
Automatisierte Logik und Programmierung

Lektion 14

Entscheidungsprozeduren

1. Einsatzbereiche

2. Arith: elementare Arithmetik

3. SupInf: Lineare Ungleichungen über Z

4. Eq: Typfreie Gleichheiten

5. Grenzen der Anwendbarkeit

Automatisierte Logik und Programmierung II §14 1 Entscheidungsprozeduren

Entscheidungsprozeduren – algorithmische Inferenz

• Sinnvoll für “uninteressante” Beweisziele

– Problem ist Variation bekannter mathematischer Erkenntnisse

+ Beweisdetails / Extraktterm ohne Bedeutung (nur Wahrheit gefragt)

+ Formaler Beweis mit Taktiken zu aufwendig

• Möglich für algorithmisch entscheidbare Ziele

– Schneller Test, ob Verfahren überhaupt anwendbar ist

+ Maschinennahe Charakterisierung für Gültigkeit vorhanden

+ Effizientes Entscheidungsverfahren programmierbar

• Erforderlich: externe Verifikation der Prozedur

– Korrektheit und Vollständigkeit der Entscheidungsalgorithmen

– Konsistenz mit dem Rest der Theorie (Typkonzept!)

– In Nuprl bisher nur für Arithmetik und Gleichheit

– Prozeduren für Listen, Kongruenzabschluß etc. noch nicht integriert

Automatisierte Logik und Programmierung II §14 2 Entscheidungsprozeduren

Arithmetische Entscheidungsprozeduren

• Notwendig für praktische Beweisführung

– Arithmetisches Schließen taucht fast überall auf

– Arithmetische Schlüsse liefern keine neuen Erkenntnisse

– Arithmetische Aussagen tauschen in vielen Erscheinungsformen auf

x+1<y, 0<t` (x+1)*t < y*t entspricht x<y, 0<t` x*t < y*t

und x<y, 0≤t` x*(t+1) < y*(t+1) und x+1≤y, 0<t` x*t < y*t

– Formale Beweise simpler arithmetischer Aussagen sind nicht leicht

Wenn drei ganze Zahlen sich jeweils um maximal 1 unterscheiden,

dann sind zwei von ihnen gleich

• Formale Arithmetik ist unentscheidbar

– Theorie ist gleichmächtig mit Theorie der berechenbaren Funktionen

– Allgemeine Arithmetik ist nicht einmal vollständig axiomatisierbar

• Entscheidung nur für eingeschränkte Arithmetik

– Arith: Induktionsfreie Arithmetik

– SupInf: Ganzzahlige lineare Ungleichungssysteme

Automatisierte Logik und Programmierung II §14 3 Entscheidungsprozeduren

Die Entscheidungsprozedur Arith

Entscheide Probleme der induktionsfreien Arithmetik

• Anfangssequenz: Γ ` C1 ∨ ...∨ Cm

– C
i
arithmetische Relationen über Z

• Logische Theorie: quantorenfreie Arithmetik

– Aussagenlogische Kombination von Ungleichungen über

einfachen arithmetischen Termen

– Standardaxiome von +, -, *, < und =

• Beweismethode:

– Transformiere Sequenz in gerichteten Graph mit gewichteten Kanten

– Teste ob positive Zyklen im Graph vorkommen

– Implementierung in Nuprl als Lisp Prozedur

• Eingebettet in die Taktik Auto

Automatisierte Logik und Programmierung II §14 4 Entscheidungsprozeduren

Arith: Formale Theorie A

Syntax: elementar-arithmetische Formeln
– Terme aufgebaut aus ganzzahligen Konstanten, Variablen und +, -, *

Andersartige Terme werden als Konstanten betrachtet

– Atomare Formeln: t1 ρ t2, wobei ti Terme, ρ ∈ {<, ≤, >, ≥, =, 6=}

– Formeln aufgebaut aus atomaren Formen mit ¬, ∧ , ∨ und ⇒

– Alle freien Variablen sind implizit all-quantifiziert

– Keine induktive Konstruktion

Semantik charakterisiert durch Axiome
– Gleichheitsaxiome mit eingeschränkter Substitutivität

