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Abstract: We present a uniform procedure for proof search in classical logic, intuition-
istic logic, various modal logics, and fragments of linear logic. It is based on matrix
characterizations of validity in these logics and extends Bibel’s connection method,
originally developed for classical logic, accordingly. Besides combining a variety of dif-
ferent logics it can also be used to guide the development of proofs in interactive proof
assistants and shows how to integrate automated and interactive theorem proving.

1 Introduction

Classical and non-classical logics are used extensively in various branches of Arti-
ficial Intelligence and Computer Science as logics of knowledge and belief, logics
of programs, logics of action and change, and for the specification of distributed
and concurrent systems. In many of these applications there is a need for de-
ductive systems that can simulate mathematical reasoning. Proof assistants like
NuPRL [Constable et al., 1986], Coq [Dowek, 1991], Alf [Altenkirch et al., 1994],
Isabelle [Paulson, 1990] were developed to support interactive formal reasoning
in a humanly comprehensible form and to automate it to a certain extent. But
since they are are based on sequent or natural deduction calculi, the proof search
strategies in these systems have to follow the connectives when analyzing a logical
formula, which makes the degree of automation very low. On the other hand, the
success of theorem provers for classical logic [Wos et al., 1990, Letz et al., 1992,
Bibel et al., 1994, Beckert and Posegga, 1994] has shown that formal reasoning
can be automated sufficiently well.

Matrix-based proof search procedures like the connection method [Bibel, 1981,
Bibel, 1987] can be understood as compact representations of tableaux, nat-
ural deduction, or sequent proof techniques. They avoid the usual redundan-
cies contained in these calculi and are driven by complementary connections,
i.e. possible leaves in a sequent proof, instead of the logical connectives of a
proof goal. Although developed mainly for classical logic and formulas in clause-
form, their theoretical foundations could be extended to intuitionistic and var-
ious modal logics [Wallen, 1990]. On this basis we have extended the connec-
tion method to non-clausal form, intuitionistic logic [Otten and Kreitz, 1995],
modal logics [Otten and Kreitz, 1996(b)], and also to fragments of linear logic
[Kreitz et al., 1997, Mantel and Kreitz, 1998].
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Figure 1: Combining automated and interactive proof systems for various logics

Since the actual proofs generated by automated proof search procedures tend
to have a very technical look, we have developed a uniform algorithm for convert-
ing matrix proofs in these logics into sequent proofs [Schmitt and Kreitz, 1995,
Schmitt and Kreitz, 1996, Kreitz and Schmitt, 1999]. This allows us to view ma-
trix proofs as plans for predicate logic proofs to be executed within a proof
assistant [Bibel et al., 1996, Kreitz et al., 1996]. Thus our integrated approach, il-
lustrated in Figure 1, does not only combine proof methods for a variety of
different logics but also automated and interactive theorem proving.

In this paper we will present a uniform, matrix-based proof search procedure
for classical logic, intuitionistic logic, modal logics, and fragments of linear logic.
In Section 2 we will present the matrix characterization of logical validity in
classical logic in a unified representation. On this basis we develop a non-clausal
extension of Bibel’s original connection method in Section 3 and adapt it to
constructive logic (Section 4) and the modal logics T, D, D4, S4, and S5 (Section
5). In Section 6 we extend both the matrix characterization and our proof search
procedure to MLL, the multiplicative fragment of linear logic. We conclude
with brief discussion of possible further extensions and the integration of matrix
methods into interactive proof systems.

2 The Matrix Characterization of Logical Validity

The connection method [Bibel, 1981, Bibel, 1987] was originally designed as proof
search method for formulas in clause normal form. But as normalization of formu-
las is often costly and as many non-classical logics do not have normal forms, it is
necessary to develop connection methods for formulas in non-clausal form. Bibel
[Bibel, 1987] already describes a non-clausal version of his connection method.
The version that we will present here is more general. It is based on Wallen’s ma-
trix characterizations of logical validity [Wallen, 1990] and can easily be adapted
to a variety of logics.
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Since matrix proofs can be viewed as compact representations of analytic
tableaux, many notions from tableau calculi carry over to matrix methods. The
main difference is that tableau proofs are based on rules that decompose a for-
mula, generate subformulas, and eventually close off proof branches, while ma-
trix methods operate directly on the formula tree and search for connections,
i.e. pairs of identical literals with different polarities that could close a branch in
a tableau proof. In this section we will first introduce the basic concepts used in
matrix methods and then characterize logical validity in terms of these concepts.

A formula tree is the representation of a formula F as a syntax tree. Each
node corresponds to exactly one subformula Fs of F and is marked with a unique
name a0, a1, . . ., its position. The label of a position u denotes the major con-
nective of Fs or the formula Fs, if it is atomic. In the latter case, u is called
an atomic position (or atom) and can also be identified by its label. The tree
ordering < of F is the partial ordering on the positions in the formula tree where
the root is the smallest position with respect to this tree ordering.

Each position in a formula tree is associated with a polarity and a principal
type. The polarity (0 or 1) of a position is determined by the label and polarity
of its parent. The root position has polarity 0. The principal type of a position is
determined by its polarity and its label. Atomic positions have no principal type.
Polarities and types of positions are defined in the table below. For example, a
position labelled with ⇒ and polarity 1 has principal type β and its successor
positions have polarity 0 and 1, respectively. For a given formula we denote the
sets of positions of type γ and δ by Γ and ∆.

principal type α (A ∧B)1 (A ∨B)0 (A⇒B)0 (¬A)1 (¬A)0

successor polarity A1, B1 A0, B0 A1, B0 A0 A1

principal type β (A ∧B)0 (A ∨B)1 (A⇒B)1

successor polarity A0, B0 A1, B1 A0, B1

principal type γ (∀xA)1 (∃xA)0 principal type δ (∀xA)0 (∃xA)1

successor polarity A1 A0 successor polarity A0 A1

A quantifier multiplicity µQ:Γ→IN (briefly µ) encodes the number of distinct
instances of γ-subformulas that need to be considered during the proof search. By
Fµ we denote an indexed formula, i.e. a formula and its multiplicity. We consider
multiple instances of subformulas according to the multiplicity of its correspond-
ing position in the formula tree and extend the tree ordering accordingly. For
technical reasons we substitute variables in atomic formulas by the corresponding
quantifier positions, i.e. γ- and δ-positions. The formula tree of F1 ≡
∀xSx ∧ ∀y(¬(Ty⇒Ry)⇒Py) ⇒ ¬∃z((Pz⇒Qz) ∧ (Tz⇒Rz)) ⇒ ¬¬Pa ∧Sa ∧Sb,

where each position is marked with its label, polarity, and principal type, and
the multiplicity of the subformula ∀xSx is 2, is shown in Figure 2.

The matrix(-representation) of a formula F is a two-dimensional representa-
tion of its atomic formulas without connectives and quantifiers, which is better
suited for illustration purposes. In a matrix representation α-related positions
appear side by side and β-related positions appear on top of each other, where
two positions u and v are α-related (or β-related), denoted u∼αv (u∼βv), iff
u6=v and the greatest common ancestor of u and v w.r.t. the tree ordering < is
of principal type α (or β). u is α-related (β-related) to a set S of positions if
u∼αv (u∼βv) for all v ∈S. The matrix representation of Fµ

1 is given in Figure 3.
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Figure 2: Formula tree for F µ
1 with µ(a2)=2

The matrix characterizations of logical validity [Bibel, 1981, Bibel, 1987]
[Wallen, 1990, Kreitz et al., 1997] depend on the concepts of paths, connections,
and complementarity. A path through a formula F is a maximal set of mutually
α-related atomic positions of its formula tree. It can be visualized as a maximal
horizontal line through the matrix representation of F . A connection is a pair
of atomic positions labelled with the same predicate symbol but with different
polarities. A connection is complementary if its atomic formulas are unifiable by
an admissible substitution.

The precise definition of complementarity depends on the logic under con-
sideration. For classical logic, we only need to consider quantifier- or first-order
substitutions. A (first-order) substitution σQ (briefly σ) is a mapping from po-
sitions of type γ to terms over ∆∪Γ . It induces a relation <Q ⊆ ∆ × Γ in the
following way: if σQ(u) = t, then v<Qu for all v ∈∆ occurring in t. The re-
lation <Q expresses the eigenvariable condition of the sequent calculus, where
eigenvariables v ∈∆ have to be introduced before they are assigned to variables
u ∈Γ . Together with the tree ordering < the relation <Q determines a reduction
ordering ¢. This reduction ordering has to be acyclic, i.e. it has to respect the
eigenvariable condition.

