Automatisierte Logik und Programmierung II

Teil I11
. 0{{1\?@[’31“@
Aufbau von Beweissystemen . -
3, Ha

COMPUTERUNTERSTUTZUNG FUR LOGISCHES SCHLIESSEN I

e Proof Checking: Friihe Systeme, PCC
— Uberpriifung gegebener formaler Beweise durch Computer
— Leicht zu programmieren aber extrem miihsam in Anwendung

e Proof Editing:

— Computer fithrt Regeln aus und zeigt ungeloste Teilprobleme
— Benutzer konstruieren Beweise interaktiv durch Angabe der Regeln
— Leicht zu programmieren, Anwendbarkeit abhangig von Benutzerinterface

e Taktisches Theorembeweisen:
— Beweiskonstruktion durch programmierte Anwendung von Inferenzregeln
— Entwurf anwendungsspezifischer Inferenzregeln durch Benutzer moglich
— Flexibel und sicher, gut fir mittelgrofle Anwendungen

o Beweisprozeduren fest eingeschrankte Anwendungsbereiche
— Entscheidungsprozeduren: automatische Tests for entscheidbare Probleme
— Theorembeweiser: vollstandige Beweissuche in Pradikatenlogik
— Beweisplaner, Rewriting, Model Checking, Computer Algebra, .
— Effizient aber unflexibel durch Verwendung maschinennaher Techniken

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II, TEIL IV 1 Aufbau von Beweissystemen

BEWEISSYSTEME FUR DIE TYPENTHEORIE I

® Ausdruckstarke Theorien sind unentscheidbar
— Vollautomatische Beweissysteme nicht praktikabel
— Interaktive Beweiskonstruktion als Basismechanismus

e Begrenzte Automatisierung moglich

— Strategische Beweissuche durch Taktiken (einfach)
— Entscheidungsprozeduren fiir Teiltheorien (theoretisch aufwendig)
— Einbindung externer Beweisprozeduren (theoretisch & technisch schwierig)

e Existierende Systeme
— Nuprl: Konstruktive Typentheorie (ITT)
— Coq: Calculus of Constructions
— Alf: Martin-Lof Typentheorie (Name andert sich standig)
— PVS: Klassische Variante der Typentheorie
— HOL: Klassische Typentheorie
— Isabelle: Infrastruktursystem, Hauptanwendung HOL
— MetaPRL: Infrastruktursystem, Hauptanwendung I'T'T und CZF

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II, TEIL IV 2 Aufbau von Beweissystemen

Automatisierte Logik und Programmierung

';\‘EI”S‘,')
STy,

Lektion 12 . Egi
.= [

c, 4 Bl
. ‘I’QI
<m
-

Interaktive Bewelsassistenten :

1. Ziele einer Implementierung

2. ML als formale Beschreibungssprache
3. Implementierung der Objektsprache
4. Systemkomponenten

5. Zur Korrektheit der Implementierung

IMPLEMENTIERUNG VON BEWEISSYSTEMEN — WAS IST ZU TUN?

e Datenstrukturen fiir Kernbegriffe der Theorie
— Formalisierung der Metatheorie: Beweis, Regeln, Term, Abstraktion, ...
— Operatoren zur Konstruktion und Analyse konkreter Objekte

— Benotigt Reprasentation der Metasprache als Programmiersprache

e Basisterme und -regeln der Theorie implementieren
— In Systemtabellen oder als explizite Objekte der Bibliothek

e Mechanismen zur Verarbeitung formalen Wissens

— Refiner: Anwendung von Inferenzregeln (und Taktiken) auf Beweisziele

- Basisinferenzmaschine ohne eigene “Intelligenz”
— Library: Verwaltung des gesamten formalen Wissens

— Editor: visuelles Benutzerinterface
- Bearbeitung von Termen, Beweisen, Definitionen, ...

