
Automatisierte Logik und Programmierung II

Teil IV

Beweisautomatisierung

1. Taktische Beweisführung

2. Entscheidungsprozeduren

3. Integration externer Systeme

Automatisierte Logik und Programmierung

Lektion 13

Taktiken

Benutzerdefinierbare Beweisstrategien

1. Grundkonzept und Arbeitsweise

2. Programmierung von Taktiken

3. Rewriting als Taktiken

4. Erfahrungen im praktischen Umgang

Automatisierte Logik und Programmierung II §13 1 Taktische Beweisführung

Taktische Beweisführung

• Refiner akzeptiert Metalevel-Programme

– Programme enthalten Aufrufe von Beweisregeln, die Refiner ausführt

– Programme analysieren Beweiskomponenten, um Regeln zu bestimmen

– Programme dürfen beliebig komplex sein

• Flexibel: Benutzer programmiert Beweisstrategien

– Vorausplanung von Beweisen

– Suche nach Beweisen

– Strukturierung von Beweisen (Verstecken überflüssiger Details)

– Abgeleitete Inferenzregeln für benutzerdefinierte Theorien

– Austesten komplexer Beweis-/Syntheseverfahren in sicherer Umgebung

• Sicher: Taktiken sind immer korrekt

– Taktiken können erfolglos sein oder nicht terminieren

– Das Resultat einer Taktik-Anwendung ist immer ein gültiger Beweis

des zugrundeliegenden logischen Kalküls

Automatisierte Logik und Programmierung II §13 2 Taktische Beweisführung

Verarbeitung von Taktiken

• Benutzer gibt Taktik als Inferenzschritt

• Beweiseditor ergänzt notwendige Daten
– Aktuelle Beweissequenz wird zum Beweisziel

– Beweiseditor übergibt Beweisziel und Taktik an Refiner

– Beweisbaum (falls vorhanden) unterhalb des Knotens wird ignoriert

• Refiner wendet Taktik auf Beweisziel an
– Ergibt ungelöste Teilziele und Validierung

– Anwendung der Validierung auf Teilziele erzeugt Beweisbaum

– Fehlermeldung, falls Taktik nicht anwendbar

• Library speichert Beweisbaum
– Rechtfertigung für den durchgeführten Inferenzschritt

– Beweiseditor zeigt Taktik und offene Teilziele

– Beweisbaum wird nur auf expliziten Wunsch sichtbar gemacht

Taktik wirkt wie abgeleitete Inferenzregel

Automatisierte Logik und Programmierung II §13 3 Taktische Beweisführung

Transformationstaktiken

• Benutzer gibt Taktik als Kommando

• Beweiseditor ergänzt notwendige Daten
– Gesamter aktueller Beweisbaum wird zum Beweisziel

– Beweiseditor übergibt Beweisziel und Taktik an Refiner

• Refiner wendet Taktik auf Beweisziel an
– Ergibt ungelöste Teilziele und Validierung

– Anwendung der Validierung auf Teilziele erzeugt Beweisbaum

– Beweisziel bleibt unverändert, falls Taktik nicht anwendbar

• Library speichert Beweisbaum
– Rechtfertigung für die durchgeführten Inferenzschritte

– Beweiseditor zeigt ausgeführte Einzelschritte und offene Teilziele

– Taktikname wird nicht gespeichert

• Ziel: Modifikation existierender Beweise
– Kopieren, Expandieren, Komprimieren, Analogie, . . .

– In Nuprl 5 nur als vordefinierte Operationen des Beweiseditors

Automatisierte Logik und Programmierung II §13 4 Taktische Beweisführung

Verfeinerungs vs. Transformationstaktik

Effekte der Anwendung der Taktik Cases

THM cases

top
` T

BY Cases [A;B]

1
` A ∨B

2
1. A
` T

3
1. B
` T

THM cases

top
` T

BY cut 1 A ∨B

1
` A ∨B

2
1. A ∨B
` T

BY orE 1

2 1
1. A
` T

2 2
1. B
` T

Automatisierte Logik und Programmierung II §13 5 Taktische Beweisführung

Programmierung von Taktiken

• Explizite Umwandlung von Regeln mittels refine

– Nur für ausgefallenere Regeln oder stärkere Kontrolle erforderlich

– Fast alle Regeln sind durch vordefinierte Taktiken abgedeckt

• Vordefinierte Standardtaktiken

– Gespeichert in Code-Objekten der Library

• Komposition existierender Taktiken durch Tacticals

– Operationen, die Taktiken zu neuen Taktiken zusammensetzen

– Viele vordefinierte Tacticals in der Library

• Metalevel-Steuerung von Taktikanwendungen

– ML-Programme analysieren Beweisziel und Kontext

Automatisierte Logik und Programmierung II §13 6 Taktische Beweisführung

Umwandlung von Regeln in Taktiken

• Umwandlung der Regel hypothesis
let get pos hyp num i proof =

if i<0 then length (hypotheses proof)+1+i

else i

;;

let NthHyp i proof =

let i’ = get pos hyp num i proof

in

Refine ‘hypothesis‘ [mk int arg i’] proof
;;

