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– Überprüfung gegebener formaler Beweise durch Computer

– Leicht zu programmieren aber extrem mühsam in Anwendung
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Computerunterstützung für logisches Schließen

• Proof Checking: Frühe Systeme, PCC
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– Entwurf anwendungsspezifischer Inferenzregeln durch Benutzer möglich

– Flexibel und sicher, gut für mittelgroße Anwendungen

• Beweisprozeduren fest eingeschränkte Anwendungsbereiche

– Entscheidungsprozeduren: automatische Tests for entscheidbare Probleme

– Theorembeweiser: vollständige Beweissuche in Prädikatenlogik

– Beweisplaner, Rewriting, Model Checking, Computer Algebra, . . .

– Effizient aber unflexibel durch Verwendung maschinennaher Techniken
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– Entscheidungsprozeduren für Teiltheorien (theoretisch aufwendig)

– Einbindung externer Beweisprozeduren (theoretisch & technisch schwierig)

• Existierende Systeme
– Nuprl: Konstruktive Typentheorie (ITT)

– Coq: Calculus of Constructions

– Alf: Martin-Löf Typentheorie (Name ändert sich ständig)

– PVS: Klassische Variante der Typentheorie

– HOL: Klassische Typentheorie

– Isabelle: Infrastruktursystem, Hauptanwendung HOL

– MetaPRL: Infrastruktursystem, Hauptanwendung ITT und CZF
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Interaktive Beweisassistenten

1. Ziele einer Implementierung

2. ML als formale Beschreibungssprache

3. Implementierung der Objektsprache

4. Systemkomponenten

5. Zur Korrektheit der Implementierung
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• Erweiterbare polymorphe Typdisziplin

– Grundkonstrukte: int, bool, tok, string, unit,

A->B, A#B, A+B, A list

– Anwenderdefinierbare abstrakte und rekursive Datentypen

– Typprüfung durch erweiterten Hindley/Milner Typechecking Algorithmus

• Kontrollierte Behandlung von Ausnahmen

– Anwenderdefinierbare Verarbeitung von Laufzeitfehlern
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Abstrakte Datentypen in ML

abstype time = int # int

with maketime(hrs,mins)

= if hrs<0 or 23<hrs or mins<0 or 59<mins

then fail

else abs time(hrs,mins)

and hours t = fst(rep time t)

and minutes t = snd(rep time t)

;;

absrectype * bintree = * + (* bintree) # (* bintree)

with mk tree(s1,s2) = abs bintree (inr(s1,s2) )

and left s = fst ( outr(rep bintree s) )

and right s = snd ( outr(rep bintree s) )

and atomic s = isl(rep bintree s)

and mk atom a = abs bintree(inl a)

;;

abs T, rep T : Konversionen: explizite ←→ abstrakte Repräsentation
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• Besonderer Schutz für Beweise

– Änderung nur durch Anwendung von Regeln möglich
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• Unterstützung für Beweistaktiken

– Beweise können nur mit Taktiken verändert werden

– Taktiken können (im Endeffekt) nur aus Regeln erzeugt werden
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Terme

Struktur: opid{p1:F 1, ..pk:F k}(x
1
1, ..x

1
m1

.t1;...x
n
1 , ..xn

mn
.tn)

opid Operatorname

p
j
:F

j
Parameter, bestehend aus Parameterwert und Parametertyp

xi
1,..,x

i
mi
.t

i
gebundener Term, wobei t

i
Term, xj

k Variable

absrectype term = (tok # parm list) # bterm list

and bterm = var list # term

with mk term (opid,parms) bterms = abs term((opid,parms),bterms)

and dest term t = rep term t

and mk bterm vars t = abs bterm(vars,t)

and dest bterm bt = rep bterm bt

;;

abstype var = tok

with mkvar t = abs var t

and dvar v = rep var v

;;

abstype level exp = tok + int with ...