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 1 Konstruktion interaktiver Beweisassistenten

ML: FORMALE METASPRACHE ALS PROGRAMMIERSPRACHE I

e Entstanden im Edinburgh LCF Projekt (friihe 70er Jahre)

— Formales Englisch zur Unterstiitzung von logischer Symbolverarbeitung
— Standardisiert Ende der 80er Jahre als SML und Caml
— Nuprl benutzt die Originalversion “Classic ML” (Appendix B des Manuals)

e Funktionale Programmiersprache hoherer Stufe
— Programmieren = Definition + Anwendung von Funktionen (wie \-Kalkiil)

— Pattern Matching unterstiitzt Verstandlichkeit komplexe Definitionen

e Erweiterbare polymorphe Typdisziplin

— Grundkonstrukte: int, bool, tok, string, unit,
A->B, A#B, A+B, A list

— Anwenderdefinierbare abstrakte und rekursive Datentypen

— Typpriifung durch erweiterten Hindley/Milner Typechecking Algorithmus

e Kontrollierte Behandlung von Ausnahmen

— Anwenderdefinierbare Verarbeitung von Laufzeitfehlern

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 2 Konstruktion interaktiver Beweisassistenten

ABSTRAKTE DATENTYPEN IN ML I

abstype time = int # int
with maketime (hrs,mins)
= 1f hrs<0 or 23<hrs or mins<0 or 59<mins
then fail
else abs time(hrs,mins)
and hours t = fst(rep time t)

and minutes t = snd(rep time t)

))

absrectype * bintree = * + (* bintree) # (* bintree)
with mk tree(sl,s2) = abs bintree (inr(s1,s2))

and left s = fst (outr(rep bintree s))
and right s = snd (outr(rep bintree s))
and atomic s = isl(rep bintree s)
and mk atom a = abs bintree(inl a)

abs T', rep T: Konversionen: explizite «+— abstrakte Reprasentation

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 3 Konstruktion interaktiver Beweisassistenten

DATENSTRUKTUREN FUR DIE IMPLEMENTIERUNG VON ITT I

e Prazisierung der informalen Definitionen
— Terme, Regeln, Beweise, Abstraktion, Bibliothek, ...

e Abstrakte Datentypen kapseln Objekte

— Kontrollierter Zugrift nur durch Konstruktoren und Destruktoren

e Besonderer Schutz fir Beweise
— Anderung nur durch Anwendung von Regeln méglich

— Verhindert unbefugte Manipulationen und Beweisen

e Unterstutzung fur Beweistaktiken
— Beweise konnen nur mit Taktiken verandert werden

— Taktiken konnen (im Endeffekt) nur aus Regeln erzeugt werden

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 4 Konstruktion interaktiver Beweisassistenten

TERME I

Struktur: opid{p:F',.p,: F' } (:1:%, T Ay Ly,)

mji
opid Operatorname

pF. Parameter, bestehend aus Parameterwert und Parametertyp
T, .. ,:cfnz, .t. gebundener Term, wobei ¢, Term, z;, Variable

absrectype term = (tok # parm list) # bterm list

and bterm = var list # term
with mk term (opid,parms) bterms = abs_term((opid,parms),bterms)
and dest term t = rep_term t
and mk bterm vars t = abs_bterm(vars,t)
and dest_bterm bt = rep_bterm bt

abstype var = tok
with tok tovar t = abs_var t
and var_to tok v = rep.var v
abstype level exp = tok + int with
abstype parm = int + tok + string + var + level_exp + bool with

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 5 Konstruktion interaktiver Beweisassistenten

SEQUENZEN I

Struktur: x:7y,...,vn:1, F C

X Variable,

T;, C Term

x; 1 Deklaration
x1:11,...,2,:1, Hypothesenliste
C Konklusion

abstype declaration = var # term # bool
with mk declaration v t b = abs declaration(v,t,b)
and dest declaration d = rep declaration d

lettype sequent = declaration list # term;,

Zugriff auf Sequenzkomponenten durch Beweisdestruktoren

L AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 6 Konstruktion interaktiver Beweisassistenten

