Automatisierte Logik und Programmierung II

Teil IV
\5{{;\' €rg 7
. o o &
Beweisautomatisierung . .
. 0

- By

* ‘P(,:?!

Jm

1. Taktische Beweisfithrung
2. Entscheidungsprozeduren

3. Integration externer Systeme

Automatisierte Logik und Programmierung

Werg,
*)ﬁ I(q,’.,

Lektion 13 ; @ﬁ’
Taktiken . ‘P-%”i

Benutzerdefinierbare Beweisstrategien

1. Grundkonzept und Arbeitsweise

2. Programmierung von Taktiken

3. Rewriting als Taktiken

4. Erfahrungen im praktischen Umgang

TAKTISCHE BEWEISFUHRUNG I

e Refiner akzeptiert Metalevel-Programme
— Programme enthalten Aufrufe von Beweisregeln, die Refiner ausfiihrt
— Programme analysieren Beweiskomponenten, um Regeln zu bestimmen

— Programme diirfen beliebig komplex sein

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 1 Taktische Beweisfithrung

TAKTISCHE BEWEISFUHRUNG I

e Refiner akzeptiert Metalevel-Programme
— Programme enthalten Aufrufe von Beweisregeln, die Refiner ausfiihrt
— Programme analysieren Beweiskomponenten, um Regeln zu bestimmen

— Programme diirfen beliebig komplex sein

e Flexibel: Benutzer programmiert Beweisstrategien
— Vorausplanung von Beweisen
— Suche nach Beweisen
— Strukturierung von Beweisen (Verstecken tiberfliissiger Details)
— Abgeleitete Inferenzregeln fiir benutzerdefinierte Theorien

— Austesten komplexer Beweis-/Syntheseverfahren in sicherer Umgebung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 1 Taktische Beweisfithrung

TAKTISCHE BEWEISFUHRUNG I

e Refiner akzeptiert Metalevel-Programme
— Programme enthalten Aufrufe von Beweisregeln, die Refiner ausfiihrt
— Programme analysieren Beweiskomponenten, um Regeln zu bestimmen

— Programme diirfen beliebig komplex sein

e Flexibel: Benutzer programmiert Beweisstrategien
— Vorausplanung von Beweisen
— Suche nach Beweisen
— Strukturierung von Beweisen (Verstecken tiberfliissiger Details)
— Abgeleitete Inferenzregeln fiir benutzerdefinierte Theorien

— Austesten komplexer Beweis-/Syntheseverfahren in sicherer Umgebung

e Sicher: Taktiken sind immer korrekt
— Taktiken konnen erfolglos sein oder nicht terminieren

— Das Resultat einer Taktik-Anwendung ist immer ein gultiger Beweis
des zugrundeliegenden logischen Kalkils

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 1 Taktische Beweisfithrung

VERARBEITUNG VON TAKTIKEN I

e Benutzer gibt Taktik als Inferenzschritt

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 2 Taktische Beweisfithrung

VERARBEITUNG VON TAKTIKEN I

e Benutzer gibt Taktik als Inferenzschritt

e Beweiseditor erganzt notwendige Daten
— Aktuelle Beweissequenz wird zum Beweisziel
— Beweiseditor iibergibt Beweisziel und Taktik an Refiner
— Beweisbaum (falls vorhanden) unterhalb des Knotens wird ignoriert

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 2 Taktische Beweisfithrung

VERARBEITUNG VON TAKTIKEN I

e Benutzer gibt Taktik als Inferenzschritt

e Beweiseditor erganzt notwendige Daten
— Aktuelle Beweissequenz wird zum Beweisziel
— Beweiseditor iibergibt Beweisziel und Taktik an Refiner
— Beweisbaum (falls vorhanden) unterhalb des Knotens wird ignoriert

e Refiner wendet Taktik auf Beweisziel an
— Ergibt ungeloste Teilziele und Validierung
— Anwendung der Validierung auf Teilziele erzeugt Beweisbaum
— Fehlermeldung, falls Taktik nicht anwendbar

