
Automatisierte Logik und Programmierung II

Teil III

Aufbau von Beweissystemen

Automatisierte Logik und Programmierung II, Teil IV 1 Aufbau von Beweissystemen

Computerunterstützung für logisches Schließen

• Proof Checking:
– Überprüfung gegebener formaler Beweise durch Computer

Automatisierte Logik und Programmierung II, Teil IV 1 Aufbau von Beweissystemen

Computerunterstützung für logisches Schließen

• Proof Checking: Frühe Systeme, PCC

– Überprüfung gegebener formaler Beweise durch Computer

– Leicht zu programmieren aber extrem mühsam in Anwendung

Automatisierte Logik und Programmierung II, Teil IV 1 Aufbau von Beweissystemen

Computerunterstützung für logisches Schließen

• Proof Checking: Frühe Systeme, PCC

– Überprüfung gegebener formaler Beweise durch Computer

– Leicht zu programmieren aber extrem mühsam in Anwendung

• Proof Editing:
– Computer führt Regeln aus und zeigt ungelöste Teilprobleme

– Benutzer konstruieren Beweise interaktiv durch Angabe der Regeln

Automatisierte Logik und Programmierung II, Teil IV 1 Aufbau von Beweissystemen

Computerunterstützung für logisches Schließen

• Proof Checking: Frühe Systeme, PCC

– Überprüfung gegebener formaler Beweise durch Computer

– Leicht zu programmieren aber extrem mühsam in Anwendung

• Proof Editing:
– Computer führt Regeln aus und zeigt ungelöste Teilprobleme

– Benutzer konstruieren Beweise interaktiv durch Angabe der Regeln

– Leicht zu programmieren, Anwendbarkeit abhängig von Benutzerinterface

Automatisierte Logik und Programmierung II, Teil IV 1 Aufbau von Beweissystemen

Computerunterstützung für logisches Schließen

• Proof Checking: Frühe Systeme, PCC

– Überprüfung gegebener formaler Beweise durch Computer

– Leicht zu programmieren aber extrem mühsam in Anwendung

• Proof Editing:
– Computer führt Regeln aus und zeigt ungelöste Teilprobleme

– Benutzer konstruieren Beweise interaktiv durch Angabe der Regeln

– Leicht zu programmieren, Anwendbarkeit abhängig von Benutzerinterface

• Taktisches Theorembeweisen:
– Beweiskonstruktion durch programmierte Anwendung von Inferenzregeln

– Entwurf anwendungsspezifischer Inferenzregeln durch Benutzer möglich

Automatisierte Logik und Programmierung II, Teil IV 1 Aufbau von Beweissystemen

Computerunterstützung für logisches Schließen

• Proof Checking: Frühe Systeme, PCC

– Überprüfung gegebener formaler Beweise durch Computer

– Leicht zu programmieren aber extrem mühsam in Anwendung

• Proof Editing:
– Computer führt Regeln aus und zeigt ungelöste Teilprobleme

– Benutzer konstruieren Beweise interaktiv durch Angabe der Regeln

– Leicht zu programmieren, Anwendbarkeit abhängig von Benutzerinterface

• Taktisches Theorembeweisen:
– Beweiskonstruktion durch programmierte Anwendung von Inferenzregeln

– Entwurf anwendungsspezifischer Inferenzregeln durch Benutzer möglich

– Flexibel und sicher, gut für mittelgroße Anwendungen

Automatisierte Logik und Programmierung II, Teil IV 1 Aufbau von Beweissystemen

Computerunterstützung für logisches Schließen

• Proof Checking: Frühe Systeme, PCC

– Überprüfung gegebener formaler Beweise durch Computer

– Leicht zu programmieren aber extrem mühsam in Anwendung

• Proof Editing:
– Computer führt Regeln aus und zeigt ungelöste Teilprobleme

– Benutzer konstruieren Beweise interaktiv durch Angabe der Regeln

– Leicht zu programmieren, Anwendbarkeit abhängig von Benutzerinterface

• Taktisches Theorembeweisen:
– Beweiskonstruktion durch programmierte Anwendung von Inferenzregeln

– Entwurf anwendungsspezifischer Inferenzregeln durch Benutzer möglich

– Flexibel und sicher, gut für mittelgroße Anwendungen

• Beweisprozeduren
– Entscheidungsprozeduren: automatische Tests for entscheidbare Probleme

– Theorembeweiser: vollständige Beweissuche in Prädikatenlogik

– Beweisplaner, Rewriting, Model Checking, Computer Algebra, . . .

Automatisierte Logik und Programmierung II, Teil IV 1 Aufbau von Beweissystemen

Computerunterstützung für logisches Schließen

• Proof Checking: Frühe Systeme, PCC

– Überprüfung gegebener formaler Beweise durch Computer

– Leicht zu programmieren aber extrem mühsam in Anwendung

• Proof Editing:
– Computer führt Regeln aus und zeigt ungelöste Teilprobleme

– Benutzer konstruieren Beweise interaktiv durch Angabe der Regeln

– Leicht zu programmieren, Anwendbarkeit abhängig von Benutzerinterface

• Taktisches Theorembeweisen:
– Beweiskonstruktion durch programmierte Anwendung von Inferenzregeln

– Entwurf anwendungsspezifischer Inferenzregeln durch Benutzer möglich

– Flexibel und sicher, gut für mittelgroße Anwendungen

• Beweisprozeduren fest eingeschränkte Anwendungsbereiche

– Entscheidungsprozeduren: automatische Tests for entscheidbare Probleme

– Theorembeweiser: vollständige Beweissuche in Prädikatenlogik

– Beweisplaner, Rewriting, Model Checking, Computer Algebra, . . .

– Effizient aber unflexibel durch Verwendung maschinennaher Techniken

Automatisierte Logik und Programmierung II, Teil IV 2 Aufbau von Beweissystemen

Beweissysteme für die Typentheorie

• Ausdruckstarke Theorien sind unentscheidbar
– Vollautomatische Beweissysteme nicht praktikabel

– Interaktive Beweiskonstruktion als Basismechanismus

Automatisierte Logik und Programmierung II, Teil IV 2 Aufbau von Beweissystemen

Beweissysteme für die Typentheorie

• Ausdruckstarke Theorien sind unentscheidbar
– Vollautomatische Beweissysteme nicht praktikabel

– Interaktive Beweiskonstruktion als Basismechanismus

• Begrenzte Automatisierung möglich
– Strategische Beweissuche durch Taktiken (einfach)

– Entscheidungsprozeduren für Teiltheorien (theoretisch aufwendig)

– Einbindung externer Beweisprozeduren (theoretisch & technisch schwierig)

Automatisierte Logik und Programmierung II, Teil IV 2 Aufbau von Beweissystemen

Beweissysteme für die Typentheorie

• Ausdruckstarke Theorien sind unentscheidbar
– Vollautomatische Beweissysteme nicht praktikabel

– Interaktive Beweiskonstruktion als Basismechanismus

• Begrenzte Automatisierung möglich
– Strategische Beweissuche durch Taktiken (einfach)

– Entscheidungsprozeduren für Teiltheorien (theoretisch aufwendig)

– Einbindung externer Beweisprozeduren (theoretisch & technisch schwierig)

• Existierende Systeme
– Nuprl: Konstruktive Typentheorie (ITT)

– Coq: Calculus of Constructions

– Alf: Martin-Löf Typentheorie (Name ändert sich ständig)

– PVS: Klassische Variante der Typentheorie

– HOL: Klassische Typentheorie

– Isabelle: Infrastruktursystem, Hauptanwendung HOL

– MetaPRL: Infrastruktursystem, Hauptanwendung ITT und CZF

Automatisierte Logik und Programmierung

Lektion 11

Interaktive Beweisassistenten

1. Ziele einer Implementierung

2. ML als formale Beschreibungssprache

3. Implementierung der Objektsprache

4. Systemkomponenten

5. Zur Korrektheit der Implementierung

Automatisierte Logik und Programmierung II §11 1 Konstruktion interaktiver Beweisassistenten

Implementierung von Beweissystemen – was ist zu tun?

