Automatisierte Logik und Programmierung

iVerg,
\‘_)0 z‘g&.{,‘

Lektion 14 g iﬁi

o
: - Y2
Entscheidungsprozeduren -

1. Einsatzbereiche

2. Arith: elementare Arithmetik

3. SupInf: Lineare Ungleichungen uber Z
4. Eq: Typfreie Gleichheiten

5. Grenzen der Anwendbarkeit

ENTSCHEIDUNGSPROZEDUREN — ALGORITHMISCHE INFERENZ

e Sinnvoll fur “uninteressante” Beweisziele
— Problem ist Variation bekannter mathematischer Erkenntnisse
+ Beweisdetails / Extraktterm ohne Bedeutung (nur Wahrheit gefragt)

+ Formaler Beweis mit Taktiken zu aufwendig

e Moglich fur algorithmisch entscheidbare Ziele
— Schneller Test, ob Verfahren tiberhaupt anwendbar ist
+ Maschinennahe Charakterisierung fur Giiltigkeit vorhanden

+ Effizientes Entscheidungsvertfahren programmierbar

e Erforderlich: externe Verifikation der Prozedur
— Korrektheit und Vollstandigkeit der Entscheidungsalgorithmen
— Konsistenz mit dem Rest der Theorie (Typkonzept!)

— In Nuprl bisher nur fiir Arithmetik und Gleichheit

— Prozeduren fur Listen, Kongruenzabschluf$ etc. noch nicht integriert

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 1 Entscheidungsprozeduren

ARITHMETISCHE ENTSCHEIDUNGSPROZEDUREN I

e Notwendig fiir praktische Beweisfithrung
— Arithmetisches Schlieen taucht fast uberall auf
— Arithmetische Schlusse liefern keine neuen Erkenntnisse

— Arithmetische Aussagen tauschen in vielen Erscheinungsformen auf
x+1<y, O<t = (x+1)*t <y*t entspricht x<y, O<tF x*t<y*t
und x<y, 0<tFx*(t+1) <y*(t+1) und =x+1<y, O<tF x*t<y*t
— Formale Beweise simpler arithmetischer Aussagen sind nicht leicht
Wenn dret ganze Zahlen sich jeweils um maximal 1 unterscheiden,

dann sind zwer von thnen gleich

e Formale Arithmetik ist unentscheidbar
— Theorie ist gleichmachtig mit Theorie der berechenbaren Funktionen

— Allgemeine Arithmetik ist nicht einmal vollstandig axiomatisierbar

e Entscheidung nur fiir eingeschrankte Arithmetik
— Arith: Induktionsfreie Arithmetik

— SupInf: Ganzzahlige lineare Ungleichungssysteme

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 2 Entscheidungsprozeduren

DIE ENTSCHEIDUNGSPROZEDUR Arith I

Entscheide Probleme der induktionsfreien Arithmetik

e Anfangssequenz: I' - C, v ...v C

— CZ. arithmetische Relationen uber Z

e Logische Theorie: quantorenfreie Arithmetik

— Aussagenlogische Kombination von Ungleichungen tiber

einfachen arithmetischen Termen

— Standardaxiome von +, -, *. < und =

)

e Beweismethode:
— Transformiere Sequenz in gerichteten Graph mit gewichteten Kanten
— Teste ob positive Zyklen im Graph vorkommen

— Implementierung in Nuprl als Lisp Prozedur

e Eingebettet in die Taktik Auto

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 3 Entscheidungsprozeduren

Arith: FORMALE THEORIE A I

Syntax: elementar-arithmetische Formeln

— Terme aufgebaut aus ganzzahligen Konstanten, Variablen und +, -, *
Andersartige Terme werden als Konstanten betrachtet

— Atomare Formeln: t1 pto, wobei t; Terme, p € {<, <, >, >, =, #}
— Formeln aufgebaut aus atomaren Formen mit —, A, v und =

— Alle freien Variablen sind implizit all-quantifiziert

— Keine induktive Konstruktion

Semantik charakterisiert durch Axiome

— Gleichheitsaxiome mit eingeschrankter Substitutivitat

— Axiome der Konstantenarithmetik

— Ringaxiome der ganzen Zahlen

— Axiome der diskreten linearen Ordnung

— Definitionsaxiome fiir Ordnungsrelationen und Ungleichheiten
— Monotonieaxiome

A ist als entscheidbar bekannt

— Beweis liefert nur ein ineflizientes Verfahren

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 4 Entscheidungsprozeduren

Arith: (GRUNDLAGEN EINER EFFIZIENTEN ENTSCHEIDUNG

e Abtrennung der Monotonie
— Triviale Monotonien: Monotonieaxiome von + und — mit Konstanten

