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1. Grundkonzepte & Vorgehensweise

2. Synthese im Kleinen

— Paradigmen & Strategien
3. Wissensbasierte Programmentwicklung

4. Korrektheitserhaltende Optimierungen



Wo0zU AUTOMATISIERTE PROGRAMMIERUNG? I

e Softwareproduktion hat viele Probleme
— Zeitaufwendig und teuer

- Entwurf und Implementierung fokussiert auf Modellierungs- und

Programmiersprachen anstatt auf Eigenschaften des Problembereichs
- Implementierung meist “von Hand” und ad hoc

- Einbeziehung der Endanwender zu spat
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- Entwurf und Implementierung fokussiert auf Modellierungs- und

Programmiersprachen anstatt auf Eigenschaften des Problembereichs
- Implementierung meist “von Hand” und ad hoc
- Einbeziehung der Endanwender zu spat
— Zu viele Fehler im Endprodukt
- Logischer Zusammenhang zwischen Aufgabe und Losung selten erkennbar

- Programmierer geben keine Begrundung fir Korrektheit ihres Programms
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e Softwareproduktion hat viele Probleme
— Zeitaufwendig und teuer

- Entwurf und Implementierung fokussiert auf Modellierungs- und

Programmiersprachen anstatt auf Eigenschaften des Problembereichs
- Implementierung meist “von Hand” und ad hoc
- Einbeziehung der Endanwender zu spat
— Zu viele Fehler im Endprodukt
- Logischer Zusammenhang zwischen Aufgabe und Losung selten erkennbar

- Programmierer geben keine Begrundung fir Korrektheit ihres Programms

e Logische Synthese von Programmen hilft
— Werkzeuge zur (Teil-)Automatisierung der Konstruktion von Algorithmen
— Logisches Fundament erhoht Zuverlassigkeit des erzeugten Programms
— Automatisierung verringert Entwicklungszeit und -kosten

und ermoglicht frithzeitige Validierung durch Endanwender
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KERNASPEKTE EINER PROGRAMMSYNTHESE I

Erzeuge korrekte ausfithrbare Programme aus Spezifikationen
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KERNASPEKTE EINER PROGRAMMSYNTHESE I

Erzeuge korrekte ausfithrbare Programme aus Spezifikationen

e Formale Spezifikation als Ausgangspunkt
— Formale Beschreibung von Anwendungsbereich und Problemstellung

— Verlangt Fixierung einer formalen Sprache
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Erzeuge korrekte ausfithrbare Programme aus Spezifikationen

e Formale Spezifikation als Ausgangspunkt
— Formale Beschreibung von Anwendungsbereich und Problemstellung

— Verlangt Fixierung einer formalen Sprache

e Methoden fiir automatische Algorithmensynthese
— Benotigen theoretische Resultate tiber Korrektheit erzeugter Algorithmen
— Syntheseparadigma: zulassige Manipulationen garantieren Korrektheit
— Synthesestrategie automatisiert Anwendung zulassiger Operationen

— Trace der Strategie dokumentiert getroffene Entscheidungen
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Erzeuge korrekte ausfithrbare Programme aus Spezifikationen

e Formale Spezifikation als Ausgangspunkt
— Formale Beschreibung von Anwendungsbereich und Problemstellung

— Verlangt Fixierung einer formalen Sprache

e Methoden fiir automatische Algorithmensynthese
— Benotigen theoretische Resultate tiber Korrektheit erzeugter Algorithmen
— Syntheseparadigma: zulassige Manipulationen garantieren Korrektheit
— Synthesestrategie automatisiert Anwendung zulassiger Operationen

— Trace der Strategie dokumentiert getroffene Entscheidungen

e Optimierung und Datentypverfeinerung
— Verbesserung des erzeugten Basisalgorithmus
— Auswahl geeigneter Implementierungen der vorkommenden Datentypen

— Sprachabhiingige Optimierung bei Ubertragung in Programmiersprache
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HISTORISCHE ENTWICKLUNG I

e Anwendung generischer Inferenztechniken
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HISTORISCHE ENTWICKLUNG I

e Anwendung generischer Inferenztechniken
— Beweise als Programme

- Automatischer Beweiser 4+ Extraktion von Programmen aus Beweisen
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e Anwendung generischer Inferenztechniken
— Beweise als Programme