REGELN UND BEWEISE I

Inferenzregel: r = (dec,val)

dec Dekomposition: Abbildung von Sequenzen in Listen von Sequenzen
val Validierung: Abbildung von Listen von Termen und Sequenzen in Terme

Beweis mit Wurzel Z: Sequenz Z oder Struktur m = (Z, r, [71,..,7,])
Z Sequenz
r Inferenzregel

71, .., 7, Beweise, deren Wurzeln die Teilziele von dec(Z) sind

abstype rule = ...

absrectype proof = sequent # rule # proof list
with make proof node decs t = abs proof((decs,t), ¢,[])

and refine r p = let children = deduce children r p
and validation= deduce _validation r p
in

children, validation
and hypotheses p = fst (fst (rep proof p))
and conclusion p = snd (fst (rep_proof p))
and refinement p = fst (snd (rep_proof p))
and children p = snd (snd (rep_proof p))
lettype validation = proof list -> proof;;
lettype tactic = proof -> (proof list # validation);;

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 7 Konstruktion interaktiver Beweisassistenten

REPRASENTATION VON REGELN UND BEWEISEN

e Regeln reprasentiert als Regelschemata
— Beweisbaum speichert angewandte Regel in jedem Knoten
— refine wandelt Regeln in Taktiken um
— Taktik verwendet Pattern Matching und Term Rewriting
— Erleichtert Komposition von Regeln

e Taktiken verfeinern Regelbegrift
— Taktiken sind Dekompositionen
— Anwendung der Dekomposition erzeugt Teilziele und Validierung
— Anwendung der Validierung baut Beweisbaum, wenn Blatter bewiesen

e Korrektheit des Systems leicht verifizierbar
— Uberpriife korrekte Représentation der Regeln (Bibliotheksobjekte)
— Verifiziere Implementierung von refine

e Refiner kann ausgelagert werden
— Prozedur mufl deduce_children und deduce_validation bereitstellen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 8 Konstruktion interaktiver Beweisassistenten

REPRASENTATION DEFINITORISCHER ERWEITERUNGEN I

e Struktur einer Abstraktion: [hs = rhs

lhs (Abstraktions-)Term, dessen Unterterme Variablen sind

rhs Term, dessen freie Variablen auch in [hs frei sind

Neuer Term auf linker Seite wird durch Term der rechten Seite definiert

e Einfache Reprasentation als Datenstruktur
— Datentyp: abstype abstraction = term # term

— Konstruktor mk_abstraction testet Zusatzbedingungen

e Abstraktionsanwendung ist aufwendiger (Folie 13)
— Pattern Matching und Instantiierung von Variablen

— Variablen zweiter Stufe beschreiben Terme mit gebundenen Variablen

e Unabhangige Behandlung der Darstellungsform
— Display-Formen beschreiben textliche Darstellung, Formatierung,
Klammerung, Abkiirzungen, ...

— Unterstutzt vertraute, einfache und verstandliche Notationen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 9 Konstruktion interaktiver Beweisassistenten

REPRASENTATION VON BIBLIOTHEKSKONZEPTEN I

e Bibliothek: formales mathematisches Lehrbuch
— Definitionen, Satze, Beweise, Methoden, Anmerkungen, Regeln, .

— Ermoglicht zusatzliche Inferenzregeln: 1emma, extract, ...

e Bibliotheksstruktur
— Ungeordnete Kollektion von Objekten

— Strukturen (Theorien, Directories, Links,. ..) konnen aufgesetzt werden

e Bibliotheksobjekte
Tupel bestehend aus Inhalt und Verwaltungsinformation
Inhalt: Abstraktion, Display Form, (Teil-)Beweis, ML code, Text, ...
Art: ABS, DISP, STM, CODE, COM, RULE, DIR, ...
Eigenschaften: Status, Name, Aktiv?, Referenzumgebung, ...
Extra: Abhangige Objekten, interne Id, sichtbare Position, . ..