• Ausdünnen überflüssiger Hypothesen
let Thin i proof =

let i’ = get pos hyp num i p roof

in

if i=0 then failwith ‘Thin: cannot thin conclusion‘

else Refine ‘thin‘ [mk int arg i’] proof
;;

Automatisierte Logik und Programmierung II §13 7 Taktische Beweisführung

Taktiken für Nuprl’s Inferenzregeln Manual §8

• Vereinheitlichung der Dekompositionsregeln
– D i: Top-Level Dekomposition einer Hypothese oder der Konklusion

– EqD i, MemD i: Dekomposition einer Gleichheit bzw. Typzugehörigkeit

– EqTypeD i, MemTypeD i: Dekomposition des Typs einer Gleichheit

• Strukturelle Regeln
– Hypothesis, Declaration: Konklusion ist in Hypothesen enthalten

– Assert t: Einführen von Zwischenbehauptungen (Schnittregel)

• Berechnungsregeln
– Reduce i: Top-Level Reduktion einer Hypothese oder der Konklusion

• Einfügen von Steuerungsparametern in Taktiken
– Name x einer neuen Variablen New [x] (D 0)

– Typ T eines Teilterms im Beweisziel With x:S→T (MemD 0)

– Term, s, der für eine Variable einzusetzen ist With s (D 0)

– Level j eines Universums At j (D 0)

– Abhängigkeit eines Terms C von Variable x Using [z,C] (D 0)

Automatisierte Logik und Programmierung II §13 8 Taktische Beweisführung

Wichtige Standardtaktiken in Nuprl Manual §8

• Autotaktik (triviale Schlüsse) Auto

• Regeln der Logik erster Stufe: andR, orR, . . . , exL ii

• Datentypspezifische Induktionen
– Standardinduktion: NatInd ii, NSubsetInd ii

IntInd ii, ListInd ii

– Vollständige Induktion auf natürlichen Zahlen: CompNatInd ii

• Fallanalysen
– Analyse Boolescher Variablen: BoolCases ii

– Allgemeine Fallunterscheidung: Cases [t
1
;..;tn]

– Analyse entscheidbarer Aussagen (Fälle P und ¬P) Decide P

• Chaining (Verkettung von Argumenten)
– Instantiierung quantifizierter Aussagen: InstHyp [t

1
;..;tn] ii

– Vorwärtsverkettung von Hypothesen: FHyp ii [h
1

h
1
;..;hnhn],

– Rückwärtsverkettung im Beweisknoten: BHyp ii,

" " durch Hypothesen & Lemmata: Backchain bc names

Automatisierte Logik und Programmierung II §13 9 Taktische Beweisführung

Tacticals

• Operationen einer kommandoartigen Taktiksprache
– Setze Taktiken zu neuen Taktiken zusammen

– Funktionen höherer Ordnung, oft in Infixschreibweise

• Die wichtigsten vordefinierten Tacticals
t1 THEN t2: Wende t2 auf alle von t1 erzeugten Teilziele an
t THENL [t1; . . . ; tn]: Wende ti auf das i-te von t erzeugte Teilziel an
t1 ORELSE t2: Wende t1 an. Falls dies fehlschlägt, wende t2 an
Repeat t: Wiederhole Taktik t bis sie fehlschlägt

• Häufig benutzte
t1 THENA t2: Wende t2 auf alle von t1 erzeugten Hilfsziele an
t1 THENW t2: Wende t2 auf alle von t1 erzeugten wf-ziele an
Try t: Wende t an, Bei Fehlschlag lasse den Beweis unverändert
Complete t: Wende t nur an, wenn der Beweis vollständig wird
Progress t: Wende t nur an, wenn ein “Fortschritt” erzielt wird
RepeatFor i t: Wiederhole t genau i mal
AllHyps t: Wende t auf alle möglichen Hypothesen an
OnSomHyp t: Wende t auf die erstmögliche Hypothese an

Automatisierte Logik und Programmierung II §13 10 Taktische Beweisführung

Programmierung einer Taktik für triviale Schlüsse

let Equality = Refine ‘equality‘ [] ;;

and Arith = Refine ‘arith‘

[mk term arg

(mk universe term

(mk level exp [‘i‘,0]))]

;;

let Immediate =

Declaration

ORELSE Hypothesis

ORELSE OnSomeHyp falseL

ORELSE Contradiction

ORELSE Equality

ORELSE Arith

ORELSE D 0 ORELSE OnSomeHyp D

ORELSE EqD 0 ORELSE OnSomeHyp EqD

;;

Ausschließlich bekannte Taktiken und Tacticals

Automatisierte Logik und Programmierung II §13 11 Taktische Beweisführung

Implementierung von Tacticals

ml curried infix ‘THENL‘ ;;

ml curried infix ‘ORELSE‘ ;;

let $THENL (tac: tactic) (tac list : tactic list) (pf:proof) =

let subgoals, val = tac pf

in

if not length tac list = length subgoals then fail

else let subgoalLists, valList = map apply tac list subgoals

in

(flatten subgoalLists),

\prfs. val ((mapshape (map length subgoalLists) valList) prfs)