- Automatischer Beweiser 4+ Extraktion von Programmen aus Beweisen

— Transformation von Formeln

- Rewrite-Techniken 4 Extraktion von Programmen aus Formeln

— Gut zur [lustration der Prinzipien (“Synthese im Kleinen™)

— Konstruktion aufwendigerer Algorithmen verlangt Spezialstrategien
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HISTORISCHE ENTWICKLUNG I

e Anwendung generischer Inferenztechniken
— Beweise als Programme

- Automatischer Beweiser 4+ Extraktion von Programmen aus Beweisen

— Transformation von Formeln

- Rewrite-Techniken 4 Extraktion von Programmen aus Formeln

— Gut zur lllustration der Prinzipien (“Synthese im Kleinen”)

— Konstruktion aufwendigerer Algorithmen verlangt Spezialstrategien

e Wissensbasierte Syntheseverfahren
— Wissen uiber algorithmische Grundstrukturen formalisiert

als “Algorithmentheorien” (Struktur + Korrektheitsaxiome)
— Strategien verwenden Wissen zur Erzeugung effizienter Algorithmen

— Unterstutzung statt Ersetzung des Programmierers

— Aufwendigere Vorarbeiten aber erfolgreich in der “Praxis”
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Grundkonzepte der Programmsynthese P

1. Formale Grundbegriffe
2. Formalisierung von Anwendungsbereichen

3. Programmsynthese am Beispiel



PROGRAMMSYNTHESE: GRUNDSATZLICHES VORGEHEN I

1. Erstellen einer formalen Spezifikation
— Benotigt Formalisierung des Anwendungsbereichs als “Ob jekttheorie”
— Welche Begriffe werden benutzt und was bedeuten sie?

— Welche mathematischen Gesetze gelten fir diese Begrifte?
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1. Erstellen einer formalen Spezifikation

— Benotigt Formalisierung des Anwendungsbereichs als “Objekttheorie’

)

— Welche Begriffe werden benutzt und was bedeuten sie?

— Welche mathematischen Gesetze gelten fir diese Begrifte?

2. Entwurf eines lauffahigen, korrekten Algorithmus

— Synthesestrategie generiert Basisversion und Korrektheitsgarantien
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PROGRAMMSYNTHESE: GRUNDSATZLICHES VORGEHEN I

1. Erstellen einer formalen Spezifikation
— Benotigt Formalisierung des Anwendungsbereichs als “Objekttheorie”

— Welche Begriffe werden benutzt und was bedeuten sie?

— Welche mathematischen Gesetze gelten fir diese Begrifte?

2. Entwurf eines lauffahigen, korrekten Algorithmus

— Synthesestrategie generiert Basisversion und Korrektheitsgarantien

3. Erzeugung eines effizienten, korrekten Programms
— Benutzergesteuerte Optimierungstechniken verbessern Algorithmus
— Ubertragung in Zielsprache ermdglicht weitere Optimierungen

— System garantiert Korrekheit der Optimierungen
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SPEZIFIKATION VON PROGRAMMIERPROBLEMEN I

e Programme berechnen im Endeffekt Funktionen

— Aus welchem Datentyp stammen die Eingaben? Domain D
— Zu welchem Datentyp gehoren die Ausgaben? Range R
— Gibt es Beschrankungen an zulassige Eingaben? Input-Bedingung [

— Was ist der Zusammenhang zwischen Ein- und Ausgaben?
Output-Bedingung O
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e Spezifikationen als formale Objekte
— Eine formale Spezifikation ist ein Quadrupel spec = (D, R,1,0)
wobei D und R Datentypen, I Pradikat uber D, O Pradikat iiber Dx R

-~ D,R,I,0 sind in einer Spezifikationssprache zu beschreiben
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e Programme berechnen im Endeffekt Funktionen

— Aus welchem Datentyp stammen die Eingaben? Domain D
— 7Zu welchem Datentyp gehoren die Ausgaben? Range R
— Gibt es Beschrankungen an zulassige Eingaben? Input-Bedingung [

— Was ist der Zusammenhang zwischen Ein- und Ausgaben?
Output-Bedingung O
e Spezifikationen als formale Objekte

— Eine formale Spezifikation ist ein Quadrupel spec = (D, R,1,0)
wobei D und R Datentypen, I Pradikat uber D, O Pradikat iiber Dx R