In Nuprl wird jedes Objekt als abstrakter Term definiert

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 10 Konstruktion interaktiver Beweisassistenten

IMPLEMENTIERUNG DER KONKRETEN OBJEKTSPRACHE I

® Basisterme Operator und Termstruktur — Darstellungsform
function{}(S; z.7T) x:S—T
lambda{} (x.1) A\t .t
apply{}(f;t) /i

— Auflistung der Abstraktionsterme in ML-Operatorentabelle
— Erstellung von Display Formen fiir jeden Basisterm

e Konstruktoren & Destruktoren

let mk_function_term x S T = make term (‘function‘,([]) [[],S; [x],T]
and mk_lambda_term x t = make_ term (‘lambda‘,[]) [[x],t]
and mk_apply_term f a = make_term (‘apply‘,[1) [[],f; [],al

let dest_function t = let op,[(),a; [x],b] = dest_term t in x,a,b
and dest lambda t = let op, [[x],b] = dest term t in x,b
and dest apply t = let op,[O,f; [],a]l = dest term t in f,a

e Aufbau durch Verwendung von Bibliotheksobjekten
— Operatorentabelle, Konstruktoren, Destruktoren in Code-Objekten
— Display Formen und Inferenzregeln sind explizite Bibliotheksobjekte

— schnelle, flexible Implementierung “beliebiger” Theorien

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 11 Konstruktion interaktiver Beweisassistenten

IMPLEMENTIERUNG DES KONKRETEN INFERENZSYSTEMS

e Inferenzregeln dargestellt als Regel-Objekte
[SXT ext (s,t)

bv ind dent T F £ H A X B ext <a, b>
y lndependent_palrrormatlon BY independent_pairFormation ()

'S ext s
H A ext a
I'+T ext { H - B extb

e Substitutionen und Parameter explizit dargestellt

I 2p5-T=2,:5-T,eU; A - RULE: functionEquality
by functionEquality H F (x1:al — bl) = (x2:a2 — b2)
BY functionkqualit
[FS=5,eU; n q -
H F al = a2

L, :Sl - Tl[/271]=T2[/CEJ GUJ A H y:al !subst(bl; xl1.y) = !subst(b2; x2.y)

e Aufruf von Spezialprozeduren moglich

- RULE: arith

H F C ext &
BY arith U

Let SubGoals t = CallLisp(ARITH)
SubGoals

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 12 Konstruktion interaktiver Beweisassistenten

KOMPONENTEN VON BEWEISSYSTEMEN I

e Inferenzmaschine (Refiner)
— Anwendung von Inferenzregeln aut Beweisziele
— Erzeugung noch zu bearbeitender Teilprobleme

e Bibliothek (Library)

— Logische Datenbank zur Verwaltung von formalem Wissen

e Benutzerinterface (Editor)
— Interface zur Kommunikation mit der Bibliothek
— Visuelle Bearbeitung von Terme, Beweise, Definitionen, . ..

e Optionale Komponenten
— Extraktion von Programmen aus Beweisen
— Evaluator: Ausfiihrung von Programmen
— Exportmechanismen: Ascii Reprasentation, LaTeX, HTML, ...

Mechanismen sind unabhangig
als separate Prozesse implementieren?

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 13 Konstruktion interaktiver Beweisassistenten

VERARBEITUNG VON INFERENZREGELN (REFINER)

e Basisinferenzmaschine ohne eigene “Intelligenz”
— Implementierung von refine

- Wandelt Inhalte der Regel-Objekte in Taktiken um

e Schutz gegen unbefugte Manipulation von Beweisen
— Bearbeitung von Beweisobjekten mufl Refiner benutzen

e Inferenzmechanismen
— Pattern Matching + Term Rewriting fiir die meisten Regelschemata
— Entscheidungsprozeduren fur arith und equality
— (3-Reduktion fiir compute
— Matching zweiter Stufe fiir Auf- und Riickfalten von Abstraktionen

e Unabhangig vom restlichen Beweissystem
— Implementierung als separater Prozess moglich
— Abfrage der Regeln durch Kommunikation mit Bibliothek realisierbar
— Erlaubt simultane und asynchrone Verwendung mehrerer Refiner