– Axiome der Konstantenarithmetik

– Ringaxiome der ganzen Zahlen

– Axiome der diskreten linearen Ordnung

– Definitionsaxiome für Ordnungsrelationen und Ungleichheiten

– Monotonieaxiome

A ist als entscheidbar bekannt
– Beweis liefert nur ein ineffizientes Verfahren

Automatisierte Logik und Programmierung II §14 5 Entscheidungsprozeduren

Arith: Grundlagen einer effizienten Entscheidung

• Abtrennung der Monotonie
– Triviale Monotonien: Monotonieaxiome von + und - mit Konstanten

– monotonicity Regel für Anwendung nichttrivialer Monotonien
· verwendet Monotonietabellen für Kombination von Ungleichungen
· erzeugt zusätzliche (kombinierte) Hypothesen

• Erzeugung der Konjunktiven Normalform
– Zu jeder Formel F in A gibt es in A eine äquivalente Formel G in KNF

– Man kann jedes Konjunkt isoliert beweisen

• Widerspruchsbeweis
– Γ ` C1 ∨... ∨Cn gültig, g.d.w. Γ,¬C1,...,¬Cn ` ff gültig

• Ersetzen von Termen durch Variablen
– Eine Menge von Formeln Fi[e1, .., ek / u1, .., uk] in A ist genau dann

widersprüchlich, wenn {F1, .. Fn} widersprüchlich ist

• Repräsentation als Ordnungsgraph
– Γ = v1 ≥ u1 + c1, . . . , vn ≥ un + cn ist genau dann widersprüchlich,

wenn der Ordnungsgraph G von Γ einen positiven Zyklus besitzt.

Automatisierte Logik und Programmierung II §14 6 Entscheidungsprozeduren

Arith: Arbeitsweise

Anfangssequenz: Γ ` C1 ∨ ... ∨ Cm (C
i
atomar)

1. Transformiere Anfangssequenz in die Gestalt Γ,¬C1,...,¬Cm ` ff

Zerlege Konjunktionen in den Ci in Einzelannahmen (analog zu and e)

2. Transformiere Ungleichungen der Form x6=y in x≥y+1 ∨ y≥x+1

Zerlege Disjunktionen (analog zu or e) und betrachte Beweisziele separat

3. Entferne Hypothesen ohne atomare elementar-arithmetische Formeln

Ersetze Teilterme, die nicht der Syntax von A entsprechen durch Variablen

4. Transformiere Komparanden von Ungleichungen in Standardpolynome

5. Transformiere Komparanden in monadische lineare Polynome der Form c+ui

6. Konvertiere Hypothesen in Ungleichungen der Gestalt t1≥t2
(t1 Variable oder 0; t2 monadisches lineares Polynom)

7. Erzeuge den Ordnungsgraphen der Formelmenge:
Knoten für jede Variablen oder Konstante; Kante ui

c
−→ uj repräsentiert u

i
≥u

j
+c

8. Teste, ob der Ordnungsgraph einen positiven Zyklus hat (Standardverfahren)

Im Erfolgsfall generiere Wohlgeformtheitsziele für alle “Variablen”