-~ D,R,I,0 sind in einer Spezifikationssprache zu beschreiben

e Zwel mogliche Aufgabenstellungen

— Programm soll eine mogliche Losung bestimmen,
FUNCTION f(z:D):R WHERE [[z] RETURNS y SUCH THAT Olz,y|

— Programm soll alle moglichen Losungen bestimmen
FUNCTION f(x:D) WHERE I[z] RETURNS {y:R | Oz, y]}
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PROGRAMME UND KORREKTHEIT I

e Programm = Spezifikation 4+ Algorithmus
— Algorithmen (Programmkorper) sind berechenbare (partielle) Funktionen

auf D4 R, die auf allen zulassigen Eingaben definiert sind
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e Programm = Spezifikation 4+ Algorithmus
— Algorithmen (Programmkorper) sind berechenbare (partielle) Funktionen

auf D4 R, die auf allen zulassigen Eingaben definiert sind

e Programme als formale Objekte
— Eine formales Programm ist ein 5-Tupel prog = (D,R,1,0, body)
wobei (D, R,I,0) formale Spezifikation, body:D- R berechenbar

— body darf f rekursiv aufrufen und ist in Programmiersprache zu beschreiben
- FUNCTION f(xz:D):R WHERE I[z] RETURNS y SUCH THAT Olz,y] = body|f, x|
- FUNCTION f(z:D) WHERE [[z] RETURNS {y:R | O[z,y|} = body[f,z]
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e Korrektheit von Programmen
— prog ist korrekt, falls Vo:D. Ix] = Olz,body(x)]
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PROGRAMME UND KORREKTHEIT I

e Programm = Spezifikation 4+ Algorithmus
— Algorithmen (Programmkorper) sind berechenbare (partielle) Funktionen

auf D4 R, die auf allen zulassigen Eingaben definiert sind

e Programme als formale Objekte
— Eine formales Programm ist ein 5-Tupel prog = (D,R,1,0, body)
wobei (D, R,I,0) formale Spezifikation, body:D- R berechenbar

— body darf f rekursiv aufrufen und ist in Programmiersprache zu beschreiben
- FUNCTION f(x:D):R WHERE [[z] RETURNS y SUCH THAT Olz,y] = bodylf,x]
- FUNCTION f(x:D) WHERE [[x] RETURNS {y:R | Olx,y|} = body[f, x]

e Korrektheit von Programmen
— prog ist korrekt, falls Vo:D. Ix] = Olz,body(x)]

e Syntheseziel: Erfullbarkeit von Spezifikationen

— spec ist erfiillbar (synthetisierbar), falls es eine Funktion
body: D/ R gibt, so dafl prog=(spec,body) korrekt ist
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SPEZIFIKATIONS- UND PROGRAMMIERSPRACHE I

e Einheitlicher Formalismus fur Synthese
— Mathematische Sprache mit Programmiernotation
— Beinhaltet formale Notation fir die wichtigsten Datentypen

— Aufgesetzt auf logischen Basiskalkiil (z.B. Typentheorie)
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e Formales Wissen uber Standard-Datentypen
— Definition der Begriffe im Basiskalkiil
— Verifizierte Lemmata tiber Eigenschaften der Begriffe

— Quelle: Inhalt von Lehrmaterial, -biichern und Forschungsergebnissen
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SPEZIFIKATIONS- UND PROGRAMMIERSPRACHE I

e Einheitlicher Formalismus fur Synthese
— Mathematische Sprache mit Programmiernotation
— Beinhaltet formale Notation fir die wichtigsten Datentypen

— Aufgesetzt auf logischen Basiskalkiil (z.B. Typentheorie)

e Formales Wissen uber Standard-Datentypen
— Definition der Begriffe im Basiskalkiil
— Verifizierte Lemmata tiber Eigenschaften der Begriffe

— Quelle: Inhalt von Lehrmaterial, -biichern und Forschungsergebnissen

e Objekttheorien: zusatzliches Domanenwissen
— Definition neuer Konzepte in einer Spezifikation

— Lemmata uiber Grundeigenschaften dieser Konzepte
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AUFBAU FORMALER MATHEMATISCHER (OBJEKT-)THEORIEN

Notwendig fur Formalisierung von Programmierproblemen

e Formalisiere Grundkonzepte der Theorie
— Systematischer Entwurf analog zum Aufbau der Typentheorie
- Formale Notation fiir Datentyp, kanonische & nichtkanonische Elemente

