
Automatisierte Logik und Programmierung II

Teil V

Automatisierte Programmierung

1. Grundkonzepte & Vorgehensweise

2. Synthese im Kleinen

– Paradigmen & Strategien

3. Wissensbasierte Programmentwicklung

4. Korrektheitserhaltende Optimierungen



Automatisierte Logik und Programmierung II, Teil V 1 Automatisierte Programmierung

Wozu Automatisierte Programmierung?

• Softwareproduktion hat viele Probleme

– Zeitaufwendig und teuer

· Entwurf und Implementierung fokussiert auf Modellierungs- und

Programmiersprachen anstatt auf Eigenschaften des Problembereichs

· Implementierung meist “von Hand” und ad hoc

· Einbeziehung der Endanwender zu spät



Automatisierte Logik und Programmierung II, Teil V 1 Automatisierte Programmierung

Wozu Automatisierte Programmierung?

• Softwareproduktion hat viele Probleme

– Zeitaufwendig und teuer

· Entwurf und Implementierung fokussiert auf Modellierungs- und

Programmiersprachen anstatt auf Eigenschaften des Problembereichs

· Implementierung meist “von Hand” und ad hoc

· Einbeziehung der Endanwender zu spät

– Zu viele Fehler im Endprodukt

· Logischer Zusammenhang zwischen Aufgabe und Lösung selten erkennbar

· Programmierer geben keine Begründung für Korrektheit ihres Programms



Automatisierte Logik und Programmierung II, Teil V 1 Automatisierte Programmierung

Wozu Automatisierte Programmierung?

• Softwareproduktion hat viele Probleme

– Zeitaufwendig und teuer

· Entwurf und Implementierung fokussiert auf Modellierungs- und

Programmiersprachen anstatt auf Eigenschaften des Problembereichs

· Implementierung meist “von Hand” und ad hoc

· Einbeziehung der Endanwender zu spät

– Zu viele Fehler im Endprodukt

· Logischer Zusammenhang zwischen Aufgabe und Lösung selten erkennbar

· Programmierer geben keine Begründung für Korrektheit ihres Programms

• Logische Synthese von Programmen hilft

– Werkzeuge zur (Teil-)Automatisierung der Konstruktion von Algorithmen

– Logisches Fundament erhöht Zuverlässigkeit des erzeugten Programms

– Automatisierung verringert Entwicklungszeit und -kosten

und ermöglicht frühzeitige Validierung durch Endanwender



Automatisierte Logik und Programmierung II, Teil V 2 Automatisierte Programmierung

Kernaspekte einer Programmsynthese

Erzeuge korrekte ausführbare Programme aus Spezifikationen



Automatisierte Logik und Programmierung II, Teil V 2 Automatisierte Programmierung

Kernaspekte einer Programmsynthese

Erzeuge korrekte ausführbare Programme aus Spezifikationen

• Formale Spezifikation als Ausgangspunkt

– Formale Beschreibung von Anwendungsbereich und Problemstellung

– Verlangt Fixierung einer formalen Sprache



Automatisierte Logik und Programmierung II, Teil V 2 Automatisierte Programmierung

Kernaspekte einer Programmsynthese

Erzeuge korrekte ausführbare Programme aus Spezifikationen

• Formale Spezifikation als Ausgangspunkt

– Formale Beschreibung von Anwendungsbereich und Problemstellung

– Verlangt Fixierung einer formalen Sprache

• Methoden für automatische Algorithmensynthese

– Benötigen theoretische Resultate über Korrektheit erzeugter Algorithmen

– Syntheseparadigma: zulässige Manipulationen garantieren Korrektheit

– Synthesestrategie automatisiert Anwendung zulässiger Operationen

– Trace der Strategie dokumentiert getroffene Entscheidungen



Automatisierte Logik und Programmierung II, Teil V 2 Automatisierte Programmierung

Kernaspekte einer Programmsynthese

Erzeuge korrekte ausführbare Programme aus Spezifikationen

• Formale Spezifikation als Ausgangspunkt

– Formale Beschreibung von Anwendungsbereich und Problemstellung

– Verlangt Fixierung einer formalen Sprache

• Methoden für automatische Algorithmensynthese

– Benötigen theoretische Resultate über Korrektheit erzeugter Algorithmen

– Syntheseparadigma: zulässige Manipulationen garantieren Korrektheit

– Synthesestrategie automatisiert Anwendung zulässiger Operationen

– Trace der Strategie dokumentiert getroffene Entscheidungen

• Optimierung und Datentypverfeinerung

– Verbesserung des erzeugten Basisalgorithmus

– Auswahl geeigneter Implementierungen der vorkommenden Datentypen

– Sprachabhängige Optimierung bei Übertragung in Programmiersprache



Automatisierte Logik und Programmierung II, Teil V 3 Automatisierte Programmierung

Historische Entwicklung

• Anwendung generischer Inferenztechniken



Automatisierte Logik und Programmierung II, Teil V 3 Automatisierte Programmierung

Historische Entwicklung

• Anwendung generischer Inferenztechniken

– Beweise als Programme

· Automatischer Beweiser + Extraktion von Programmen aus Beweisen



Automatisierte Logik und Programmierung II, Teil V 3 Automatisierte Programmierung

