ... bindingn

will be separated into individual definitions when the code is imported into Nuprl.

A.5 Partial evaluation of OCaml expressions

Symbolic computation rules for OCaml expressions support the partial evaluation
of OCaml programs. As the semantics of OCaml expressions and patterns clearly
describes the dynamic behavior of OCaml expressions, the computation rules for
OCaml can be implemented as derived inference rules using Nuprl tactics and
computation rules. A critical issue in this implementation is the preservation of the
“OCamlness” of expressions: the tactics always have to return a (representation
of a) valid OCaml expression and must not reveal the underlying type-theoretical
description. Another issue is the potential presence of reference cells in expressions:
the tactics can rewrite an expression into another one only if both expressions have
the same values and the same side-effects.

Many of our computation rules OCaml that we describe in this section therefore
require certain subexpressions to be free of side-effects, which roughly means that
they do not contain assignments of the form e1.f <- e2 , e1 := e2 , e1.(e2) <- e3,

or e1.[e2] <- e3 . Function definitions in function, fun, and let expressions are
always free of side-effects, even if the function body is not. Function applications,
however, are free of side-effects only if the function body is.

In Nuprl the test for being free of side-effects is performed by meta-level tac-
tics. A practical difficulty is the occurrence of user-defined functions: unfolding their



46 Christoph Kreitz

Redex Contractum

-i, i+j, i-j, i*j, i/j, i mod j −→ as usual
i=j, i<>j, i<j, i<=j, i>j, i>=j −→ as usual
if true then e1 else e2 −→ e1

if false then e1 else e2 −→ e2

e::[e1;..;en] −→ [e::e1;..;en]

{f1=e1; ..; fn=en}.fi −→ ei
1

{f1=e1; ..; fn=en}.fi<-e −→ {f1=e1; ..; fi=e; ..; fn=en} 2

[|e0; ..; en|].(i) −→ ei
1

[|e0; ..; en|].(i)<-e −→ [|e0; ..; e; ..; en|]
2

"c0..cn".[i] −→ ’ci’

"c0..cn".[i]<-’chr’ −→ "c0..chr..cn"

e; e2 −→ e2
3

while e do e1 done −→ if e then (e1; while e do e1 done)

for i=e1 to e2 do e3 done −→ if e1<=e2 then (e3 [e1/i];
for i=e1+1 to e2 do e3 done) 4

match e with p1 -> e1’ when e1 −→ ei’ be/pic
2 3 5

...
pn -> en’ when en

(function matching) e −→ match e with matching

(fun p1..pn when e’ -> e) e1..en −→ e be1/p1c.. ben/pnc
6

let p1 = e1 and .. pn = en in e −→ e be1/p1c.. ben/pnc
2

let x p1..pn = e in e’ −→ let x = fun p1..pn-> e in e’

let rec x1=e1 and .. xn=en in e −→ let x1=e1 [let rec x1=e1 in x1/ x1]
and ...

xn=en [let rec xn=en in xn/ xn] in e 2

let rec x p1..pn= e in e’ −→ let rec x = fun p1..pn-> e in e’

id −→ e 7

id e1..en −→ e be1/p1c.. ben/pnc
2 8

1: e
j
free of side-effects for j 6=i. 2: e

j
free of side-effects for all j. 3: e free of side-effects.

4: e1, e2 free of side-effects. 5: i is the first j with e
j
be/p

j
c6=↑ and e

j
’ be/p

j
c=true .

6: e’ be1/p1c.. ben/pnc = true. 7: let id = e user-defined . 8: let rec id p1..pn= e user-defined.

Table A 6. (Derived) computation rules for OCaml

definitions and checking them for side-effects would make the test extremely expen-
sive, as this often requires unfolding further definitions. Therefore the test assumes
the bodies of other user-defined functions to have side-effects. If needed, the defi-
nitions of other functions can be unfolded explicitly by tailored evaluation tactics.
This approach prevents the computation rule from being applied incorrectly, i.e. to
expression where it cannot produce a formal justification for the evaluation step.

Using side-effects within expressions other than the bodies of functions is con-
sidered poor programming style and usually avoided, as this makes it difficult to
understand the program’s behavior. For this reason, our symbolic computation rules
for OCaml are applicable to almost all “real” programs, despite their restriction
to expressions that are free of side-effects.

Table A 6 describes the current set of derived computation rules for partially
evaluating OCaml programs within the framework of the Nuprl system. These
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e be’/ c 7→ e

e be’/xc 7→ e [e’/x]
e be’/p as xc 7→ e be’/pc [e’/x]
e bi/ic 7→ e

e b’chr’/’chr’c 7→ e

e b"c0..cn/"c0..cn"c 7→ e

e btrue/truec 7→ e

e bfalse/falsec 7→ e

e b[]/[]c 7→ e

e be1::e2 / p1::p2c 7→ e be1/p1c be2/p2c
e b[e1; ..; en] / p1::p2c 7→ e be1/p1c b[e2; ..; en]/p2c
e b[e1; ..; en] / [p1; ..; pn]c 7→ e be1/p1c.. ben/pnc
e bcconstr/cconstrc 7→ e

e bncconstr e’ / ncconstr pc 7→ e be’/pc
e b‘tag / ‘tagc 7→ e

e b‘tag e’ / ‘tag pc 7→ e be’/pc
e be1, e2 / p1, p2c 7→ e be1/p1c be2/p2c
e b{f1=e1;..;en=en} / {fi1=p1;..;fik=pk}c 7→ e bei1/p1c.. beik/pkc if k≤n
e b[|e0; ..; en|] / [|p0; ..; pn|]c 7→ e be0/p0c.. ben/pnc
e be’/(p)c 7→ e be’/pc
e be’/(p:T)c 7→ e be’/pc
e be’/()c 7→ e

e be’/p1| p2c 7→ e be’/p1c if e be’/p1c 6= ↑
e be’/p1| p2c 7→ e be’/p1c if e be’/p1c = ↑

If e’ is in canonical form and none of the above rules applies then e be’/pc 7→ ↑

Table A 7. (Derived) rules for symbolic pattern evaluation

rules can be applied to arbitrary sub-terms of an OCaml expression as long as
their proviso (see the bottom of the table) is satisfied. The evaluation tactic Red,
described in Section 4.3, uses search to find the first applicable evaluation rules.
Other tactics attempt to reduce a specific sub-term of a proof goal.

In computation rules that involve pattern matching the notation e be’/pc de-
scribes a substitution where the free variables of e that occur in the pattern p are
instantiated by the subexpressions of e’ which result from matching the template
p against e’. For p being a variable pattern x, this substitution is the same as the
usual term substitution e [e’/x]. For all other templates it is the result of applying
the pattern evaluation rules described in Table A 7, which are derived from the type
theoretical semantics of (lifted) patterns in Table A 3.

Patterns can only be matched against expressions that are in canonical form
and free of side-effects: function applications, conditionals, and other expressions
occurring in Table A 6 have to be evaluated before symbolic pattern matching can
be applied to them. Pattern matching fails (i.e. returns the expression ↑) if none of
the rules in Table A 7 applies.