S1a2 S1a2a

T 0a4

R1a4

P 1a4

P 1a13

T 1a13

Q0a13

R0a13

S0b

S0a

P 0a

Figure 3: Matrix of the formula F1
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Definition 1 (Complementarity in Classical Logic).
– A first-oder substitution σQ is admissible with respect to Fµ iff the induced

reduction ordering ¢ := (< ∪<Q)+, i.e. the transitive closure of < and <Q,
is irreflexive.

– A connection {u, v} is σQ-complementary iff σQ(label(u))=σQ(label(v)).

As paths through matrices correspond to fully expanded branches of tableau
proofs and complementary connections to closed branches, a formula F is valid
if every path through some Fµ contains a complementary connection.

Theorem2 (Matrix Characterization for Classical Logic).
A formula F is (classically) valid iff there is a multiplicity µ, an admissible
substitution σ and a set of σ-complementary connections such that every path
through Fµ contains a connection from this set.

A proof of this theorem can be found in [Bibel, 1987].

Example 1. In the matrix1 for F µ
1 in Figure 3 there are 18 paths (note that P 1a13

and R0a13 or T 1a13 and Q0a13 are not α-related). Each path contains one of the con-
nections {S1a2, S

0b}, {S1a2a, S0a}, {T 0a4, T
1a13}, {R1a4, R

0a13}, {P 1a4, P
0a}, and

{P 1a13, P
0a}. The six connections are complementary under the first-order substitution

σQ = {a2\b, a2a\a, a4\a, a13\a}. As no δ-positions occur in σQ, the induced reduction
ordering ¢ is the tree ordering < and irreflexive. Thus σQ is admissible and F1 is valid.

3 A Uniform Proof Search Procedure

According to the above matrix characterization the validity of a formula F can
be proven by showing that all paths through the matrix representation of Fµ

are complementary, i.e. contain a complementary connection. Obviously it is not
very efficient to check all possible paths for complementarity. Instead, a path
checking algorithm should be driven by the connections: once a complemen-
tary connection has been identified all paths containing this connection can be
eliminated from further consideration. This idea is similar to Bibel’s connection
method for classical logic [Bibel, 1987], but our algorithm is more general and
because of that useful for proof search in various non-classical logics.

The key notions of our path checking algorithm are active paths, active sub-
goals, and open goals. During proof search the active path P specifies those
paths that are currently investigated for complementarity. All paths that con-
tain P and an element u of the active subgoal C have already been proven to
contain a complementary connection. All paths that contain P and an element v
of the open goal E must still be tested for complementarity. If the latter can be
proven complementary as well then all paths containing the active path are com-
plementary. The algorithm will recursively check whether all paths containing
the empty active path are complementary.

Let A denote the set of all atomic positions in the formula F . A subpath
P ⊆A is a (not necessarily maximal) set of mutually α-related atomic positions.
A subpath P ⊆A is a path iff there is no u ∈A with u∼αP. A subgoal C ⊆A is
a set of mutually β-related atomic positions. During proof search certain tuples
1 We denote atomic positions by their labels, i.e. by atomic formulas.
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(P, C) consisting of a non-complementary subpath P and a subgoal C with u∼αP
for all u ∈C will be called active goals. P will be the active path and C the active
subgoal . The open goal E ⊆A with respect to an active goal (P, C) is the set of
atomic positions v with v∼αP and v∼βC.
Example 2. In Figure 3 the sets P1={S1a2, S

1a2a, T 1a13, P
0a}, P2={S1a2, S

1a2a, R1a4,
S0b}, and P3={T 0a4, T

1a13, R
0a13} are subpaths for the formula F1. C1={T 0a4},

C2={Q0a13, T
1a13}, and C3={S1a2} are subgoals. (P1, C1), (P2, C2), and (P3, C3) are

active goals. The set {R1a4, P
1a4} is the open goal w.r.t. the active goal (P1, C1); the

empty set ∅ is the open goal w.r.t. (P2, C2) or (P3, C3).

We call an active goal (P, C) provable with respect to a formula F iff for the
open goal E w.r.t. (P, C) and for all v ∈E all paths P ′ through F with P∪{v} ⊆ P ′
are complementary. This definition leads to a more algorithmic characterization
of validity.

Theorem3.
A formula F is valid iff there is a multiplicity µ and an admissible substitution
σ such that the active goal (∅, ∅) w.r.t. Fµ is provable.

Proof. Using the characterization of validity in theorem 2 it suffices to show that the
active goal (∅, ∅) w.r.t. F µ is provable iff every path through F µ is σ-complementary.

Let (∅, ∅) be provable. Then the open goal E := {v ∈A|v∼α∅ ∧v∼β∅} w.r.t. (∅, ∅)
is the set of all atomic positions. Thus all paths through F µ contain an element of E
and are complementary according to the definition of provability. Conversely, if every
path through F µ is σ-complementary then every path that contains some v ∈E :=
{v ∈A|v∼α∅ ∧v∼β∅} is complementary. Since every paths through F ν contains a v ∈E
the active goal (∅, ∅) is provable. ut

Since the proof of theorem 3 depends only on a matrix characterization of
logical validity, the algorithmic characterization applies to all logics for which
a matrix characterization in the style of theorem 2 can be given. It leads to a
uniform path checking algorithm which, coupled with an appropriate definition of
complementarity, can be used as proof search procedure for a variety of different
logics. The path checking method is described by the following theorem, which
gives sufficient and necessary conditions for provability.

Theorem4.
Let (P, C) be an active goal and E := {v ∈A|v∼αP ∧v∼βC} the open subgoal
w.r.t. (P, C). The active goal (P, C) is provable iff
1. the open goal E is empty, or
2. there is a complementary connection {A, Ā} with A ∈E, such that the active

goal (P, C ∪ {A}) is provable and
Ā ∈P or Ā∼α(P ∪ {A}) and the active goal (P ∪ {A}, {Ā}) is provable.

Proof. Let (P, C) a provable active goal and E := {v ∈A|v∼αP ∧v∼βC}6=∅. Then there
is a complementary connection {A, Ā} with A ∈E . (P, C ∪ {A}) is provable because
(P, C) is. If Ā 6∈P then let u ∈E ′ := {u ∈A|u∼αP ∪ {A} ∧u∼β{Ā}} and P ′ be a path
with P ∪{A}∪{u} ⊆ P ′. Since (P, C) is provable and A ∈E , P ′ must be complementary.
Hence (P ∪ {A}, {Ā}) is provable.

Conversely let (P, C) an active goal. If E = ∅ then all conditions for the provability of
(P, C) are trivially satisfied. In the other case let {A, Ā} be a complementary connection
with A ∈E such that (P, C∪{A}) is provable, v ∈E , and P ′ be a path with P ∪{u} ⊆ P ′.
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– If A 6∈P ′ then there must be some u ∈P ′ with u∼βA, u∼βC, and u∼αP. Since
(P, C ∪ {A}) is provable, P ′ must be complementary.

– If A ∈P ′ and Ā ∈P then P ′ is obviously complementary.
– If A ∈P ′ and Ā 6∈P then there must be some u ∈P ′ with u∼βĀ. For this u we have

u∼αA and u∼αP. Thus u is an element of the open goal for (P ∪{A}, {Ā}). Since
by assumption (P ∪ {A}, {Ā}) is provable, P ′ must be complementary.

Thus all the requirements for the provability of (P, C) are satisfied. ut

Figure 4 presents a mathematical description of a uniform algorithm for
proving the validity of a given formula F that is based on the above theorems
and can easily be converted into a functional or logic program. According to
Theorem 3 we have to show that the active goal (∅, ∅) is provable w.r.t. some Fµ

and some admissible substitution σ. To check the provability of an active goal
(P, C) the function provable recursively applies Theorem 4. If the open goal E
= {v ∈A | v∼αP ∧v∼βC} is not empty, it must investigate the extensions of E by
complementary connections {A, Ā} that originate in E .