- Inferenzregeln fiir Elemente und Datentyp
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— Systematischer Entwurf analog zum Aufbau der Typentheorie
- Formale Notation fiir Datentyp, kanonische & nichtkanonische Elemente

- Inferenzregeln fiir Elemente und Datentyp

e Implementiere Grundkonzepte der Theorie
— Formale Definitionen erklaren neue Begriffe durch bestehende Terme

— Taktiken beschreiben neue Inferenzregeln durch existierende Regeln
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Notwendig fur Formalisierung von Programmierproblemen

e Formalisiere Grundkonzepte der Theorie
— Systematischer Entwurf analog zum Aufbau der Typentheorie
- Formale Notation fiir Datentyp, kanonische & nichtkanonische Elemente

- Inferenzregeln fiir Elemente und Datentyp

e Implementiere Grundkonzepte der Theorie
— Formale Definitionen erklaren neue Begriffe durch bestehende Terme

— Taktiken beschreiben neue Inferenzregeln durch existierende Regeln

e Erstelle erweiterte Objekttheorie
— Formalisiere wichtige Begriffe durch Grundkonzepte der Theorie
— Beweise mathematische Gesetze zu Eigenschaften “abgeleiteter” Konzepte

Insbesondere Rewrite-Lemmata zu Kombinationen von Operationen
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BEISPIEL: THEORIE ENDLICHER MENGEN I

e Grundkonzepte

Datentyp: Set (o)

Operationen: (: Set(a)
+: Set(a) Xa — Set(w)
€: axSet(aw) — Bool

Gesetze: agl)
xe(S+a) & (x=a v x€8)
(S+a)+x = (S+x)+a
(S+a)+a = S+a
(P(@) A (VS:Set(a).P(S) = Va:a.P(S+a))) = VS:Set(a).P(S)
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BEISPIEL: THEORIE ENDLICHER MENGEN I

e Grundkonzepte

Datentyp: Set (o)

Operationen: (: Set(a)
+: Set(a) Xa — Set(w)
€: axSet(aw) — Bool

Gesetze: a¢l)
xe(S+a) & (x=a v x€8)
(S+a)+x = (S+x)+a
(S+a)+a = S+a
(P(D) A (VS:Set(a).P(S) = Va:a.P(S+a))) = VS:Set(w).P(S)

e Implementierung

0 = nil

+ = )a,S. a.S

€ = J)a,S. dxeS.x=a

=Set = AS,T. (VaeS. acT) A (Va’eT. a’e8)
Set(aw) = (S,T):alist//S=g4T
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THEORIE ENDLICHER MENGEN — ABGELEITETE KONZEPTE I

empty? = AS. if S=() then tt else ff

C = AS,S’. VxeS.x¢e8’
{list-exp} = list-exp.nil
{i..j5} = ind(j-i; _,_.0; {j}; diff,j-set. j-set+(j-diff))
{filweSrp,} = list_ind(S; 0; a,_,GSF. if p,[a/x] then GSF+f,[a/x] else GSF
| .S = 1list_ind(S; 0; a,S’,card. if a<S’ then card else card+1)
- = AS,a. {xl|xeSrx#a}
U = )AS,S’. 1list_ind(S’; S; a,_,union.union+a)
N = AS,S8’. {xlxeSrxeS’}
\ = )AS,S’. {xl|xeSrx¢S’}
U = MFAMILY. list_ind(FAMILY; (); S,FAM,Union.UnionUS)
ﬂ = MFAMILY. list_ind(FAMILY; fail;

S,FAM,inter. if empty?(FAM) then S else interNS)
map = M,S. {f(x)|xeS}
reduce = Mop,S. list_ind(S; fail;

a,S’,redS’. if empty?(S’) then a

else if acS’ then redS’ else op(redS’,a))

T =54 SWS = T=g,4 SUS A empty?(SNS’)
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WICHTIGSTE BESTANDTEILE DER FORMALISIERUNGSSPRACHE I

B, true, false Data type of boolean expressions, explicit truth values

=, A, V, =>, &, & Boolean connectives

VxeS.p, dxeS.p Limited boolean quantifiers (on finite sets and sequences)
if p then a else b Conditional

Seq(a) Data type of finite sequences over members of «

null?, €, C Decision procedures: emptiness, membership, prefix

(1, [al, [i..j], [a,...a] Empty/ singleton sequence, subrange, literal sequence former
a.L, L-a prepend a, append a to L