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 2 Taktische Beweisfithrung

VERARBEITUNG VON TAKTIKEN I

e Benutzer gibt Taktik als Inferenzschritt

e Beweiseditor erganzt notwendige Daten
— Aktuelle Beweissequenz wird zum Beweisziel
— Beweiseditor iibergibt Beweisziel und Taktik an Refiner
— Beweisbaum (falls vorhanden) unterhalb des Knotens wird ignoriert

e Refiner wendet Taktik auf Beweisziel an
— Ergibt ungeloste Teilziele und Validierung
— Anwendung der Validierung auf Teilziele erzeugt Beweisbaum
— Fehlermeldung, falls Taktik nicht anwendbar

e Library speichert Beweisbaum
— Rechtfertigung fiir den durchgefithrten Inferenzschritt
— Beweiseditor zeigt Taktik und offene Teilziele
— Beweisbaum wird nur auf expliziten Wunsch sichtbar gemacht

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 2 Taktische Beweisfithrung

VERARBEITUNG VON TAKTIKEN I

e Benutzer gibt Taktik als Inferenzschritt

e Beweiseditor erganzt notwendige Daten
— Aktuelle Beweissequenz wird zum Beweisziel
— Beweiseditor iibergibt Beweisziel und Taktik an Refiner
— Beweisbaum (falls vorhanden) unterhalb des Knotens wird ignoriert

e Refiner wendet Taktik auf Beweisziel an
— Ergibt ungeloste Teilziele und Validierung
— Anwendung der Validierung auf Teilziele erzeugt Beweisbaum
— Fehlermeldung, falls Taktik nicht anwendbar

e Library speichert Beweisbaum
— Rechtfertigung fiir den durchgefithrten Inferenzschritt
— Beweiseditor zeigt Taktik und offene Teilziele
— Beweisbaum wird nur auf expliziten Wunsch sichtbar gemacht

Taktik wirkt wie abgeleitete Inferenzregel

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 2 Taktische Beweisfithrung

TRANSFORMATIONSTAKTIKEN I

e Benutzer gibt Taktik als Kommando

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 3 Taktische Beweisfithrung

TRANSFORMATIONSTAKTIKEN I

e Benutzer gibt Taktik als Kommando

e Beweiseditor erganzt notwendige Daten
— Gesamter aktueller Beweisbaum wird zum Beweisziel
— Beweiseditor iibergibt Beweisziel und Taktik an Refiner

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 3 Taktische Beweisfithrung

TRANSFORMATIONSTAKTIKEN I

e Benutzer gibt Taktik als Kommando

e Beweiseditor erganzt notwendige Daten
— Gesamter aktueller Beweisbaum wird zum Beweisziel
— Beweiseditor iibergibt Beweisziel und Taktik an Refiner

e Refiner wendet Taktik auf Beweisziel an
— Ergibt ungeloste Teilziele und Validierung
— Anwendung der Validierung auf Teilziele erzeugt Beweisbaum
— Beweisziel bleibt unverandert, falls Taktik nicht anwendbar

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 3 Taktische Beweisfithrung

TRANSFORMATIONSTAKTIKEN I

e Benutzer gibt Taktik als Kommando

e Beweiseditor erganzt notwendige Daten
— Gesamter aktueller Beweisbaum wird zum Beweisziel
— Beweiseditor iibergibt Beweisziel und Taktik an Refiner

e Refiner wendet Taktik auf Beweisziel an
— Ergibt ungeloste Teilziele und Validierung
— Anwendung der Validierung auf Teilziele erzeugt Beweisbaum
— Beweisziel bleibt unverandert, falls Taktik nicht anwendbar

e Library speichert Beweisbaum
— Rechtfertigung fiir die durchgetiihrten Inferenzschritte
— Beweiseditor zeigt ausgefithrte Einzelschritte und offene Teilziele
— Taktikname wird nicht gespeichert

