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Taktische Beweisführung

• Refiner akzeptiert Metalevel-Programme

– Programme enthalten Aufrufe von Beweisregeln, die Refiner ausführt

– Programme analysieren Beweiskomponenten, um Regeln zu bestimmen

– Programme dürfen beliebig komplex sein

• Flexibel: Benutzer programmiert Beweisstrategien

– Vorausplanung von Beweisen

– Suche nach Beweisen

– Strukturierung von Beweisen (Verstecken überflüssiger Details)

– Abgeleitete Inferenzregeln für benutzerdefinierte Theorien

– Austesten komplexer Beweis-/Syntheseverfahren in sicherer Umgebung

• Sicher: Taktiken sind immer korrekt

– Taktiken können erfolglos sein oder nicht terminieren

– Das Resultat einer Taktik-Anwendung ist immer ein gültiger Beweis

des zugrundeliegenden logischen Kalküls
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Verarbeitung von Taktiken

• Benutzer gibt Taktik als Inferenzschritt

• Beweiseditor ergänzt notwendige Daten
– Aktuelle Beweissequenz wird zum Beweisziel

– Beweiseditor übergibt Beweisziel und Taktik an Refiner

– Beweisbaum (falls vorhanden) unterhalb des Knotens wird ignoriert

• Refiner wendet Taktik auf Beweisziel an
– Ergibt ungelöste Teilziele und Validierung

– Anwendung der Validierung auf Teilziele erzeugt Beweisbaum

– Fehlermeldung, falls Taktik nicht anwendbar

• Library speichert Beweisbaum
– Rechtfertigung für den durchgeführten Inferenzschritt

– Beweiseditor zeigt Taktik und offene Teilziele

– Beweisbaum wird nur auf expliziten Wunsch sichtbar gemacht

Taktik wirkt wie abgeleitete Inferenzregel
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Transformationstaktiken

• Benutzer gibt Taktik als Kommando

• Beweiseditor ergänzt notwendige Daten
– Gesamter aktueller Beweisbaum wird zum Beweisziel

– Beweiseditor übergibt Beweisziel und Taktik an Refiner

• Refiner wendet Taktik auf Beweisziel an
– Ergibt ungelöste Teilziele und Validierung

– Anwendung der Validierung auf Teilziele erzeugt Beweisbaum

– Beweisziel bleibt unverändert, falls Taktik nicht anwendbar

• Library speichert Beweisbaum
– Rechtfertigung für die durchgeführten Inferenzschritte

– Beweiseditor zeigt ausgeführte Einzelschritte und offene Teilziele

– Taktikname wird nicht gespeichert

• Ziel: Modifikation existierender Beweise
– Kopieren, Expandieren, Komprimieren, Analogie, . . .

– In Nuprl 5 nur als vordefinierte Operationen des Beweiseditors
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Verfeinerungs vs. Transformationstaktik

Effekte der Anwendung der Taktik Cases

THM cases

# top
` T

BY Cases [A;B]

# 1
` A ∨B

# 2
1. A
` T

# 3
1. B
` T

THM cases

# top
` T

BY cut 1 A ∨B

# 1
` A ∨B

# 2
1. A ∨B
` T

BY orE 1

# 2 1
1. A
` T

# 2 2
1. B
` T
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Programmierung von Taktiken

• Explizite Umwandlung von Regeln mittels refine

– Nur für ausgefallenere Regeln oder stärkere Kontrolle erforderlich

– Fast alle Regeln sind durch vordefinierte Taktiken abgedeckt

• Vordefinierte Standardtaktiken

– Gespeichert in Code-Objekten der Library

• Komposition existierender Taktiken durch Tacticals

– Operationen, die Taktiken zu neuen Taktiken zusammensetzen

– Viele vordefinierte Tacticals in der Library

• Metalevel-Steuerung von Taktikanwendungen

– ML-Programme analysieren Beweisziel und Kontext
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Umwandlung von Regeln in Taktiken

• Umwandlung der Regel hypothesis
let get pos hyp num i proof =

if i<0 then length (hypotheses proof)+1+i

else i

;;

let NthHyp i proof =

let i’ = get pos hyp num i proof

in

Refine ‘hypothesis‘ [mk int arg i’] proof
;;

• Ausdünnen überflüssiger Hypothesen
let Thin i proof =

let i’ = get pos hyp num i p roof

in

if i=0 then failwith ‘Thin: cannot thin conclusion‘

else Refine ‘thin‘ [mk int arg i’] proof
;;
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Taktiken für Nuprl’s Inferenzregeln Manual §8