• Datenstrukturen für Kernbegriffe der Theorie

– Formalisierung der Metatheorie: Beweis, Regeln, Term, Abstraktion, . . .

– Operatoren zur Konstruktion und Analyse konkreter Objekte

Automatisierte Logik und Programmierung II §11 1 Konstruktion interaktiver Beweisassistenten

Implementierung von Beweissystemen – was ist zu tun?

• Datenstrukturen für Kernbegriffe der Theorie

– Formalisierung der Metatheorie: Beweis, Regeln, Term, Abstraktion, . . .

– Operatoren zur Konstruktion und Analyse konkreter Objekte

– Benötigt Repräsentation der Metasprache als Programmiersprache

Automatisierte Logik und Programmierung II §11 1 Konstruktion interaktiver Beweisassistenten

Implementierung von Beweissystemen – was ist zu tun?

• Datenstrukturen für Kernbegriffe der Theorie

– Formalisierung der Metatheorie: Beweis, Regeln, Term, Abstraktion, . . .

– Operatoren zur Konstruktion und Analyse konkreter Objekte

– Benötigt Repräsentation der Metasprache als Programmiersprache

• Basisterme und -regeln der Theorie implementieren

– In Systemtabellen oder als explizite Objekte der Bibliothek

Automatisierte Logik und Programmierung II §11 1 Konstruktion interaktiver Beweisassistenten

Implementierung von Beweissystemen – was ist zu tun?

• Datenstrukturen für Kernbegriffe der Theorie

– Formalisierung der Metatheorie: Beweis, Regeln, Term, Abstraktion, . . .

– Operatoren zur Konstruktion und Analyse konkreter Objekte

– Benötigt Repräsentation der Metasprache als Programmiersprache

• Basisterme und -regeln der Theorie implementieren

– In Systemtabellen oder als explizite Objekte der Bibliothek

• Mechanismen zur Verarbeitung formalen Wissens

Automatisierte Logik und Programmierung II §11 1 Konstruktion interaktiver Beweisassistenten

Implementierung von Beweissystemen – was ist zu tun?

• Datenstrukturen für Kernbegriffe der Theorie

– Formalisierung der Metatheorie: Beweis, Regeln, Term, Abstraktion, . . .

– Operatoren zur Konstruktion und Analyse konkreter Objekte

– Benötigt Repräsentation der Metasprache als Programmiersprache

• Basisterme und -regeln der Theorie implementieren

– In Systemtabellen oder als explizite Objekte der Bibliothek

• Mechanismen zur Verarbeitung formalen Wissens

– Refiner: Anwendung von Inferenzregeln (und Taktiken) auf Beweisziele

· Basisinferenzmaschine ohne eigene “Intelligenz”

Automatisierte Logik und Programmierung II §11 1 Konstruktion interaktiver Beweisassistenten

Implementierung von Beweissystemen – was ist zu tun?

• Datenstrukturen für Kernbegriffe der Theorie

– Formalisierung der Metatheorie: Beweis, Regeln, Term, Abstraktion, . . .

– Operatoren zur Konstruktion und Analyse konkreter Objekte

– Benötigt Repräsentation der Metasprache als Programmiersprache

• Basisterme und -regeln der Theorie implementieren

– In Systemtabellen oder als explizite Objekte der Bibliothek

• Mechanismen zur Verarbeitung formalen Wissens

– Refiner: Anwendung von Inferenzregeln (und Taktiken) auf Beweisziele

· Basisinferenzmaschine ohne eigene “Intelligenz”

– Library: Verwaltung des gesamten formalen Wissens

Automatisierte Logik und Programmierung II §11 1 Konstruktion interaktiver Beweisassistenten

Implementierung von Beweissystemen – was ist zu tun?

• Datenstrukturen für Kernbegriffe der Theorie

– Formalisierung der Metatheorie: Beweis, Regeln, Term, Abstraktion, . . .

– Operatoren zur Konstruktion und Analyse konkreter Objekte

– Benötigt Repräsentation der Metasprache als Programmiersprache

• Basisterme und -regeln der Theorie implementieren

– In Systemtabellen oder als explizite Objekte der Bibliothek

• Mechanismen zur Verarbeitung formalen Wissens

– Refiner: Anwendung von Inferenzregeln (und Taktiken) auf Beweisziele

· Basisinferenzmaschine ohne eigene “Intelligenz”

– Library: Verwaltung des gesamten formalen Wissens

– Editor: visuelles Benutzerinterface

· Bearbeitung von Termen, Beweisen, Definitionen, . . .

Automatisierte Logik und Programmierung II §11 2 Konstruktion interaktiver Beweisassistenten

ML: Formale Metasprache als Programmiersprache

• Entstanden im Edinburgh LCF Projekt (frühe 70er Jahre)

– Formales Englisch zur Unterstützung von logischer Symbolverarbeitung

– Standardisiert Ende der 80er Jahre als SML und Caml

– Nuprl benutzt die Originalversion “Classic ML” (Appendix B des Manuals)

Automatisierte Logik und Programmierung II §11 2 Konstruktion interaktiver Beweisassistenten

ML: Formale Metasprache als Programmiersprache

• Entstanden im Edinburgh LCF Projekt (frühe 70er Jahre)

– Formales Englisch zur Unterstützung von logischer Symbolverarbeitung

– Standardisiert Ende der 80er Jahre als SML und Caml

– Nuprl benutzt die Originalversion “Classic ML” (Appendix B des Manuals)

• Funktionale Programmiersprache höherer Stufe

– Programmieren = Definition + Anwendung von Funktionen (wie λ-Kalkül)

– Pattern Matching unterstützt Verständlichkeit komplexe Definitionen

Automatisierte Logik und Programmierung II §11 2 Konstruktion interaktiver Beweisassistenten

ML: Formale Metasprache als Programmiersprache

• Entstanden im Edinburgh LCF Projekt (frühe 70er Jahre)

– Formales Englisch zur Unterstützung von logischer Symbolverarbeitung

– Standardisiert Ende der 80er Jahre als SML und Caml

– Nuprl benutzt die Originalversion “Classic ML” (Appendix B des Manuals)

• Funktionale Programmiersprache höherer Stufe

– Programmieren = Definition + Anwendung von Funktionen (wie λ-Kalkül)

– Pattern Matching unterstützt Verständlichkeit komplexe Definitionen

• Erweiterbare polymorphe Typdisziplin

– Grundkonstrukte: int, bool, tok, string, unit,

A->B, A#B, A+B, A list

– Anwenderdefinierbare abstrakte und rekursive Datentypen

– Typprüfung durch erweiterten Hindley/Milner Typechecking Algorithmus

Automatisierte Logik und Programmierung II §11 2 Konstruktion interaktiver Beweisassistenten

ML: Formale Metasprache als Programmiersprache

• Entstanden im Edinburgh LCF Projekt (frühe 70er Jahre)

– Formales Englisch zur Unterstützung von logischer Symbolverarbeitung

– Standardisiert Ende der 80er Jahre als SML und Caml

– Nuprl benutzt die Originalversion “Classic ML” (Appendix B des Manuals)

• Funktionale Programmiersprache höherer Stufe

– Programmieren = Definition + Anwendung von Funktionen (wie λ-Kalkül)