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 14 Konstruktion interaktiver Beweisassistenten

MATHEMATISCH LOGISCHE WISSENSBANK (LIBRARY)

e Grundoperationen zur Verwaltung von Objekten
— Erzeugung, Loschen, Umbenennen, Verschieben, (De)Aktivieren, Drucken,
— Strukturierung in Theorien und Directories, Browsen, Suchen, ...

e Wissensarchivierung
— Zertifikate: Rechtfertigung fiir gespeicherte Inferenzen
— Explizite Links und logische Abhangigkeiten zwischen Objekten

e Anbindung anderer Komponenten
— Refiner, Editor, externe Systeme als Klienten API IS API [API (5] API

Application server

— Mehrfache Instanzen moglich

o Datenbankoperationen Transaction manager
— Dauerhafter Objektspeicher, Konsistenzsicherung Library Table

non—destructive bind/unbind

— Backup alter Zustande, Undo, Versionskontrolle
— Transaktionsgesteuerter simultaner Zugrift mehrerer Klienten

— Selektive Sichten auf Teile der Bibliothek

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 15 Konstruktion interaktiver Beweisassistenten

BENUTZERINTERFACE (EDITOR)

Visuelle Unterstiitzung zur Bearbeitung von Wissen

e Navigator
— Navigation durch Bibliothek und Aufruf bereitgestellter Operationen

e Kommandointerface
— Interpretation von ML-Programmen und metasprachlichen Befehlen

e Beweiseditor
— Beweisfiihrung und Navigation durch Beweisbaume

e Termeditor
— Strukturelles Editieren von Termen in Prasentationstorm

e Objekteditoren
— Erstellung und Modifikation spezifischer Objekte

e Unabhangig

— Mehrere Editoren konnen gleichzeitig auf dieselbe Library zugreifen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 16 Konstruktion interaktiver Beweisassistenten

NUPRL’S NAVIGATOR Manual §4 I

e Visuelle Navigation durch Bibliothek

— Keyboard- oder Maus-gesteuertes Durchlaufen
— Patterngesteuerte Namenssuche

— Springen zu gespeicherten Positionen

e Ausfiuhrung von Bibliothekskommandos
— Vorbereitete “Buttons” fiir die wichtigsten Operationen
- Erzeugung von Objekten, Theorien, Definitionen, Modulen
- Loschen, Kopieren, Verschieben, Umbenennen, Drucken, ...
- Import, Export, Drucken und Dokumentation von Theorien
— Aufruf der Operationen offnet Kommandoment

— Graphische Interaktion verbesserungstahig (i.w. Textterminal)

e Undo und Redo fur jede Operation

e Anpassbar
— Buttons und Erscheinungsbild durch Bibliotheksobjekte definiert

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 17 Konstruktion interaktiver Beweisassistenten

BROWSEN DER BIBLIOTHEK MIT NUPRLS NAVIGATOR

MkTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThyx*
CheckMinTHY* MinTHY* EphTHY* ExTHY*

Millx ObidCollector* NameSearch* PathStack* RaiseTopLoopsx*
PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetInOBJx*
MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Actx DeAct*x MkThyDir* RmThyObj* MvThyObj*

T oI e o
WL LD L = <

Navigator: [num thy_1; standard; theories]
Scroll position : 5

List Scroll : Total 159, Point 5, Visible : 10
CODE TTF RE_init_num_thy._1
COM TTF num_thy_1_begin
COM TTF num_thy_1_summary
COM TTF num_thy_1_intro
DISP TTF divides_df

-> ABS TTF divides
STM TTF divides_wf
STM TTF comb_for_divides_wf
STM TTF =zero._divs_only_zero
STM TTF one_divs_any

- Bewegung des Nav Points durch Keyboard, Maus, oder Arrow-buttons
. Offnen von Objekten durch “rechtsgehen” (oder Mittel-Click)

- Sichtbarkeitsbereich kann vergroflert oder verkleinert werden

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 18 Konstruktion interaktiver Beweisassistenten