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 3 Taktische Beweisfithrung

TRANSFORMATIONSTAKTIKEN I

e Benutzer gibt Taktik als Kommando

e Beweiseditor erganzt notwendige Daten
— Gesamter aktueller Beweisbaum wird zum Beweisziel
— Beweiseditor iibergibt Beweisziel und Taktik an Refiner

e Refiner wendet Taktik auf Beweisziel an
— Ergibt ungeloste Teilziele und Validierung
— Anwendung der Validierung auf Teilziele erzeugt Beweisbaum
— Beweisziel bleibt unverandert, falls Taktik nicht anwendbar

e Library speichert Beweisbaum
— Rechtfertigung fiir die durchgetiihrten Inferenzschritte
— Beweiseditor zeigt ausgefithrte Einzelschritte und offene Teilziele
— Taktikname wird nicht gespeichert

e Ziel: Modifikation existierender Beweise
— Kopieren, Expandieren, Komprimieren, Analogie, . ..
— In Nuprl 5 nur als vordefinierte Operationen des Beweiseditors

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 3 Taktische Beweisfithrung

VERFEINERUNGS VS. TRANSFORMATIONSTAKTIK I

Effekte der Anwendung der Taktik Cases

top # top
= T = T
BY Cases [A;B] BY cut 1 AvB
1 # 1
- AvB - AvB
2 # 2
1. A 1. AvB
- T - T
3 BY orE 1
1. B
- T # 21
1. A
= T
2 2
1. B
- T

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 4 Taktische Beweisfithrung

PROGRAMMIERUNG VON TAKTIKEN I

e Explizite Umwandlung von Regeln mittels refine
— Nur fur ausgefallenere Regeln oder starkere Kontrolle erforderlich
— Fast alle Regeln sind durch vordefinierte Taktiken abgedeckt

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 5 Taktische Beweisfithrung

PROGRAMMIERUNG VON TAKTIKEN I

e Explizite Umwandlung von Regeln mittels refine
— Nur fur ausgefallenere Regeln oder starkere Kontrolle erforderlich
— Fast alle Regeln sind durch vordefinierte Taktiken abgedeckt

® Vordefinierte Standardtaktiken
— Gespeichert in Code-Objekten der Library

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 5 Taktische Beweisfithrung

PROGRAMMIERUNG VON TAKTIKEN I

e Explizite Umwandlung von Regeln mittels refine
— Nur fur ausgefallenere Regeln oder starkere Kontrolle erforderlich
— Fast alle Regeln sind durch vordefinierte Taktiken abgedeckt

® Vordefinierte Standardtaktiken
— Gespeichert in Code-Objekten der Library

e Komposition existierender Taktiken durch Tacticals
— Operationen, die Taktiken zu neuen Taktiken zusammensetzen

— Viele vordefinierte Tacticals in der Library

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 5 Taktische Beweisfithrung

PROGRAMMIERUNG VON TAKTIKEN I

e Explizite Umwandlung von Regeln mittels refine

— Nur fur ausgefallenere Regeln oder starkere Kontrolle erforderlich
— Fast alle Regeln sind durch vordefinierte Taktiken abgedeckt

e Vordefinierte Standardtaktiken
— Gespeichert in Code-Objekten der Library

e Komposition existierender Taktiken durch Tacticals
— Operationen, die Taktiken zu neuen Taktiken zusammensetzen

— Viele vordefinierte Tacticals in der Library

e Metalevel-Steuerung von Taktikanwendungen

— ML-Programme analysieren Beweisziel und Kontext

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG IT §13 5 Taktische Beweisfithrung

UMWANDLUNG VON REGELN IN TAKTIKEN I

e Umwandlung der Regel hypothesis

let get pos hyp num i proof =
if i<0 then length (hypotheses proof)+1+i
else 1
let NthHyp 1 proof =
let 1’ = get pos_hypnum 1 proof
in
Refine ‘hypothesis‘ [mk int arg i’] proof

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 6 Taktische Beweisfithrung

UMWANDLUNG VON REGELN IN TAKTIKEN I

e Umwandlung der Regel hypothesis

let get pos hyp num i proof =
if i<0 then length (hypotheses proof)+1+i
else 1
let NthHyp 1 proof =
let 1’ = get pos_hypnum 1 proof
in
Refine ‘hypothesis‘ [mk int arg i’] proof
e Ausdiunnen uberflussiger Hypothesen

let Thin 1 proof =
let 1’ = get pos_ hypnum i p roof
in
if i=0 then failwith ‘Thin: cannot thin conclusion®
else Refine ‘thin‘ [mk int arg i’] proof