abstype parm = int + tok + string + var + level exp + bool with ...
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Sequenzen

Struktur: x1:T1,...,xn:Tn ` C

xi Variable,

Ti, C Term

xi:Ti Deklaration

x1:T1,...,xn:Tn Hypothesenliste

C Konklusion

abstype declaration = var # term

with mk assumption v t = abs declaration(v,t)

and dest assumption d = rep declaration d
;;

lettype sequent = declaration list # term;;

Zugriff auf Sequenzkomponenten durch Beweisdestruktoren
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Regeln und Beweise

Inferenzregel: r = (dec,val)

dec Dekomposition: Abbildung von Sequenzen in Listen von Sequenzen

val Validierung: Abbildung von Listen von Termen und Sequenzen in Terme

Beweis mit Wurzel Z: Sequenz Z oder Struktur π = (Z, r, [π1,..,πn])

Z Sequenz

r Inferenzregel

π1,. . . ,πn Beweise, deren Wurzeln die Teilziele von dec(Z) sind

abstype rule = .....
absrectype proof = sequent # rule # proof list
with mk proof goal decs t = abs proof((decs,t), �,[])
and refine r p = let children = deduce children r p

and validation= deduce validation r p
in children, validation

and hypotheses p = fst (fst (rep proof p))
and conclusion p = snd (fst (rep proof p))
and refinement p = fst (snd (rep proof p))
and children p = snd (snd (rep proof p))

;;
lettype validation = proof list -> proof;;
lettype tactic = proof -> (proof list # validation);;
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• Korrektheit des Systems leicht verifizierbar
– Überprüfe korrekte Repräsentation der Regeln (Bibliotheksobjekte)

– Verifiziere Implementierung von refine

• Refiner kann ausgelagert werden
– Prozedur muß deduce children und deduce validation bereitstellen
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Neuer Term auf linker Seite wird durch Term der rechten Seite definiert
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• Struktur einer Abstraktion: lhs ≡ rhs

lhs (Abstraktions-)Term, dessen Unterterme Variablen sind

rhs Term, dessen freie Variablen auch in lhs frei sind

Neuer Term auf linker Seite wird durch Term der rechten Seite definiert

• Einfache Repräsentation als Datenstruktur

– Datentyp: abstype abstraction = term # term

– Konstruktor mk abstraction testet Zusatzbedingungen

• Abstraktionsanwendung ist aufwendiger (Folie 13)

– Pattern Matching und Instantiierung von Variablen

– Variablen zweiter Stufe beschreiben Terme mit gebundenen Variablen

• Unabhängige Behandlung der Darstellungsform

– Display-Formen beschreiben textliche Darstellung, Formatierung,

Klammerung, Abkürzungen, . . .

– Unterstützt vertraute, einfache und verständliche Notationen
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Repräsentation von Bibliothekskonzepten

• Bibliothek: formales mathematisches Lehrbuch

– Definitionen, Sätze, Beweise, Methoden, Anmerkungen, Regeln, . . .
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• Aufruf von Spezialprozeduren möglich



Automatisierte Logik und Programmierung II §11 13 Konstruktion interaktiver Beweisassistenten

Komponenten von Beweissystemen

• Inferenzmaschine (Refiner)
– Anwendung von Inferenzregeln auf Beweisziele

– Erzeugung noch zu bearbeitender Teilprobleme



Automatisierte Logik und Programmierung II §11 13 Konstruktion interaktiver Beweisassistenten

Komponenten von Beweissystemen

• Inferenzmaschine (Refiner)
– Anwendung von Inferenzregeln auf Beweisziele

– Erzeugung noch zu bearbeitender Teilprobleme

• Bibliothek (Library)
– Logische Datenbank zur Verwaltung von formalem Wissen



Automatisierte Logik und Programmierung II §11 13 Konstruktion interaktiver Beweisassistenten

Komponenten von Beweissystemen

• Inferenzmaschine (Refiner)
– Anwendung von Inferenzregeln auf Beweisziele

– Erzeugung noch zu bearbeitender Teilprobleme

• Bibliothek (Library)
– Logische Datenbank zur Verwaltung von formalem Wissen

• Benutzerinterface (Editor)
– Interface zur Kommunikation mit der Bibliothek

– Visuelle Bearbeitung von Terme, Beweise, Definitionen, . . .



