
Automatisierte Logik und Programmierung

Lektion 15

Beweisautomatisierung

für die Logik erster Stufe

1. Taktische Beweismethoden

2. Maschinennahe Beweistechniken

3. JProver: Integration externer Prozeduren

Automatisierte Logik und Programmierung II §15 1 Beweisautomatisierung für die Logik erster Stufe

Beweisführung in Logik erster Stufe

• Interaktive Anwendung logischer Regeln
– Benutzer gibt Regeln des Sequenzenkalküls und Parameter an

– System führt Regeln aus und liefert Teilziele

Mühsam, aber sicher

• Taktikbasierte Beweissuche
– Taktik sucht nach anwendbaren Regeln

– Analyse von Konklusion & Hypothesen zur Bestimmung von Parametern

Hilfreich in der Praxis aber unvollständig wegen begrenzter Vorausschau

• Vollautomatische Beweisverfahren 7→ CADE, TABLEAUX, . . .

– Transformation einer Sequenz in effiziente Datenstruktur

– Charakterisierung gültiger Sequenzen durch Eigenschaften dieser Struktur

– Beweiser benutzt Standardverfahren zur Überprüfung der Eigenschaften

– Viele “Standalone” Methoden für klassische Logik

– Wenige Verfahren können auf konstruktive Logik erweitert werden

Integration aufwendig, da Konsistenzcheck oder Beweisterme erforderlich

Automatisierte Logik und Programmierung II §15 2 Beweisautomatisierung für die Logik erster Stufe

Taktikbasierte Beweisführung

Schrittweise Steigerung des Automatisierungsgrades

1. Interaktion mit Regeln der Logik erster Stufe

– Konnektive und Quantoren definiert über Curry-Howard Isomorphie

– Logikregeln implementiert als Dekomposition + Wohlgeformtheitsprüfung

let allR = D 0 THENW Auto

– Tactical TryOnC verhindert Anwendung von Regeln auf unpassende Ziele

let andR = TryOnC (D 0) is and term

and orR1 = TryOnC (Sel 1 (D 0) THENW Auto) is or term

and orR2 = TryOnC (Sel 2 (D 0) THENW Auto) is or term

and impR = TryOnC (D 0 THENW Auto) is imp term
...

– Tactical Run erzeugt gekapselte Varianten der Regeln

andI, orI1, orI2, impI, . . . , andE ii, orE ii, impE ii, . . . ,

Regeln werden bei Inspektion interner Beweise nicht aufgefaltet

Automatisierte Logik und Programmierung II §15 3 Beweisautomatisierung für die Logik erster Stufe

Taktikbasierte Beweisführung II

2. Bestimmung anwendbarer Regeln

– Tactical TryAllHyps wendet Taktik auf erste passende Hypothese an

let contradiction = TryAllHyps falseE is false term

let conjunctionE = TryAllHyps andE is and term

let disjunctionE = TryAllHyps orE is or term

let existentialE = TryAllHyps exE is ex term

– Einführungsregeln können namentlich bestimmt werden

let nondangerousI pf =

let kind = operator id of term (conclusion pf)

in

if mem kind [‘all‘;‘not‘;‘implies‘;‘rev implies‘;‘iff‘;‘and‘]

then Run (kind ˆ ‘R‘) pf

else failwith ‘tactic inappropriate‘

;;

Automatisierte Logik und Programmierung II §15 4 Beweisautomatisierung für die Logik erster Stufe

Taktikbasierte Beweisführung III

3. Verkettung von Implikationen & Äquivalenzen

– Tactical Chain wendet Taktik t auf ausgewählte Hypothesen an

und schließt mit Basistaktik ab

let Chain t hyps groundtac =

letrec chainfor i =

groundtac

ORELSE

if i = 0 then Id

else TryOn hyps (\hyp. t hyp THEN (Complete (chainfor (i-1))))

in

chain for chain limit
;;

let imp chain pf =

Chain impE (select hyps is imp term pf) Hypothesis pf ;;

let not chain =

TryAllHyps (\pos. notE pos THEN imp chain) is not term ;;

let iff chain =

TryAllHyps (\pos. (iffE pos THEN (imp chain ORELSE not chain))