For this purpose, the function check-extensions recursively considers all
positions A ∈E and the sets D of all literals Ā that are connected to A. According
to Theorem 4.2 the latter can be restricted to the positions Ā that are already
on the active path P or α-related to (P∪{A}). As an optimization, the choice of
alternative elements of E is limited to {v ∈E | v∼αA} if the complementarity of
all paths through A could not be shown by investigating {A, Ā}. In this case the
complementarity must depend on a different connection on the path, i.e. on some
v ∈E that is α-related to A. If there is no more choice, the computation fails.

prove(F,n)

=





provable(∅, ∅, σ) if this computation succeeds
where σ,µ = initialize(F,n)
and CON = connections(F µ)

prove(F,n+1) otherwise

provable(P, C, σ)

=

{
check-extension(E , σ) if E 6=∅
where E = {v ∈A | v∼αP ∧v∼βC}

σ otherwise

check-extension(E , σ)

=





check-connections(D, A, σ) if this computation succeeds
where D = {Ā ∈A | {A, Ā} ∈CON ∧ (Ā ∈P ∨ Ā∼α(P∪{A}))}
where A ∈E arbitrary

check-extension({v ∈E|v∼αA}, σ) otherwise (and E 6=∅)

check-connections(D, A, σ)

=





provable(P, C∪{A}, σ2) if this computation succeeds

where σ2 =

{
σ1 if Ā ∈P
provable(P∪{A}, {Ā}, σ1) otherwise

where Ā ∈D arbitrary
and σ1 = unify-check(A, Ā, F µ, σ)

check-connections(D−{Ā}, A, σ) otherwise (and D6=∅)

Figure 4: Uniform path checking algorithm in mathematical notation
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The function check-connections recursively checks whether the remaining
conditions of Theorem 4.2 hold for some Ā ∈D. It tests {A, Ā} for complemen-
tarity and whether Ā ∈P is true or the active goal (P ∪ {A}, {Ā}) is provable.
It succeeds if this is the case and the active goal (P, C ∪ {A}) is provable. It
fails otherwise or if the choices for Ā ∈D are exhausted. The chosen order of
provability tests leads to a depth-first search where active paths are extended as
long as possible before another path is explored.

As usual, the substitution σ is constructed during the extension process. It is
the result of the main function prove and threaded through all the subfunctions.
To determine the multiplicity, the function prove is initialized with µ≡ 1 and
globally increases µ until the active goal (∅, ∅) w.r.t Fµ is shown to be provable.

The algorithm is parameterized with two functions, which express the spe-
cific properties of the logic under consideration. The function initialize de-
termines the initial value for the substitution σ and the multiplicity µ while
unify-check(A, Ā, Fµ, σ) tries to compute a substitution that unifies the labels
of A and Ā, extends σ, and leads to an acyclic reduction ordering in Fµ. Both
functions are provided separately in tables for each logic while the general path
checking algorithm remains unchanged for a variety of logics.

initialize(F,n) (∅, n)

unify-check(A, Ā, F µ, σ) term unify(σ(label(A)), σ(label(Ā)))
if ¢ := (< ∪<Q)+ is irreflexive

Table 1: initialize(F,n) and unify-check(A, Ā, F µ, σ) for classical logic

For classical logic (table 1) initialize(F ,n) computes a pair (σ, µ) with
σ=∅ and µ(u)=n for all u ∈Γ . unify-check(A, Ā, Fµ, σ) computes a most gen-
eral term-unifier σQ of σ(label(A)) and σ(label(Ā)), as well as the induced re-
duction ordering ¢ := (< ∪<Q)+. It returns σQ if ¢ is irreflexive and fails
otherwise or if the two atoms cannot be unified. To compute the first-order sub-
stitution σQ, we can use well-known term unification algorithms [Robinson, 1965,
Martelli and Montanari, 1982], while the irreflexivity of the induced reduction
ordering can be checked by standard algorithms for testing the acyclicity of
directed graphs or by the well-known skolemization technique.

Theorem5 (Correctness and Completeness for Classical Logic).
The function prove(F,1) together with initialization and unification from ta-
ble 1 succeeds iff F is valid in classical logic. In this case it returns an admissible
substitution σQ which makes every path through some Fµ complementary.

Proof. By simultaneous induction we prove the following facts

1. check-connections(D, A, σ) succeeds if there is some Ā ∈D and some admissible
substitution σ′ that extends σ such that {A, Ā} is σ′-complementary, (P, C∪{A})
is provable under σ′, and Ā ∈P or Ā∼α(P ∪{A}) and (P ∪{A}, {Ā}) is provable
under σ′.

2. check-extension(E , σ) succeeds if there is some admissible substitution σ′ that
extends σ and some σ′-complementary connection {A, Ā} with A ∈E such that
(P, C∪{A}) is provable under σ′, and Ā ∈P or Ā∼α(P∪{A}) and (P∪{A}, {Ā})
is provable under σ′.
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3. provable(P, C, σ) succeeds if there is some admissible substitution σ′ that extends
σ such that (P, C) is provable under σ′.

In each of the respective cases the result is the substitution σ′. As a consequence,
the function call prove(F,n) succeeds if there is a multiplicity µ with µ(u)≥n for all
u ∈Γ and an admissible substitution σ such that (∅, ∅) w.r.t. F µ is provable under σ′.
In this case the result is σ and F is valid according to Theorem 3 and 4. ut

Our general path checking algorithm can be viewed as reference version for
the implementation of theorem provers for a variety of different logics that is
far more flexible than especially tailored proof search procedures. Obviously it is
possible to improve the efficiency of the algorithm presented in Figure 4, since the
stepwise increase of the multiplicity is very coarse and because it cannot decide
that a given propositional formula is invalid . An efficient implementation of our
algorithm will determine the multiplicity for each suitable position dynamically
during the path checking process. Other techniques that were used in theorem
provers based on the usual connection method can be integrated as well. For
example a technique similar to the liberalized δ-rule applied in tableau calculi
like ileanTAP [Otten, 1997] can be integrated.

4 Proving Theorems in Constructive Logic

As program synthesis and verification often relies on constructive arguments, sys-
tems for automated program development must be supported by proof search
procedures for intuitionistic logic. Independently from the philosophical differ-
ences between classical and intuitionistic logic the main distinction between these
two logics can be expressed by a different treatment of ∀, ⇒ , and ¬. Whereas
in the classical sequent calculus only the quantifier rules affected by the eigen-
variable condition are not permutable, in the intuitionistic sequent calculus in
addition the rules dealing with ∀, ⇒ , and ¬ in the succedent are not permutable.

A matrix method for intuitionistic logic must therefore not only check if two
connected atomic formulas can be unified by a first-order substitution but also if
they can both be reached by applying an appropriate sequence of sequent rules.
Only then they form a leaf in a sequent proof. In the matrix characterization this
is reflected by an additional intuitionistic substitution σJ , which has to make the
prefixes of the connected atomic positions identical, where a prefix of a position
u is a string consisting of variables and constants that essentially describes the
location of u in the formula tree.

For this purpose the positions labelled with atoms, ∀, ⇒ , or ¬ receive an
additional intuitionistic type according to the following table.

intuitionistic type φ (¬A)1 (A⇒B)1 (∀xA)1 P 1
(P atomic)

successor polarity A0 A0, B1 A1 —
intuitionistic type ψ (¬A)0 (A⇒B)0 (∀xA)0 P 0

(P atomic)

successor polarity A1 A1, B0 A0 —

Positions of type ψ correspond to the application of non-invertible sequent
rules and are viewed as constants in a prefix string while φ-positions are variables.
This makes it possible to use unification to determine the ψ-positions that must
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a0A2A3:S
1a2 a0A2aA3a:S

1a2a

a0A4A5a6A7a8:T
0a4

a0A4A5a6A7A9:R
1a4

a0A4A5A10:P
1a4

a0a11A12a15A16:P
1a13

a0a11A12a18A19:T
1a13

a0a11A12a15a17:Q
0a13

a0a11A12a18a20:R
0a13

a0a11a27:S
0b

a0a11a26:S
0a

a0a11a22A23a24:P
0a

Figure 5: Matrix of the formula F1 with prefixes

be reduced before a φ position in a valid sequent proof2 and to develop a matrix
characterization for intuitionistic validity whose formulation is almost identical
to the one for classical logic.