))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 6 Taktische Beweisfithrung

TAKTIKEN FUR NUPRL’S INFERENZREGELN Manual §8 I

e Vereinheitlichung der Dekompositionsregeln
— D 1: Top-Level Dekomposition einer Hypothese oder der Konklusion
— EgD 7, MemD 7: Dekomposition einer Gleichheit bzw. Typzugehorigkeit
— EqTypeD i, MemTypeD : Dekomposition des Typs einer Gleichheit

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 7 Taktische Beweisfithrung

TAKTIKEN FUR NUPRL’S INFERENZREGELN Manual §8 I

e Vereinheitlichung der Dekompositionsregeln
— D 1: Top-Level Dekomposition einer Hypothese oder der Konklusion
— EgD ¢, MemD #: Dekomposition einer Gleichheit bzw. Typzugehorigkeit
— EqTypeD i, MemTypeD 7: Dekomposition des Typs einer Gleichheit

e Strukturelle Regeln
— Hypothesis, Declaration: Konklusion ist in Hypothesen enthalten
— Assert t: Einfithren von Zwischenbehauptungen (Schnittregel)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 7 Taktische Beweisfithrung

TAKTIKEN FUR NUPRL’S INFERENZREGELN Manual §8 I

e Vereinheitlichung der Dekompositionsregeln
— D 1: Top-Level Dekomposition einer Hypothese oder der Konklusion
— EgD ¢, MemD #: Dekomposition einer Gleichheit bzw. Typzugehorigkeit
— EqTypeD i, MemTypeD 7: Dekomposition des Typs einer Gleichheit

e Strukturelle Regeln
— Hypothesis, Declaration: Konklusion ist in Hypothesen enthalten
— Assert t: Einfiihren von Zwischenbehauptungen (Schnittregel)

e Berechnungsregeln
— Reduce : Top-Level Reduktion einer Hypothese oder der Konklusion

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 7 Taktische Beweisfithrung

TAKTIKEN FUR NUPRL’S INFERENZREGELN Manual §8 I

e Vereinheitlichung der Dekompositionsregeln
— D 1: Top-Level Dekomposition einer Hypothese oder der Konklusion
— EgD ¢, MemD #: Dekomposition einer Gleichheit bzw. Typzugehorigkeit
— EqTypeD i, MemTypeD 7: Dekomposition des Typs einer Gleichheit

e Strukturelle Regeln
— Hypothesis, Declaration: Konklusion ist in Hypothesen enthalten
— Assert t: Einfiihren von Zwischenbehauptungen (Schnittregel)

e Berechnungsregeln
— Reduce : Top-Level Reduktion einer Hypothese oder der Konklusion

e Einfiigen von Steuerungsparametern in Taktiken

— Name © einer neuen Variablen (D 0)
— Typ 1" eines Teilterms im Beweisziel With [x:5—T1" (MemD 0)
— Term, s, der fur eine Variable einzusetzen ist With (D 0)
— Level 5 eines Universums At E (D 0)
— Abhangigkeit eines Terms C' von Variable x Using |[z,C]1| (D 0)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 7 Taktische Beweisfithrung

WICHTIGE STANDARDTAKTIKEN IN NUPRL Manual §8 I

e Autotaktik (triviale Schliisse) Auto

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 8 Taktische Beweisfithrung

WICHTIGE STANDARDTAKTIKEN IN NUPRL Manual §8 I

e Autotaktik (triviale Schliisse) Auto
® Regeln der Logik erster Stufe: andR, orR, ..., exL3

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 8 Taktische Beweisfithrung

WICHTIGE STANDARDTAKTIKEN IN NUPRL Manual §8 I

e Autotaktik (triviale Schliisse) Auto
® Regeln der Logik erster Stufe: andR, orR, ..., exL3

e Datentypspezifische Induktionen
— Standardinduktion: NatInd ¢ NSubsetInd:
IntInds, ListInds

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 8

Taktische Beweisfithrung

WICHTIGE STANDARDTAKTIKEN IN NUPRL Manual §8 I

e Autotaktik (triviale Schliisse) Auto

® Regeln der Logik erster Stufe: andR, orR, ..., exL3
e Datentypspezifische Induktionen