– Pattern Matching unterstützt Verständlichkeit komplexe Definitionen

• Erweiterbare polymorphe Typdisziplin

– Grundkonstrukte: int, bool, tok, string, unit,

A->B, A#B, A+B, A list

– Anwenderdefinierbare abstrakte und rekursive Datentypen

– Typprüfung durch erweiterten Hindley/Milner Typechecking Algorithmus

• Kontrollierte Behandlung von Ausnahmen

– Anwenderdefinierbare Verarbeitung von Laufzeitfehlern

Automatisierte Logik und Programmierung II §11 3 Konstruktion interaktiver Beweisassistenten

Abstrakte Datentypen in ML

abstype time = int # int

with maketime(hrs,mins)

= if hrs<0 or 23<hrs or mins<0 or 59<mins

then fail

else abs time(hrs,mins)

and hours t = fst(rep time t)

and minutes t = snd(rep time t)

;;

absrectype * bintree = * + (* bintree) # (* bintree)

with mk tree(s1,s2) = abs bintree (inr(s1,s2))

and left s = fst (outr(rep bintree s))

and right s = snd (outr(rep bintree s))

and atomic s = isl(rep bintree s)

and mk atom a = abs bintree(inl a)

;;

abs T, rep T : Konversionen: explizite ←→ abstrakte Repräsentation

Automatisierte Logik und Programmierung II §11 4 Konstruktion interaktiver Beweisassistenten

Datenstrukturen für die Implementierung von ITT

• Präzisierung der informalen Definitionen

– Terme, Regeln, Beweise, Abstraktion, Bibliothek, . . .

Automatisierte Logik und Programmierung II §11 4 Konstruktion interaktiver Beweisassistenten

Datenstrukturen für die Implementierung von ITT

• Präzisierung der informalen Definitionen

– Terme, Regeln, Beweise, Abstraktion, Bibliothek, . . .

• Abstrakte Datentypen kapseln Objekte

– Kontrollierter Zugriff nur durch Konstruktoren und Destruktoren

Automatisierte Logik und Programmierung II §11 4 Konstruktion interaktiver Beweisassistenten

Datenstrukturen für die Implementierung von ITT

• Präzisierung der informalen Definitionen

– Terme, Regeln, Beweise, Abstraktion, Bibliothek, . . .

• Abstrakte Datentypen kapseln Objekte

– Kontrollierter Zugriff nur durch Konstruktoren und Destruktoren

• Besonderer Schutz für Beweise

– Änderung nur durch Anwendung von Regeln möglich

– Verhindert unbefugte Manipulationen und Beweisen

Automatisierte Logik und Programmierung II §11 4 Konstruktion interaktiver Beweisassistenten

Datenstrukturen für die Implementierung von ITT

• Präzisierung der informalen Definitionen

– Terme, Regeln, Beweise, Abstraktion, Bibliothek, . . .

• Abstrakte Datentypen kapseln Objekte

– Kontrollierter Zugriff nur durch Konstruktoren und Destruktoren

• Besonderer Schutz für Beweise

– Änderung nur durch Anwendung von Regeln möglich

– Verhindert unbefugte Manipulationen und Beweisen

• Unterstützung für Beweistaktiken

– Beweise können nur mit Taktiken verändert werden

– Taktiken können (im Endeffekt) nur aus Regeln erzeugt werden

Automatisierte Logik und Programmierung II §11 5 Konstruktion interaktiver Beweisassistenten

Terme

Struktur: opid{p1:F 1, ..pk:F k}(x
1
1, ..x

1
m1

.t1;...x
n
1 , ..xn

mn
.tn)

opid Operatorname

p
j
:F

j
Parameter, bestehend aus Parameterwert und Parametertyp

xi
1,..,x

i
mi
.t

i
gebundener Term, wobei t

i
Term, xj

k Variable

absrectype term = (tok # parm list) # bterm list

and bterm = var list # term

with mk term (opid,parms) bterms = abs term((opid,parms),bterms)

and dest term t = rep term t

and mk bterm vars t = abs bterm(vars,t)

and dest bterm bt = rep bterm bt

;;

abstype var = tok

with mkvar t = abs var t

and dvar v = rep var v

;;

abstype level exp = tok + int with ...

abstype parm = int + tok + string + var + level exp + bool with ...

Automatisierte Logik und Programmierung II §11 6 Konstruktion interaktiver Beweisassistenten

Sequenzen

Struktur: x1:T1,...,xn:Tn ` C

xi Variable,

Ti, C Term

xi:Ti Deklaration

x1:T1,...,xn:Tn Hypothesenliste

C Konklusion

abstype declaration = var # term

with mk assumption v t = abs declaration(v,t)

and dest assumption d = rep declaration d
;;

lettype sequent = declaration list # term;;

Zugriff auf Sequenzkomponenten durch Beweisdestruktoren

Automatisierte Logik und Programmierung II §11 7 Konstruktion interaktiver Beweisassistenten

Regeln und Beweise

Inferenzregel: r = (dec,val)

dec Dekomposition: Abbildung von Sequenzen in Listen von Sequenzen

val Validierung: Abbildung von Listen von Termen und Sequenzen in Terme

Beweis mit Wurzel Z: Sequenz Z oder Struktur π = (Z, r, [π1,..,πn])

Z Sequenz

r Inferenzregel

π1,. . . ,πn Beweise, deren Wurzeln die Teilziele von dec(Z) sind

abstype rule =
absrectype proof = sequent # rule # proof list
with mk proof goal decs t = abs proof((decs,t), �,[])
and refine r p = let children = deduce children r p

and validation= deduce validation r p
in children, validation

and hypotheses p = fst (fst (rep proof p))
and conclusion p = snd (fst (rep proof p))
and refinement p = fst (snd (rep proof p))
and children p = snd (snd (rep proof p))

;;
lettype validation = proof list -> proof;;
lettype tactic = proof -> (proof list # validation);;

Automatisierte Logik und Programmierung II §11 8 Konstruktion interaktiver Beweisassistenten

Repräsentation von Regeln und Beweisen

• Regeln repräsentiert als Regelschemata
– Beweisbaum speichert angewandte Regel in jedem Knoten

– refine wandelt Regeln in Taktiken um

– Taktik verwendet Pattern Matching und Term Rewriting

– Erleichtert Komposition von Regeln

Automatisierte Logik und Programmierung II §11 8 Konstruktion interaktiver Beweisassistenten

Repräsentation von Regeln und Beweisen

• Regeln repräsentiert als Regelschemata
– Beweisbaum speichert angewandte Regel in jedem Knoten

– refine wandelt Regeln in Taktiken um

– Taktik verwendet Pattern Matching und Term Rewriting

– Erleichtert Komposition von Regeln

• Taktiken verfeinern Regelbegriff
– Taktiken sind Dekompositionen

– Anwendung der Dekomposition erzeugt Teilziele und Validierung

– Anwendung der Validierung baut Beweisbaum, wenn Blätter bewiesen

Automatisierte Logik und Programmierung II §11 8 Konstruktion interaktiver Beweisassistenten

Repräsentation von Regeln und Beweisen

• Regeln repräsentiert als Regelschemata
– Beweisbaum speichert angewandte Regel in jedem Knoten

– refine wandelt Regeln in Taktiken um

– Taktik verwendet Pattern Matching und Term Rewriting

– Erleichtert Komposition von Regeln

• Taktiken verfeinern Regelbegriff
– Taktiken sind Dekompositionen

– Anwendung der Dekomposition erzeugt Teilziele und Validierung

– Anwendung der Validierung baut Beweisbaum, wenn Blätter bewiesen

• Korrektheit des Systems leicht verifizierbar
– Überprüfe korrekte Repräsentation der Regeln (Bibliotheksobjekte)

– Verifiziere Implementierung von refine

Automatisierte Logik und Programmierung II §11 8 Konstruktion interaktiver Beweisassistenten