ORELSE (iffE b pos THEN (imp chain ORELSE not chain))

) is iff term;;

Automatisierte Logik und Programmierung II §15 5 Beweisautomatisierung für die Logik erster Stufe

Taktikbasierte Beweisführung IV

Metalevel Analyse zur Instantiierung von Quantoren

let match subEx quantified term assumption =
letrec match sub aux vars exprop =
map (\var.assoc var (match vars exprop assumption)) (rev vars)

? let var,T,prop = dest exists exprop in match sub aux (var.vars) prop
in

match sub aux [] quantified term;;

letrec exIon terms pf =
let t.rest = terms in (exI t THEN exIon rest) pf ? Id pf;;

let InstantiateEx =
let InstEx aux pos pf =

let sigma = match subEx (conclusion pf) (type of hyp pos pf) in
(exIon (map snd sigma) THEN (NthHyp pos)) pf

in
OnSomeHyp InstEx aux;;

let InstantiateAll =
let InstAll aux pos pf =

let sigma = match subAll (type of hyp pos pf) (conclusion pf) in
(allEon pos (map snd sigma) THEN (OnLastHyp hypothesis)) pf

in
TryAllHyps InstAll aux is all term;;

Automatisierte Logik und Programmierung II §15 6 Beweisautomatisierung für die Logik erster Stufe

Ein einfacher taktikbasierter Beweiser

Sortiere Regelanwendungen nach Aufwand für Beweissuche

let simple prover = Repeat

(Hypothesis

ORELSE contradiction

ORELSE InstantiateAll

ORELSE InstantiateEx

ORELSE conjunctionE

ORELSE existentialE

ORELSE nondangerousI

ORELSE disjunctionE

ORELSE not chain

ORELSE iff chain

ORELSE imp chain

);;

letrec prover = simple prover

THEN Try (Complete (orI1 THEN prover)

ORELSE (Complete (orI2 THEN prover)))
;;

Automatisierte Logik und Programmierung II §15 7 Beweisautomatisierung für die Logik erster Stufe

Mögliche Verbesserungen des Beweisers

• Verbessertes Matching

– Matching mit Teiltermen von Konjunktionen in Hypothesen

– Matching mit Teiltermen von Disjunktionen in der Konklusion

– Gleichzeitige Analyse von Quantoren in Hypothesen und Konklusion

– Behandlung verschachtelt wechselnder Quantoren
...

• Zielgerichtete Verkettung

– Auswahl relevanter Implikationen & Äquivalenzen durch Matching

– Analyse von Teilen der Prämissen von Implikationen
...

• Taktikbasiertes Beweisen hat Grenzen

– Regeln exR, allL, . . . benötigen Parameter

– Regeln orR1, orR2, . . . benötigen Steuerung

– Auswahl der richtigen Regel benötigt “Planung” des Beweises

– Vollständige Beweissuche braucht “Vorausschau” durch Metalevel Analyse

Automatisierte Logik und Programmierung II §15 8 Beweisautomatisierung für die Logik erster Stufe

Maschinennahe Beweistechniken

• Ziel: einfache und schnelle Suchtechnik
– Verzicht auf intuitives Verständnis im Beweissuchverfahren

– Maschinennahe Charakterisierung logischer Gültigkeit

– Effiziente, “low-level” Suchstrategien auf Basis spezieller Datenstrukturen

• Viele unabhängig entstandene Verfahren
– Resolution: Widerlegungsverfahren für Formeln in DNF 7→ Prolog