Historische Entwicklung

• Anwendung generischer Inferenztechniken

– Beweise als Programme

· Automatischer Beweiser + Extraktion von Programmen aus Beweisen

– Transformation von Formeln

· Rewrite-Techniken + Extraktion von Programmen aus Formeln

– Gut zur Illustration der Prinzipien (“Synthese im Kleinen”)

– Konstruktion aufwendigerer Algorithmen verlangt Spezialstrategien



Automatisierte Logik und Programmierung II, Teil V 3 Automatisierte Programmierung

Historische Entwicklung

• Anwendung generischer Inferenztechniken

– Beweise als Programme

· Automatischer Beweiser + Extraktion von Programmen aus Beweisen

– Transformation von Formeln

· Rewrite-Techniken + Extraktion von Programmen aus Formeln

– Gut zur Illustration der Prinzipien (“Synthese im Kleinen”)

– Konstruktion aufwendigerer Algorithmen verlangt Spezialstrategien

• Wissensbasierte Syntheseverfahren

– Wissen über algorithmische Grundstrukturen formalisiert

als “Algorithmentheorien” (Struktur + Korrektheitsaxiome)

– Strategien verwenden Wissen zur Erzeugung effizienter Algorithmen

– Unterstützung statt Ersetzung des Programmierers

– Aufwendigere Vorarbeiten aber erfolgreich in der “Praxis”



Automatisierte Logik und Programmierung

Lektion 15

Grundkonzepte der Programmsynthese

1. Formale Grundbegriffe

2. Formalisierung von Anwendungsbereichen

3. Programmsynthese am Beispiel



Automatisierte Logik und Programmierung II §15 1 Grundkonzepte der Programmsynthese

Programmsynthese: grundsätzliches Vorgehen

1. Erstellen einer formalen Spezifikation

– Benötigt Formalisierung des Anwendungsbereichs als “Objekttheorie”

– Welche Begriffe werden benutzt und was bedeuten sie?

– Welche mathematischen Gesetze gelten für diese Begriffe?



Automatisierte Logik und Programmierung II §15 1 Grundkonzepte der Programmsynthese

Programmsynthese: grundsätzliches Vorgehen

1. Erstellen einer formalen Spezifikation

– Benötigt Formalisierung des Anwendungsbereichs als “Objekttheorie”

– Welche Begriffe werden benutzt und was bedeuten sie?

– Welche mathematischen Gesetze gelten für diese Begriffe?

2. Entwurf eines läuffähigen, korrekten Algorithmus

– Synthesestrategie generiert Basisversion und Korrektheitsgarantien



Automatisierte Logik und Programmierung II §15 1 Grundkonzepte der Programmsynthese

Programmsynthese: grundsätzliches Vorgehen

1. Erstellen einer formalen Spezifikation

– Benötigt Formalisierung des Anwendungsbereichs als “Objekttheorie”

– Welche Begriffe werden benutzt und was bedeuten sie?

– Welche mathematischen Gesetze gelten für diese Begriffe?

2. Entwurf eines läuffähigen, korrekten Algorithmus

– Synthesestrategie generiert Basisversion und Korrektheitsgarantien

3. Erzeugung eines effizienten, korrekten Programms

– Benutzergesteuerte Optimierungstechniken verbessern Algorithmus

– Übertragung in Zielsprache ermöglicht weitere Optimierungen

– System garantiert Korrekheit der Optimierungen



Automatisierte Logik und Programmierung II §15 2 Grundkonzepte der Programmsynthese

Spezifikation von Programmierproblemen

• Programme berechnen im Endeffekt Funktionen

– Aus welchem Datentyp stammen die Eingaben? Domain D

– Zu welchem Datentyp gehören die Ausgaben? Range R

– Gibt es Beschränkungen an zulässige Eingaben? Input-Bedingung I

– Was ist der Zusammenhang zwischen Ein- und Ausgaben?
Output-Bedingung O



Automatisierte Logik und Programmierung II §15 2 Grundkonzepte der Programmsynthese

Spezifikation von Programmierproblemen

• Programme berechnen im Endeffekt Funktionen

– Aus welchem Datentyp stammen die Eingaben? Domain D

– Zu welchem Datentyp gehören die Ausgaben? Range R

– Gibt es Beschränkungen an zulässige Eingaben? Input-Bedingung I

– Was ist der Zusammenhang zwischen Ein- und Ausgaben?
Output-Bedingung O

• Spezifikationen als formale Objekte

– Eine formale Spezifikation ist ein Quadrupel spec = (D,R,I,O)

wobei D und R Datentypen, I Prädikat über D, O Prädikat über D×R

– D,R,I,O sind in einer Spezifikationssprache zu beschreiben



Automatisierte Logik und Programmierung II §15 2 Grundkonzepte der Programmsynthese

Spezifikation von Programmierproblemen

• Programme berechnen im Endeffekt Funktionen

– Aus welchem Datentyp stammen die Eingaben? Domain D

– Zu welchem Datentyp gehören die Ausgaben? Range R

– Gibt es Beschränkungen an zulässige Eingaben? Input-Bedingung I

– Was ist der Zusammenhang zwischen Ein- und Ausgaben?
Output-Bedingung O

• Spezifikationen als formale Objekte

– Eine formale Spezifikation ist ein Quadrupel spec = (D,R,I,O)

wobei D und R Datentypen, I Prädikat über D, O Prädikat über D×R

– D,R,I,O sind in einer Spezifikationssprache zu beschreiben

• Zwei mögliche Aufgabenstellungen

– Programm soll eine mögliche Lösung bestimmen,

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

– Programm soll alle möglichen Lösungen bestimmen

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}



Automatisierte Logik und Programmierung II §15 3 Grundkonzepte der Programmsynthese