• Vereinheitlichung der Dekompositionsregeln
– D i: Top-Level Dekomposition einer Hypothese oder der Konklusion

– EqD i, MemD i: Dekomposition einer Gleichheit bzw. Typzugehörigkeit

– EqTypeD i, MemTypeD i: Dekomposition des Typs einer Gleichheit

• Strukturelle Regeln
– Hypothesis, Declaration: Konklusion ist in Hypothesen enthalten

– Assert t: Einführen von Zwischenbehauptungen (Schnittregel)

• Berechnungsregeln
– Reduce i: Top-Level Reduktion einer Hypothese oder der Konklusion

• Einfügen von Steuerungsparametern in Taktiken
– Name x einer neuen Variablen New [x] (D 0)

– Typ T eines Teilterms im Beweisziel With x:S→T (MemD 0)

– Term, s, der für eine Variable einzusetzen ist With s (D 0)

– Level j eines Universums At j (D 0)

– Abhängigkeit eines Terms C von Variable x Using [z,C] (D 0)
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Wichtige Standardtaktiken in Nuprl Manual §8

• Autotaktik (triviale Schlüsse) Auto

• Regeln der Logik erster Stufe: andR, orR, . . . , exL ii

• Datentypspezifische Induktionen
– Standardinduktion: NatInd ii, NSubsetInd ii

IntInd ii, ListInd ii

– Vollständige Induktion auf natürlichen Zahlen: CompNatInd ii

• Fallanalysen
– Analyse Boolescher Variablen: BoolCases ii

– Allgemeine Fallunterscheidung: Cases [t
1
;..;tn]

– Analyse entscheidbarer Aussagen (Fälle P und ¬P ) Decide P

• Chaining (Verkettung von Argumenten)
– Instantiierung quantifizierter Aussagen: InstHyp [t

1
;..;tn] ii

– Vorwärtsverkettung von Hypothesen: FHyp ii [h
1

h
1
;..;hnhn],

– Rückwärtsverkettung im Beweisknoten: BHyp ii,

" " durch Hypothesen & Lemmata: Backchain bc names



Automatisierte Logik und Programmierung II §13 9 Taktische Beweisführung

Tacticals

• Operationen einer kommandoartigen Taktiksprache
– Setze Taktiken zu neuen Taktiken zusammen

– Funktionen höherer Ordnung, oft in Infixschreibweise

• Die wichtigsten vordefinierten Tacticals
t1 THEN t2: Wende t2 auf alle von t1 erzeugten Teilziele an
t THENL [t1; . . . ; tn]: Wende ti auf das i-te von t erzeugte Teilziel an
t1 ORELSE t2: Wende t1 an. Falls dies fehlschlägt, wende t2 an
Repeat t: Wiederhole Taktik t bis sie fehlschlägt

• Häufig benutzte
t1 THENA t2: Wende t2 auf alle von t1 erzeugten Hilfsziele an
t1 THENW t2: Wende t2 auf alle von t1 erzeugten wf-ziele an
Try t: Wende t an, Bei Fehlschlag lasse den Beweis unverändert
Complete t: Wende t nur an, wenn der Beweis vollständig wird
Progress t: Wende t nur an, wenn ein “Fortschritt” erzielt wird
RepeatFor i t: Wiederhole t genau i mal
AllHyps t: Wende t auf alle möglichen Hypothesen an
OnSomHyp t: Wende t auf die erstmögliche Hypothese an
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Programmierung einer Taktik für triviale Schlüsse

let Equality = Refine ‘equality‘ [] ;;

and Arith = Refine ‘arith‘

[mk term arg

(mk universe term

(mk level exp [‘i‘,0])) ]

;;

let Immediate =

Declaration

ORELSE Hypothesis

ORELSE OnSomeHyp falseL

ORELSE Contradiction

ORELSE Equality

ORELSE Arith

ORELSE D 0 ORELSE OnSomeHyp D

ORELSE EqD 0 ORELSE OnSomeHyp EqD

;;

Ausschließlich bekannte Taktiken und Tacticals
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Implementierung von Tacticals

ml curried infix ‘THENL‘ ;;

ml curried infix ‘ORELSE‘ ;;

let $THENL (tac: tactic) (tac list : tactic list) (pf:proof) =

let subgoals, val = tac pf

in

if not length tac list = length subgoals then fail

else let subgoalLists, valList = map apply tac list subgoals

in

(flatten subgoalLists),

\prfs. val ( (mapshape (map length subgoalLists) valList) prfs)