The prefix preJ (u) of an atomic position u is a string u1u2 . . . un where
u1<u2< . . . <un=u are the elements of Ψ ∪ Φ (the positions of type ψ or type
φ) that dominate u in the formula tree. An intuitionistic substitution σJ is a
mapping from positions of type φ to (possibly empty) strings over Ψ ∪ Φ. It
induces a relation <J ⊆ Ψ × Φ in the following way: if σJ(u)=p, then v<Ju for
all characters v ∈Ψ occurring in p.

Definition 6 (Complementarity in Intuitionistic Logic).
Let σ:=(σQ, σJ ) be a combined substitution consisting of a first-order substitution
σQ and an intuitionistic substitution σJ .

1. σ is J-admissible iff the induced reduction ordering ¢:=(<∪<Q∪<J)+ is
irreflexive and |σJ (preJ(v))|≤|σJ(preJ (u))| holds for all u ∈Γ and all v ∈∆
occuring in σQ(u).

2. A connection {u, v} is σ-complementary iff σQ(label(u))=σQ(label(v)) and
σJ(preJ (u))=σJ (preJ(v)).

In the intuitionistic sequent calculus formulas of type φ can be copied. An
intuitionistic multiplicity µJ :Φ→IN encodes the number of distinct instances of
φ-subformulas that need to be considered during the proof search. It can be
combined with a quantifier multiplicity µQ and leads to an indexed formula Fµ.

Theorem7 (Matrix Characterization for Intuitionistic Logic).
A formula F is intuitionistically valid iff there is a multiplicity µ := (µQ, µJ), a
J-admissible combined substitution σ = (σQ, σJ), and a set of σ-complementary
connections such that every path through Fµ contains a connection from this set.

A proof of this theorem can be found in [Wallen, 1990].

Example 3. Consider F µ
1 from Figure 2 with µQ(a2)=2, µQ(a4)=1, µQ(a13)=1, and

µJ ≡ 1. The ψ-positions are {a0, a6, a8, a11, a15, a17, a18, a20, a22, a24, a26, a27}, while
{a2, a2a, a3, a3a, a4, a5, a7, a9, a10, a12, a16, a19, a23} is the set of φ-positions, which in
the following will be indicated by capital letters. The prefixes of all atomic posi-
tions are shown in Figure 5. The prefixes of the six connections used to show the
classical validity of F1 in Example 1 can be unified by the intuitionistic substitu-
tion σJ = {A2\ε, A2a\ε, A3\a11a27, A3a\a11a26, A4\ε, A5\a11a22, A7\a18a20, A9\ε,
2 This methodology is inspired by the admissibility condition for first-order substitu-

tions in Definition 1, where <Q determines which δ-positions must be reduced before
certain γ-positions in order to satisfy the eigenvariable-condition.
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A10\a6a15a24, A12\a22a6, A16\a24, A19\a20a8, A23\a6a15}, where ε is the empty string.
The terms are unified by the first-order substitution σQ = {a2\b, a2a\a, a4\a, a13\a}.

The combined substitution σ = (σQ, σJ) is J-admissible, as the induced reduction
ordering ¢=(<∪<Q∪<J)+ is irreflexive. Thus F1 is intuitionistically valid.

The algorithmic characterizations of logical validity in theorems 3 and 4 hold
accordingly with the intuitionistic definitions of complementarity and multiplic-
ity. Therefore our path checking algorithm presented in Figure 4 can be used for
intuitionistic logic as well. We only have to provide the logic-specific functions
initialize and unify-check.

initialize(F,n) ((∅,∅), n)

unify-check(A, Ā, F µ, (σQ, σJ)) (σQ
′, σJ

′) where
σQ

′= term unify(σQ(label(A)), σQ(label(Ā)))
σJ
′= prefix unifyJ(σJ(preJ(A)), σJ(preJ(Ā)))

if ¢ := (< ∪<Q
′∪<J

′)+ is irreflexive
and |σJ

′(preJ(v))|≤|σJ
′(preJ(u))|

for all u ∈Γ and all v ∈∆ occurring in σQ
′(u)

Table 2: initialize(F,n) and unify-check(A, Ā, F µ, σ) for intuitionistic logic

For intuitionistic logic (table 2) initialize(F ,n) computes a pair (σ, µ)
where σ=(∅, ∅) is a combined substitution and µ(u)=n for all u ∈Γ∪Φ. The
function unify-check(A, Ā, Fµ, σ) with σ=(σQ, σJ ) computes a most general
term unifier σQ

′ of σQ(label(A)) and σQ(label(Ā)) as well as a most general
prefix unifier σJ

′ of σJ (preJ(A)) and σJ (preJ(Ā)). It returns (σQ
′, σJ

′) if this
combined substitution is J-admissible and fails otherwise or if either of the two
unifications fails.3

Prefix Unification.
Computing the most general unifiers of a set of prefix equations EQ is by
no means trivial. General string unification [Matiyasevič, 1968, Manakin, 1977,
Abdulrab and Pecuchet, 1990], although decidable, is already complicated, be-
cause two arbitrary strings may have infinitely many most general unifiers. For-
tunately, prefixes are a very restricted class of strings. They do not contain
duplicates and the same character cannot occur in two prefixes p and q of atoms
in the same formula, unless it belongs to a common substring at the beginning of
p and q. These restrictions enabled us to develop a short prefix unification algo-
rithm [Otten and Kreitz, 1996(a)] for computing a minimal set of most general
unifiers. Both [Ohlbach, 1988] and [Schmidt, 1998] do not compute a minimal set
of unifiers.

Similar to the ideas of Martelli and Montanari [Martelli and Montanari, 1982]
for term unification, our prefix unification algorithm is based on a series of trans-
formation rules that are repeatedly applied to the tuple EQ, σJ . We start the
unification with the set of prefix equations EQ = {p1=q1, ..., pn=qn} and an
3 Since there can be more than one most general prefix unifier, backtracking is needed

in case the prefix unification fails later on.
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empty substitution σJ=∅. Each transformation step replaces the tuple EQ, σJ

by a modified tuple σ′(EQ′), σ′(σJ), where one equation {pi=qi} in EQ is re-
placed by {p′i=q′i} and modified by the extended substitution σ′. The algorithm
is described by a set of transformation rules “ {pi=qi}, σ → {p′i=q′i}, σ′ ” which
can be applied nondeterministically to the equation {pi=qi} ∈EQ. The proce-
dure stops if EQ is empty and returns the resulting substitution σJ as most
general unifier. As the transformation rules are applied nondeterministically,
the set of most general unifiers consists of the results of all successfully fin-
ished transformations.

R1. {ε = ε|ε}, σ → {}, σ
R2. {ε = ε|t+}, σ → {t+ = ε|ε}, σ
R3. {Xs = ε|Xt}, σ → {s = ε|t}, σ
R4. {Cs = ε|V t}, σ → {V t = ε|Cs}, σ
R5. {V s = z|ε}, σ → {s = ε|ε}, {V \z}∪σ
R6. {V s = ε|C1t}, σ → {s = ε|C1t}, {V \ε}∪σ
R7. {V s = z|C1C2t}, σ → {s = ε|C2t}, {V \zC1}∪σ
R8. {V s+ = ε|V1t}, σ → {V1t = V |s+}, σ
R9. {V s+ = z+|V1t}, σ → {V1t = V ′|s+}, {V \z+V ′}∪σ
R10. {V s = z|Xt}, σ → {V s = zX|t}, σ (V 6=X, and s=ε, t 6=ε, or X constant)

s, t, z, s+, t+, z+ denote strings where s+, t+, z+ are non-empty. X, V, V1, C, C1 and C2 denote single

characters where V, V1 are variables and C, C1, C2 are constants. V ′ is a new variable.

Table 3: Transformation rules for prefix unification in intuitionistic logic

Like our path checking algorithm, the basic algorithm prefix unify is uni-
form for all logics and uses the set of transformation rules as parameters that
characterize the specific logic under consideration. Intuitionistic prefix unifica-
tion (prefix unifyJ) requires the set of 10 transformation rules presented in
table 3. The number of most general unifiers is finite but may grow exponentially
with the length of the prefixes to be unified.

Theorem8.
Let EQ = {p1=q1, ..., pn=qn} be a set of prefix equations. Then the prefix uni-
fication algorithm together with the transformation rules in table 3 terminates
and computes a complete and minimal set of unifiers for EQ.