Programme und Korrektheit

• Programm = Spezifikation + Algorithmus

– Algorithmen (Programmkörper) sind berechenbare (partielle) Funktionen

auf D 6→R, die auf allen zulässigen Eingaben definiert sind



Automatisierte Logik und Programmierung II §15 3 Grundkonzepte der Programmsynthese

Programme und Korrektheit

• Programm = Spezifikation + Algorithmus

– Algorithmen (Programmkörper) sind berechenbare (partielle) Funktionen

auf D 6→R, die auf allen zulässigen Eingaben definiert sind

• Programme als formale Objekte

– Eine formales Programm ist ein 5-Tupel prog = (D,R,I,O, body)

wobei (D,R,I,O) formale Spezifikation, body:D 6→R berechenbar

– body darf f rekursiv aufrufen und ist in Programmiersprache zu beschreiben

· FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y] ≡ body[f, x]

· FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]} ≡ body[f, x]



Automatisierte Logik und Programmierung II §15 3 Grundkonzepte der Programmsynthese

Programme und Korrektheit

• Programm = Spezifikation + Algorithmus

– Algorithmen (Programmkörper) sind berechenbare (partielle) Funktionen

auf D 6→R, die auf allen zulässigen Eingaben definiert sind

• Programme als formale Objekte

– Eine formales Programm ist ein 5-Tupel prog = (D,R,I,O, body)

wobei (D,R,I,O) formale Spezifikation, body:D 6→R berechenbar

– body darf f rekursiv aufrufen und ist in Programmiersprache zu beschreiben

· FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y] ≡ body[f, x]

· FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]} ≡ body[f, x]

• Korrektheit von Programmen

– prog ist korrekt, falls ∀x:D. I [x] ⇒ O[x, body(x)]



Automatisierte Logik und Programmierung II §15 3 Grundkonzepte der Programmsynthese

Programme und Korrektheit

• Programm = Spezifikation + Algorithmus

– Algorithmen (Programmkörper) sind berechenbare (partielle) Funktionen

auf D 6→R, die auf allen zulässigen Eingaben definiert sind

• Programme als formale Objekte

– Eine formales Programm ist ein 5-Tupel prog = (D,R,I,O, body)

wobei (D,R,I,O) formale Spezifikation, body:D 6→R berechenbar

– body darf f rekursiv aufrufen und ist in Programmiersprache zu beschreiben

· FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y] ≡ body[f, x]

· FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]} ≡ body[f, x]

• Korrektheit von Programmen

– prog ist korrekt, falls ∀x:D. I [x] ⇒ O[x, body(x)]

• Syntheseziel: Erfüllbarkeit von Spezifikationen

– spec ist erfüllbar (synthetisierbar), falls es eine Funktion

body:D 6→R gibt, so daß prog=(spec,body) korrekt ist



Automatisierte Logik und Programmierung II §15 4 Grundkonzepte der Programmsynthese

Spezifikations- und Programmiersprache

• Einheitlicher Formalismus für Synthese

– Mathematische Sprache mit Programmiernotation

– Beinhaltet formale Notation für die wichtigsten Datentypen

– Aufgesetzt auf logischen Basiskalkül (z.B. Typentheorie)



Automatisierte Logik und Programmierung II §15 4 Grundkonzepte der Programmsynthese

Spezifikations- und Programmiersprache

• Einheitlicher Formalismus für Synthese

– Mathematische Sprache mit Programmiernotation

– Beinhaltet formale Notation für die wichtigsten Datentypen

– Aufgesetzt auf logischen Basiskalkül (z.B. Typentheorie)

• Formales Wissen über Standard-Datentypen

– Definition der Begriffe im Basiskalkül

– Verifizierte Lemmata über Eigenschaften der Begriffe

– Quelle: Inhalt von Lehrmaterial, -büchern und Forschungsergebnissen



Automatisierte Logik und Programmierung II §15 4 Grundkonzepte der Programmsynthese

Spezifikations- und Programmiersprache

• Einheitlicher Formalismus für Synthese

– Mathematische Sprache mit Programmiernotation

– Beinhaltet formale Notation für die wichtigsten Datentypen

– Aufgesetzt auf logischen Basiskalkül (z.B. Typentheorie)

• Formales Wissen über Standard-Datentypen

– Definition der Begriffe im Basiskalkül

– Verifizierte Lemmata über Eigenschaften der Begriffe

– Quelle: Inhalt von Lehrmaterial, -büchern und Forschungsergebnissen

• Objekttheorien: zusätzliches Domänenwissen

– Definition neuer Konzepte in einer Spezifikation

– Lemmata über Grundeigenschaften dieser Konzepte



Automatisierte Logik und Programmierung II §15 5 Grundkonzepte der Programmsynthese

Aufbau formaler mathematischer (Objekt-)Theorien

Notwendig für Formalisierung von Programmierproblemen

• Formalisiere Grundkonzepte der Theorie

– Systematischer Entwurf analog zum Aufbau der Typentheorie

· Formale Notation für Datentyp, kanonische & nichtkanonische Elemente

· Inferenzregeln für Elemente und Datentyp



Automatisierte Logik und Programmierung II §15 5 Grundkonzepte der Programmsynthese