Repräsentation von Regeln und Beweisen

• Regeln repräsentiert als Regelschemata
– Beweisbaum speichert angewandte Regel in jedem Knoten

– refine wandelt Regeln in Taktiken um

– Taktik verwendet Pattern Matching und Term Rewriting

– Erleichtert Komposition von Regeln

• Taktiken verfeinern Regelbegriff
– Taktiken sind Dekompositionen

– Anwendung der Dekomposition erzeugt Teilziele und Validierung

– Anwendung der Validierung baut Beweisbaum, wenn Blätter bewiesen

• Korrektheit des Systems leicht verifizierbar
– Überprüfe korrekte Repräsentation der Regeln (Bibliotheksobjekte)

– Verifiziere Implementierung von refine

• Refiner kann ausgelagert werden
– Prozedur muß deduce children und deduce validation bereitstellen

Automatisierte Logik und Programmierung II §11 9 Konstruktion interaktiver Beweisassistenten

Repräsentation definitorischer Erweiterungen

• Struktur einer Abstraktion: lhs ≡ rhs

lhs (Abstraktions-)Term, dessen Unterterme Variablen sind

rhs Term, dessen freie Variablen auch in lhs frei sind

Neuer Term auf linker Seite wird durch Term der rechten Seite definiert

Automatisierte Logik und Programmierung II §11 9 Konstruktion interaktiver Beweisassistenten

Repräsentation definitorischer Erweiterungen

• Struktur einer Abstraktion: lhs ≡ rhs

lhs (Abstraktions-)Term, dessen Unterterme Variablen sind

rhs Term, dessen freie Variablen auch in lhs frei sind

Neuer Term auf linker Seite wird durch Term der rechten Seite definiert

• Einfache Repräsentation als Datenstruktur

– Datentyp: abstype abstraction = term # term

– Konstruktor mk abstraction testet Zusatzbedingungen

Automatisierte Logik und Programmierung II §11 9 Konstruktion interaktiver Beweisassistenten

Repräsentation definitorischer Erweiterungen

• Struktur einer Abstraktion: lhs ≡ rhs

lhs (Abstraktions-)Term, dessen Unterterme Variablen sind

rhs Term, dessen freie Variablen auch in lhs frei sind

Neuer Term auf linker Seite wird durch Term der rechten Seite definiert

• Einfache Repräsentation als Datenstruktur

– Datentyp: abstype abstraction = term # term

– Konstruktor mk abstraction testet Zusatzbedingungen

• Abstraktionsanwendung ist aufwendiger (Folie 13)

– Pattern Matching und Instantiierung von Variablen

– Variablen zweiter Stufe beschreiben Terme mit gebundenen Variablen

Automatisierte Logik und Programmierung II §11 9 Konstruktion interaktiver Beweisassistenten

Repräsentation definitorischer Erweiterungen

• Struktur einer Abstraktion: lhs ≡ rhs

lhs (Abstraktions-)Term, dessen Unterterme Variablen sind

rhs Term, dessen freie Variablen auch in lhs frei sind

Neuer Term auf linker Seite wird durch Term der rechten Seite definiert

• Einfache Repräsentation als Datenstruktur

– Datentyp: abstype abstraction = term # term

– Konstruktor mk abstraction testet Zusatzbedingungen

• Abstraktionsanwendung ist aufwendiger (Folie 13)

– Pattern Matching und Instantiierung von Variablen

– Variablen zweiter Stufe beschreiben Terme mit gebundenen Variablen

• Unabhängige Behandlung der Darstellungsform

– Display-Formen beschreiben textliche Darstellung, Formatierung,

Klammerung, Abkürzungen, . . .

– Unterstützt vertraute, einfache und verständliche Notationen

Automatisierte Logik und Programmierung II §11 10 Konstruktion interaktiver Beweisassistenten

Repräsentation von Bibliothekskonzepten

• Bibliothek: formales mathematisches Lehrbuch

– Definitionen, Sätze, Beweise, Methoden, Anmerkungen, Regeln, . . .

– Ermöglicht zusätzliche Inferenzregeln: lemma, extract, . . .

Automatisierte Logik und Programmierung II §11 10 Konstruktion interaktiver Beweisassistenten

Repräsentation von Bibliothekskonzepten

• Bibliothek: formales mathematisches Lehrbuch

– Definitionen, Sätze, Beweise, Methoden, Anmerkungen, Regeln, . . .

– Ermöglicht zusätzliche Inferenzregeln: lemma, extract, . . .

• Bibliotheksstruktur

– Ungeordnete Kollektion von Objekten

– Strukturen (Theorien, Directories, Links,. . .) können aufgesetzt werden

Automatisierte Logik und Programmierung II §11 10 Konstruktion interaktiver Beweisassistenten

Repräsentation von Bibliothekskonzepten

• Bibliothek: formales mathematisches Lehrbuch

– Definitionen, Sätze, Beweise, Methoden, Anmerkungen, Regeln, . . .

– Ermöglicht zusätzliche Inferenzregeln: lemma, extract, . . .

• Bibliotheksstruktur

– Ungeordnete Kollektion von Objekten

– Strukturen (Theorien, Directories, Links,. . .) können aufgesetzt werden

• Bibliotheksobjekte

Tupel bestehend aus Inhalt und Verwaltungsinformation

Inhalt: Abstraktion, Display Form, (Teil-)Beweis, ML code, Text, . . .

Art: ABS, DISP, STM, CODE, COM, RULE, DIR, . . .

Eigenschaften: Status, Name, Aktiv?, Referenzumgebung, . . .

Extra: Abhängige Objekten, interne Id, sichtbare Position, . . .

Automatisierte Logik und Programmierung II §11 10 Konstruktion interaktiver Beweisassistenten

Repräsentation von Bibliothekskonzepten

• Bibliothek: formales mathematisches Lehrbuch

– Definitionen, Sätze, Beweise, Methoden, Anmerkungen, Regeln, . . .

– Ermöglicht zusätzliche Inferenzregeln: lemma, extract, . . .

• Bibliotheksstruktur

– Ungeordnete Kollektion von Objekten

– Strukturen (Theorien, Directories, Links,. . .) können aufgesetzt werden

• Bibliotheksobjekte

Tupel bestehend aus Inhalt und Verwaltungsinformation

Inhalt: Abstraktion, Display Form, (Teil-)Beweis, ML code, Text, . . .

Art: ABS, DISP, STM, CODE, COM, RULE, DIR, . . .

Eigenschaften: Status, Name, Aktiv?, Referenzumgebung, . . .

Extra: Abhängige Objekten, interne Id, sichtbare Position, . . .

In Nuprl wird jedes Objekt als abstrakter Term definiert

Automatisierte Logik und Programmierung II §11 11 Konstruktion interaktiver Beweisassistenten

Implementierung der konkreten Objektsprache

• Basisterme Operator und Termstruktur Darstellungsform

function{}(S; x.T) x:S→T

lambda{}(x.t) λx.t

apply{}(f;t) f t
... ...

– Auflistung der Abstraktionsterme in ML-Operatorentabelle

– Erstellung von Display Formen für jeden Basisterm

Automatisierte Logik und Programmierung II §11 11 Konstruktion interaktiver Beweisassistenten

Implementierung der konkreten Objektsprache

• Basisterme Operator und Termstruktur Darstellungsform

function{}(S; x.T) x:S→T

lambda{}(x.t) λx.t

apply{}(f;t) f t
... ...