Bei Mißerfolg generiere Fehlermeldung

Automatisierte Logik und Programmierung II §14 7 Entscheidungsprozeduren

Arith: Arbeitsweise am Beispiel

Anfangssequenz: x+y>z, 2*x≥z, x+y+2*x≥z+z+1 ` 3*x+y≥2*z-1

1. Negativform: x+y>z, 2*x≥z, x+y+2*x≥z+z+1, ¬(3*x+y≥2*z-1) ` ff

2. Transformiere Ungleichungen der Form x6=y – entfällt –

3. Entferne Hypothesen/Ersetze nichtarithmetische Teilterme – entfällt –

4. Transformiere Komparanden in Standardpolynome

x+y>z, 2*x≥z, 3*x+y≥1+2*z, ¬(3*x+y≥(-1)+2*z) ` ff

5. Transformiere Komparanden in monadische lineare Polynome

u0>z, u1≥z, u2≥1+u3 ¬(u2≥(-1)+u3) ` ff

u0≡ x+y, u1≡ 2*x, u2≡ 3*x+y, u3≡ 2*z

6. Konvertiere in Ungleichungen der Gestalt t1≥t2
u0≥z+1, u1≥z, u2≥1+u3 u3≥u2+2 ` ff

7. Erzeuge den Ordnungsgraphen:

u0 u1

z
* Y1 0

u2 u3
-

�

1

2

8. Ordnungsgraph hat positiven Zyklus . . . Formel ist gültig

Automatisierte Logik und Programmierung II §14 8 Entscheidungsprozeduren

monotonicity: Anwendung nichtrivialer Monotonien

• Arithmetische Komposition von Ungleichungen
– z.B. monotonicity i + j addiert Hypothesen i und j

aus i : x+y>z und j : 2*x≥z entsteht n+1 : x+y+2*x≥z+z+1

– Neue Hypothese entsteht durch Anwendung von Monotonietabellen

Addition
z>w z≥w z=w z6=w

x>y x+z≥y+w+2 x+z≥y+w+1 x+z≥y+w+1 -----

x+w≥y+z+1

x≥y x+z≥y+w+1 x+z≥y+w x+z≥y+w -----

x+w≥y+z
x=y x+z≥y+w+1 x+z≥y+w x+z=y+w x+z6=y+w

y+z≥x+w+1 y+z≥x+w x+w=y+z x+w6=y+z

x6=y ----- ----- x+z6=y+w -----

x+w6=y+z

Multiplikation
y≥z y>z y=z y6=z

x>0 x*y≥x*z x*y>x*z x*y=x*z x*y6=x*z

x≥0 xy*≥x*z x*y≥x*z x*y=x*z -----

x=0 x*y=x*z x*y=x*z x*y=x*z x*y=x*z

x*y=0 x*y=0 x*y=0 x*y=0

x≤0 x*y≤x*z x*y≤x*z x*y=x*z -----

x<0 x*y≤x*z x*y<x*z x*y=x*z x*y6=x*z

x6=0 ----- x*y6=x*z x*y=x*z x*y6=x*z

Subtraktion
z>w z≥w z=w z6=w

x>y x-w≥y-z+2 x-w≥y-z+1 x-w≥y-z+1 -----

x-z≥y-w+1

x≥y x-w≥y-z+1 x-w≥y-z x-w≥y-z -----

x-z≥y-w
x=y x-w≥y-z+1 x-w≥y-z x-w=y-z x-w6=y-z

y-w≥x-z+1 y-w≥x-z y-w=x-z x-z6=y-w

x6=y ----- ----- x-w6=y-z -----

x-z6=y-w

Faktorisierung
x*y>x*z x*y≥x*z x*y=x*z x*y6=x*z

x>0 y>z y≥z y=z y6=z

x<0 y<z y≤z y=z y6=z

x6=0 y6=z ----- y=z y6=z

Automatisierte Logik und Programmierung II §14 9 Entscheidungsprozeduren

Die Entscheidungsprozedur SupInf

Entscheide lineare Ungleichungen über Z

• Arith zu schwach für lineare Ungleichungssysteme

• Anpassung von Bledsoe’s Sup-Inf Methode (1975)

– Methode ist nur für rationale Zahlen korrekt und vollständig

– Korrekt und unvollständig für Z, aber hilfreich in der Praxis

• Logische Theorie: Arithmetische Formeln
– Kombination von Ungleichungen über arithmetischen Typen