—monotonicity Regel fir Anwendung nichttrivialer Monotonien
- verwendet Monotonietabellen fir Kombination von Ungleichungen
- erzeugt zusatzliche (kombinierte) Hypothesen

e Erzeugung der Konjunktiven Normalform
— Zu jeder Formel I in A gibt es in A eine dquivalente Formel G in KNF
— Man kann jedes Konjunkt isoliert beweisen

e Widerspruchsbeweis
-I' v Cyv...v(C), giltig, edw. I', =C4,...,2C, F ff giltig

e Ersetzen von Termen durch Variablen

— Eine Menge von Formeln Fjley, .., ey / uq, .., ug] in A ist genau dann
widerspriichlich, wenn {Fy, .. F},} widerspriichlich ist

e Reprasentation als Ordnungsgraph
~-I'=vy1>u+c¢, ..., v, > u, + ¢, ist genau dann widerspriichlich,
wenn der Ordnungsgraph G von [einen positiven Zyklus besitzt.

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 5 Entscheidungsprozeduren

Arith: ARBEITSWEISE I

Anfangssequenz: I' - C, v ...v C (C atomar)

m

1. Transformiere Anfangssequenz in die Gestalt ', =C,...,=C,, F ff
Zerlege Konjunktionen in den C; in Einzelannahmen (analog zu and e)

2. Transformiere Ungleichungen der Form x#y in x>y+1 v y>x+1
Zerlege Disjunktionen (analog zu or_e) und betrachte Beweisziele separat

3. Entferne Hypothesen ohne atomare elementar-arithmetische Formeln
Ersetze Teilterme, die nicht der Syntax von A entsprechen durch Variablen

4. Transformiere Komparanden von Ungleichungen in Standardpolynome
5. Transformiere Komparanden in monadische lineare Polynome der Form c+u;

6. Konvertiere Hypothesen in Ungleichungen der Gestalt 1>

(t; Variable oder 0; t5 monadisches lineares Polynom)

7. Erzeuge den Ordnungsgraphen der Formelmenge:
Knoten fiir jede Variablen oder Konstante; Kante wu; — u; reprasentiert u>utc

8. Teste, ob der Ordnungsgraph einen positiven Zyklus hat (Standardverfahren)
Im Erfolgstall generiere Wohlgeformtheitsziele fur alle “Variablen”
Bei Miflerfolg generiere Fehlermeldung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 6 Entscheidungsprozeduren

Arith: ARBEITSWEISE AM BEISPIEL I

Anfangssequenz: x+y>z, 2*x>z, x+y+2xx>z+z+1l F 3*kx+y>2%z-1

1. Negativiorm: x+y>z, 2*x>z, xt+ty+2*xx>z+z+1, —(3*x+y>2*z-1) - ff
2. Transformiere Ungleichungen der Form x=£y — entfallt —
3. Entferne Hypothesen/Ersetze nichtarithmetische Teilterme ~ entfallt —
4

. Transformiere Komparanden in Standardpolynome
X+ty>z, 2*%x>z, 3xx+y>1+2%xz, —(3xx+y>(-1)+2*xz) F ff
5. Transformiere Komparanden in monadische lineare Polynome
u >z, u>z, u>l+u, ~(u>(-1)+u) F ff
u,=x+y, u,=2*x, u,= 3*Xty, U,=2*z
6. Konvertiere in Ungleichungen der Gestalt t1 >
u>z+1l, u>z, u>1+u, u>ut2 F o ff

7. Erzeuge den Ordnungsgraphen:

Z

8. Ordnungsgraph hat positiven Zyklus ... Formel ist gultig

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 7 Entscheidungsprozeduren

monotonicity: ANWENDUNG NICHTRIVIALER MONOTONIEN

e Arithmetische Komposition von Ungleichungen
—z.B. monotonicity ¢ + j addiert Hypothesen ¢ und j
aus 7 : x+ty>z und j: 2*%xx>z entsteht n+41: x+y+2xx>z+z+1

— Neue Hypothese entsteht durch Anwendung von Monotonietabellen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14