Example 4. Consider F1 from Figure 2 with the prefixes shown in Table 5. To make the
connection {a16, a24}, i.e. {P 1a13, P

0a}, complementary we have to unify its prefixes
preJ(a16)=a0a11A12a15A16 and preJ(a24)=a0a11a22A23a24, i.e. we have to consider the
equation EQ={a0a11A12a15A16=a0a11a22A23a24}. To solve this equation we start the
unification process with the tuple {a0a11A12a15A16=ε|a0a11a22A23a24}, {} and apply
the transformation rules according to Table 3:

{a0a11A12a15A16=ε|a0a11a22A23a24}, {}
R3−→ {a11A12a15A16=ε|a11a22A23a24}, {}
R3−→ {A12a15A16=ε|a22A23a24}, {}

1.
R6−→ {a15A16=ε|a22A23a24}, {A12\ε} ♦

2.
R10−→ {A12a15A16=a22|A23a24}, {}
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2.1
R9−→ {A23a24=A′|a15A16}, {A12\a22A

′} R10−→ {A23a24=A′a15|A16}, {A12\a22A
′}

R9−→ {A16=A′′|a24}, {A12\a22A
′, A23\A′a15A

′′}
R10−→ {A16=A′′a24|ε}, {A12\a22A

′, A23\A′a15A
′′}

R5−→ {ε=ε|ε}, {A12\a22A
′, A23\A′a15A

′′, A16\A′′a24}
R1−→ {}, {A12\a22A

′, A23\A′a15A
′′, A16\A′′a24} ♦

2.2
R10−→ {A12a15A16=a22A23|a24}, {} R10−→ {A12a15A16=a22A23a24|ε}, {}
R5−→ {a15A16=ε|ε}, {A12\a22A23a24} ♦

The only successful transformation sequence, leading to a tuple {}, σJ , yields the
only most general unifier σJ={A12\a22A

′, A23\A′a15A
′′, A16\A′′a24} where A′ and A′′

are new introduced variables. See [Otten and Kreitz, 1996(a)] for an extensive example.

Theorem 8, whose proof can be found in [Otten and Kreitz, 1996(a)], together
with the proof of theorem 5 shows that our uniform path checking algorithm is
correct and complete for intuitionistic logic as well.

Corollary 9 (Correctness and Completeness for Intuitionistic Logic).
The function prove(F,1) from figure 4 together with initialization and unifi-
cation from table 2 succeeds iff F is valid in intuitionistic logic. In this case
it returns an admissible combined substitution σ = (σQ, σJ ) which makes every
path through some Fµ complementary.

The first published theorem prover using the technique of prefix unification is
ileanTAP [Otten, 1997]. The basic path checking algorithm it based on an analytic
tableau calculus. An additional string unification is used to ensure the particu-
lar restrictions in intuitionistic logic. Although not connection-driven, this very
compact prover already yields an impressive performance.

5 Modal Logics

Modal logics allow the formalization of knowledge and belief. For this purpose,
two modal operators 2 and 3 are added to classical logic, where 2P means
that P is necessarily true and 3P means that P is possibly true. As the precise
meaning of necessity and possibility depends on the assumptions about the con-
sequences of knowledge and belief, a variety of modal logics has been developed,
each with different logical laws for 2 and 3. In the following we shall focus on
the modal logics T, D, D4, S4, and S5 in their constant, cumulative, and varying
domain variants.

Proof theoretically, the modal operators 2 and 3 behave similarly to the
quantifiers ∀ and ∃. This requires us to introduce additional modal types ν and
π, a modal multiplicity µM , modal prefixes similar to the prefixes in intuitionistic
logic, a modal substitution σM , and an admissibility condition that depends on
the modal logics and the selected domain variant. After adapting the notion of
complementarity (i.e. the function unify-check) accordingly, our general proof
search procedure can be applied to modal logics as well.

The modal type of a position labelled with 2 or 3 is defined according to the
following table.

principal type ν (2A)1 (3A)0 principal type π (2A)0 (3A)1

successor polarity A1 A0 successor polarity A0 A1
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Positions of type π will be viewed as constants in a prefix string while ν-
positions are considered to be variables (denoted by capital letters in examples).
This makes it possible to use unification to determine the π-positions that must
be reduced before a ν position in a valid sequent proof.

Let u1<u2< . . . <un<u be the elements of Π ∪ ν (the positions of type π
or type ν) that dominate the atomic position u in the formula tree. The prefix
preM (u) of u is defined as preM (u) := u1u2 . . . un for the modal logics D, D4,
S4 and T, and as preM (u) := un for S5.4 A modal substitution σM is a mapping
from the positions of type ν to (possibly empty) strings over Π ∪ ν. It induces
a relation <M ⊆ (ν ∪Π)× ν in the following way: if σM (u)=p, then v<Mu for
all v occurring in p.

domain \ L T D D4 S4 S5
·constant – – – – –
·cumulative σM (preM (u))= σM (preM (v))q σM (preM (u))= σM (preM (v))q∗ –
·varying σM (preM (u)) = σM (preM (v))
accessibility |σM (w)|≤1 |σM (w)|=1 |σM (w)|≥1 – –

Table 4: Domain/accessibility conditions for modal logics

Definition 10 (Complementarity in Modal Logics).
Let L be a modal logic and σ:=(σQ, σM ) be a combined substitution consisting
of a first-order substitution σQ and a modal substitution σM .
1. σ is L-admissible iff the reduction ordering ¢ := (< ∪<Q ∪ <M )+ is ir-

reflexive, the domain condition in table 4 holds for all u ∈Γ and all v ∈∆∪Γ
occurring in σQ(u) (for some q ∈ν∪Π∪{ε}, q∗ ∈ (ν∪Π)∗), and the accessi-
bility condition holds for all w ∈ν.

2. A connection {u, v} is σ-complementary , iff σQ(label(u))=σQ(label(v)) and
σM (preM (u))=σM (preM (v)).

Whereas in intuitionistic logic we have to consider copies of formulas of type
φ the sequent calculi for modal logics allow copies of formulas of type ν. A modal
multiplicity µM :ν→IN encodes the number of distinct instances of ν-subformulas
that need to be considered during the proof search. It can be combined with
a quantifier multiplicity µQ and leads to an indexed formula Fµ. With these
definitions, the characterization of validity in modal logics can be formulated as
for intuitionistic logic.

Theorem11 (Matrix Characterization for Modal Logics).
Let L be one of the modal logics D, D4, S4, S5 or T. A formula F is valid in L
iff there is a multiplicity µ := (µQ, µM ), an L-admissible combined substitution
σ = (σQ, σM ), and a set of σ-complementary connections such that every path
through Fµ contains a connection from this set.

A proof of this theorem can be found in [Wallen, 1990].

4 The modal prefix in S5 is a string consisting of a single position, because the ac-
cessibility relation for S5 is an equivalence relation (see [Wallen, 1990]). If u has no
predecessor of type π or type ν (i.e. n=0) then preM (u):=ε for D, D4, S4, S5, and T.
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A1:P
1a2 A6:P

1a5 S5

Figure 6: Formula tree and matrix representations (with prefixes) for F2

Example 5. Consider F2 ≡ 2∀xPx ⇒ 2∀y3Py and its formula tree and prefixed ma-
trix representations in Figure 6. Let µ =(µQ, µM ), where µQ(a2)= µM (a1)= µM (a6)
= 1. The only path through F2 consists of the connection {a3, a7}. There are three
possible unifiers σi=(σQ, σM i) for this connection: σQ={a2\a5}, σM 1={A1\a4A6},
σM 2={A1\a4, A6\ε}, and σM 3={A1\a4, A6\a4}. The connection is σi-complementary
in D, D4, S4, T (for i=1, 2) and S5 (for i=3). σ1 is D4- and S4-admissible for constant
and cumulative domains, σ2 is S4- and T-admissible for constant, cumulative and vary-
ing domains, σ3 is S5-admissible for constant, cumulative and varying domains. Thus
F2 is valid in D4, S4, S5 and T for the constant and cumulative domain and valid in
S4, S5 and T for the varying domain.