Aufbau formaler mathematischer (Objekt-)Theorien

Notwendig für Formalisierung von Programmierproblemen

• Formalisiere Grundkonzepte der Theorie

– Systematischer Entwurf analog zum Aufbau der Typentheorie

· Formale Notation für Datentyp, kanonische & nichtkanonische Elemente

· Inferenzregeln für Elemente und Datentyp

• Implementiere Grundkonzepte der Theorie

– Formale Definitionen erklären neue Begriffe durch bestehende Terme

– Taktiken beschreiben neue Inferenzregeln durch existierende Regeln



Automatisierte Logik und Programmierung II §15 5 Grundkonzepte der Programmsynthese

Aufbau formaler mathematischer (Objekt-)Theorien

Notwendig für Formalisierung von Programmierproblemen

• Formalisiere Grundkonzepte der Theorie

– Systematischer Entwurf analog zum Aufbau der Typentheorie

· Formale Notation für Datentyp, kanonische & nichtkanonische Elemente

· Inferenzregeln für Elemente und Datentyp

• Implementiere Grundkonzepte der Theorie

– Formale Definitionen erklären neue Begriffe durch bestehende Terme

– Taktiken beschreiben neue Inferenzregeln durch existierende Regeln

• Erstelle erweiterte Objekttheorie

– Formalisiere wichtige Begriffe durch Grundkonzepte der Theorie

– Beweise mathematische Gesetze zu Eigenschaften “abgeleiteter” Konzepte

Insbesondere Rewrite-Lemmata zu Kombinationen von Operationen



Automatisierte Logik und Programmierung II §15 6 Grundkonzepte der Programmsynthese

Beispiel: Theorie endlicher Mengen

• Grundkonzepte
Datentyp: Set(α)

Operationen: ∅: Set(α)

+: Set(α)×α → Set(α)

∈: α×Set(α) → Bool

Gesetze: a 6∈∅

x ∈(S+a) ⇔ (x=a ∨ x ∈S)

(S+a)+x = (S+x)+a

(S+a)+a = S+a

(P(∅) ∧ (∀S:Set(α).P(S) ⇒ ∀a:α.P(S+a))) ⇒ ∀S:Set(α).P(S)



Automatisierte Logik und Programmierung II §15 6 Grundkonzepte der Programmsynthese

Beispiel: Theorie endlicher Mengen

• Grundkonzepte
Datentyp: Set(α)

Operationen: ∅: Set(α)

+: Set(α)×α → Set(α)

∈: α×Set(α) → Bool

Gesetze: a 6∈∅

x ∈(S+a) ⇔ (x=a ∨ x ∈S)

(S+a)+x = (S+x)+a

(S+a)+a = S+a

(P(∅) ∧ (∀S:Set(α).P(S) ⇒ ∀a:α.P(S+a))) ⇒ ∀S:Set(α).P(S)

• Implementierung

∅ ≡ nil

+ ≡ λa,S. a.S

∈ ≡ λa,S. ∃x ∈S.x=ba

=Set ≡ λS,T. (∀a ∈S. a ∈T) ∧ (∀a’ ∈T. a’ ∈S)

Set(α) ≡ (S,T):α list // S=SetT



Automatisierte Logik und Programmierung II §15 7 Grundkonzepte der Programmsynthese

Theorie endlicher Mengen – Abgeleitete Konzepte

empty? ≡ λS. if S=∅ then tt else ff

⊆ ≡ λS,S’. ∀x ∈S.x ∈S’

{list-exp} ≡ list-exp.nil

{i..j} ≡ ind(j-i; , .∅; {j}; diff,j-set.j-set+(j-diff))

{fx|x ∈S ∧px} ≡ list ind(S; ∅; a, ,GSF. if px[a/x] then GSF+fx[a/x] else GSF

|S| ≡ list ind(S; 0; a,S’,card. if a ∈S’ then card else card+1)

- ≡ λS,a. {x|x ∈S ∧x6=a}

∪ ≡ λS,S’. list ind(S’; S; a, ,union.union+a)

∩ ≡ λS,S’. {x|x ∈S ∧x ∈S’}
\ ≡ λS,S’. {x|x ∈S ∧x 6∈S’}⋃

≡ λFAMILY. list ind(FAMILY; ∅; S,FAM,Union.Union∪S)⋂
≡ λFAMILY. list ind(FAMILY; fail;

S,FAM,inter. if empty?(FAM) then S else inter∩ S)

map ≡ λf,S. {f(x)|x ∈S}

reduce ≡ λop,S. list ind(S; fail;

a,S’,redS’. if empty?(S’) then a

else if a ∈S’ then redS’ else op(redS’,a))

T =Set S ] S ′ ≡ T =Set S∪S ′
∧ empty?(S∩S ′)



Automatisierte Logik und Programmierung II §15 8 Grundkonzepte der Programmsynthese