[f(x) lxeLap(x)], IL|, L[i] General sequence former, length of L, i-th element,
domain(L), range(L) The sets {1..|L|} and {L[i] |1 edomain(L)}

nodups (L) Decision procedure: all the L[1] are distinct (no duplicates)
Set (a) Data type of finite sets over members of «

empty?, €, C Decision procedures: emptiness, membership, subset

0, {a}, {i..3}, {a,--.a,} Empty set, singleton set, integer subset, literal set former

S+a, S-a element addition, element deletion
{f(x) |xeSapx)}, IS] General set former, cardinality

SUT, SNT, S\T Union, intersection, set difference

| JraMiLy, NFaMILY Union, intersection of a family of sets
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FORMALE ENTWICKLUNG VON ALGORITHMEN AM BEISPIEL I

Costas-Arrays Problem

Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

2416|533

Costas Array der Ordnung 6 und seine Differenzentafel
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— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

2] 4] 1] 6] 5] 3
-2

Costas Array der Ordnung 6 und seine Differenzentafel
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FORMALE ENTWICKLUNG VON ALGORITHMEN AM BEISPIEL I

Costas-Arrays Problem

Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

241 6| 5|3
-2 3

Costas Array der Ordnung 6 und seine Differenzentafel
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FORMALE ENTWICKLUNG VON ALGORITHMEN AM BEISPIEL I

Costas-Arrays Problem

Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

214 1,65 3
-2 3|-5

Costas Array der Ordnung 6 und seine Differenzentafel
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Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

214 1,65 3
-2 31-5| 1

Costas Array der Ordnung 6 und seine Differenzentafel
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— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

214 1,65 3
-2 3|-5| 1] 2

Costas Array der Ordnung 6 und seine Differenzentafel
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FORMALE ENTWICKLUNG VON ALGORITHMEN AM BEISPIEL I

Costas-Arrays Problem

Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

24,1653
-2 3/-9] 1| 2
1/-2|-4| 3
-41-1|-2

-3 1

-1

Costas Array der Ordnung 6 und seine Differenzentafel
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FORMALE ENTWICKLUNG VON ALGORITHMEN AM BEISPIEL I

Costas-Arrays Problem

Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

24,1653
-2 3/-9] 1| 2
1/-2|-4| 3
-41-1|-2

-3 1

-1

Costas Array der Ordnung 6 und seine Differenzentafel

Ziel: Berechnung aller Costas Arrays der Grofle n
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BERECHNUNG ALLER COSTAS ARRAYS I

Bis 1988 keine effiziente Losungsalgorithmen bekannt

e Aufzahlung und Testen ist exponentiell

— Wie analysiert man Losungskandidaten ohne sie aufzuzahlen?
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BERECHNUNG ALLER COSTAS ARRAYS

Bis 1988 keine effiziente Losungsalgorithmen bekannt

e Aufzahlung und Testen ist exponentiell

. . . . . . Kandidat
— Wie analysiert man Losungskandidaten ohne sie aufzuzahlen? e

e Losung benutzt (GGlobalsuche

Zerteilen
von Kandidaten

— Codierung von Kandidatenmengen
— Wiederholtes Aufteilen und und Filtern

auf Basis von Reprasentanten

Extraktio

—————

und Test

— Extraktion konkreter Losungen aus Reprasentanten

I

Eliminierte Kandidaten
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BERECHNUNG ALLER COSTAS ARRAYS

Bis 1988 keine effiziente Losungsalgorithmen bekannt

e Aufzahlung und Testen ist exponentiell

. . . . . . Kandidat
— Wie analysiert man Losungskandidaten ohne sie aufzuzahlen? e

e Losung benutzt (GGlobalsuche

Zerteilen
von Kandidaten

— Codierung von Kandidatenmengen
— Wiederholtes Aufteilen und und Filtern

auf Basis von Reprasentanten

Extraktio

—————

und Test

— Extraktion konkreter Losungen aus Reprasentanten

I

Eliminierte Kandidaten

Globalsuchalgorithmen sind systematisch erzeugbar
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PHASEN EINER FORMALE ALGORITHMENENTWICKLUNG