Automatisierte Logik und Programmierung II §11 13 Konstruktion interaktiver Beweisassistenten

Komponenten von Beweissystemen

• Inferenzmaschine (Refiner)
– Anwendung von Inferenzregeln auf Beweisziele

– Erzeugung noch zu bearbeitender Teilprobleme

• Bibliothek (Library)
– Logische Datenbank zur Verwaltung von formalem Wissen

• Benutzerinterface (Editor)
– Interface zur Kommunikation mit der Bibliothek

– Visuelle Bearbeitung von Terme, Beweise, Definitionen, . . .

• Optionale Komponenten
– Extraktion von Programmen aus Beweisen
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– Logische Datenbank zur Verwaltung von formalem Wissen

• Benutzerinterface (Editor)
– Interface zur Kommunikation mit der Bibliothek

– Visuelle Bearbeitung von Terme, Beweise, Definitionen, . . .

• Optionale Komponenten
– Extraktion von Programmen aus Beweisen

– Evaluator: Ausführung von Programmen

– Exportmechanismen: Ascii Repräsentation, LaTeX, HTML, . . .

Mechanismen sind unabhängig
als separate Prozesse implementieren?
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– Entscheidungsprozeduren für arith und equality
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– Matching zweiter Stufe für Auf- und Rückfalten von Abstraktionen

• Unabhängig vom restlichen Beweissystem
– Implementierung als separater Prozess möglich

– Abfrage der Regeln durch Kommunikation mit Bibliothek realisierbar

– Erlaubt simultane und asynchrone Verwendung mehrerer Refiner
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– Strukturierung in Theorien und Directories, Browsen, Suchen, . . .
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– Mehrfache Instanzen möglich

Library Table
non−destructive bind/unbind

Application server

API API API API API API

Object Request Broker 

Transaction manager• Datenbankoperationen
– Dauerhafter Objektspeicher, Konsistenzsicherung

– Backup alter Zustände, Undo, Versionskontrolle

– Transaktionsgesteuerter simultaner Zugriff mehrerer Klienten

– Selektive Sichten auf Teile der Bibliothek



Automatisierte Logik und Programmierung II §11 16 Konstruktion interaktiver Beweisassistenten

Benutzerinterface (Editor)
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• Objekteditoren
– Erstellung und Modifikation spezifischer Objekte



Automatisierte Logik und Programmierung II §11 16 Konstruktion interaktiver Beweisassistenten
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Visuelle Unterstützung zur Bearbeitung von Wissen

• Navigator
– Navigation durch Bibliothek und Aufruf bereitgestellter Operationen

• Kommandointerface
– Interpretation von ML-Programmen und metasprachlichen Befehlen

• Beweiseditor
– Beweisführung und Navigation durch Beweisbäume

• Termeditor
– Strukturelles Editieren von Termen in Präsentationsform

• Objekteditoren
– Erstellung und Modifikation spezifischer Objekte

• Unabhängig
– Mehrere Editoren können gleichzeitig auf dieselbe Library zugreifen
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· Import, Export, Drucken und Dokumentation von Theorien

– Aufruf der Operationen öffnet Kommandomenü
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• Visuelle Navigation durch Bibliothek

– Keyboard- oder Maus-gesteuertes Durchlaufen

– Patterngesteuerte Namenssuche

– Springen zu gespeicherten Positionen

• Ausführung von Bibliothekskommandos

– Vorbereitete “Buttons” für die wichtigsten Operationen

· Erzeugung von Objekten, Theorien, Definitionen, Modulen

· Löschen, Kopieren, Verschieben, Umbenennen, Drucken, . . .