The algorithmic characterizations of logical validity in theorems 3 and 4
hold accordingly with the modal definitions of multiplicity and complementarity
for T, D, D4, S4, S5 in all domain variants. Thus we can again use our path
checking algorithm presented in Figure 4 and only have to provide the logic-
specific functions initialize and unify-check (see table 5).

initialize(F,n) ((∅,∅), n)
unify-check (σQ

′, σM
′) where

(A, Ā, F µ, (σQ, σM )) σQ
′= term unify(σQ(label(A)), σQ(label(Ā)))

σM
′= prefix unifyL(σM (preM (A)), σM (preM (Ā)))

if ¢ := (< ∪<Q
′∪<M

′)+ is irreflexive
and the domain condition holds for u ∈Γ , v in σQ(u)

domain condition \ L T D D4 S4 S5
· constant – – × 5 – –
· cumulative∗ |V |≤|U |≤|V |+1 |V |≤|U | |V |≤|U | –
· varying∗ |σM

ε (U)| = |σM
ε (V )| |U |=|V | |σM

ε (U)|=|σM
ε (V )| uniS5

<M
′ is the relation induced by σ∗M :=σM

ε ◦σM
′ for D,S4,S5,T / σM

′ for D4.

U := σM
′(preM (u)), V := σM

′(preM (v)), σM
ε (w)≡ ε;

uniS5 ∼= prefix unifyS5(σM
′(preM (u)), σM

′(preM (v)))

Table 5: initialize(F,n) and unify-check(A, Ā, F µ, σ) for modal logics

5 We do not deal with the constant domain of D4, because it requires additional search
when computing σM

′.
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initialize(F ,n) computes a pair (σ, µ) where σ=(∅, ∅) is a combined sub-
stitution and µ(u)=n for all u ∈Γ∪ν. The function unify-check(A, Ā, Fµ, σ)
with σ=(σQ, σM ) computes a most general term unifier σQ

′ of σQ(label(A)) and
σQ(label(Ā)) as well as a most general prefix unifier σM

′ of σM (preM (A)) and
σM (preM (Ā)). It checks the irreflexivity of the induced reduction relation as
well as a combination of the domain conditions and the accessibility conditions
of the particular modal logic. It returns (σQ

′, σM
′) if this combined substitution

is L-admissible and fails otherwise or if either of the two unifications fails.
To compute the modal substitutions we apply the same specialized string uni-

fication algorithm that we used for intuitionistic logic. We only had to modify the
set of transformation rules in table 3 according to the peculiarities of the modal
logics D, D4, S4, S5, and T (see [Otten and Kreitz, 1996(a)] for details).6 The
function prefix unifyL(p, q) computes a set of most general unifiers for p and q
with respect to the accessibility condition for the logic L. Thus our path checking
algorithm is correct and complete for the modal logics D, D4, S4, S5, and T.

Corollary 12 (Correctness and Completeness for Modal Logics).
For each of the modal logics D, D4, S4, S5, and T the function prove(F,1) from
figure 4 together with initialization and the respective unification from table 5
succeeds iff F is valid. In this case it returns an admissible combined substitution
σ = (σQ, σM ) which makes every path through some Fµ complementary.

6 Linear Logic Fragments

Linear Logic [Girard, 1987] is a resource sensitive logic. From a proof theoretical
point of view it can be seen as the outcome of removing the rules for contraction
and weakening from classical sequent calculus and re-introducing them in a con-
trolled manner. Linear negation ⊥ is involutive like classical negation. The two
different traditions for writing the sequent rule for classical conjunction result
in two different conjunctions ⊗ and & and, due to the involutive negation, in
two different disjunctions ...................................................

..............

.............................. and ⊕ . The constant true splits up into 1 and >
for the same reason and false splits up into ⊥ and 0. The unary connectives
? and ! allow a controlled application of weakening and contraction. Quantifiers
∀ and ∃ can be added like in classical logic.

Linear logic connectives can be divided into the multiplicative, additive, and
exponential fragment. While in the multiplicative fragment resources (i.e. formu-
las) are used exactly once, resource sharing is enforced in the additive fragment.
By means of the exponentials formulas are marked as being reusable. All frag-
ments can be combined freely and exist on their own right. However, the full
power of linear logic comes from combining all of them.

The multiplicative fragment MLL can be seen as the core of linear logic.
⊥, ⊗, ...................................................

..............

.............................. , −◦ , 1, and ⊥ are the connectives of this fragment. Linear negation ⊥
expresses the difference between resources which are to be used up and resources
which must be produced. Having a resource G⊥ means that a resource G must
be produced. Having a resource F1⊗F2 is having F1 as well as F2. A resource
F1−◦F2 allows the construction of F2 from F1. The meaning of a resource F1

...................................................
..............
.............................. F2

6 Whereas the number of most general unifiers for the modal logics D4, S4 and T may
grow exponentially, there is only one unifier for the modal logics D and S5.
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(α, β, and a stand for α-, β-, and atomic positions)

Figure 7: Construction of a position tree by inserting special positions

is explained best by its equivalence to F1
⊥−◦F2 and to F2

⊥−◦F1. Having a
resource 1 has no impact while nothing can be constructed when ⊥ is used up.

As validity in linear logic can be described in terms of a sequent calculus,
the matrix characterization for MLL [Mantel, 1996, Kreitz et al., 1997] could be
formulated in a way similar to Wallen’s characterizations for modal and intu-
itionistic logics [Wallen, 1990], although semantically there are major differences.
We define linear types, special positions, prefixes, substitutions, and admissibil-
ity conditions. Obviously, we do not need the notion of multiplicity for MLL.
But we need a minimality condition on the set of connections to express the
linearity of the calculus.

principal type α (A⊗B)1 (A
...................................................

..............

.............................. B)0 (A−◦B)0 principal type o (A⊥)1

successor polarity A1, B1 A0, B0 A1, B0 successor polarity A0

principal type β (A⊗B)0 (A
...................................................

..............

.............................. B)1 (A−◦B)1 principal type o (A⊥)0

successor polarity A0, B0 A1, B1 A0, B1 successor polarity A1

The linear type of a position in a formula tree is defined by the above table. A
position tree for a formula F , denoted by F as well, is obtained by inserting special
positions of type φ (variable) and ψ (constant) into the formula tree of F . For this
purpose we apply the rewrite rules 1–5 in Figure 7 as long as possible. The dashed
lines may be replaced by an arbitrary number of o-positions (i.e. negations). For
instance, when rule 1 is applied to positions u and v of type α and β with v < u,
where only o-positions occur between v and u, a special position of type ψ is
inserted as immediate predecessor of u. Despite the semantical differences, the
special positions play a similar role as the φ- and ψ-positions in intuitionistic
logic (see [Wallen, 1990]) and also have a similar proof theoretic motivation,
which is discussed extensively in [Mantel, 1996, Mantel, 1998]. But instead of
marking formulas with specific connectives, they separate layers of α-positions
from layers of β-positions and atomic positions from all other ones.

As usual the prefix preL(u) of an atomic position u is a string u1u2 . . . un

where u1<u2< . . . <un<u are special positions that dominate u in the position
tree. A linear substitution σL is a mapping from ΦL to strings over ΦL ∪ΨL (the
sets of φ- and ψ-positions). σL induces a relation <L ⊆ ΨL×ΦL in the following
way: if σL(u)=p, then v<Lu for all v ∈ΨL occurring in p.

The notion of complementarity in linear logic is a bit more complex than
before, as we also have to put restrictions on the set of connections that is used
to make each path complementary.
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Definition 13 (Complementarity in MLL).
Let σL be a linear substitution, F a position tree, and Con a set of connections.
1. σL is admissible if σL(preL(v))=s1v holds whenever s1vs2 = σL(preL(u)) for

some position u.
2. A connection {u, v} is σL-complementary iff σL(preL(u))=σL(preL(v)).
3. Con spans F iff each path through F contains at least one connection from
Con. A spanning set Con of connections is minimal for F iff no proper subset
of Con is spanning for F .

4. Con is linear iff no atomic position of F occurs in more than one connection.
5. F is relevant for Con iff each atomic position of F is contained in at least one

connection from Con.

Note that the admissibility of σL does not explicitly require the irreflexivity
of the induced reduction ordering, because we do not deal with quantifiers and
thus do not have to use a combined substitution.