– Auflistung der Abstraktionsterme in ML-Operatorentabelle

– Erstellung von Display Formen für jeden Basisterm

• Konstruktoren & Destruktoren
let mk function term x S T = make term (‘function‘,[]) [[],S; [x],T]
and mk lambda term x t = make term (‘lambda‘,[]) [[x],t]
and mk apply term f a = make term (‘apply‘,[]) [[],f; [],a]

...
let dest function t = let op,[(),a; [x],b] = dest term t in x,a,b
and dest lambda t = let op,[[x],b] = dest term t in x,b
and dest apply t = let op,[(),f; [],a] = dest term t in f,a

...

Automatisierte Logik und Programmierung II §11 11 Konstruktion interaktiver Beweisassistenten

Implementierung der konkreten Objektsprache

• Basisterme Operator und Termstruktur Darstellungsform

function{}(S; x.T) x:S→T

lambda{}(x.t) λx.t

apply{}(f;t) f t
... ...

– Auflistung der Abstraktionsterme in ML-Operatorentabelle

– Erstellung von Display Formen für jeden Basisterm

• Konstruktoren & Destruktoren
let mk function term x S T = make term (‘function‘,[]) [[],S; [x],T]
and mk lambda term x t = make term (‘lambda‘,[]) [[x],t]
and mk apply term f a = make term (‘apply‘,[]) [[],f; [],a]

...
let dest function t = let op,[(),a; [x],b] = dest term t in x,a,b
and dest lambda t = let op,[[x],b] = dest term t in x,b
and dest apply t = let op,[(),f; [],a] = dest term t in f,a

...

• Aufbau durch Verwendung von Bibliotheksobjekten
– Operatorentabelle, Konstruktoren, Destruktoren in Code-Objekten

– Display Formen und Inferenzregeln sind explizite Bibliotheksobjekte

Automatisierte Logik und Programmierung II §11 11 Konstruktion interaktiver Beweisassistenten

Implementierung der konkreten Objektsprache

• Basisterme Operator und Termstruktur Darstellungsform

function{}(S; x.T) x:S→T

lambda{}(x.t) λx.t

apply{}(f;t) f t
... ...

– Auflistung der Abstraktionsterme in ML-Operatorentabelle

– Erstellung von Display Formen für jeden Basisterm

• Konstruktoren & Destruktoren
let mk function term x S T = make term (‘function‘,[]) [[],S; [x],T]
and mk lambda term x t = make term (‘lambda‘,[]) [[x],t]
and mk apply term f a = make term (‘apply‘,[]) [[],f; [],a]

...
let dest function t = let op,[(),a; [x],b] = dest term t in x,a,b
and dest lambda t = let op,[[x],b] = dest term t in x,b
and dest apply t = let op,[(),f; [],a] = dest term t in f,a

...

• Aufbau durch Verwendung von Bibliotheksobjekten
– Operatorentabelle, Konstruktoren, Destruktoren in Code-Objekten

– Display Formen und Inferenzregeln sind explizite Bibliotheksobjekte

7→ schnelle, flexible Implementierung “beliebiger” Theorien

Automatisierte Logik und Programmierung II §11 12 Konstruktion interaktiver Beweisassistenten

Implementierung des konkreten Inferenzsystems

• Inferenzregeln dargestellt als Regel-Objekte

Γ ` S×T bext 〈s,t〉c
by independent pairFormation

Γ ` S bext sc
Γ ` T bext tc

Automatisierte Logik und Programmierung II §11 12 Konstruktion interaktiver Beweisassistenten

Implementierung des konkreten Inferenzsystems

• Inferenzregeln dargestellt als Regel-Objekte

Γ ` S×T bext 〈s,t〉c
by independent pairFormation

Γ ` S bext sc
Γ ` T bext tc

Automatisierte Logik und Programmierung II §11 12 Konstruktion interaktiver Beweisassistenten

Implementierung des konkreten Inferenzsystems

• Inferenzregeln dargestellt als Regel-Objekte

Γ ` S×T bext 〈s,t〉c
by independent pairFormation

Γ ` S bext sc
Γ ` T bext tc

• Substitutionen und Parameter explizit dargestellt
Γ ` x

1
:S

1
→T

1
= x

2
:S

2
→T

2
∈ Uj bAxc

by functionEquality x
Γ ` S

1
=S

2
∈ Uj bAxc

Γ, x:S
1
` T

1
[x/x

1
] =T

2
[x/x

2
] ∈ Uj bAxc

Automatisierte Logik und Programmierung II §11 12 Konstruktion interaktiver Beweisassistenten

Implementierung des konkreten Inferenzsystems

• Inferenzregeln dargestellt als Regel-Objekte

Γ ` S×T bext 〈s,t〉c
by independent pairFormation

Γ ` S bext sc
Γ ` T bext tc

• Substitutionen und Parameter explizit dargestellt
Γ ` x

1
:S

1
→T

1
= x

2
:S

2
→T

2
∈ Uj bAxc

by functionEquality x
Γ ` S

1
=S

2
∈ Uj bAxc

Γ, x:S
1
` T

1
[x/x

1
] =T

2
[x/x

2
] ∈ Uj bAxc

Automatisierte Logik und Programmierung II §11 12 Konstruktion interaktiver Beweisassistenten

Implementierung des konkreten Inferenzsystems

• Inferenzregeln dargestellt als Regel-Objekte

Γ ` S×T bext 〈s,t〉c
by independent pairFormation

Γ ` S bext sc
Γ ` T bext tc

• Substitutionen und Parameter explizit dargestellt
Γ ` x

1
:S

1
→T

1
= x

2
:S

2
→T

2
∈ Uj bAxc

by functionEquality x
Γ ` S

1
=S

2
∈ Uj bAxc

Γ, x:S
1
` T

1
[x/x

1
] =T

2
[x/x

2
] ∈ Uj bAxc

• Aufruf von Spezialprozeduren möglich

Automatisierte Logik und Programmierung II §11 13 Konstruktion interaktiver Beweisassistenten

Komponenten von Beweissystemen

• Inferenzmaschine (Refiner)
– Anwendung von Inferenzregeln auf Beweisziele

– Erzeugung noch zu bearbeitender Teilprobleme

Automatisierte Logik und Programmierung II §11 13 Konstruktion interaktiver Beweisassistenten

Komponenten von Beweissystemen

• Inferenzmaschine (Refiner)
– Anwendung von Inferenzregeln auf Beweisziele

– Erzeugung noch zu bearbeitender Teilprobleme

• Bibliothek (Library)
– Logische Datenbank zur Verwaltung von formalem Wissen

Automatisierte Logik und Programmierung II §11 13 Konstruktion interaktiver Beweisassistenten

Komponenten von Beweissystemen

• Inferenzmaschine (Refiner)
– Anwendung von Inferenzregeln auf Beweisziele

– Erzeugung noch zu bearbeitender Teilprobleme

• Bibliothek (Library)
– Logische Datenbank zur Verwaltung von formalem Wissen

• Benutzerinterface (Editor)
– Interface zur Kommunikation mit der Bibliothek

– Visuelle Bearbeitung von Terme, Beweise, Definitionen, . . .

Automatisierte Logik und Programmierung II §11 13 Konstruktion interaktiver Beweisassistenten

Komponenten von Beweissystemen

• Inferenzmaschine (Refiner)
– Anwendung von Inferenzregeln auf Beweisziele

– Erzeugung noch zu bearbeitender Teilprobleme

• Bibliothek (Library)
– Logische Datenbank zur Verwaltung von formalem Wissen

• Benutzerinterface (Editor)
– Interface zur Kommunikation mit der Bibliothek

– Visuelle Bearbeitung von Terme, Beweise, Definitionen, . . .

• Optionale Komponenten
– Extraktion von Programmen aus Beweisen

– Evaluator: Ausführung von Programmen

– Exportmechanismen: Ascii Repräsentation, LaTeX, HTML, . . .