— Standardinduktion: NatInd ¢ NSubsetInd:

IntInds, ListInds

— Vollstandige Induktion auf natiirlichen Zahlen: CompNatInd

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 8 Taktische Beweisfithrung

WICHTIGE STANDARDTAKTIKEN IN NUPRL Manual §8 I

e Autotaktik (triviale Schliisse) Auto
® Regeln der Logik erster Stufe: andR, orR, ..., exL3
e Datentypspezifische Induktionen
— Standardinduktion: NatInd ¢ NSubsetInd:
IntInds, ListInds
— Vollstandige Induktion auf natiirlichen Zahlen: CompNatInd
e Fallanalysen
— Analyse Boolescher Variablen: BoolCases
— Allgemeine Fallunterscheidung: Cases [{;..;t,]
— Analyse entscheidbarer Aussagen (Falle P und —P) Decide P

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 8 Taktische Beweisfithrung

WICHTIGE STANDARDTAKTIKEN IN NUPRL Manual §8 I

e Autotaktik (triviale Schliisse) Auto
® Regeln der Logik erster Stufe: andR, orR, ..., exL3
e Datentypspezifische Induktionen
— Standardinduktion: NatInd ¢ NSubsetInd:
IntInds, ListInds
— Vollstandige Induktion auf natiirlichen Zahlen: CompNatInd
e Fallanalysen
— Analyse Boolescher Variablen: BoolCases
— Allgemeine Fallunterscheidung: Cases [{;..;t,]
— Analyse entscheidbarer Aussagen (Falle P und —P) Decide P
e Chaining (Verkettung von Argumenten)
— Instantiierung quantifizierter Aussagen: InstHyp [{;..;t] ¢
— Vorwartsverkettung von Hypothesen: FHyp ¢ [h;..;h],
— Rickwartsverkettung im Beweisknoten: BHyp ¢,
" " durch Hypothesen & Lemmata: Backchain bc_names

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 8 Taktische Beweisfithrung

TACTICALS I

e Operationen einer kommandoartigen Taktiksprache
— Setze Taktiken zu neuen Taktiken zusammen
— Funktionen hoherer Ordnung, oft in Infixschreibweise

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 9 Taktische Beweisfithrung

TACTICALS I

e Operationen einer kommandoartigen Taktiksprache
— Setze Taktiken zu neuen Taktiken zusammen
— Funktionen hoherer Ordnung, oft in Infixschreibweise

e Die wichtigsten vordefinierten Tacticals

t1 THEN t5: Wende t, auf alle von ¢1 erzeugten Teilziele an
t THENL [tq;...;t,]: Wende t; auf das i-te von ¢ erzeugte Teilziel an
t1 ORELSE to: Wende t; an. Falls dies fehlschlagt, wende ¢, an
Repeat t: Wiederhole Taktik ¢ bis sie fehlschlagt

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 9 Taktische Beweisfithrung

TACTICALS I

e Operationen einer kommandoartigen Taktiksprache
— Setze Taktiken zu neuen Taktiken zusammen
— Funktionen hoherer Ordnung, oft in Infixschreibweise

e Die wichtigsten vordefinierten Tacticals

t1 THEN t5: Wende t, auf alle von ¢1 erzeugten Teilziele an
t THENL [tq;...;t,]: Wende t; auf das i-te von ¢ erzeugte Teilziel an
t1 ORELSE to: Wende t; an. Falls dies fehlschlagt, wende ¢, an
Repeat t: Wiederhole Taktik ¢ bis sie fehlschlagt

e Haufig benutzte
t1 THENA t5: Wende t, auf alle von ¢; erzeugten Hilfsziele an

t1 THENW to: Wende t, auf alle von ¢; erzeugten wi-ziele an

Try t: Wende t an, Bei Fehlschlag lasse den Beweis unverandert
Complete t: Wende ¢ nur an, wenn der Beweis vollstandig wird
Progress t: Wende ¢ nur an, wenn ein “Fortschritt” erzielt wird
RepeatFor ¢ t: Wiederhole ¢ genau ¢ mal

AllHyps t: Wende t auf alle moglichen Hypothesen an

OnSomHyp t: Wende t auf die erstmogliche Hypothese an

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG IT §13 9 Taktische Beweisfithrung