Wichtigste Bestandteile der Formalisierungssprache

B, true, false Data type of boolean expressions, explicit truth values

¬, ∧, ∨, ⇒ , ⇐ , ⇔ Boolean connectives

∀x ∈S.p, ∃x ∈S.p Limited boolean quantifiers (on finite sets and sequences)

if p then a else b Conditional

Seq(α) Data type of finite sequences over members of α

null?, ∈, v Decision procedures: emptiness, membership, prefix

[], [a], [i..j], [a
1
...a

n
] Empty/ singleton sequence, subrange, literal sequence former

a.L, L·a prepend a, append a to L

[f(x)|x ∈L ∧p(x)], |L|, L[i] General sequence former, length of L, i-th element,

domain(L), range(L) The sets {1..|L|} and {L[i]|i ∈domain(L)}

nodups(L) Decision procedure: all the L[i] are distinct (no duplicates)

Set(α) Data type of finite sets over members of α

empty?, ∈, ⊆ Decision procedures: emptiness, membership, subset

∅, {a}, {i..j}, {a
1
...a

n
} Empty set, singleton set, integer subset, literal set former

S+a, S-a element addition, element deletion

{f(x)|x ∈S ∧p(x)}, |S| General set former, cardinality

S∪T, S∩T, S\T Union, intersection, set difference⋃
FAMILY,

⋂
FAMILY Union, intersection of a family of sets



Automatisierte Logik und Programmierung II §15 9 Grundkonzepte der Programmsynthese

Formale Entwicklung von Algorithmen am Beispiel

Costas-Arrays Problem

Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

– Hilfreich für Erzeugung leicht decodierbarer Radar- und Sonarsignale

2 4 1 6 5 3

Costas Array der Ordnung 6 und seine Differenzentafel



Automatisierte Logik und Programmierung II §15 9 Grundkonzepte der Programmsynthese

Formale Entwicklung von Algorithmen am Beispiel

Costas-Arrays Problem

Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

– Hilfreich für Erzeugung leicht decodierbarer Radar- und Sonarsignale

2 4 1 6 5 3

-2

Costas Array der Ordnung 6 und seine Differenzentafel



Automatisierte Logik und Programmierung II §15 9 Grundkonzepte der Programmsynthese

Formale Entwicklung von Algorithmen am Beispiel

Costas-Arrays Problem

Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

– Hilfreich für Erzeugung leicht decodierbarer Radar- und Sonarsignale

2 4 1 6 5 3

-2 3

Costas Array der Ordnung 6 und seine Differenzentafel



Automatisierte Logik und Programmierung II §15 9 Grundkonzepte der Programmsynthese

Formale Entwicklung von Algorithmen am Beispiel

Costas-Arrays Problem

Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

– Hilfreich für Erzeugung leicht decodierbarer Radar- und Sonarsignale

2 4 1 6 5 3

-2 3 -5

Costas Array der Ordnung 6 und seine Differenzentafel



Automatisierte Logik und Programmierung II §15 9 Grundkonzepte der Programmsynthese

Formale Entwicklung von Algorithmen am Beispiel

Costas-Arrays Problem

Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

– Hilfreich für Erzeugung leicht decodierbarer Radar- und Sonarsignale

2 4 1 6 5 3

-2 3 -5 1

Costas Array der Ordnung 6 und seine Differenzentafel



Automatisierte Logik und Programmierung II §15 9 Grundkonzepte der Programmsynthese

Formale Entwicklung von Algorithmen am Beispiel

Costas-Arrays Problem

Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

– Hilfreich für Erzeugung leicht decodierbarer Radar- und Sonarsignale

2 4 1 6 5 3

-2 3 -5 1 2

Costas Array der Ordnung 6 und seine Differenzentafel



Automatisierte Logik und Programmierung II §15 9 Grundkonzepte der Programmsynthese

Formale Entwicklung von Algorithmen am Beispiel

Costas-Arrays Problem

Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

– Hilfreich für Erzeugung leicht decodierbarer Radar- und Sonarsignale

2 4 1 6 5 3

-2 3 -5 1 2

1 -2 -4 3

-4 -1 -2

-3 1

-1

Costas Array der Ordnung 6 und seine Differenzentafel



Automatisierte Logik und Programmierung II §15 9 Grundkonzepte der Programmsynthese

Formale Entwicklung von Algorithmen am Beispiel

Costas-Arrays Problem

Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

– Hilfreich für Erzeugung leicht decodierbarer Radar- und Sonarsignale

2 4 1 6 5 3

-2 3 -5 1 2

1 -2 -4 3

-4 -1 -2

-3 1

-1

Costas Array der Ordnung 6 und seine Differenzentafel

Ziel: Berechnung aller Costas Arrays der Größe n



Automatisierte Logik und Programmierung II §15 10 Grundkonzepte der Programmsynthese

Berechnung aller Costas Arrays

Bis 1988 keine effiziente Lösungsalgorithmen bekannt

• Aufzählung und Testen ist exponentiell

– Wie analysiert man Lösungskandidaten ohne sie aufzuzählen?



Automatisierte Logik und Programmierung II §15 10 Grundkonzepte der Programmsynthese

Berechnung aller Costas Arrays

Bis 1988 keine effiziente Lösungsalgorithmen bekannt

• Aufzählung und Testen ist exponentiell

– Wie analysiert man Lösungskandidaten ohne sie aufzuzählen?

• Lösung benutzt Globalsuche

Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten

– Codierung von Kandidatenmengen

– Wiederholtes Aufteilen und und Filtern

auf Basis von Repräsentanten

– Extraktion konkreter Lösungen aus Repräsentanten



Automatisierte Logik und Programmierung II §15 10 Grundkonzepte der Programmsynthese

Berechnung aller Costas Arrays

Bis 1988 keine effiziente Lösungsalgorithmen bekannt

• Aufzählung und Testen ist exponentiell

– Wie analysiert man Lösungskandidaten ohne sie aufzuzählen?