Entscheidungsprozeduren

Addition Subtraktion
zZ>W Z>W Z=w ZFW Z>W zZ>W zZ=w Z#W
X>y || X+z2>2y+w+2 | x+tz>y+wt+l [x+z>y+w+l| -———- X>y||Xx-w2y-z+2 | x-w>y-z+l|x-w>y-z+1| -———-
x+tw>y+z+1 x-z>y-w+l
X>y||x+z>y+w+l| x+z>y+w | xtz>ytw | ———-- X>y||lx-w>2y-z+1l| x-w>y-z | Xx-w>y-z | ———--
XHtW2y+z X~Z>y-W
X=y |x+tz>ytwtl| x+z>y+w | xtzsy+u o (xtzAyHu| |x=Y (|x-w>y-ztl| X-w>y-z | X-WSy-zZ o [X-WAy-Z
ytz>x+wtl| y+tz>x+w | xtw=y+z [xtuFy+z y-w>x-z+1l| y-w>x-z | y-w=x-z |X-ZF#y-W
XAy| = | T xtzFytu | —-oo- xAy| - | o XWFY~Z |~
XHWFEY+2Z X-Z£y-W
Multiplikation Faktorisierung
y>z y>z y=z yF#2Z XXy >X*Z | XKy >X*kZ XXY=XKZ |XKYFEX*Z
x>0| X*y>K*zZ | XkY>X*Z | XXY=X*Z |X*kyF#X*Z||x>0 y>z y>z y=z y#2z
x>0 Xy*>X*Z | XXy >X*Z X¥Xy=xX*z | ———--— x<0 y<z y<z y=z yF#2Z
x=0 | x¥y=x*z | X¥y=x*z | X*ky=x*z |X*y=X*Z||x#£0 y#z | - y=z y#2z
x*xy=0 x*xy=0 x*xy=0 x*xy=0
x<O| x*xy<x*z | x¥y<x*z | x*y=x*¥z | ————-
x<0 || x*y<x*z | X*Y<K*Z | XKY=X*Z |XKYFX*Z
x£0|| —---- XKYEXKZ | XKY=X*Z |XKYEX*Z

DIE ENTSCHEIDUNGSPROZEDUR SupInf I

Entscheide lineare Ungleichungen uber Z

e Arith zu schwach fiir lineare Ungleichungssysteme

e Anpassung von Bledsoe’s Sup-Inf Methode (1975)
— Methode ist nur fir rationale Zahlen korrekt und vollstandig
— Korrekt und unvollstandig fur Z, aber hilfreich in der Praxis

e Logische Theorie: Arithmetische Formeln
— Kombination von Ungleichungen tiber arithmetischen Typen

e Beweismethode:

— Extrahiere Menge linearer Ungleichungen 0<e,
deren Unerfullbarkeit die Giiltigkeit der Sequenz impliziert

— Bestimme obere/untere Grenzen fiir Variablen der e;
— Wenn alle Variablen in Z erfullbar sind, liefere Gegenbeispiel
— Implementierung in Nuprl als ML Strategie

e Eingebettet in die Taktik Auto’

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 9 Entscheidungsprozeduren

DIE SUP-INF BASISMETHODE I

Analysiere Konjunktion linearer Ungleichungen iiber Q

e Betrachte Formeln der Form 0<e,A ...0<e,
— e, lineare Ausdriicke uiber rationalen Variablen 1, .., z,

— Suche Belegung der x;, welche die Konjunktion erfiillen

e Bestimme obere/untere Grenzen fiir Werte der T,
— Aufwendiges Verfahren verbessert obere und untere Schranken iterativ
— Resultierende Schranken sind optimal (also Supremum und Infimum)

— Erfiilllende Belegung existiert, g.d.w. Infima jeweils kleiner als Suprema

e (Widerlegungs-)version fiir Z unvollstandig
— Erfiillende Belegung tiber QQ liefert nicht immer eine iiber Z

— Reparatur moglich, aber Integer Linear Programming is NP-vollstindig

— Korrektheit: Unertillbarkeit uber Q bedeutet Unerfullbarkeit uiber Z

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 10 Entscheidungsprozeduren

SupInf: FORMALE GRUNDKONZEPTE I

e Arithmetische Typen
~ 7 (int), N (nat), N* (nat_plus), Z " (int_nzero)
—{i...} (int upper), {i...7 } (int_seg), {i...j} (int _iseg)

e Arithmetische Literale
—a=beT oder a#beT’, wobei T arithmetischer Typ
— Arithmetische Ungleichungen mit <, <, > und >

— Negationen arithmetischer Literale

e Arithmetische Formeln
— (Verschachtelte) Konjunktionen und Disjunktionen

arithmetischer Literale

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 11 Entscheidungsprozeduren

SupInf: ARBEITSWEISE I

Anfangssequenz: I', r1, .. rn F Tg (r arithmetische Formel)