;;

let $ORELSE (t1:tactic) (t2:tactic) pf = t1 pf ? t2 pf ;;

let Complete (tac:tactic) (pf:proof) = let subgoals, val = tac pf

in

if null subgoals

then subgoals, val

else fail

;;

Automatisierte Logik und Programmierung II §13 12 Taktische Beweisführung

Programmierung der Taktik Hypothesis

Anwendung von NthHyp auf alle Hypothesen

let OnHyp i (T: int->tactic) p =

T (get pos hyp num i p) p

;;

let OnSomeHyp T p =

letrec Aux i p’ =

if i = 0 then failwith ‘OnSomeHyp‘

else (OnHyp i T ORELSE Aux (i-1)) p’

in

Aux (length (hypotheses proof)) p

;;

let Hypothesis = OnSomeHyp NthHyp ;;

Automatisierte Logik und Programmierung II §13 13 Taktische Beweisführung

Metalevel Analyse in der Taktik Contradiction

Finde zwei einander widersprechende Hypothesen

let Contradiction proof =
let facts = map (fst o snd o dest declaration)(hypotheses proof) in
let facts and nums = (map2 o pair) facts (upto 1 (length facts)) in
let negative hyps = filter (\t,i. is not term t) facts and nums in
let positive hyp, negative hyp =

(first value
(\t,i. let negated term = dest not t in

let pos hyp num =
first value (\t,i. if t = negated term then i else fail)

facts and nums
in

pos hyp num,i
)

negative hyps
?
failwith ‘Contradiction‘

)
in
if negative hyp > positive hyp

then (notL negative hyp THEN NthHyp positive hyp) proof
else (notL negative hyp THEN NthHyp (positive hyp-1)) proof

;;

Automatisierte Logik und Programmierung II §13 14 Taktische Beweisführung

Metalevel Analyse: Instantiierung von Quantoren

Bestimme Werte für Variablen durch Matching

let match subEx quantified term assumption =
letrec match sub aux vars exprop =
map (\var.assoc var (match vars exprop assumption)) (rev vars)

% Terms must fit quantifier order%
?
let var,type,prop = dest exists exprop in match sub aux (var.vars) prop

in
match sub aux [] quantified term

;;

letrec exIon terms pf =
let t.rest = terms in (exI t THEN exIon rest) pf
?
Id pf

;;

let InstantiateEx =
let InstEx aux pos pf =

let sigma = match subEx (conclusion pf) (type of hyp pos pf) in
(exIon (map snd sigma) THEN (NthHyp pos)) pf

in
OnSomeHyp InstEx aux

;;

Automatisierte Logik und Programmierung II §13 15 Taktische Beweisführung

Programmierung von Transformationstaktiken

Markieren und Kopieren von Beweisen

(In Nuprl 5 vordefiniertes Kommando des Beweiseditors)

let Mark name pf = add saved proof name pf; Id pf;;

letrec copy pattern pattern =

if is refined pattern

then Try (refine (refinement pattern)

THENL (map copy pattern (children pattern))

)

else Id
;;

let Copy name = copy pattern (get saved proof name);;

saved proofs: globale Variable vom Typ (tok#proof) list

add saved proof speichert Beweise in saved proofs

get saved proof wählt Beweise aus saved proofs

Automatisierte Logik und Programmierung II §13 16 Taktische Beweisführung

Rewriting: Termersetzung durch “gleiche” Terme

• Einfache Rewrite Taktiken

– Substitution: Subst t
1
=t

2
∈Tt

1
=t

2
∈T cc, HypSubst c

1
c

1
c

2
c

2

– Falten und Auflösen von Definitionen: Fold namename cc, Unfold namename cc

– Reduce cc: wiederholte Auswertung von Redizes in Klausel cc

• Nuprl’s Rewrite Paket

– Funktionen zur Ersetzung von Termen in Ausdrücken (conversions)

– Programmierbar durch vordefinierte conversions und conversionals

– Rewrite Lemmas zur Rechtfertigung der Ersetzungen

– Unterstützung für Vielfalt von Äquivalenzrelationen (nicht nur Gleichheit)

– Taktiken zur Anwendung von conversions auf Klauseln im Beweis

Details im Nuprl Manual §9.9

Automatisierte Logik und Programmierung II §13 17 Taktische Beweisführung

Erfahrungen im praktischen Umgang

• Sehr hilfreich für Anwendungen

– Keine Veränderung des eigentlichen Inferenzsystems erforderlich

– Benutzer können Inferenzsystem schnell auf eigene Bedürfnisse anpassen

– Benutzerdefinierte Strategien produzieren keine falschen Ergebnisse

• Gut für Experimente

– Ideen können unmittelbar ausprobiert werden

• Sinnvoll für “kontrollierte” Inferenzen

– Repräsentation von Schlüssen in speziellen Anwendungsbereichen

– Macro-Inferenzen: Schließen auf höherem Niveau

– Begrenzte Suche nach Beweisen

• Nicht sinnvoll für “universelle” Beweissuche

– Zu langsam: jeder Taktikschritt modifiziert den Beweisbaum

– Zu unkontrolliert: Taktik gibt unverständliche Teilziele zurück