EDITIEREN VON TERMEN Manual §5 I

e Mathematische Notation erlaubt keine Parser
— Zu reichhaltig (nicht kontextfrei) und nicht einheitlich geregelt

— Notation ist keine gute Reprasentationform fiir logische Konzepte

e Typentheorie trennt Notation von Struktur
— Logische Struktur leichter zu verarbeiten

— Separate Darstellungsform sorgt fiir verstandliche Notation

e Editiere logische Struktur von Termen

— bei gleichzeitiger Prasentation der Darstellungsform auf dem Bildschirm

e Struktureditor

— Erzeugung des Termbaums durch Ausfillen von Slots in Darstellungsform
— Kenntnis der genauen Syntax nicht erforderlich

— Umdenken erforderlich: keine lineare Eingabe von Text

Benutzer kann mit verstandlicher Notation arbeiten

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 19 Konstruktion interaktiver Beweisassistenten

BEARBEITEN VON BEWEISEN Manual §6 I

e Sichtbare Entwicklung von Beweisen
— Navigation durch Beweisbaum mit Maus und Keyboard
— Arbeiten im einzelnen Beweisknoten
— Kontrolliertes Interface zum Refiner (via Library)

— Graphische Interaktion verbesserungstahig (i.w. Textterminal)

e Operationen auf Beweisen
— Erzeugung von Beweiszielen mit Term-Editor
— Synchrone oder asynchrone Ausfithrung von Taktiken
— Komprimierung und Expansion bis zu elementaren Schritten
— Verarbeitung von Backup-Beweisen und ‘Schmierblatt’-Beweisen

— Erzeugung von Extrakt-Termen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 20 Konstruktion interaktiver Beweisassistenten

TYPISCHER BEWEISKNOTEN I

- PRF: intsgrt - PRF: intsgrt

(1) # top 1 (1) # top 1 2
2) B e vum's upcase.....
@ 1. =N 3 s ozl

F 3y:=N. y¥¥<x & x<(y+1)? 9. O

P 2 2

. B il ¥ <x-1 A x-1<{y+1)
() BY fatInd 1 - 3N, yhex & Eelyer)?
o #11 @ BY |

..... basecase.....

- Jy:N. y2<0 A 0<(y+1)2
) BY exR "0
There is 1 hidden subgoal

5 # 12

..... upcase.....
x:Z

. Jdy:N. y?2<x-1 A x-1<(y+1)2
F Jy:N. y?<x A x<(y+1)?

(1) Status und Adresse im Beweisbaum

(2) Annotation des Beweisknotens

(3) Beweisziel (Sequenz)

(0 Angewandte Beweistaktik

(® Teilziele mit Status, Adresse, Sequenz (neue Hypothesen)
(6) Beweise der Teilziele, sofern vorhanden

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §12 21 Konstruktion interaktiver Beweisassistenten

NUPRL: GESAMTARCHITEKTUR I

. eu || eu | cu |

Inference |
Evaluator Engine
THEORY
Maude defs, thms, tactics Inference
rules, structure, code En g in e MetaPRL
valuator _— | —
MetaPRL THEORY PRL THEORY Inference
defs, thms, tactics defs, thms, tactics En g ine HOL/SPIN
E al ator rules, structure, code rules, structure, code
nference
SoS (Lisp) THEORY (HoL) THEORY (PVS) THEORY Engine PVS
defs, thms, tactics defs, thms, tactics defs, thms, tactics
rules, structure, code rules, structure, code rules, structure, code
Evaluator Inference QMEGA
Engine

Translator

Java

Translator

OCaml

e Kooperierende Prozesse
— Library im Zentrum
— “Beliebig viele” Refiner, Editoren und externe Systeme als Klienten
— Angebundene externe Klienten: MetaPRL, JProver

e Kooperierende Inferenzmaschinen
— Asynchrones und verteiltes Theorembeweisen (In Erprobung)

e Reflexive Systemstruktur
— SystemdeSign n Libr&ry enthalten (und verdnderbar)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §12 22 Konstruktion interaktiver Beweisassistenten