1. Extrahiere arithmetische Formel ' = 1 A .. A 1, A g
— Aus Unerfullbarkeit von F' folgt Gultigkeit der Anfangssequenz

2. Transformiere F' in disjunktive Normalform tiber <
— x<y bzw. y>x wird umgewandelt in z+1<y,
— x#y wird z+1<y v y+1<x
— r=y wird, wenn moglich, durch Substitution aufgelost

3. Normalisiere Ungleichungen in die Form 0<p, (p; Standard-Polynom)
4. Ersetze nichtlineare Teilausdriicke durch Variablen

5. Wende Sup-Inf Basismethode auf jedes Disjunkt an
— Wenn jedes Disjunkt unerfillbar ist, erzeuge Wohlgeformtheitsziele
— Andernfalls ist erfiillende Belegung ein Gegenbeispiel in “supinf _info”

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 12 Entscheidungsprozeduren

SupInf’: ERWEITERUNGEN ZU SuplInt’ I

Erganze arithmetische Kontextinformation

e Extrahiere Ungleichungen aus Typinformation

— 7.B. aus Deklaration x:N extrahiere 0<xz

— Bestimme Typ der in den Ungleichungen vorkommenden Ausdriicke
get type: (unvollstandiger) Typ-Inferenz-Algorithmus in ML
— Erganze Pradikat des entpsrechenden Teiltyps von Z

e Erganze arithmetische Lemmata
— Z.B. beil Vorkommen von |[1@1,| erganze [101,] = [1,[+]|1,

— Erlaubte Lemmata miissen global als solche deklariert sein

e Prozedur ist experimentell

— Viele Verbesserungen moglich

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 13 Entscheidungsprozeduren

(GLEICHHEITSSCHLIESSEN I

Folgt eine (Gleichheit aus anderen Gleichheiten?

e Wichtig fur praktische Beweisfiihrung
—-z.B.: f(f(a,b),b) = a folgt aus f(a,b) = a
g(a) = a folgt aus g(g(g(a))) = a und g(g(g(g(g(a))))) = a
— Intuitiver Beweis einfach

— Regelbasierte Beweise aufwendig

e Elementare Gleichheit ist entscheidbar
— Einfache Theorie: Gleichheiten mit uninterpretierten Symbolen

— Semantik: Reflexivitat, Symmetrie, Transitivitat, Substitution

e Effiziente Verfahren verfiigbar
— Berechnung der transitiven Hiille einer Aquivalenzrelation

— Technisch: Kongruenzabschluf3 des Relationsgraphen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 14 Entscheidungsprozeduren

DIE ENTSCHEIDUNGSPROZEDUR Eq I

Entscheide quantorenfreie Gleichheiten

e Anfangssequenz: I', F£,,..., E F Ej
— E; Gleichheit tiber einem Typ T’

e Logische Theorie: Gleichheitsrelationen
— Gleichheiten mit uninterpretierten Funktionssymbolen und Variablen

— Reflexivitat, Symmetrie, Transitivitat fir Elemente und Typen

e Beweismethode: begrenzter Kongruenzabschlufl
— Bilde transitive Hiille der Gleichungen in den Hypothesen
— Substitution reduziert aut taktische Dekomposition
— Teste ob Konklusion in transitiver Hiille enthalten ist

— Implementierung in Nuprl als Lisp Prozedur

e Eingebettet in die Taktik Auto

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 15 Entscheidungsprozeduren

(GLEICHEITSSCHLIESSEN DURCH KONGRUENZABSCHLUSS I

a(b(e,f),c) folgt aus d=e

Zeige : a(b(d,f),c)

Gleichheitskante

m;;;;;;\jgfii!ii*f

1. Verschmelze identische Knoten
2. Verbinde gleiche Knoten durch Gleichheitskante
3. Verbinde Wurzeln von Teilbaumen, die in allen Knoten gleich sind

Gleichheit = Wurzeln der Termbaume sind verbunden

Entscheidungsprozeduren

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 16

Equality: GRAPHENTHEORETISCHE VORAUSSETZUNGEN I

e Gerichteter Graph G = (V, E)
— I(v): Markierung des Knoten v in G

— 0(v): Anzahl der von v ausgehenden Kanten
— v|2]: i-ter Nachfolgerknoten von v

—u Vorganger von v, wenn v = uli] fiir ein ¢

° Aquivalenzrelation R auf V
—u und v kongruent unter R (u ~g v):
[(u) =1(v), 6(u) =0d(v) und fur alle i (uli],v[i]) e R
— R abgeschlossen unter Kongruenzen: v ~zv = (u,v)eR