Lemma14. If a set of connections Con is σL-complementary for a position tree
F then the induced reduction ordering ¢ = (< ∪<L)+ is irreflexive.

Proof. If there is some position u with u¢u then there must be also one of type φ.
Thus there are positions φi and ψi (i ∈ {0, . . . , n− 1}, φ = φ0) such that φi < ψi and
ψi<Lφ(i+1) mod n holds. This violates the admissibility condition for some σL(preL(u))
and some v = ψi. ut

The σL-complementarity of a connection ensures that the elements of a con-
nection cannot be separated during context split and therefore occur in an axiom
in the sequent calculus. Thus unification guarantees the existence of an order of
rule applications together with a context splitting from which a sequent proof
can be constructed. Redundancies due to permutabilities of rules within α- and
β-layers are avoided.

Theorem15 (Matrix Characterization for MLL).
A formula F in MLL is valid iff there exists a set of connections Con and
an admissible linear substitution σL such that all connections in Con are σL-
complementary, F is relevant for Con, and Con is spanning and minimal for F .

A proof of this theorem can be found in [Kreitz et al., 1997, Section 2].

Note that the matrix characterization does not include the linearity con-
dition, because it is subsumed by σL-complementarity and minimality of Con.
Nevertheless we will include a linearity test in our proof procedure as it can be
performed while the set of connections is being constructed. Furthermore, this
allows us to avoid the expensive test for minimality completely, since we can
replace it by a simple cardinality test.

Lemma16. Let Con be a linear spanning set of σL-complementary connections
for F , and F be relevant for Con. Then Con is minimal iff |Con| = #β + 1 where
#β is the number of β-type positions in F .

A proof of this cardinality criterion can be found in [Mantel, 1996] (see also
[Mantel, 1998]).
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Figure 8: Position tree and matrix representation (with prefixes) for F3

Example 6. The position tree for F3 = ((A
...................................................

..............

.............................. A⊥)⊗(B
...................................................

..............

.............................. A))
...................................................

..............

.............................. (A
...................................................

..............

.............................. B)⊥ and the pre-
fixes of atomic positions is depicted in Figure 8. There are 4 atomic paths, each
containing exactly one of the three connections c1 = {a6, a9}, c2 = {a15, a21}, and
c3 = {a13, a24}. Con = {c1, c2, c3} is a minimal spanning set of connections for F3 and
F3 is relevant for Con. The admissible linear substitution

σL = {A1\ε, A5\ε, A8\ε, A12\a22, A14\a19, A17\a10, A20\ε, A23\ε}
makes all connections in Con σL-complementary. Thus F3 is valid according to The-
orem 15. The ordering <L induced by σL, depicted by curved arrows shows that the
reduction ordering ¢ is in fact irreflexive.

Since the matrix characterization for MLL is formally very similar to the
characterizations for intuitionistic and modal logics, only a few modifications are
necessary to adapt our general path checking to linear logic. In addition to the
active path and the partial substitution we also have to consider the set Con of
connections computed so far. Besides checking unifiability of a new connection
{A, Ā} the function unify-check will also have to test linearity before adding
{A, Ā} to Con. Finally, the test for minimality and relevance can only be invoked
after the complete spanning set of connections has been found. Because of lemma
16 we can replace the minimality test by the cheaper cardinality test.

Figure 9 presents the generalized path checking algorithm for linear logic.
Since we do not deal with quantifiers, there is no need for iterating a multiplicity
and thus our algorithm is able to decide the validity of a MLL-formula.7 The
algorithm is now parameterized by three functions. initialize initializes the
substitution σL. unify-check(A, Ā, F, σL, Con) tries to compute an admissible
substitution that unifies A and Ā, and extends σL, provided that Con∪{A, Ā}
is linear. Finally mini rele(F,Con) tests minimality and relevance. Table 6
provides the corresponding functions for MLL.
7 Because the linearity of Con∪{A, Ā} implies D∩P = ∅ we have removed the test

Ā ∈P, which would always return false.
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prove(F,n)

=





σL1 if this computation succeeds
where (σL1,Con1) = provable(∅, ∅, σL, ∅) and mini rele(F ,Con1)
where σL = initialize(F )
and CON = connections(F)

fail otherwise

provable(P, C, σL, Con)

=

{
check-extension(E , σL, Con) if E 6=∅
where E = {v ∈A | v∼αP ∧v∼βC}

σL otherwise

check-extension(E , σL, Con)

=





check-connections(D, A, σL, Con) if this computation succeeds
where D = {Ā ∈A | {A, Ā} ∈CON ∧ Ā∼α(P∪{A})}
where A ∈E arbitrary

check-extension({v ∈E|v∼αA}, σL, Con) otherwise (and E 6=∅)
check-connections(D, A, σL, Con)

=





provable(P, C∪{A}, σL2, Con2) if this computation succeeds
where (σL2,Con2) = provable(P∪{A}, {Ā}, σL1, Con1)
where Ā ∈D arbitrary
and Con1 = Con∪{A, Ā}
and σL1 = unify-check(A, Ā, F, σL, Con1)

check-connections(D−{Ā}, A, σL, Con) otherwise (and D6=∅)

Figure 9: Path checking algorithm for MLL

The minimality test can only be done after the complete set of connections
that were used to show the provability of (∅, ∅) has been determined. There-
fore the function provable, check-extensions, and check-connections do
not only return the substitution σL but also the set Con.

initialize(F) ∅
unify-check(A, Ā, F, σL, Con) prefix unifyL(σL(preL(A)), σL(preL(Ā)))

if {A, Ā}∩(
⋃

c ∈Con c) = ∅ or {A, Ā} ∈Con
mini rele(F ,Con) |Con| = #β + 1 and A⊆(

⋃
c ∈Con c)

Table 6: The functions initialize, and unify-check, and mini rele for MLL

To compute the linear substitution we apply the same specialized string uni-
fication algorithm that we used for intuitionistic logic but restrict ourselves to
the rules R1, R3, R5, R8, R9, and R10 from table 3. Since all the prefixes to be
unified in MLL have either the form ψ1φ1ψ2φ2 . . . ψnφn or all of them have the
form φ1ψ2φ2 . . . ψnφn (where φi ∈ΦL and ψi ∈ΨL), we do not need the rules R2,
R4, R6, and R7 anymore.8 The function prefix unifyL(p, q) computes a com-
plete and minimal set of most general unifiers for p and q. Since the algorithmic
characterizations of logical validity in theorems 3 and 4 hold accordingly for lin-
ear logic our uniform path checking algorithm is correct and complete for MLL.
8 The number of most general unifiers is finite but may grow exponentially with the

length of the prefixes.
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Corollary 17 (Correctness and Completeness for MLL).
The function prove(F) from figure 9 together with the functions from table 6
succeeds if F is valid in MLL and returns an admissible linear substitution
σL which makes every path through some F complementary. It terminates with
failure if F is not valid.

Attempts for obtaining matrix characterizations in fragments of linear logic
have been made on the basis of acyclic connection graphs [Fronhöfer, 1996,
Galmiche, 1996, Galmiche, 1999]. This acyclicity condition is very close to proof
nets and therefore these attempts will very likely have similar limitations. In
contrast to that our approach is based on prefixes and unifies the advantages
of several approaches to proof search in linear logic without sharing their prob-
lems. There is also no need for transformations in negational normal form or for
following the connectives during proof search (an advantage also over Tammet’s
proof search strategies [Tammet, 1994]). Prefix unification appears to be as ef-
ficient as the acyclicity test implicitly contained in [Fronhöfer, 1996] but yields
informations which make the conversion into sequent proofs easier. Checking
the cardinality criterion instead of an exponential minimality test is another
improvement.

The tableau prover linTAP [Mantel and Otten, 1999] follows a similar ap-
proach to the one presented here. It proves the validity of a given formula by
constructing an analytic tableau and uses an additional prefix unification to deal
with the problem of context splitting. linTAP is not only a very compact prover
but compares favourable with other (larger) implementations.