PROGRAMWHERUNG]ﬂNERfTAKTH{FﬁRfHHVUUEJSCHLﬁ&ﬁ]I

let Equality = Refine ‘equality‘ [] ;;
and Arith = Refine ‘arith
[mk term arg
(mk_universe term
(mk_level exp [‘1¢,0]))]

let Immediate =
Declaration
ORELSE Hypothesis
ORELSE OnSomeHyp falseL
ORELSE Contradiction
ORELSE Equality
ORELSE Arith
ORELSE D O ORELSE OnSomeHyp D
ORELSE EqD O ORELSE OnSomeHyp EqgD

))

Ausschlief3lich bekannte Taktiken und Tacticals

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 10 Taktische Beweisfithrung

IMPLEMENTIERUNG VON TACTICALS I

ml _curried_infix ¢‘THENLS
ml _curried_infix ‘ORELSE®

))

P

let $THENL (tac: tactic) (tac_ list : tactic list) (pf:proof) =
let subgoals, val = tac pf
in
if not length tac_list = length subgoals then fail

else let subgoallists, vallList = map._apply tac_list subgoals
in

(flatten subgoallists),
\prfs. val ((mapshape (map length subgoallists) vallList) prfs)

let $0RELSE (tl:tactic) (t2:tactic) pf = t1 pf 7 t2 pf ;;

let Complete (tac:tactic) (pf:proof) = let subgoals, val = tac pf
in
1f null subgoals
then subgoals, val
else fail

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 11

Taktische Beweisfithrung

PROGRAMMIERUNG DER TAKTIK Hypothesis I

Anwendung von NthHyp auf alle Hypothesen

let OnHyp i (T: int->tactic) p =
T (get pos hypnum i p) p

))

let OnSomeHyp T p =
letrec Aux 1 p’ =
if i = 0 then failwith ‘OnSomeHyp°
else (OnHyp i T ORELSE Aux (i-1)) p’
in
Aux (length (hypotheses proof)) p

let Hypothesis = OnSomeHyp NthHyp ;;

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 12 Taktische Beweisfithrung

METALEVEL ANALYSE IN DER TAKTIK Contradiction I

Finde zwei einander widersprechende Hypothesen

let Contradiction proof =

let facts = map (fst o snd o dest declaration) (hypotheses proof) in
let facts_and nums = (map2 o pair) facts (upto 1 (length facts)) in
let negative hyps = filter (\t,i. is not_term t) facts_and nums in

let positive_hyp, negative_ hyp =
(first _value
(\t,i. let negated term = dest not t in

let pos_hyp.num =

first value (\t,i. if t = negated term then i else fail)
facts_and _nums

in

pos_hyp._num, 1

)

negative_hyps
?

failwith ‘Contradiction®
)
in
if negative hyp > positive hyp
then (notL negative hyp THEN NthHyp positive hyp) proof
else (notL negative hyp THEN NthHyp (positive hyp-1)) proof

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 13

Taktische Beweisfithrung

METALEVEL ANALYSE: INSTANTIIERUNG VON (QUANTOREN I

Bestimme Werte fur Variablen durch Matching

let match subEx quantified term assumption =
letrec match sub aux vars exprop =
map (\var.assoc var (match vars exprop assumption)) (rev vars)
% Terms must fit quantifier order’
?

let var,type,prop = dest _exists exprop in match sub aux (var.vars) prop
in
match_sub_aux [] quantified_term
letrec exIon terms pf =

let t.rest = terms in (exI t THEN exIon rest) pf
?