Automatisierte Logik und Programmierung II §11 13 Konstruktion interaktiver Beweisassistenten

Komponenten von Beweissystemen

• Inferenzmaschine (Refiner)
– Anwendung von Inferenzregeln auf Beweisziele

– Erzeugung noch zu bearbeitender Teilprobleme

• Bibliothek (Library)
– Logische Datenbank zur Verwaltung von formalem Wissen

• Benutzerinterface (Editor)
– Interface zur Kommunikation mit der Bibliothek

– Visuelle Bearbeitung von Terme, Beweise, Definitionen, . . .

• Optionale Komponenten
– Extraktion von Programmen aus Beweisen

– Evaluator: Ausführung von Programmen

– Exportmechanismen: Ascii Repräsentation, LaTeX, HTML, . . .

Mechanismen sind unabhängig
als separate Prozesse implementieren?

Automatisierte Logik und Programmierung II §11 14 Konstruktion interaktiver Beweisassistenten

Verarbeitung von Inferenzregeln (Refiner)

• Basisinferenzmaschine ohne eigene “Intelligenz”
– Implementierung von refine

· Wandelt Inhalte der Regel-Objekte in Taktiken um

Automatisierte Logik und Programmierung II §11 14 Konstruktion interaktiver Beweisassistenten

Verarbeitung von Inferenzregeln (Refiner)

• Basisinferenzmaschine ohne eigene “Intelligenz”
– Implementierung von refine

· Wandelt Inhalte der Regel-Objekte in Taktiken um

• Schutz gegen unbefugte Manipulation von Beweisen
– Bearbeitung von Beweisobjekten muß Refiner benutzen

Automatisierte Logik und Programmierung II §11 14 Konstruktion interaktiver Beweisassistenten

Verarbeitung von Inferenzregeln (Refiner)

• Basisinferenzmaschine ohne eigene “Intelligenz”
– Implementierung von refine

· Wandelt Inhalte der Regel-Objekte in Taktiken um

• Schutz gegen unbefugte Manipulation von Beweisen
– Bearbeitung von Beweisobjekten muß Refiner benutzen

• Inferenzmechanismen
– Pattern Matching + Term Rewriting für die meisten Regelschemata

– Entscheidungsprozeduren für arith und equality

– β-Reduktion für compute

– Matching zweiter Stufe für Auf- und Rückfalten von Abstraktionen

Automatisierte Logik und Programmierung II §11 14 Konstruktion interaktiver Beweisassistenten

Verarbeitung von Inferenzregeln (Refiner)

• Basisinferenzmaschine ohne eigene “Intelligenz”
– Implementierung von refine

· Wandelt Inhalte der Regel-Objekte in Taktiken um

• Schutz gegen unbefugte Manipulation von Beweisen
– Bearbeitung von Beweisobjekten muß Refiner benutzen

• Inferenzmechanismen
– Pattern Matching + Term Rewriting für die meisten Regelschemata

– Entscheidungsprozeduren für arith und equality

– β-Reduktion für compute

– Matching zweiter Stufe für Auf- und Rückfalten von Abstraktionen

• Unabhängig vom restlichen Beweissystem
– Implementierung als separater Prozess möglich

– Abfrage der Regeln durch Kommunikation mit Bibliothek realisierbar

– Erlaubt simultane und asynchrone Verwendung mehrerer Refiner

Automatisierte Logik und Programmierung II §11 15 Konstruktion interaktiver Beweisassistenten

Mathematisch logische Wissensbank (Library)

• Grundoperationen zur Verwaltung von Objekten
– Erzeugung, Löschen, Umbenennen, Verschieben, (De)Aktivieren, Drucken,

– Strukturierung in Theorien und Directories, Browsen, Suchen, . . .

Automatisierte Logik und Programmierung II §11 15 Konstruktion interaktiver Beweisassistenten

Mathematisch logische Wissensbank (Library)

• Grundoperationen zur Verwaltung von Objekten
– Erzeugung, Löschen, Umbenennen, Verschieben, (De)Aktivieren, Drucken,

– Strukturierung in Theorien und Directories, Browsen, Suchen, . . .

• Wissensarchivierung
– Zertifikate: Rechtfertigung für gespeicherte Inferenzen

– Explizite Links und logische Abhängigkeiten zwischen Objekten

Automatisierte Logik und Programmierung II §11 15 Konstruktion interaktiver Beweisassistenten

Mathematisch logische Wissensbank (Library)

• Grundoperationen zur Verwaltung von Objekten
– Erzeugung, Löschen, Umbenennen, Verschieben, (De)Aktivieren, Drucken,

– Strukturierung in Theorien und Directories, Browsen, Suchen, . . .

• Wissensarchivierung
– Zertifikate: Rechtfertigung für gespeicherte Inferenzen

– Explizite Links und logische Abhängigkeiten zwischen Objekten

• Anbindung anderer Komponenten
– Refiner, Editor, externe Systeme als Klienten

– Mehrfache Instanzen möglich

Library Table
non−destructive bind/unbind

Application server

API API API API API API

Object Request Broker

Transaction manager

Automatisierte Logik und Programmierung II §11 15 Konstruktion interaktiver Beweisassistenten

Mathematisch logische Wissensbank (Library)

• Grundoperationen zur Verwaltung von Objekten
– Erzeugung, Löschen, Umbenennen, Verschieben, (De)Aktivieren, Drucken,

– Strukturierung in Theorien und Directories, Browsen, Suchen, . . .

• Wissensarchivierung
– Zertifikate: Rechtfertigung für gespeicherte Inferenzen

– Explizite Links und logische Abhängigkeiten zwischen Objekten

• Anbindung anderer Komponenten
– Refiner, Editor, externe Systeme als Klienten

– Mehrfache Instanzen möglich

Library Table
non−destructive bind/unbind

Application server

API API API API API API

Object Request Broker

Transaction manager• Datenbankoperationen
– Dauerhafter Objektspeicher, Konsistenzsicherung

– Backup alter Zustände, Undo, Versionskontrolle

– Transaktionsgesteuerter simultaner Zugriff mehrerer Klienten

– Selektive Sichten auf Teile der Bibliothek

Automatisierte Logik und Programmierung II §11 16 Konstruktion interaktiver Beweisassistenten

Benutzerinterface (Editor)

Visuelle Unterstützung zur Bearbeitung von Wissen

• Navigator
– Navigation durch Bibliothek und Aufruf bereitgestellter Operationen

Automatisierte Logik und Programmierung II §11 16 Konstruktion interaktiver Beweisassistenten

Benutzerinterface (Editor)

Visuelle Unterstützung zur Bearbeitung von Wissen

• Navigator
– Navigation durch Bibliothek und Aufruf bereitgestellter Operationen

• Kommandointerface
– Interpretation von ML-Programmen und metasprachlichen Befehlen

Automatisierte Logik und Programmierung II §11 16 Konstruktion interaktiver Beweisassistenten

Benutzerinterface (Editor)

Visuelle Unterstützung zur Bearbeitung von Wissen

• Navigator
– Navigation durch Bibliothek und Aufruf bereitgestellter Operationen

• Kommandointerface
– Interpretation von ML-Programmen und metasprachlichen Befehlen

• Beweiseditor
– Beweisführung und Navigation durch Beweisbäume

Automatisierte Logik und Programmierung II §11 16 Konstruktion interaktiver Beweisassistenten

Benutzerinterface (Editor)

Visuelle Unterstützung zur Bearbeitung von Wissen

• Navigator
– Navigation durch Bibliothek und Aufruf bereitgestellter Operationen

• Kommandointerface
– Interpretation von ML-Programmen und metasprachlichen Befehlen

• Beweiseditor
– Beweisführung und Navigation durch Beweisbäume

• Termeditor
– Strukturelles Editieren von Termen in Präsentationsform

Automatisierte Logik und Programmierung II §11 16 Konstruktion interaktiver Beweisassistenten