7 Conclusion

We have presented a uniform proof search procedure for classical and non-
classical logics that generalizes our previously developed proof procedures for
intuitionistic [Otten and Kreitz, 1995], modal [Otten and Kreitz, 1996(b)], and
multiplicative linear logic [Kreitz et al., 1997]. It is based on a unified represen-
tation of matrix characterizations for logical validity, which enables us to abstract
from the semantical differences between various logics and to focus on structural
similarities during proof search. Our procedure consists of a connection-driven
general path checking algorithm and a component for checking the complemen-
tarity of two atomic formulas according to the peculiarities of a given logic.
By presenting appropriate components for classical logic, intuitionistic logic, the
modal logics D, D4, S4, S5, and T in their constant, cumulative, and varying
domain variants, and the multiplicative fragment of linear logic, we have demon-
strated that our procedure is suited to deal with a rich variety of logics in a simple
and efficient way.

We believe that our proof search procedure can be further extended to other
non-classical logics for which a matrix characterization can be developed. There
is a variety of logics, for which this seems possible. The matrix characterization
for MELL [Mantel, 1998, Mantel and Kreitz, 1998], the multiplicative fragment
of linear logic with the exponentials ? and ! and the multiplicative constants
1 and ⊥ , for instance, provides a non-trivial extension of the characterization
for MLL. Nevertheless it could be formulated in a similar fashion, which makes
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an extension of our proof procedure to MELL feasible. The addition of quan-
tifiers to MELL can very likely be handled by combined substitutions as in
intuitionistic or modal logics.9

We are confident that matrix characterizations for other resource sensitive
logics, such as affine or relevant logics, can be developed using the methodology
of [Mantel, 1998] for introducing tableau classifications for connectives, special
positions, prefixes, and criteria for complementarity and resource management.
Experience has shown that our path checking and prefix unification algorithms
can easily be adapted once a matrix characterization has been elaborated.

Our proof procedure also allows a treatment of combinations of modal, in-
tuitionistic, linear, and resource sensitive logics. Because of the interrelations
between several (prefix and first-order) substitutions, this will make the initial-
ization and complementarity tests more complex but we can still rely on the
same general unification and path checking algorithms.

A recently developed “constructively adequate” matrix characterization for
intuitionistic logic [Korn, 1998] describes a slightly different treatment of intu-
itionistic logic. It shows how to avoid expensive constructive reasoning when-
ever the intuitionistic validity of a formula is already implied by its classical
validity. In particular, it allows to decide the intuitionistic validity of proposi-
tional formulas, which is not the case for the intuitionistic sequent calculus and
Wallen’s original characterization [Wallen, 1990] (see theorem 7). An extension
of our proof procedure based on this characterization could possibly improve the
efficiency of theorem proving in intuitionistic logic.

The first uniform tableau calculi for various modal logics and intuitionistic
logic are presented in [Fitting, 1983]. Like in our approach prefixes are used
to describe the peculiarities of each logic. Uniform tableau methods for all 15
classes of modal logics are described in [Beckert and Goré, 1997]. These methods
are limited to propositional logic and do not use a specialized string unification
which is necessary for a more efficient proof search. There are also approaches
for systematizing calculi for finite valued logics [Carnielli, 1987, Hähnle, 1993,
Surma, 1984]. These approaches however, do not aim at efficient proof search
procedures and are less compact than uniform matrix-representations.

Besides proving the validity of a given formulas our proof procedure can also
be used to guide the development of proofs in interactively controlled proof as-
sistants and thus to combine interactive and automated theorem proving. Our
key concept is to view matrix-based proof methods as proof planners that do
not underlie the typical limitations of sequent or natural deduction calculi when
searching for a solution to a given problem. Once a matrix proof has been found,
we only have to convert it into a sequent proof that can be executed (and checked)
by the interactive proof system. As matrix proofs are nothing but compact rep-
resentations of sequent proofs, converting them into sequent proofs means re-
introducing the redundancies that had been avoided during proof search.

The algorithm presented in [Kreitz and Schmitt, 1999, Kreitz et al., 1997]
converts matrix proofs for all the logics discussed in this paper into the re-
spective sequent proofs. For this purpose, it essentially traverses a formula tree
9 For this purpose we have to re-introduce the iteration of multiplicities into the path

checking algorithm presented in Figure 9. All the other conditions can be integrated
into initialize, unify-check, and mini rele.
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Fµ in an order that respects the induced reduction ordering ¢=(<∪<Q∪<J)+
generated during proof search. It selects the appropriate sequent rule for each
visited node and instantiates quantifiers according to the substitution σQ. The
technical details of the conversion procedure are quite subtle, as it tries to avoid
additional search during the conversion process. It is, however, equally uniform
as our path checking algorithm and can easily be combined with our procedure
in order to guide the proof search in interactive proof systems.

Viewing matrix proofs as proof plans also suggests the integration of addi-
tional proof planning techniques into our proof procedure. Rewrite techniques
such as rippling [Bundy et al., 1993], for instance, have successfully been used
as proof planners for inductive theorem proving but are relatively weak as
far as predicate logic reasoning is concerned. A recent extension of rippling
[Pientka and Kreitz, 1998] has demonstrated that rippling techniques and proof
search methods can be combined and used successfully for constructive theorem
proving and the synthesis of inductive programs. Since the only weakness of
this approach lies in a sequent-based proof search, we are currently exploring its
integration into our matrix-based proof method [Kreitz et al., 1998, Section 5].
Essentially this will lead to an integration of rippling techniques into the unifica-
tion process and to further reductions of the search space in inductive theorem
proving.

In order to allow practical experiments with our approach we have provided
a reference implementation of our proof search procedure in Prolog. We intend
to elaborate optimizations like integrating a decision procedure for the proposi-
tional cases of classical, intuitionistic and modal logics. Furthermore we study
appropriate versions of efficiency improvements used in theorem provers based
on the original connection method [Letz et al., 1992, Bibel et al., 1994], such as
increasing the multiplicities dynamically during the path checking process. We
also intend to provide implementations of our algorithm in ML or C in order
to allow realistic comparisons and an integration of our procedure into existing
interactive proof systems.
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[Korn, 1998] D. Korn. Konstruktiv adäquate Beweisautomatisierung für intuitionistis-
che Logik. PhD Thesis, TU Darmstadt, Germany, 1998.

[Kreitz et al., 1996] C. Kreitz, J. Otten, S. Schmitt. Guiding Program Development
Systems by a Connection Based Proof Strategy. 5th International Workshop on
Logic Program Synthesis and Transformation, LNCS 1048, pp. 137–151, 1996.

[Kreitz et al., 1997] C. Kreitz, H. Mantel, J. Otten, S. Schmitt. Connection-based
proof construction in linear logic. 14th Conference on Automated Deduction, LNAI
1249, pp. 207–221, 1997.

[Kreitz et al., 1998] C. Kreitz, J. Otten, S. Schmitt, B. Pientka. Matrix-based con-
structive theorem proving. Intellectics and Computation. Essays in honor of Wolf-
gang Bibel , Kluwer, 1999 (to appear).

[Kreitz and Schmitt, 1999] C. Kreitz and S. Schmitt. A uniform procedure for con-
verting matrix proofs into sequent-style systems. Journal of Information and Com-
putation, 1999 (to appear).

[Letz et al., 1992] R. Letz, J. Schumann, S. Bayerl, W. Bibel. Setheo: A high-per-
formance theorem prover. Journal of Automated Reasoning, 8:183–212, 1992.

[Manakin, 1977] G. S. Makanin. The problem of solvability of equations in a free semi-
group. Math. Sb., 103(145):147–236, 1977. English translation: American Mathemat-
ical Soc. Translations (2), vol. 117, 1981.

[Mantel, 1996] H. Mantel. Eine Matrixcharakterisierung für ein Fragment der linearen
Logik. Diplomarbeit, TU Darmstadt, Germany, 1996.

[Mantel, 1998] H. Mantel. Developing a matrix characterization for MELL. Research
Report RR-98-03, DFKI Saarbrücken, Germany, 1998.

111



[Mantel and Kreitz, 1998] H. Mantel and C. Kreitz. A matrix characterization for

MELL. 6th European Workshop on Logics in Artificial Intelligence, LNAI 1489,
pp. 169-183, 1998.

[Mantel and Otten, 1999] H. Mantel and J. Otten. linTAP: A tableau prover for linear

logic. Proc. 8th TABLEAUX Conference, LNAI, 1999 (to appear).
[Martelli and Montanari, 1982] A. Martelli and U. Montanari. An efficient unification

algorithm. ACM TOPLAS, 4:258–282, 1982.
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