• Lösung benutzt Globalsuche

Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten

– Codierung von Kandidatenmengen

– Wiederholtes Aufteilen und und Filtern

auf Basis von Repräsentanten

– Extraktion konkreter Lösungen aus Repräsentanten

Globalsuchalgorithmen sind systematisch erzeugbar



Automatisierte Logik und Programmierung II §15 11 Grundkonzepte der Programmsynthese

Phasen einer formale Algorithmenentwicklung

1. Erstellen der nötigen Objekttheorie

– Formalisierung vorkommender neuer Begriffe

– Aufstellen mathematischer Gesetze für diese Begriffe



Automatisierte Logik und Programmierung II §15 11 Grundkonzepte der Programmsynthese

Phasen einer formale Algorithmenentwicklung

1. Erstellen der nötigen Objekttheorie

– Formalisierung vorkommender neuer Begriffe

– Aufstellen mathematischer Gesetze für diese Begriffe

2. Erstellen der formalen Spezifikation



Automatisierte Logik und Programmierung II §15 11 Grundkonzepte der Programmsynthese

Phasen einer formale Algorithmenentwicklung

1. Erstellen der nötigen Objekttheorie

– Formalisierung vorkommender neuer Begriffe

– Aufstellen mathematischer Gesetze für diese Begriffe

2. Erstellen der formalen Spezifikation

3. Entwurf eines korrekten Basisalgorithmus



Automatisierte Logik und Programmierung II §15 11 Grundkonzepte der Programmsynthese

Phasen einer formale Algorithmenentwicklung

1. Erstellen der nötigen Objekttheorie

– Formalisierung vorkommender neuer Begriffe

– Aufstellen mathematischer Gesetze für diese Begriffe

2. Erstellen der formalen Spezifikation

3. Entwurf eines korrekten Basisalgorithmus

4. Verifizierte algorithmische Optimierung



Automatisierte Logik und Programmierung II §15 11 Grundkonzepte der Programmsynthese

Phasen einer formale Algorithmenentwicklung

1. Erstellen der nötigen Objekttheorie

– Formalisierung vorkommender neuer Begriffe

– Aufstellen mathematischer Gesetze für diese Begriffe

2. Erstellen der formalen Spezifikation

3. Entwurf eines korrekten Basisalgorithmus

4. Verifizierte algorithmische Optimierung

5. Implementierung

– Auswahl geeigneter Implementierungen für abstrakte Datentypen

– Ggf. Compilierung und sprachabhängige Optimierung



Automatisierte Logik und Programmierung II §15 11 Grundkonzepte der Programmsynthese

Phasen einer formale Algorithmenentwicklung

1. Erstellen der nötigen Objekttheorie

– Formalisierung vorkommender neuer Begriffe

– Aufstellen mathematischer Gesetze für diese Begriffe

2. Erstellen der formalen Spezifikation

3. Entwurf eines korrekten Basisalgorithmus

4. Verifizierte algorithmische Optimierung

5. Implementierung

– Auswahl geeigneter Implementierungen für abstrakte Datentypen

– Ggf. Compilierung und sprachabhängige Optimierung

Unterstützung durch Synthesesystem

Steuerung durch erfahrenen Benutzer



Automatisierte Logik und Programmierung II §15 12 Grundkonzepte der Programmsynthese

Costas-Arrays (1): Objekttheorie

Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel



Automatisierte Logik und Programmierung II §15 12 Grundkonzepte der Programmsynthese

Costas-Arrays (1): Objekttheorie

Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

• Formalisierung vorkommender Begriffe:

dtrow(L,j) ≡ [L[i]-L[i+j]| i ∈[1..|L|-j]]

perm(L,S) ≡ nodups(L) ∧ range(L)=S



Automatisierte Logik und Programmierung II §15 12 Grundkonzepte der Programmsynthese

Costas-Arrays (1): Objekttheorie

Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

• Formalisierung vorkommender Begriffe:

dtrow(L,j) ≡ [L[i]-L[i+j]| i ∈[1..|L|-j]]

perm(L,S) ≡ nodups(L) ∧ range(L)=S

• Aufstellen mathematischer Gesetze:

∀L,L’:Seq(Z).∀i:Z.∀j:N.

1. dtrow([],j) = []

2. j≤|L| ⇒ dtrow(i.L,j) = (i-L[j]).dtrow(L,j)

3. j6=0 ⇒ dtrow([i],j) = []

4. LvL’ ⇒ dtrow(L,j) v dtrow(L’,j)

5. j≥|L| ⇒ dtrow(L,j) = []

6. j≤|L| ⇒ dtrow(L·i,j) = dtrow(L,j)·(L[ |L|+1-j ]-i)

...