• Beweismethode:
– Extrahiere Menge linearer Ungleichungen 0≤e

i
,

deren Unerfüllbarkeit die Gültigkeit der Sequenz impliziert

– Bestimme obere/untere Grenzen für Variablen der ei

– Wenn alle Variablen in Z erfüllbar sind, liefere Gegenbeispiel

– Implementierung in Nuprl als ML Strategie

• Eingebettet in die Taktik Auto’

Automatisierte Logik und Programmierung II §14 10 Entscheidungsprozeduren

Die Sup-Inf Basismethode

Analysiere Konjunktion linearer Ungleichungen über Q

• Betrachte Formeln der Form 0≤e1∧ . . . 0≤en

– e
i
lineare Ausdrücke über rationalen Variablen x1, .., xm

– Suche Belegung der xj, welche die Konjunktion erfüllen

• Bestimme obere/untere Grenzen für Werte der x
j

– Aufwendiges Verfahren verbessert obere und untere Schranken iterativ

– Resultierende Schranken sind optimal (also Supremum und Infimum)

– Erfüllende Belegung existiert, g.d.w. Infima jeweils kleiner als Suprema

• (Widerlegungs-)version für Z unvollständig

– Erfüllende Belegung über Q liefert nicht immer eine über Z

– Reparatur möglich, aber Integer Linear Programming is NP-vollständig

– Korrektheit: Unerfüllbarkeit über Q bedeutet Unerfüllbarkeit über Z

Automatisierte Logik und Programmierung II §14 11 Entscheidungsprozeduren

SupInf: Formale Grundkonzepte

• Arithmetische Typen

– Z (int), N (nat), N+ (nat plus), Z−0 (int nzero)

– {i...} (int upper), {i...j−} (int seg), {i...j} (int iseg)

• Arithmetische Literale

– a=b ∈T oder a6=b ∈T , wobei T arithmetischer Typ

– Arithmetische Ungleichungen mit <, ≤, > und ≥

– Negationen arithmetischer Literale

• Arithmetische Formeln

– (Verschachtelte) Konjunktionen und Disjunktionen

arithmetischer Literale

Automatisierte Logik und Programmierung II §14 12 Entscheidungsprozeduren

SupInf: Arbeitsweise

Anfangssequenz: Γ, r1, .. rn ` r0 (r
i
arithmetische Formel)

1. Extrahiere arithmetische Formel F = r1 ∧ .. ∧ rn ∧ ¬r0

– Aus Unerfüllbarkeit von F folgt Gültigkeit der Anfangssequenz

2. Transformiere F in disjunktive Normalform über ≤

– x<y bzw. y>x wird umgewandelt in x+1≤y,

– x6=y wird x+1≤y ∨ y+1≤x

– x=y wird, wenn möglich, durch Substitution aufgelöst

3. Normalisiere Ungleichungen in die Form 0≤p
i
(pi Standard-Polynom)

4. Ersetze nichtlineare Teilausdrücke durch Variablen

5. Wende Sup-Inf Basismethode auf jedes Disjunkt an

– Wenn jedes Disjunkt unerfüllbar ist, erzeuge Wohlgeformtheitsziele

– Andernfalls ist erfüllende Belegung ein Gegenbeispiel in “supinf info”

Automatisierte Logik und Programmierung II §14 13 Entscheidungsprozeduren

SupInf’: Erweiterungen zu SupInf’

Ergänze arithmetische Kontextinformation

• Extrahiere Ungleichungen aus Typinformation

– Z.B. aus Deklaration x:N extrahiere 0≤x

– Bestimme Typ der in den Ungleichungen vorkommenden Ausdrücke

get type: (unvollständiger) Typ-Inferenz-Algorithmus in ML

– Ergänze Prädikat des entpsrechenden Teiltyps von Z

• Ergänze arithmetische Lemmata

– Z.B. bei Vorkommen von |l1@l2| ergänze |l1@l2| = |l2|+|l2|

– Erlaubte Lemmata müssen global als solche deklariert sein

• Prozedur ist experimentell

– Viele Verbesserungen möglich

Automatisierte Logik und Programmierung II §14 14 Entscheidungsprozeduren

Gleichheitsschließen

Folgt eine Gleichheit aus anderen Gleichheiten?