Benutzerinterface (Editor)

Visuelle Unterstützung zur Bearbeitung von Wissen

• Navigator
– Navigation durch Bibliothek und Aufruf bereitgestellter Operationen

• Kommandointerface
– Interpretation von ML-Programmen und metasprachlichen Befehlen

• Beweiseditor
– Beweisführung und Navigation durch Beweisbäume

• Termeditor
– Strukturelles Editieren von Termen in Präsentationsform

• Objekteditoren
– Erstellung und Modifikation spezifischer Objekte

Automatisierte Logik und Programmierung II §11 16 Konstruktion interaktiver Beweisassistenten

Benutzerinterface (Editor)

Visuelle Unterstützung zur Bearbeitung von Wissen

• Navigator
– Navigation durch Bibliothek und Aufruf bereitgestellter Operationen

• Kommandointerface
– Interpretation von ML-Programmen und metasprachlichen Befehlen

• Beweiseditor
– Beweisführung und Navigation durch Beweisbäume

• Termeditor
– Strukturelles Editieren von Termen in Präsentationsform

• Objekteditoren
– Erstellung und Modifikation spezifischer Objekte

• Unabhängig
– Mehrere Editoren können gleichzeitig auf dieselbe Library zugreifen

Automatisierte Logik und Programmierung II §11 17 Konstruktion interaktiver Beweisassistenten

Nuprl’s Navigator Manual §4

• Visuelle Navigation durch Bibliothek

– Keyboard- oder Maus-gesteuertes Durchlaufen

– Patterngesteuerte Namenssuche

– Springen zu gespeicherten Positionen

Automatisierte Logik und Programmierung II §11 17 Konstruktion interaktiver Beweisassistenten

Nuprl’s Navigator Manual §4

• Visuelle Navigation durch Bibliothek

– Keyboard- oder Maus-gesteuertes Durchlaufen

– Patterngesteuerte Namenssuche

– Springen zu gespeicherten Positionen

• Ausführung von Bibliothekskommandos

– Vorbereitete “Buttons” für die wichtigsten Operationen

· Erzeugung von Objekten, Theorien, Definitionen, Modulen

· Löschen, Kopieren, Verschieben, Umbenennen, Drucken, . . .

· Import, Export, Drucken und Dokumentation von Theorien

– Aufruf der Operationen öffnet Kommandomenü

– Graphische Interaktion verbesserungsfähig (i.w. Textterminal)

Automatisierte Logik und Programmierung II §11 17 Konstruktion interaktiver Beweisassistenten

Nuprl’s Navigator Manual §4

• Visuelle Navigation durch Bibliothek

– Keyboard- oder Maus-gesteuertes Durchlaufen

– Patterngesteuerte Namenssuche

– Springen zu gespeicherten Positionen

• Ausführung von Bibliothekskommandos

– Vorbereitete “Buttons” für die wichtigsten Operationen

· Erzeugung von Objekten, Theorien, Definitionen, Modulen

· Löschen, Kopieren, Verschieben, Umbenennen, Drucken, . . .

· Import, Export, Drucken und Dokumentation von Theorien

– Aufruf der Operationen öffnet Kommandomenü

– Graphische Interaktion verbesserungsfähig (i.w. Textterminal)

• Undo und Redo für jede Operation

Automatisierte Logik und Programmierung II §11 17 Konstruktion interaktiver Beweisassistenten

Nuprl’s Navigator Manual §4

• Visuelle Navigation durch Bibliothek

– Keyboard- oder Maus-gesteuertes Durchlaufen

– Patterngesteuerte Namenssuche

– Springen zu gespeicherten Positionen

• Ausführung von Bibliothekskommandos

– Vorbereitete “Buttons” für die wichtigsten Operationen

· Erzeugung von Objekten, Theorien, Definitionen, Modulen

· Löschen, Kopieren, Verschieben, Umbenennen, Drucken, . . .

· Import, Export, Drucken und Dokumentation von Theorien

– Aufruf der Operationen öffnet Kommandomenü

– Graphische Interaktion verbesserungsfähig (i.w. Textterminal)

• Undo und Redo für jede Operation

• Anpassbar

– Buttons und Erscheinungsbild durch Bibliotheksobjekte definiert

Automatisierte Logik und Programmierung II §11 18 Konstruktion interaktiver Beweisassistenten

Browsen der Bibliothek mit Nuprls Navigator

- TERM: Navigator
MkTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*
PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↑↑ ↑ ← <>
↓↓↓↓ ↓↓↓ ↓↓ ↓ → ><

Navigator: [num thy 1; standard; theories]

Scroll position : 5

List Scroll : Total 159, Point 5, Visible : 10
--

CODE TTF RE init num thy 1
COM TTF num thy 1 begin
COM TTF num thy 1 summary
COM TTF num thy 1 intro
DISP TTF divides df

-> ABS TTF divides
STM TTF divides wf
STM TTF comb for divides wf
STM TTF zero divs only zero
STM TTF one divs any

--

· Bewegung des Nav Points durch Keyboard, Maus, oder Arrow-buttons

· Öffnen von Objekten durch “rechtsgehen” (oder Mittel-Click)

· Sichtbarkeitsbereich kann vergrößert oder verkleinert werden

Automatisierte Logik und Programmierung II §11 19 Konstruktion interaktiver Beweisassistenten

Editieren von Termen Manual §5

• Mathematische Notation erlaubt keine Parser

– Zu reichhaltig (nicht kontextfrei) und nicht einheitlich geregelt

– Notation ist keine gute Repräsentationform für logische Konzepte

Automatisierte Logik und Programmierung II §11 19 Konstruktion interaktiver Beweisassistenten

Editieren von Termen Manual §5

• Mathematische Notation erlaubt keine Parser

– Zu reichhaltig (nicht kontextfrei) und nicht einheitlich geregelt

– Notation ist keine gute Repräsentationform für logische Konzepte

• Typentheorie trennt Notation von Struktur

– Logische Struktur leichter zu verarbeiten

– Separate Darstellungsform sorgt für verständliche Notation

Automatisierte Logik und Programmierung II §11 19 Konstruktion interaktiver Beweisassistenten

Editieren von Termen Manual §5

• Mathematische Notation erlaubt keine Parser

– Zu reichhaltig (nicht kontextfrei) und nicht einheitlich geregelt

– Notation ist keine gute Repräsentationform für logische Konzepte

• Typentheorie trennt Notation von Struktur

– Logische Struktur leichter zu verarbeiten

– Separate Darstellungsform sorgt für verständliche Notation

• Editiere logische Struktur von Termen

– bei gleichzeitiger Präsentation der Darstellungsform auf dem Bildschirm

Automatisierte Logik und Programmierung II §11 19 Konstruktion interaktiver Beweisassistenten

Editieren von Termen Manual §5

• Mathematische Notation erlaubt keine Parser

– Zu reichhaltig (nicht kontextfrei) und nicht einheitlich geregelt

– Notation ist keine gute Repräsentationform für logische Konzepte

• Typentheorie trennt Notation von Struktur

– Logische Struktur leichter zu verarbeiten

– Separate Darstellungsform sorgt für verständliche Notation

• Editiere logische Struktur von Termen

– bei gleichzeitiger Präsentation der Darstellungsform auf dem Bildschirm

• Struktureditor

– Erzeugung des Termbaums durch Ausfüllen von Slots in Darstellungsform

– Kenntnis der genauen Syntax nicht erforderlich

– Umdenken erforderlich: keine lineare Eingabe von Text

Automatisierte Logik und Programmierung II §11 19 Konstruktion interaktiver Beweisassistenten

