
Automatisierte Logik und Programmierung II

Sommersemester 2004

Christoph Kreitz

Theoretische Informatik, Raum 1.18, Telephon 3060

kreitz@cs.uni-potsdam.de

http://www.cs.uni-potsdam.de/ti/lehre/alupII.htm

1. Ziele

2. Rückblick Wintersemester 2003/04

3. Ausblick Sommersemester 2004

4. Organisatorisches

Automatisierte Logik und Programmierung II 1 Einführung

Ziel: Computergestütztes logisches Schließen

• Mathematische Beweisführung

– Aufdeckung und Korrektur von Fehlern (Beweisprüfung)

– Automatische Suche nach neuen Beweisen (Theorembeweisen)

Automatisierte Logik und Programmierung II 1 Einführung

Ziel: Computergestütztes logisches Schließen

• Mathematische Beweisführung

– Aufdeckung und Korrektur von Fehlern (Beweisprüfung)

– Automatische Suche nach neuen Beweisen (Theorembeweisen)

• Unterstützung für Entwurf zuverlässiger Software

– Fehlersuche und Korrektheitsbeweise (Verifikation)

– Verbesserung der Performanz (Optimierung)

– Erzeugung aus Spezifikationen (Synthese)

Automatisierte Logik und Programmierung II 1 Einführung

Ziel: Computergestütztes logisches Schließen

• Mathematische Beweisführung

– Aufdeckung und Korrektur von Fehlern (Beweisprüfung)

– Automatische Suche nach neuen Beweisen (Theorembeweisen)

• Unterstützung für Entwurf zuverlässiger Software

– Fehlersuche und Korrektheitsbeweise (Verifikation)

– Verbesserung der Performanz (Optimierung)

– Erzeugung aus Spezifikationen (Synthese)

• Inferenzmaschine für KI-Systeme

– Problemlöser und Planer für Roboter, . . .

Automatisierte Logik und Programmierung II 2 Einführung

Themen des ersten Semesters (Winter 2003/04)

Inferenzkalküle für Mathematik und Programmierung

• Beweisen =̂ Anwendung formaler Regeln
– Umgeht Mehrdeutigkeiten der natürlichen Sprache

– Erlaubt schematische Lösung mathematischer Probleme

Automatisierte Logik und Programmierung II 2 Einführung

Themen des ersten Semesters (Winter 2003/04)

Inferenzkalküle für Mathematik und Programmierung

• Beweisen =̂ Anwendung formaler Regeln
– Umgeht Mehrdeutigkeiten der natürlichen Sprache

– Erlaubt schematische Lösung mathematischer Probleme

• Kernbestandteile:
– Formale Sprache (Syntax + Semantik)

– Ableitungssystem (Axiome + Inferenzregeln)

– Notwendige Eigenschaften: korrekt, vollständig, automatisierbar

– Nützliche Eigenschaften: konstruktiv, ausdrucksstark, lesbar

Automatisierte Logik und Programmierung II 2 Einführung

Themen des ersten Semesters (Winter 2003/04)

Inferenzkalküle für Mathematik und Programmierung

• Beweisen =̂ Anwendung formaler Regeln
– Umgeht Mehrdeutigkeiten der natürlichen Sprache

– Erlaubt schematische Lösung mathematischer Probleme

• Kernbestandteile:
– Formale Sprache (Syntax + Semantik)

– Ableitungssystem (Axiome + Inferenzregeln)

– Notwendige Eigenschaften: korrekt, vollständig, automatisierbar

– Nützliche Eigenschaften: konstruktiv, ausdrucksstark, lesbar

• Vorgestellte Kalküle
– Prädikatenlogik (Logisches Schließen)

– λ-Kalkül (Programmierung)

– einfache Typentheorie (Programmeigenschaften)

– Intuitionistische/Konstruktive Typentheorie (Uniformer Kalkül)

Automatisierte Logik und Programmierung II 3 Einführung

Eigenschaften der konstruktiven Typentheorie

• Extrem ausdrucksstarkes Inferenzsystem

– Direkte Darstellung der zentralen Konzepte (keine Simulation)

– Formalisierung “natürlicher” Gesetze als Regeln

Automatisierte Logik und Programmierung II 3 Einführung

Eigenschaften der konstruktiven Typentheorie

• Extrem ausdrucksstarkes Inferenzsystem

– Direkte Darstellung der zentralen Konzepte (keine Simulation)