· Import, Export, Drucken und Dokumentation von Theorien

– Aufruf der Operationen öffnet Kommandomenü

– Graphische Interaktion verbesserungsfähig (i.w. Textterminal)

• Undo und Redo für jede Operation

• Anpassbar

– Buttons und Erscheinungsbild durch Bibliotheksobjekte definiert
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Browsen der Bibliothek mit Nuprls Navigator

- TERM: Navigator
MkTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*
PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetInOBJ*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↑↑ ↑ ← <>
↓↓↓↓ ↓↓↓ ↓↓ ↓ → ><

Navigator: [num thy 1; standard; theories]

Scroll position : 5

List Scroll : Total 159, Point 5, Visible : 10
----------------------------------------------

CODE TTF RE init num thy 1
COM TTF num thy 1 begin
COM TTF num thy 1 summary
COM TTF num thy 1 intro
DISP TTF divides df

-> ABS TTF divides
STM TTF divides wf
STM TTF comb for divides wf
STM TTF zero divs only zero
STM TTF one divs any

----------------------------------------------

· Bewegung des Nav Points durch Keyboard, Maus, oder Arrow-buttons

· Öffnen von Objekten durch “rechtsgehen” (oder Mittel-Click)

· Sichtbarkeitsbereich kann vergrößert oder verkleinert werden
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– Notation ist keine gute Repräsentationform für logische Konzepte
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• Mathematische Notation erlaubt keine Parser

– Zu reichhaltig (nicht kontextfrei) und nicht einheitlich geregelt

– Notation ist keine gute Repräsentationform für logische Konzepte

• Typentheorie trennt Notation von Struktur

– Logische Struktur leichter zu verarbeiten

– Separate Darstellungsform sorgt für verständliche Notation

• Editiere logische Struktur von Termen

– bei gleichzeitiger Präsentation der Darstellungsform auf dem Bildschirm
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Automatisierte Logik und Programmierung II §11 19 Konstruktion interaktiver Beweisassistenten
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– Erzeugung des Termbaums durch Ausfüllen von Slots in Darstellungsform

– Kenntnis der genauen Syntax nicht erforderlich

– Umdenken erforderlich: keine lineare Eingabe von Text

Benutzer kann mit verständlicher Notation arbeiten
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– Kontrolliertes Interface zum Refiner (via Library)

– Graphische Interaktion verbesserungsfähig (i.w. Textterminal)
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• Sichtbare Entwicklung von Beweisen

– Navigation durch Beweisbaum mit Maus und Keyboard

– Arbeiten im einzelnen Beweisknoten

– Kontrolliertes Interface zum Refiner (via Library)

– Graphische Interaktion verbesserungsfähig (i.w. Textterminal)

• Operationen auf Beweisen

– Erzeugung von Beweiszielen mit Term-Editor

– Synchrone oder asynchrone Ausführung von Taktiken

– Komprimierung und Expansion bis zu elementaren Schritten

– Verarbeitung von Backup-Beweisen und ‘Schmierblatt’-Beweisen

– Erzeugung von Extrakt-Termen
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Typischer Beweisknoten

©1 Status und Adresse im Beweisbaum

©2 Annotation des Beweisknotens

©3 Beweisziel (Sequenz)

©4 Angewandte Beweistaktik

©5 Teilziele mit Status, Adresse, Sequenz (neue Hypothesen)

©6 Beweise der Teilziele, sofern vorhanden
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• Kooperierende Prozesse
– Library im Zentrum

– “Beliebig viele” Refiner, Editoren und externe Systeme als Klienten

– Angebundene externe Klienten: MetaPRL, JProver

• Kooperierende Inferenzmaschinen
– Asynchrones und verteiltes Theorembeweisen (In Erprobung)

• Reflexive Systemstruktur
– Systemdesign in Library enthalten (und veränderbar)