Id pf
let Instantiatekx =
let InstEx aux pos pf =
let sigma = match subEx (conclusion pf) (type_of hyp pos pf) in
(exIon (map snd sigma) THEN (NthHyp pos)) pf
in
OnSomeHyp InstEx_aux

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 14 Taktische Beweisfithrung

PROGRAMMIERUNG VON TRANSFORMATIONSTAKTIKEN I

Markieren und Kopieren von Beweisen

(In Nuprl 5 vordefiniertes Kommando des Beweiseditors)

let Mark name pf = add_saved proof name pf; Id pf;;

letrec copy pattern pattern =
if is refined pattern
then Try (refine (refinement pattern)
THENL (map copy_pattern (children pattern))
)
else Id

let Copy name = copy pattern (get saved proof name);;

saved_proofs: globale Variable vom Typ (tok#proof) list
add_saved_proof speichert Beweise in saved_proofs
get_saved proof wahlt Beweise aus saved proofs

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 15 Taktische Beweisfithrung

REWRITING: TERMERSETZUNG DURCH “GLEICHE” TERME I

e Einfache Rewrite Taktiken
— Substitution: Subst {=t,cT c, HypSubst ¢, c,

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 16 Taktische Beweisfithrung

REWRITING: TERMERSETZUNG DURCH “GLEICHE” TERME I

e Einfache Rewrite Taktiken
— Substitution: Subst {=t,cT c, HypSubst ¢, c,

— Falten und Auflosen von Definitionen: Fold name ¢, Unfold name c

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 16 Taktische Beweisfithrung

REWRITING: TERMERSETZUNG DURCH “GLEICHE” TERME I

e Einfache Rewrite Taktiken
— Substitution: Subst {=t,cT c, HypSubst ¢, c,
— Falten und Auflosen von Definitionen: Fold name ¢, Unfold name c

— Reduce c: wiederholte Auswertung von Redizes in Klausel ¢

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 16 Taktische Beweisfithrung

REWRITING: TERMERSETZUNG DURCH “GLEICHE” TERME I

e Einfache Rewrite Taktiken
— Substitution: Subst {=t,cT c, HypSubst ¢, c,
— Falten und Auflosen von Definitionen: Fold name ¢, Unfold name c

— Reduce c: wiederholte Auswertung von Redizes in Klausel ¢

e Nuprl’s Rewrite Paket

— Funktionen zur Ersetzung von Termen in Ausdriicken (conversions)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 16 Taktische Beweisfithrung

REWRITING: TERMERSETZUNG DURCH “GLEICHE” TERME I

e Einfache Rewrite Taktiken
— Substitution: Subst {=t,cT c, HypSubst ¢, c,
— Falten und Auflosen von Definitionen: Fold name ¢, Unfold name c

— Reduce c: wiederholte Auswertung von Redizes in Klausel ¢

e Nuprl’s Rewrite Paket

— Funktionen zur Ersetzung von Termen in Ausdriicken (conversions)

— Programmierbar durch vordefinierte conversions und conversionals

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 16 Taktische Beweisfithrung

REWRITING: TERMERSETZUNG DURCH “GLEICHE” TERME I

e Einfache Rewrite Taktiken
— Substitution: Subst {=t,cT c, HypSubst ¢, c,
— Falten und Auflosen von Definitionen: Fold name ¢, Unfold name c

— Reduce c¢: wiederholte Auswertung von Redizes in Klausel ¢

e Nuprl’s Rewrite Paket

— Funktionen zur Ersetzung von Termen in Ausdriicken (conversions)
— Programmierbar durch vordefinierte conversions und conversionals

— Rewrite Lemmas zur Rechtfertigung der Ersetzungen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 16 Taktische Beweisfithrung

REWRITING: TERMERSETZUNG DURCH “GLEICHE” TERME I

e Einfache Rewrite Taktiken
— Substitution: Subst {=t,cT c, HypSubst ¢, c,
— Falten und Auflosen von Definitionen: Fold name ¢, Unfold name c

— Reduce c¢: wiederholte Auswertung von Redizes in Klausel ¢

e Nuprl’s Rewrite Paket
— Funktionen zur Ersetzung von Termen in Ausdriicken (conversions)
— Programmierbar durch vordefinierte conversions und conversionals
— Rewrite Lemmas zur Rechtfertigung der Ersetzungen

~ Unterstiitzung fiir Vielfalt von Aquivalenzrelationen (nicht nur Gleichheit)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 16 Taktische Beweisfithrung

REWRITING: TERMERSETZUNG DURCH “GLEICHE” TERME I

e Einfache Rewrite Taktiken
— Substitution: Subst {=t,cT c, HypSubst ¢, c,
— Falten und Auflosen von Definitionen: Fold name ¢, Unfold name c