Automatisierte Logik und Programmierung II §15 13 Grundkonzepte der Programmsynthese

Costas-Arrays (2): formale Spezifikation

Für n≥1 berechne alle Permutationen von {1..n}

ohne Duplikate in Zeilen der Differenzentafel

D 7→ Z

R 7→ Seq(Z)

I 7→ λn. n≥1

O 7→ λn,p. perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j))

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}



Automatisierte Logik und Programmierung II §15 14 Grundkonzepte der Programmsynthese

Costas-Arrays (3): Erzeugung des Basisalgorithmus

• Grundstruktur eines Globalsuchalgorithmus

let rec fgs(x,s) = { z | z ∈ext(s) ∧ O(x,z) }

∪
⋃

{ fgs(x,t) | t ∈split(x,s) ∧ Φ(x,t)}
in fgs(x,s0

(x))

Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten



Automatisierte Logik und Programmierung II §15 14 Grundkonzepte der Programmsynthese

Costas-Arrays (3): Erzeugung des Basisalgorithmus

• Grundstruktur eines Globalsuchalgorithmus

let rec fgs(x,s) = { z | z ∈ext(s) ∧ O(x,z) }

∪
⋃

{ fgs(x,t) | t ∈split(x,s) ∧ Φ(x,t)}
in fgs(x,s0

(x))

Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten

– s: Deskriptor für Mengen von Lösungskandidaten

– s
0
(x): Initialdeskriptor für Eingabe x

– split(x,s): Rekursive Aufteilung von Kandidatenmengen

– Φ(x,s): Filter zur Elimination unnötiger Deskriptoren

– ext(s): direkte Extraktion von Lösungskandidaten z aus Deskriptoren

– O(x,z): Ausgabebedingung, verwendet zur endgültigen Selektion



Automatisierte Logik und Programmierung II §15 14 Grundkonzepte der Programmsynthese

Costas-Arrays (3): Erzeugung des Basisalgorithmus

• Grundstruktur eines Globalsuchalgorithmus

let rec fgs(x,s) = { z | z ∈ext(s) ∧ O(x,z) }

∪
⋃

{ fgs(x,t) | t ∈split(x,s) ∧ Φ(x,t)}
in fgs(x,s0

(x))

Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten

– s: Deskriptor für Mengen von Lösungskandidaten

– s
0
(x): Initialdeskriptor für Eingabe x

– split(x,s): Rekursive Aufteilung von Kandidatenmengen

– Φ(x,s): Filter zur Elimination unnötiger Deskriptoren

– ext(s): direkte Extraktion von Lösungskandidaten z aus Deskriptoren

– O(x,z): Ausgabebedingung, verwendet zur endgültigen Selektion

• Globalsuchalgorithmus für Costas-Arrays Problem
let costas(n) =

let rec aux(n,s)

= { p | p ∈{s} ∧ perm(p,{1..n}) ∧ ∀j<n. nodups(dt-row(p,j))}

∪
⋃

{ aux(x,t)| t ∈{ s·i|i ∈{1..n} }

∧ nodups(t) ∧ ∀j<|t|. nodups(dt-row(t,j))}
in aux(n,[])



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= { p | p ∈{s} ∧ perm(p,{1..n}) ∧ ∀j<n. nodups(dt-row(p,j))}

∪
⋃

{ aux(x,t)| t ∈{ s·i|i ∈{1..n} } ∧ nodups(t)

∧ ∀j<|t|. nodups(dt-row(t,j)) }

in aux(n,[])



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= { p | p ∈{s} ∧ perm(p,{1..n}) ∧ ∀j<n. nodups(dt-row(p,j))}

∪
⋃

{ aux(x,t)| t ∈{ s·i|i ∈{1..n} } ∧ nodups(t)

∧ ∀j<|t|. nodups(dt-row(t,j)) }

in aux(n,[])

Domänenwissen: {p | p ∈{s} ∧ P(p)} ≡ if P(s) then {s} else ∅



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if perm(s,{1..n}) ∧ ∀j<n. nodups(dt-row(s,j)) then {s} else ∅

∪
⋃

{ aux(x,t)| t ∈{ s·i|i ∈{1..n} } ∧ nodups(t)

∧ ∀j<|t|. nodups(dt-row(t,j)) }

in aux(n,[])



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if perm(s,{1..n}) ∧ ∀j<n. nodups(dt-row(s,j)) then {s} else ∅

∪
⋃

{ aux(x,t)| t ∈{ s·i|i ∈{1..n} } ∧ nodups(t)

∧ ∀j<|t|. nodups(dt-row(t,j)) }

in aux(n,[])

Domänenwissen: perm(s,{1..n}) ⇒ |s|=n

Kontext der Formel: perm(s,{1..n})

Kontext der Loopinvariante: ∀j<|s|. nodups(dt-row(s,j))



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if perm(s,{1..n}) then {s} else ∅

∪
⋃

{ aux(x,t)| t ∈{ s·i|i ∈{1..n} } ∧ nodups(t)

∧ ∀j<|t|. nodups(dt-row(t,j)) }

in aux(n,[])



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if perm(s,{1..n}) then {s} else ∅

∪
⋃

{ aux(x,t)| t ∈{ s·i|i ∈{1..n} } ∧ nodups(t)

∧ ∀j<|t|. nodups(dt-row(t,j)) }

in aux(n,[])

Domänenwissen:

perm(s,{1..n}) ≡ s⊆{1..n} ∧ {1..n}⊆s ∧ nodups(s)

{1..n}⊆s ≡ {1..n}\s=∅

Kontext der Loopinvariante: nodups(s)

Rahmenbedingung für Deskriptoren J({1..n},s): s⊆{1..n}



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,t)| t ∈{ s·i|i ∈{1..n} } ∧ nodups(t)

∧ ∀j<|t|. nodups(dt-row(t,j)) }

in aux(n,[])