;;

let $ORELSE (t1:tactic) (t2:tactic) pf = t1 pf ? t2 pf ;;

let Complete (tac:tactic) (pf:proof) = let subgoals, val = tac pf

in

if null subgoals

then subgoals, val

else fail

;;
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Programmierung der Taktik Hypothesis

Anwendung von NthHyp auf alle Hypothesen

let OnHyp i (T: int->tactic) p =

T (get pos hyp num i p) p

;;

let OnSomeHyp T p =

letrec Aux i p’ =

if i = 0 then failwith ‘OnSomeHyp‘

else (OnHyp i T ORELSE Aux (i-1)) p’

in

Aux (length (hypotheses proof)) p

;;

let Hypothesis = OnSomeHyp NthHyp ;;
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Metalevel Analyse in der Taktik Contradiction

Finde zwei einander widersprechende Hypothesen

let Contradiction proof =
let facts = map (fst o snd o dest declaration)(hypotheses proof) in
let facts and nums = (map2 o pair) facts (upto 1 (length facts)) in
let negative hyps = filter (\t,i. is not term t) facts and nums in
let positive hyp, negative hyp =

(first value
(\t,i. let negated term = dest not t in

let pos hyp num =
first value (\t,i. if t = negated term then i else fail)

facts and nums
in

pos hyp num,i
)

negative hyps
?
failwith ‘Contradiction‘

)
in
if negative hyp > positive hyp

then (notL negative hyp THEN NthHyp positive hyp ) proof
else (notL negative hyp THEN NthHyp (positive hyp-1)) proof

;;
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Metalevel Analyse: Instantiierung von Quantoren

Bestimme Werte für Variablen durch Matching

let match subEx quantified term assumption =
letrec match sub aux vars exprop =
map (\var.assoc var (match vars exprop assumption)) (rev vars)

% Terms must fit quantifier order%
?
let var,type,prop = dest exists exprop in match sub aux (var.vars) prop

in
match sub aux [] quantified term

;;

letrec exIon terms pf =
let t.rest = terms in (exI t THEN exIon rest) pf
?
Id pf

;;

let InstantiateEx =
let InstEx aux pos pf =

let sigma = match subEx (conclusion pf) (type of hyp pos pf) in
(exIon (map snd sigma) THEN (NthHyp pos)) pf

in
OnSomeHyp InstEx aux

;;
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Programmierung von Transformationstaktiken

Markieren und Kopieren von Beweisen

(In Nuprl 5 vordefiniertes Kommando des Beweiseditors)

let Mark name pf = add saved proof name pf; Id pf;;

letrec copy pattern pattern =

if is refined pattern

then Try (refine (refinement pattern)

THENL (map copy pattern (children pattern))

)

else Id
;;

let Copy name = copy pattern (get saved proof name);;

saved proofs: globale Variable vom Typ (tok#proof) list

add saved proof speichert Beweise in saved proofs

get saved proof wählt Beweise aus saved proofs
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Rewriting: Termersetzung durch “gleiche” Terme

• Einfache Rewrite Taktiken

– Substitution: Subst t
1
=t

2
∈Tt

1
=t

2
∈T cc, HypSubst c

1
c

1
c

2
c

2

– Falten und Auflösen von Definitionen: Fold namename cc, Unfold namename cc

– Reduce cc: wiederholte Auswertung von Redizes in Klausel cc

• Nuprl’s Rewrite Paket

– Funktionen zur Ersetzung von Termen in Ausdrücken (conversions)

– Programmierbar durch vordefinierte conversions und conversionals

– Rewrite Lemmas zur Rechtfertigung der Ersetzungen

– Unterstützung für Vielfalt von Äquivalenzrelationen (nicht nur Gleichheit)

– Taktiken zur Anwendung von conversions auf Klauseln im Beweis

Details im Nuprl Manual §9.9
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Erfahrungen im praktischen Umgang

• Sehr hilfreich für Anwendungen

– Keine Veränderung des eigentlichen Inferenzsystems erforderlich

– Benutzer können Inferenzsystem schnell auf eigene Bedürfnisse anpassen

– Benutzerdefinierte Strategien produzieren keine falschen Ergebnisse

• Gut für Experimente

– Ideen können unmittelbar ausprobiert werden

• Sinnvoll für “kontrollierte” Inferenzen

– Repräsentation von Schlüssen in speziellen Anwendungsbereichen

– Macro-Inferenzen: Schließen auf höherem Niveau

– Begrenzte Suche nach Beweisen

• Nicht sinnvoll für “universelle” Beweissuche

– Zu langsam: jeder Taktikschritt modifiziert den Beweisbaum

– Zu unkontrolliert: Taktik gibt unverständliche Teilziele zurück