— Kongruenzabschlufy R*: eindeutige minimale Erweiterung von R,
die abgeschlossen unter Kongruenzen und Aquivalenzrelation ist

= Menge aller Aquivalenzen, die logisch aus R folgen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 17 Entscheidungsprozeduren

(GLEICHHEITSSCHLIESSEN ALS KONGRUENZABSCHLUSS I

Folgt s =1t aus sy1=ty,....,8n=tn"?

e Konstruiere Graph G von s,81,...,8n, t,t1,...,1p
— (G besteht aus Termbaumen von s, s1,...,8,, t,t1,...,1,
— Identische Teilausdriicke werden durch denselben Teilbaum dargestellt

e Bestimme Kongruenzabschlufl der s;=t; iterativ
— Start: R ist Identitdtsrelation auf den Knoten von G (R* = R)
— Im Schritt ¢ bestimme Kongruenzabschlufl von R* U {(7(s;),7(t;))}
(7(u): Wurzelknoten des Termbaums von)
~ Repriisentiere R* als Menge von Aquivalenzklassen { [u],|ueV }

(u], = {zeV|(z,u) e R})

e Teste Aquivalenz von s und ¢
— s =t gilt genau dann, wenn (7(s), 7(t)) € R*

In Nuprl wegen Typbedingungen nur beschrankt einsetzbar

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 18 Entscheidungsprozeduren

BERECHNE KONGRUENZABSCHLUSS VON R U {(u,v)}

e Algorithmus MERGE(R,u,v)
— Eingabe: gerichteter Graph G = (V, E), u, veV

Aquivalenzrelation R (abgeschlossen unter Kongruenzen)

e Falls u ~p v, dann halte mit Ergebnis R
— Es gilt (RU{(u,v)})* =R

e Andernfalls modifiziere R durch Verschmelzung
— Setze P, == {x eV |Jwelu|,. v Vorganger von w}
— Setze P, := {z eV |Jwev],. x Vorganger von w}
~ Vereinige Aquivalenzklassen [u],, und [v],, in R
— Wiederhole fiir z € P, und y € P,
Falls © ~p y und ||, #|y|,, dann setze R:=MERGE(R.z,y)

Halte mit der modifizierten Relation R als Ergebnis

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 19 Entscheidungsprozeduren

KONGRUENZABSCHLUSS: g(g(g(a))) = a, g(g(g(g(g(a))))) = a

e Graph ist Termbaum von g(g(g(g(g(a)))))

— Initiale Relation: R := {{v1}, {vo}, {vs}, {va}, {vs}, {vs} } g W
e Hinzunahme von g(g(g(g(g(a))))) = a l

— R = {{v, v}, {va}, {vs}, {vs}, {vs} } ist abgeschlossen g (»)
e Hinzunahme von g(g(g(a))) = a |

MERGE(R,v3,v5): g

N va ‘= {U2}7 PU6 = {U5}7 R = { {Ula U6, 7}3}7 {U2}7 {U4}7 {U5} }

~ Wegen (v3,vs) € R gilt vo ~g vs5 aber |vo] ,#|vs],

MERGE(R,v9,v5):

- Py, = {v1}, Py, = {va}, R = {{v1,v6,v3},{v2, vs}, {va} } l

— Wegen (v2,v5) € R gilt v ~p vy aber |v],#[v4], g (v)
MERGE (R, v1,v4): l

- Pvl = {U27 U5}7 Pv4 = {U3}7 R = { {U17 U6, U3, U4}’ {U2’ U5} } a (v

— Wegen (vg, v4) € R gilt v5 ~p v3 aber [vs],#[vs],
MERGE(R,v5,v3):

— P, :={vi,vs}, Py = A{va, 05,03}, R :={{v1,vs,v3, 04,02, 05} }
Alle Knoten sind aquivalent: R=R*

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 20 Entscheidungsprozeduren

(GRENZEN VON ENTSCHEIDUNGSVERFAHREN I

® Weitere Theorien sind effektiv entscheidbar
— SchlieBBen uber Listenstrukturen
— Geometrische Probleme

— Aussagenlogik mit uninterpretierten Funktionssymbolen

e Einbettung in Typentheorie aufwendig
— Teilterme im Entscheidungsvorgang mussen Typbedingungen erfillen

— Korrektheitsbeweis schwierig zu filhren

e Kein Ersatz fiir Taktik-Konzept

— Implementierung immer auf Systemebene
— Benutzer kann Prozedur nicht selbst bei Bedarf erweitern

— Anpassungen an Benutzerwiinsche machen Prozeduren oft unvorhersagbar

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §14 21 Entscheidungsprozeduren