· Verschmelze Klauseln mit “komplementären” Literalen

· Komplementaritätstest erster Stufe benötigt Unifikation

· Ziel ist Herleitung der leeren Klausel

– Matrixmethoden: Kompakte Repräsentation von Suchbäumen

· Matrix repräsentiert Verzweigungsstruktur von Beweisbäumen

· Teste, ob alle Pfade komplementäre Literale enthalten

– Inverse Methode: Ähnlich zur Resolution

– Modellelimination: Zeige, daß kein Modell die Formel falsifizieren kann

– Davis Putnam: Iterative Anwendung von Aufspaltung und Reduktion

· Schnellstes Verfahren für Aussagenlogik, nicht erweiterbar

– Wenige Verfahren liefern Beweisterme

Automatisierte Logik und Programmierung II §15 9 Beweisautomatisierung für die Logik erster Stufe

Tableauxmethodik

• Sequenzenbeweise enthalten viel Redundanz
– Jeder Knoten enthält alle gültigen Annahmen und die Konklusion

– Inferenzregeln basieren auf logischen Konnektiven und Quantoren

• Tableauxmethode verkürzt Sequenzenbeweise
– Polarität kennzeichnet Unterschied zwischen Annahmen und Konklusion

– Inferenzregeln werden zu Klassen ähnlicher Struktur zusammengefaßt

andL i Γ, A ∧B, ∆ ` C Γ ` A ∧B andR

Γ, A, B, ∆ ` C Γ ` A

Γ ` B

orL i Γ, A ∨B, ∆ ` C Γ ` A ∨B orR1

Γ, A, ∆ ` C Γ ` A

Γ, B, ∆ ` C Γ ` A ∨B orR2

Γ ` B

– andL und orR: Dekomposition liefert ein Teilziel Typ α

– andR und orL: Dekomposition verzeigt Beweis Typ β

– allL und exR: Dekomposition instantiiert Variable mit Term Typ γ

– allR und exL: Dekomposition deklariert neue Variable Typ δ

– hypothesis: Gleiche Formeln mit anderer Polarität Komplementarität

Automatisierte Logik und Programmierung II §15 10 Beweisautomatisierung für die Logik erster Stufe

Matrixmethoden: Kompakte Sequenzenbeweise

• Konstruktion von Beweisbäumen ist aufwendig

– Sequenzenbeweise zerlegen Formeln bis hypothesis Regel anwendbar

– Regeln ergänzen Teilformeln in Nachfolgerknoten des Beweises

• Kompakte Repräsentation von Beweisbäumen

– Formelbaum enthält bereits alle Teilformeln

– Tableauxtypen und Polaritäten können top-down ergänzt werden

· Beide hängen nur vom Konnektiv und bisheriger Polarität ab

– Äste eines Sequenzenbeweises sind durch β-Knoten definiert

– Teilformeln mit α-Knoten als gemeinsamen Vorgänger erscheinen

im gleichen Ast eines Sequenzenbeweises

– hypothesis Regel =̂ komplementäre atomare Formeln in “α-Beziehung”

• Einfache Beweismethode

– Ordne Literale (atomare Formeln) in zweidimensionaler Matrix an

· Nebeneinander =̂ α-Beziehung, übereinander =̂ β-Beziehung

– Teste alle Pfade auf Existenz komplementärer Literale

Automatisierte Logik und Programmierung II §15 11 Beweisautomatisierung für die Logik erster Stufe

Matrixmethoden: annotierte Formelbäume

(P ∨ (Q∧R))⇒ ((P ∨Q)∧ (P ∨R))

⇒F α
a0

∨
T β

a1
∧

F β
a2

P T α
a3

∧
T α

a4
∨

F α
a5

∨
F α

a6

QT

a7
RT

a8
P F

a9
QF

a10
P F

a11
RF

a12

Parsen der Formel erzeugt Formelbaum

• Zuweisung von Polaritäten: T =̂ Hypothese, F =̂ Konklusion

• Bestimmung des Typs: α =̂ linear, β =̂ Verzweigung

• Zuweisung von Polaritäten an Unterformeln

• Bestimmung des Typs der Unterformeln

• Erzeuge Konnektionen zwischen komplementären Literalen

Automatisierte Logik und Programmierung II §15 12 Beweisautomatisierung für die Logik erster Stufe