— Reduce c¢: wiederholte Auswertung von Redizes in Klausel ¢

e Nuprl’s Rewrite Paket

— Funktionen zur Ersetzung von Termen in Ausdriicken (conversions)

— Programmierbar durch vordefinierte conversions und conversionals

— Rewrite Lemmas zur Rechtfertigung der Ersetzungen

~ Unterstiitzung fiir Vielfalt von Aquivalenzrelationen (nicht nur Gleichheit)

— Taktiken zur Anwendung von conversions auf Klauseln im Beweis

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 16 Taktische Beweisfithrung

REWRITING: TERMERSETZUNG DURCH “GLEICHE” TERME I

e Einfache Rewrite Taktiken
— Substitution: Subst {=t,cT c, HypSubst ¢, c,
— Falten und Auflosen von Definitionen: Fold name ¢, Unfold name c

— Reduce c¢: wiederholte Auswertung von Redizes in Klausel ¢

e Nuprl’s Rewrite Paket
— Funktionen zur Ersetzung von Termen in Ausdriicken (conversions)
— Programmierbar durch vordefinierte conversions und conversionals
— Rewrite Lemmas zur Rechtfertigung der Ersetzungen
~ Unterstiitzung fiir Vielfalt von Aquivalenzrelationen (nicht nur Gleichheit)

— Taktiken zur Anwendung von conversions auf Klauseln im Beweis

Details im Nuprl Manual §9.9

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 16 Taktische Beweisfithrung

ERFAHRUNGEN IM PRAKTISCHEN UMGANG I

e Sehr hilfreich fiir Anwendungen
— Keine Veranderung des eigentlichen Inferenzsystems erforderlich
— Benutzer konnen Inferenzsystem schnell auf eigene Bediirfnisse anpassen

— Benutzerdefinierte Strategien produzieren keine falschen Ergebnisse

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 17 Taktische Beweisfithrung

ERFAHRUNGEN IM PRAKTISCHEN UMGANG I

e Sehr hilfreich fiir Anwendungen
— Keine Veranderung des eigentlichen Inferenzsystems erforderlich
— Benutzer konnen Inferenzsystem schnell auf eigene Bediirfnisse anpassen

— Benutzerdefinierte Strategien produzieren keine falschen Ergebnisse

e Gut fur Experimente

— Ideen konnen unmittelbar ausprobiert werden

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 17 Taktische Beweisfithrung

ERFAHRUNGEN IM PRAKTISCHEN UMGANG I

e Sehr hilfreich fiir Anwendungen
— Keine Veranderung des eigentlichen Inferenzsystems erforderlich
— Benutzer konnen Inferenzsystem schnell auf eigene Bediirfnisse anpassen

— Benutzerdefinierte Strategien produzieren keine falschen Ergebnisse

e Gut fur Experimente

— Ideen konnen unmittelbar ausprobiert werden

e Sinnvoll fur “kontrollierte” Inferenzen
— Reprasentation von Schliissen in speziellen Anwendungsbereichen
— Macro-Inferenzen: Schliefien auf hoherem Niveau

— Begrenzte Suche nach Beweisen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 17 Taktische Beweisfithrung

ERFAHRUNGEN IM PRAKTISCHEN UMGANG I

e Sehr hilfreich fiir Anwendungen
— Keine Veranderung des eigentlichen Inferenzsystems erforderlich
— Benutzer konnen Inferenzsystem schnell auf eigene Bediirfnisse anpassen

— Benutzerdefinierte Strategien produzieren keine falschen Ergebnisse

e Gut fur Experimente

— Ideen konnen unmittelbar ausprobiert werden

e Sinnvoll fur “kontrollierte” Inferenzen
— Reprasentation von Schliissen in speziellen Anwendungsbereichen
— Macro-Inferenzen: Schliefien auf hoherem Niveau

— Begrenzte Suche nach Beweisen

e Nicht sinnvoll fir “universelle” Beweissuche
— 7Zu langsam: jeder Taktikschritt modifiziert den Beweisbaum

— Zu unkontrolliert: Taktik gibt unverstandliche Teilziele zuriick

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §13 17 Taktische Beweisfithrung