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,t)| t ∈{ s·i|i ∈{1..n} } ∧ nodups(t)

∧ ∀j<|t|. nodups(dt-row(t,j)) }

in aux(n,[])

Domänenwissen:

{ f(x,t) | t ∈{g(s,i)|i ∈S } ∧ h(t)} = { f(x,g(s,i)) | i ∈S ∧ h(g(s,i))}



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈{1..n} ∧ nodups(s·i)

∧ ∀j<|s·i|. nodups(dt-row(s·i,j)) }

in aux(n,[])



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈{1..n} ∧ nodups(s·i)

∧ ∀j<|s·i|. nodups(dt-row(s·i,j)) }

in aux(n,[])

Domänenwissen: i ∈{1..n} ∧ nodups(s·i) ≡ i ∈{1..n}\s



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈{1..n}\s

∧ ∀j<|s·i|. nodups(dt-row(s·i,j)) }

in aux(n,[])



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈{1..n}\s

∧ ∀j<|s·i|. nodups(dt-row(s·i,j)) }

in aux(n,[])

Domänenwissen:

dt-row(s·i,j) = dt-row(s,j)·(s[|s·i|-j]-i)

nodups(t·k) ≡ nodups(t) ∧ k 6∈ t

∀j<|s·i|.P(j) ≡ ∀j<|s|.P(j) ∧ P(|s|)

dt-row(s·i,|s|) = [ s[|s·i|-|s|]-i]

nodups([ s[|s·i|-|s|]-i]) ≡ true

2 4 1 6 5 3
-2 3 -5 1 2
1 -2 -4 3

-4 -1 -2
-3 1
-1

Kontext der Loopinvariante: ∀j<|s|. nodups(dt-row(s,j))



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈{1..n}\s

∧ ∀j<|s|. (s[|s·i|-j]-i) 6∈dt-row(s,j)}

in aux(n,[])



Automatisierte Logik und Programmierung II §15 16 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4b): Endliche Differenzierung

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈{1..n}\s

∧ ∀j<|s|. (s[|s·i|-j]-i) 6∈dt-row(s,j)}

in aux(n,[])



Automatisierte Logik und Programmierung II §15 16 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4b): Endliche Differenzierung

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈{1..n}\s

∧ ∀j<|s|. (s[|s·i|-j]-i) 6∈dt-row(s,j)}

in aux(n,[])

Ersetze ineffiziente Neuberechnung durch neue Variablen:

{1..n}\s 7→ pool

|s·i| 7→ ssize

Integriere Variablen in Definition von aux



Automatisierte Logik und Programmierung II §15 16 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4b): Endliche Differenzierung

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[])

Initiierung der Variablen im ersten Aufruf

Inkrementelle Veränderung im rekursiven Aufruf



Automatisierte Logik und Programmierung II §15 16 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4b): Endliche Differenzierung

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)



Automatisierte Logik und Programmierung II §15 17 Grundkonzepte der Programmsynthese

Costas-Arrays (4c): Fallanalyse

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)

Domänenwissen:

(if pool=∅ then {s} else ∅)∪S = if pool=∅ then {s}∪S else S



Automatisierte Logik und Programmierung II §15 17 Grundkonzepte der Programmsynthese

Costas-Arrays (4c): Fallanalyse

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅

then {s} ∪
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

else
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)

Domänenwissen:
⋃

{ f(i) | i ∈∅} = ∅

Kontext der Formel: pool=∅



Automatisierte Logik und Programmierung II §15 17 Grundkonzepte der Programmsynthese

Costas-Arrays (4c): Fallanalyse

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅

then {s}

else
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)



Automatisierte Logik und Programmierung II §15 18 Grundkonzepte der Programmsynthese

Costas-Arrays (5): Datentypverfeinerung

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅

then {s}

else
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)



Automatisierte Logik und Programmierung II §15 18 Grundkonzepte der Programmsynthese

Costas-Arrays (5): Datentypverfeinerung

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅

then {s}

else
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)

n: Z 7→ Standardimplementierung positiver ganzen Zahlen



Automatisierte Logik und Programmierung II §15 18 Grundkonzepte der Programmsynthese

Costas-Arrays (5): Datentypverfeinerung

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅

then {s}

else
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)

n: Z 7→ Standardimplementierung positiver ganzen Zahlen

s: Seq(Z), Elemente werden hinten angehängt 7→ umgekehrt verkettere Liste



Automatisierte Logik und Programmierung II §15 18 Grundkonzepte der Programmsynthese

Costas-Arrays (5): Datentypverfeinerung

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅

then {s}

else
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)

n: Z 7→ Standardimplementierung positiver ganzen Zahlen

s: Seq(Z), Elemente werden hinten angehängt 7→ umgekehrt verkettere Liste

pool: Set(Z): Elemente werden aus fester Menge entnommen 7→ Bitvektor



Automatisierte Logik und Programmierung II §15 18 Grundkonzepte der Programmsynthese

Costas-Arrays (5): Datentypverfeinerung

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅

then {s}

else
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)

n: Z 7→ Standardimplementierung positiver ganzen Zahlen

s: Seq(Z), Elemente werden hinten angehängt 7→ umgekehrt verkettere Liste

pool: Set(Z): Elemente werden aus fester Menge entnommen 7→ Bitvektor

ssize: Z 7→ Standardimplementierung positiver ganzen Zahlen