Matrixmethoden: Analyse der Pfade

⇒F α
a0

∨
T β

a1
∧

F β
a2

P T α
a3

∧
T α

a4
∨

F α
a5

∨
F α

a6

QT

a7
RT

a8
P F

a9
QF

a10
P F

a11
RF

a12

• 4 atomare Pfade a3a9a10, a3a11a12, a7a8a9a10, a7a8a11a12

• Alle Pfade enthalten komplementäre Literale

Formel (P ∨(Q ∧R)) ⇒ ((P ∨Q) ∧(P ∨R)) ist gültig

• Zweidimensionale Repräsentation
QT RT

P T

P F QF

P F RFMit Konnektionen

Automatisierte Logik und Programmierung II §15 13 Beweisautomatisierung für die Logik erster Stufe

Matrixmethoden: zusätzliche Aspekte

• Pfadüberprüfung folgt Konnektionen
– Frühzeitiges Abschneiden zu prüfender Pfade

– Verringert Anzahl notwendiger Überprüfungen

QT RT

P T

P F QF

P F RF

• Logik erster Stufe braucht Term-Unifikation
– Variablen von γ-Knoten können instantiiert werden

– Variablen von δ-Knoten gelten als Konstante

– Standard-Algorithmen von Robinson oder Martelli-Montanari

• Konstruktive Logik braucht zusätzliche Methoden
– Unterscheide P ∨¬P von P ⇒P

– Regeln für ⇒ , ¬, ∀ sind irreversibel

– Bestimme Reihenfolge der ⇒ , ¬, ∀

– Hilfsmittel: Präfix(String)-Unifikation ∨
F α

a0

P F α
a1

¬F
a2

P T
a3

P ∨¬P

⇒F α
a0

P T
a1

P F
a2

P ⇒ P

⇓

Thema für separate Lehrveranstaltung

Automatisierte Logik und Programmierung II §15 14 Beweisautomatisierung für die Logik erster Stufe

JProver: Integration von Matrixmethoden in Nuprl

Formel

¬A ∨¬B ⇒¬B ∨¬A --
Annotierung

Typen, Polaritäten, Präfixe

--

Annotatierter Formelbaum

⇒F
α

a0

∨
T

β

a1

¬T
α

a2

AF

a3

¬T
α

a4

BF

a5

∨
F

α

a6

¬F
α

a7

BT

a8

¬F
α

a9

AT

a10

++

Matrixbeweiser
Pfadchecking + Unifikation

Substitutionen induzieren Ordnung �

+
+

Reduktionsordnung �

⇒F
α

a0

∨
T

β

a1

¬T
α

a2

AF

a3

¬T
α

a4

BF

a5

∨
F

α

a6

¬F
α

a7

BT

a8

¬F
α

a9

AT

a10

-
-

Beweistransformation

Traversierung von �

Vielfach → Einzel-Konlusion

-
- Sequenzenbeweis

A ` A
ax .

¬A, A ` ¬l

¬A ` ¬B,¬A
¬r

B ` B
ax .

¬B, B ` ¬l

¬B ` ¬B,¬A
¬r

¬A ∨¬B ` ¬B,¬A
∨ l

¬A ∨¬B ` ¬B ∨¬A
∨r

` ¬A ∨¬B ⇒¬B ∨¬A
⇒ r

Automatisierte Logik und Programmierung II §15 15 Beweisautomatisierung für die Logik erster Stufe

JProver: der automatische Beweiser

• Beweissuche

– Matrixbeweiser für intuitionistische Logik erster Stufe (Kreitz & Otten 1999)

(Konnektionsgetriebene Pfadüberprüfung + Termunifikation)

– Zusätzliche Stringunifikation für konstruktive Beweise (Otten & Kreitz 1996)

– Substitutionen und Formelbaum induzieren Reduktionsordnung

• Beweistransformation

– Extrahiert Sequenzenbeweis aus Matrixbeweis (Kreitz & Schmitt 2000)

– Traversiert Reduktionsordnung ohne Suche (Schmitt 2000)