Editieren von Termen Manual §5

• Mathematische Notation erlaubt keine Parser

– Zu reichhaltig (nicht kontextfrei) und nicht einheitlich geregelt

– Notation ist keine gute Repräsentationform für logische Konzepte

• Typentheorie trennt Notation von Struktur

– Logische Struktur leichter zu verarbeiten

– Separate Darstellungsform sorgt für verständliche Notation

• Editiere logische Struktur von Termen

– bei gleichzeitiger Präsentation der Darstellungsform auf dem Bildschirm

• Struktureditor

– Erzeugung des Termbaums durch Ausfüllen von Slots in Darstellungsform

– Kenntnis der genauen Syntax nicht erforderlich

– Umdenken erforderlich: keine lineare Eingabe von Text

Benutzer kann mit verständlicher Notation arbeiten

Automatisierte Logik und Programmierung II §11 20 Konstruktion interaktiver Beweisassistenten

Bearbeiten von Beweisen Manual §6

• Sichtbare Entwicklung von Beweisen

– Navigation durch Beweisbaum mit Maus und Keyboard

– Arbeiten im einzelnen Beweisknoten

– Kontrolliertes Interface zum Refiner (via Library)

– Graphische Interaktion verbesserungsfähig (i.w. Textterminal)

Automatisierte Logik und Programmierung II §11 20 Konstruktion interaktiver Beweisassistenten

Bearbeiten von Beweisen Manual §6

• Sichtbare Entwicklung von Beweisen

– Navigation durch Beweisbaum mit Maus und Keyboard

– Arbeiten im einzelnen Beweisknoten

– Kontrolliertes Interface zum Refiner (via Library)

– Graphische Interaktion verbesserungsfähig (i.w. Textterminal)

• Operationen auf Beweisen

– Erzeugung von Beweiszielen mit Term-Editor

– Synchrone oder asynchrone Ausführung von Taktiken

– Komprimierung und Expansion bis zu elementaren Schritten

– Verarbeitung von Backup-Beweisen und ‘Schmierblatt’-Beweisen

– Erzeugung von Extrakt-Termen

Automatisierte Logik und Programmierung II §11 21 Konstruktion interaktiver Beweisassistenten

Typischer Beweisknoten

©1 Status und Adresse im Beweisbaum

©2 Annotation des Beweisknotens

©3 Beweisziel (Sequenz)

©4 Angewandte Beweistaktik

©5 Teilziele mit Status, Adresse, Sequenz (neue Hypothesen)

©6 Beweise der Teilziele, sofern vorhanden

Automatisierte Logik und Programmierung II §11 22 Konstruktion interaktiver Beweisassistenten

Nuprl: Gesamtarchitektur

GUI

Evaluator

Translator

GUI GUI

Evaluator

Evaluator

Evaluator

Translator

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Java OCaml

Maude

MetaPRL

SoS (Lisp)

Nuprl-5 Web

Library Nuprl

HOL/SPIN

MetaPRL

PVS

MEGAΩ

PRL

(PVS)(HOL)

....

....

....THEORY

defs, thms, tactics
rules, structure, code

rules, structure, code

rules, structure, code
defs, thms, tactics defs, thms, tactics

rules, structure, code

rules, structure, code
defs, thms, tactics

rules, structure, code
defs, thms, tactics

defs, thms, tactics

THEORY

THEORY

THEORY THEORY

THEORY

• Kooperierende Prozesse

Automatisierte Logik und Programmierung II §11 22 Konstruktion interaktiver Beweisassistenten

Nuprl: Gesamtarchitektur

GUI

Evaluator

Translator

GUI GUI

Evaluator

Evaluator

Evaluator

Translator

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Java OCaml

Maude

MetaPRL

SoS (Lisp)

Nuprl-5 Web

Library Nuprl

HOL/SPIN

MetaPRL

PVS

MEGAΩ

PRL

(PVS)(HOL)

....

....

....THEORY

defs, thms, tactics
rules, structure, code

rules, structure, code

rules, structure, code
defs, thms, tactics defs, thms, tactics

rules, structure, code

rules, structure, code
defs, thms, tactics

rules, structure, code
defs, thms, tactics

defs, thms, tactics

THEORY

THEORY

THEORY THEORY

THEORY

• Kooperierende Prozesse
– Library im Zentrum

– “Beliebig viele” Refiner, Editoren und externe Systeme als Klienten

Automatisierte Logik und Programmierung II §11 22 Konstruktion interaktiver Beweisassistenten

Nuprl: Gesamtarchitektur

GUI

Evaluator

Translator

GUI GUI

Evaluator

Evaluator

Evaluator

Translator

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Java OCaml

Maude

MetaPRL

SoS (Lisp)

Nuprl-5 Web

Library Nuprl

HOL/SPIN

MetaPRL

PVS

MEGAΩ

PRL

(PVS)(HOL)

....

....

....THEORY

defs, thms, tactics
rules, structure, code

rules, structure, code

rules, structure, code
defs, thms, tactics defs, thms, tactics

rules, structure, code

rules, structure, code
defs, thms, tactics

rules, structure, code
defs, thms, tactics

defs, thms, tactics

THEORY

THEORY

THEORY THEORY

THEORY

• Kooperierende Prozesse
– Library im Zentrum

– “Beliebig viele” Refiner, Editoren und externe Systeme als Klienten

– Angebundene externe Klienten: MetaPRL, JProver

Automatisierte Logik und Programmierung II §11 22 Konstruktion interaktiver Beweisassistenten

Nuprl: Gesamtarchitektur

GUI

Evaluator

Translator

GUI GUI

Evaluator

Evaluator

Evaluator

Translator

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Java OCaml

Maude

MetaPRL

SoS (Lisp)

Nuprl-5 Web

Library Nuprl

HOL/SPIN

MetaPRL

PVS

MEGAΩ

PRL

(PVS)(HOL)

....

....

....THEORY

defs, thms, tactics
rules, structure, code

rules, structure, code

rules, structure, code
defs, thms, tactics defs, thms, tactics

rules, structure, code

rules, structure, code
defs, thms, tactics

rules, structure, code
defs, thms, tactics

defs, thms, tactics

THEORY

THEORY

THEORY THEORY

THEORY

• Kooperierende Prozesse
– Library im Zentrum

– “Beliebig viele” Refiner, Editoren und externe Systeme als Klienten

– Angebundene externe Klienten: MetaPRL, JProver

• Kooperierende Inferenzmaschinen
– Asynchrones und verteiltes Theorembeweisen (In Erprobung)

Automatisierte Logik und Programmierung II §11 22 Konstruktion interaktiver Beweisassistenten

Nuprl: Gesamtarchitektur

GUI

Evaluator

Translator

GUI GUI

Evaluator

Evaluator

Evaluator

Translator

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Java OCaml

Maude

MetaPRL

SoS (Lisp)

Nuprl-5 Web

Library Nuprl

HOL/SPIN

MetaPRL

PVS

MEGAΩ

PRL

(PVS)(HOL)

....

....

....THEORY

defs, thms, tactics
rules, structure, code

rules, structure, code

rules, structure, code
defs, thms, tactics defs, thms, tactics

rules, structure, code

rules, structure, code
defs, thms, tactics

rules, structure, code
defs, thms, tactics

defs, thms, tactics

THEORY

THEORY

THEORY THEORY

THEORY

• Kooperierende Prozesse
– Library im Zentrum

– “Beliebig viele” Refiner, Editoren und externe Systeme als Klienten

– Angebundene externe Klienten: MetaPRL, JProver

• Kooperierende Inferenzmaschinen
– Asynchrones und verteiltes Theorembeweisen (In Erprobung)

• Reflexive Systemstruktur
– Systemdesign in Library enthalten (und veränderbar)