– Formalisierung “natürlicher” Gesetze als Regeln

– Sehr umfangreiche Theorie

· Viele Basiskonstrukte, mehr als 150 Inferenzregeln

· Programmkonstruktion durch konstruktive Beweisführung möglich

· Abhängige Datentypen machen Wohlgeformtheit unentscheidbar

Automatisierte Logik und Programmierung II 3 Einführung

Eigenschaften der konstruktiven Typentheorie

• Extrem ausdrucksstarkes Inferenzsystem

– Direkte Darstellung der zentralen Konzepte (keine Simulation)

– Formalisierung “natürlicher” Gesetze als Regeln

– Sehr umfangreiche Theorie

· Viele Basiskonstrukte, mehr als 150 Inferenzregeln

· Programmkonstruktion durch konstruktive Beweisführung möglich

· Abhängige Datentypen machen Wohlgeformtheit unentscheidbar

· Gestützt auf konstruktive semantische Theorie

Automatisierte Logik und Programmierung II 3 Einführung

Eigenschaften der konstruktiven Typentheorie

• Extrem ausdrucksstarkes Inferenzsystem

– Direkte Darstellung der zentralen Konzepte (keine Simulation)

– Formalisierung “natürlicher” Gesetze als Regeln

– Sehr umfangreiche Theorie

· Viele Basiskonstrukte, mehr als 150 Inferenzregeln

· Programmkonstruktion durch konstruktive Beweisführung möglich

· Abhängige Datentypen machen Wohlgeformtheit unentscheidbar

· Gestützt auf konstruktive semantische Theorie

• Praktische Probleme

– Beweise erfordern viel Schreibarbeit → interaktive Beweissysteme

Automatisierte Logik und Programmierung II 3 Einführung

Eigenschaften der konstruktiven Typentheorie

• Extrem ausdrucksstarkes Inferenzsystem

– Direkte Darstellung der zentralen Konzepte (keine Simulation)

– Formalisierung “natürlicher” Gesetze als Regeln

– Sehr umfangreiche Theorie

· Viele Basiskonstrukte, mehr als 150 Inferenzregeln

· Programmkonstruktion durch konstruktive Beweisführung möglich

· Abhängige Datentypen machen Wohlgeformtheit unentscheidbar

· Gestützt auf konstruktive semantische Theorie

• Praktische Probleme

– Beweise erfordern viel Schreibarbeit → interaktive Beweissysteme

– Beweise sind unübersichtlich (komplexer Beweisbaum)

– Beweise manchmal schwer zu finden (viele Regeln und Parameter)

→ Automatisierung der Beweisführung

Automatisierte Logik und Programmierung II 4 Einführung

Themen des zweiten Teils (Sommer 2004)

• Aufbau von Beweissystemen
GUI

Evaluator

Translator

GUI GUI

Evaluator

Evaluator

Evaluator

Translator

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Java OCaml

Maude

MetaPRL

SoS (Lisp)

Nuprl-5 Web

Library Nuprl

HOL/SPIN

MetaPRL

PVS

MEGAΩ

PRL

(PVS)(HOL)

....

....

....THEORY

defs, thms, tactics
rules, structure, code

rules, structure, code

rules, structure, code
defs, thms, tactics defs, thms, tactics

rules, structure, code

rules, structure, code
defs, thms, tactics

rules, structure, code
defs, thms, tactics

defs, thms, tactics

THEORY

THEORY

THEORY THEORY

THEORY

– Implementierung interaktiver Beweisassistenten

– Das Nuprl Logical Programming Environment

Automatisierte Logik und Programmierung II 4 Einführung

Themen des zweiten Teils (Sommer 2004)

• Aufbau von Beweissystemen
GUI

Evaluator

Translator

GUI GUI

Evaluator

Evaluator

Evaluator

Translator

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Java OCaml

Maude

MetaPRL

SoS (Lisp)

Nuprl-5 Web

Library Nuprl

HOL/SPIN

MetaPRL

PVS

MEGAΩ

PRL

(PVS)(HOL)

....

....

....THEORY

defs, thms, tactics
rules, structure, code

rules, structure, code

rules, structure, code
defs, thms, tactics defs, thms, tactics

rules, structure, code

rules, structure, code
defs, thms, tactics

rules, structure, code
defs, thms, tactics

defs, thms, tactics

THEORY

THEORY

THEORY THEORY

THEORY

– Implementierung interaktiver Beweisassistenten

– Das Nuprl Logical Programming Environment

• Beweisautomatisierung

– Taktisches Beweisen

– Entscheidungsprozeduren

– Integration externer Systeme

Automatisierte Logik und Programmierung II 4 Einführung

Themen des zweiten Teils (Sommer 2004)

• Aufbau von Beweissystemen
GUI

Evaluator

Translator

GUI GUI

Evaluator

Evaluator

Evaluator

Translator

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Java OCaml

Maude

MetaPRL

SoS (Lisp)

Nuprl-5 Web

Library Nuprl

HOL/SPIN

MetaPRL

PVS

MEGAΩ

PRL

(PVS)(HOL)

....