– Handhabt Sequenzenkalküle mit mehreren/ einer Konlusion (Egly & Schmitt 1999)

• Implementierung (Schmitt et. al 2001)

– Stand-alone Beweiser in OCaml

– Einbettung in MetaPRL-Umgebung liefert Basisfunktionalitäten

(Datentypen für Terme, Termunifikation, Modul System)

Automatisierte Logik und Programmierung II §15 16 Beweisautomatisierung für die Logik erster Stufe

JProver: Anbindung an Nuprl

JP
rover

Nuprl
for Nuprl

M
athB

us

Logic module

Sequent

Sequent Proof
NuPRL

Sequent Rules
List of

Preprocess

Postprocess

Sequent
Formulas

Sequent Proof
First-Order

List of

Matrix Proof

Prover

Converter

Formula Trees

List of Subgoal

• Präprozessor für Nuprl Sequenzen und semantische Unterschiede

• Kommunikation von Termen im MathBus Format über INET socket

• JLogic Modul: extrahiert semantische Information aus Termen

und konvertiert Sequenzenbeweis in das Format von Nuprl

• Postprozessor baut Nuprl Beweisbaum für Ausgangssequenz

Automatisierte Logik und Programmierung II §15 17 Beweisautomatisierung für die Logik erster Stufe

Logische Integration in Nuprl

• Logikmodul: Komponenten

– OCaml code für Kommunikation mit interaktivem Beweiser

– JLogic Modul zur Darstellung Nuprl Logik

• Das JLogic Modul

– Beschreibt Terme, welche Nuprl’s

logische Konnektive implementieren

– Liefert Operationen zum Zugriff auf Teilterme

– Decodiert Sequenzen, die

in MathBus Format ankommen

– Codiert JProver’s Sequenzenbeweis

ins MathBus Format

module Nuprl JLogic =

struct

let is all term = nuprl is all term

let dest all = nuprl dest all

let is exists term = nuprl is exists term

let dest exists = nuprl dest exists

let is and term = nuprl is and term

let dest and = nuprl dest and

let is or term = nuprl is or term

let dest or = nuprl dest or

let is implies term = nuprl is implies term

let dest implies = nuprl dest implies

let is not term = nuprl is not term

let dest not = nuprl dest not

type inference = ’(string*term*term) list

let empty inf = []

let append inf inf t1 t2 r =

((Jall.ruletable r), t1, t2) :: inf

end

Automatisierte Logik und Programmierung II §15 18 Beweisautomatisierung für die Logik erster Stufe

Der Weg zur logischen Wissensbank . . .

GUI

Evaluator

Translator

GUI GUI

Evaluator

Evaluator

Evaluator

Translator

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Java OCaml

Maude

MetaPRL

SoS (Lisp)

Nuprl-5 Web

Library Nuprl

HOL/SPIN

MetaPRL

PVS

MEGAΩ

PRL

(PVS)(HOL)

....

....

....THEORY

defs, thms, tactics
rules, structure, code

rules, structure, code

rules, structure, code
defs, thms, tactics defs, thms, tactics

rules, structure, code

rules, structure, code
defs, thms, tactics

rules, structure, code
defs, thms, tactics

defs, thms, tactics

THEORY

THEORY

THEORY THEORY

THEORY

• Verbinde externe Systeme

– Beweissysteme: PVS, HOL, . . .

– Browser (ASCII, web,. . .) und

Editoren (strukturiert, Emacs-mode,. . .)

• Ergänze neue Kapazitäten

– Archivierung (Dokumentation & Zertifizierung, Versionskontrolle)

– Einbettung des Inhalts externer Wissensbanken

– Eine Vielfalt von Rechtfertigungen (verschiedene Vertrauensstufen)

– Erzeugung formaler und textlicher Dokumente

– Asynchrone und verteilte Operation

– Meta-schließen (z.B.. über Bezüge zwischen verschiedenen Theorien)

⇓

Referenzumgebung für Entwicklung zuverlässiger Softwaree

