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– Fehlersuche und Korrektheitsbeweise (Verifikation)

– Verbesserung der Performanz (Optimierung)

– Erzeugung aus Spezifikationen (Synthese)



Automatisierte Logik und Programmierung II 1 Einführung
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– Notwendige Eigenschaften: korrekt, vollständig, automatisierbar

– Nützliche Eigenschaften: konstruktiv, ausdrucksstark, lesbar

• Vorgestellte Kalküle
– Prädikatenlogik (Logisches Schließen)

– λ-Kalkül (Programmierung)

– einfache Typentheorie (Programmeigenschaften)

– Intuitionistische/Konstruktive Typentheorie (Uniformer Kalkül)
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· Abhängige Datentypen machen Wohlgeformtheit unentscheidbar

· Gestützt auf konstruktive semantische Theorie

• Praktische Probleme

– Beweise erfordern viel Schreibarbeit → interaktive Beweissysteme

– Beweise sind unübersichtlich (komplexer Beweisbaum)

– Beweise manchmal schwer zu finden (viele Regeln und Parameter)

→ Automatisierung der Beweisführung
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• Beweisautomatisierung

– Taktisches Beweisen
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3URJUDPPLQJ3URJUDPPLQJ

6HFXUH�VRIWZDUH�LQIUDVWUXFWXUH6HFXUH�VRIWZDUH�LQIUDVWUXFWXUH

– Entwicklung formaler Theorien

– Programmsynthese

– Optimierung des Kommunikationssytems Ensemble
...
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– Praktikum (optional): selbstgewähltes praktisches Beweiserprojekt

• Kreditpunkte: 6–9 (Verbindliche Anmeldung bis 6. Mai)

• Veranstaltungstermine
– Mo 13:30–15:00 – Vorlesung

– Di 13:30–15:00 – Vorlesung/Übung im Wechsel
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• Erfolgskriterien
– Aktive Teilnahme an Übungen

– Abschlußprüfung (mündlich) und praktische Projektaufgabe (je 50%)