....

....THEORY

defs, thms, tactics
rules, structure, code

rules, structure, code

rules, structure, code
defs, thms, tactics defs, thms, tactics

rules, structure, code

rules, structure, code
defs, thms, tactics

rules, structure, code
defs, thms, tactics

defs, thms, tactics

THEORY

THEORY

THEORY THEORY

THEORY

– Implementierung interaktiver Beweisassistenten

– Das Nuprl Logical Programming Environment

• Beweisautomatisierung

– Taktisches Beweisen

– Entscheidungsprozeduren

– Integration externer Systeme

• Anwendungen & Demonstrationen /RJLF/RJLF &RPPXQLFDWLRQ&RPPXQLFDWLRQ
3URJUDPPLQJ3URJUDPPLQJ

6HFXUH�VRIWZDUH�LQIUDVWUXFWXUH6HFXUH�VRIWZDUH�LQIUDVWUXFWXUH

– Entwicklung formaler Theorien

– Programmsynthese

– Optimierung des Kommunikationssytems Ensemble
...

Automatisierte Logik und Programmierung II 5 Einführung

Organisatorisches

• Zuordnung: theoretische/angewandte Informatik

Automatisierte Logik und Programmierung II 5 Einführung

Organisatorisches

• Zuordnung: theoretische/angewandte Informatik

• Veranstaltungsarten
– Vorlesung: Präsentation der zentralen Konzepte

– Übung: Vertiefung und Anwendung theoretischer Aspekte

– Praktikum (optional): selbstgewähltes praktisches Beweiserprojekt

Automatisierte Logik und Programmierung II 5 Einführung

Organisatorisches

• Zuordnung: theoretische/angewandte Informatik

• Veranstaltungsarten
– Vorlesung: Präsentation der zentralen Konzepte

– Übung: Vertiefung und Anwendung theoretischer Aspekte

– Praktikum (optional): selbstgewähltes praktisches Beweiserprojekt

• Kreditpunkte: 6–9 (Verbindliche Anmeldung bis 6. Mai)

Automatisierte Logik und Programmierung II 5 Einführung

Organisatorisches

• Zuordnung: theoretische/angewandte Informatik

• Veranstaltungsarten
– Vorlesung: Präsentation der zentralen Konzepte

– Übung: Vertiefung und Anwendung theoretischer Aspekte

– Praktikum (optional): selbstgewähltes praktisches Beweiserprojekt

• Kreditpunkte: 6–9 (Verbindliche Anmeldung bis 6. Mai)

• Veranstaltungstermine
– Mo 13:30–15:00 – Vorlesung

– Di 13:30–15:00 – Vorlesung/Übung im Wechsel

– Do 11:00–12:30 – Praktikum

Automatisierte Logik und Programmierung II 5 Einführung

Organisatorisches

• Zuordnung: theoretische/angewandte Informatik

• Veranstaltungsarten
– Vorlesung: Präsentation der zentralen Konzepte

– Übung: Vertiefung und Anwendung theoretischer Aspekte

– Praktikum (optional): selbstgewähltes praktisches Beweiserprojekt

• Kreditpunkte: 6–9 (Verbindliche Anmeldung bis 6. Mai)

• Veranstaltungstermine
– Mo 13:30–15:00 – Vorlesung

– Di 13:30–15:00 – Vorlesung/Übung im Wechsel

– Do 11:00–12:30 – Praktikum

• Lehrmaterialien:
– Vorlesungsskript von 1995, Fachartikel und Manuals

Automatisierte Logik und Programmierung II 5 Einführung

Organisatorisches

• Zuordnung: theoretische/angewandte Informatik

• Veranstaltungsarten
– Vorlesung: Präsentation der zentralen Konzepte

– Übung: Vertiefung und Anwendung theoretischer Aspekte

– Praktikum (optional): selbstgewähltes praktisches Beweiserprojekt

• Kreditpunkte: 6–9 (Verbindliche Anmeldung bis 6. Mai)

• Veranstaltungstermine
– Mo 13:30–15:00 – Vorlesung

– Di 13:30–15:00 – Vorlesung/Übung im Wechsel

– Do 11:00–12:30 – Praktikum

• Lehrmaterialien:
– Vorlesungsskript von 1995, Fachartikel und Manuals

• Erfolgskriterien
– Aktive Teilnahme an Übungen

– Abschlußprüfung (mündlich) und praktische Projektaufgabe (je 50%)