• Wichtig für praktische Beweisführung

– z.B.: f(f(a, b), b) = a folgt aus f(a, b) = a

g(a) = a folgt aus g(g(g(a))) = a und g(g(g(g(g(a))))) = a

– Intuitiver Beweis einfach

– Regelbasierte Beweise aufwendig

• Elementare Gleichheit ist entscheidbar

– Einfache Theorie: Gleichheiten mit uninterpretierten Symbolen

– Semantik: Reflexivität, Symmetrie, Transitivität, Substitution

• Effiziente Verfahren verfügbar

– Berechnung der transitiven Hülle einer Äquivalenzrelation

– Technisch: Kongruenzabschluß des Relationsgraphen

Automatisierte Logik und Programmierung II §14 15 Entscheidungsprozeduren

Die Entscheidungsprozedur Eq

Entscheide quantorenfreie Gleichheiten

• Anfangssequenz: Γ, E1,..., En ` E0

– Ei Gleichheit über einem Typ T

• Logische Theorie: Gleichheitsrelationen

– Gleichheiten mit uninterpretierten Funktionssymbolen und Variablen

– Reflexivität, Symmetrie, Transitivität für Elemente und Typen

• Beweismethode: begrenzter Kongruenzabschluß

– Bilde transitive Hülle der Gleichungen in den Hypothesen

– Substitution reduziert auf taktische Dekomposition

– Teste ob Konklusion in transitiver Hülle enthalten ist

– Implementierung in Nuprl als Lisp Prozedur

• Eingebettet in die Taktik Auto

Automatisierte Logik und Programmierung II §14 16 Entscheidungsprozeduren

Gleicheitsschließen durch Kongruenzabschluß

Zeige : a(b(d,f),c) = a(b(e,f),c) folgt aus d=e

Gleichheitskanted e f

b bGleichheitskante

a a

c

Gleichheitskante

1. Verschmelze identische Knoten

2. Verbinde gleiche Knoten durch Gleichheitskante

3. Verbinde Wurzeln von Teilbäumen, die in allen Knoten gleich sind

Gleichheit =̂ Wurzeln der Termbäume sind verbunden

Automatisierte Logik und Programmierung II §14 17 Entscheidungsprozeduren

Equality: graphentheoretische Voraussetzungen

• Gerichteter Graph G = (V, E)

– l(v): Markierung des Knoten v in G

– δ(v): Anzahl der von v ausgehenden Kanten

– v[i]: i-ter Nachfolgerknoten von v

– u Vorgänger von v, wenn v = u[i] für ein i

• Äquivalenzrelation R auf V

– u und v kongruent unter R (u ∼R v):

l(u) = l(v), δ(u) = δ(v) und für alle i (u[i], v[i]) ∈R

– R abgeschlossen unter Kongruenzen: u ∼R v ⇒ (u, v) ∈R

– Kongruenzabschluß R∗: eindeutige minimale Erweiterung von R,

die abgeschlossen unter Kongruenzen und Äquivalenzrelation ist

=̂ Menge aller Äquivalenzen, die logisch aus R folgen

Automatisierte Logik und Programmierung II §14 18 Entscheidungsprozeduren

Gleichheitsschließen als Kongruenzabschluß

Folgt s = t aus s1=t1,. . . ,sn=tn?

• Konstruiere Graph G von s, s1, . . . , sn, t, t1, . . . , tn
– G besteht aus Termbäumen von s, s1, . . . , sn, t, t1, . . . , tn
– Identische Teilausdrücke werden durch denselben Teilbaum dargestellt

• Bestimme Kongruenzabschluß der si=ti iterativ
– Start: R ist Identitätsrelation auf den Knoten von G (R∗ = R)

– Im Schritt i bestimme Kongruenzabschluß von R∗ ∪ {(τ (si), τ (ti))}

(τ (u): Wurzelknoten des Termbaums von u)

– Repräsentiere R∗ als Menge von Äquivalenzklassen { [u]
R
|u ∈V }

([u]
R
≡ {x ∈V | (x, u) ∈R})

• Teste Äquivalenz von s und t
– s = t gilt genau dann, wenn (τ (s), τ (t)) ∈R∗

In Nuprl wegen Typbedingungen nur beschränkt einsetzbar

Automatisierte Logik und Programmierung II §14 19 Entscheidungsprozeduren

Berechne Kongruenzabschluß von R ∪ {(u, v)}

• Algorithmus MERGE(R,u,v)

– Eingabe: gerichteter Graph G = (V, E), u, v ∈V

Äquivalenzrelation R (abgeschlossen unter Kongruenzen)

• Falls u ∼R v, dann halte mit Ergebnis R

– Es gilt (R ∪ {(u, v)})∗ = R

• Andernfalls modifiziere R durch Verschmelzung

– Setze Pu := {x ∈V | ∃w ∈ [u]
R
. x Vorgänger von w}

– Setze Pv := {x ∈V | ∃w ∈ [v]
R
. x Vorgänger von w}

– Vereinige Äquivalenzklassen [u]
R

und [v]
R

in R

– Wiederhole für x ∈Pu und y ∈Pv

Falls x ∼R y und [x]
R
6=[y]

R
dann setze R:=MERGE(R,x,y)

Halte mit der modifizierten Relation R als Ergebnis

Automatisierte Logik und Programmierung II §14 20 Entscheidungsprozeduren

Kongruenzabschluß: g(g(g(a))) = a, g(g(g(g(g(a))))) = a

a (v6)

g (v5)

g (v4)

g (v3)

g (v2)

g (v1)

?

?

?

?

?

• Graph ist Termbaum von g(g(g(g(g(a)))))

– Initiale Relation: R := { {v1}, {v2}, {v3}, {v4}, {v5}, {v6} }

• Hinzunahme von g(g(g(g(g(a))))) = a

– R := { {v1, v6}, {v2}, {v3}, {v4}, {v5} } ist abgeschlossen

• Hinzunahme von g(g(g(a))) = a

MERGE(R,v3,v6):
– Pv3 := {v2}, Pv6 := {v5}, R := { {v1, v6, v3}, {v2}, {v4}, {v5} }

– Wegen (v3, v6) ∈R gilt v2 ∼R v5 aber [v2]R 6=[v5]R
MERGE(R,v2,v5):
– Pv2 := {v1}, Pv5 := {v4}, R := { {v1, v6, v3}, {v2, v5}, {v4} }

– Wegen (v2, v5) ∈R gilt v1 ∼R v4 aber [v1]R 6=[v4]R
MERGE(R,v1,v4):
– Pv1 := {v2, v5}, Pv4 := {v3}, R := { {v1, v6, v3, v4}, {v2, v5} }

– Wegen (v6, v4) ∈R gilt v5 ∼R v3 aber [v5]R 6=[v3]R
MERGE(R,v5,v3):
– Pv5 := {v1, v4}, Pv3 := {v2, v5, v3}, R := { {v1, v6, v3, v4, v2, v5} }

Alle Knoten sind äquivalent: R=R∗

Automatisierte Logik und Programmierung II §14 21 Entscheidungsprozeduren

Grenzen von Entscheidungsverfahren

• Weitere Theorien sind effektiv entscheidbar

– Schließen über Listenstrukturen

– Geometrische Probleme

– Aussagenlogik mit uninterpretierten Funktionssymbolen

• Einbettung in Typentheorie aufwendig

– Teilterme im Entscheidungsvorgang müssen Typbedingungen erfüllen

– Korrektheitsbeweis schwierig zu führen

• Kein Ersatz für Taktik-Konzept

– Implementierung immer auf Systemebene

– Benutzer kann Prozedur nicht selbst bei Bedarf erweitern

– Anpassungen an Benutzerwünsche machen Prozeduren oft unvorhersagbar