1. Erstellen der notigen Objekttheorie
— Formalisierung vorkommender neuer Begriffe

— Aufstellen mathematischer Gesetze fiir diese Begrifte
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PHASEN EINER FORMALE ALGORITHMENENTWICKLUNG

1. Erstellen der notigen Objekttheorie

— Formalisierung vorkommender neuer Begriffe

— Aufstellen mathematischer Gesetze fiir diese Begrifte

2. Erstellen der formalen Spezifikation

11 Grundkonzepte der Programmsynthese
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PHASEN EINER FORMALE ALGORITHMENENTWICKLUNG

1. Erstellen der notigen Objekttheorie

— Formalisierung vorkommender neuer Begriffe

— Aufstellen mathematischer Gesetze fiir diese Begrifte
2. Erstellen der formalen Spezifikation

3. Entwurf eines korrekten Basisalgorithmus
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PHASEN EINER FORMALE ALGORITHMENENTWICKLUNG

1. Erstellen der notigen Objekttheorie
— Formalisierung vorkommender neuer Begriffe

— Aufstellen mathematischer Gesetze fiir diese Begrifte
2. Erstellen der formalen Spezifikation
3. Entwurf eines korrekten Basisalgorithmus

4. Verifizierte algorithmische Optimierung
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PHASEN EINER FORMALE ALGORITHMENENTWICKLUNG

1. Erstellen der notigen Objekttheorie

— Formalisierung vorkommender neuer Begriffe

— Aufstellen mathematischer Gesetze fiir diese Begrifte
2. Erstellen der formalen Spezifikation
3. Entwurf eines korrekten Basisalgorithmus

4. Verifizierte algorithmische Optimierung

5. Implementierung
— Auswahl geeigneter Implementierungen fiir abstrakte Datentypen

— Ggtf. Compilierung und sprachabhangige Optimierung
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PHASEN EINER FORMALE ALGORITHMENENTWICKLUNG

1. Erstellen der notigen Objekttheorie

— Formalisierung vorkommender neuer Begriffe

— Aufstellen mathematischer Gesetze fiir diese Begrifte
2. Erstellen der formalen Spezifikation
3. Entwurf eines korrekten Basisalgorithmus

4. Verifizierte algorithmische Optimierung

5. Implementierung
— Auswahl geeigneter Implementierungen fiir abstrakte Datentypen

— Ggtf. Compilierung und sprachabhangige Optimierung

Unterstutzung durch Synthesesystem

Steuerung durch erfahrenen Benutzer
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COSTAS-ARRAYS (1): OBJEKTTHEORIE

Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel
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COSTAS-ARRAYS (1): OBJEKTTHEORIE

Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

e Formalisierung vorkommender Begriffe:

dtrow(L,j) = [L[i]l-Lli+j] liel1..1L1-4]11]
perm(L,S) = nodups(L) A range(L)=S
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COSTAS-ARRAYS (1): OBJEKTTHEORIE

Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

e Formalisierung vorkommender Begriffe:

dtrow(L,j) = [L[i]l-Lli+j] liel1..1L1-4]11]
perm(L,S) = nodups(L) A range(L)=S

e Aufstellen mathematischer Gesetze:
VL,L’:Seq(Z) .Vi:Z.Vj:N.

1. dtrow([],j) = []

2. j<IL| = dtrow(i.L,j) = (i-L[j]) .dtrow(L,j)

3. j#20 = dtrow([i],j) = []

4. LCL’ = dtrow(L,j) . dtrow(L’,j)

5. j>ILI = dtrow(L,j) = [J

6. j<IL| = dtrow(L-i,j) = dtrow(L,j) (LLILI+1-j]1-1)
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COSTAS-ARRAYS (2): FORMALE SPEZIFIKATION

Fiir n>1 berechne alle Permutationen von {1..n}

ohne Duplikate in Zeilen der Differenzentafel

D — 7

R +— Seq(Z)

I — dn.n>1

O — An,p.perm(p,{1..n}) A Vjedomain(p).nodups(dtrow(p,j))

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n})
A Vjedomain(p) .nodups(dtrow(p,j))}
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COSTAS-ARRAYS (3): ERZEUGUNG DES BASISALGORITHMUS

e Grundstruktur eines (Globalsuchalgorithmus
let rec f (x,8) = {z|zecext(s) n0(x,2)}

U J{(£4s(x,t) 1 tesplit(x,s) A d(x,t)}
in f,(x,s,(x)) l

Zerteilen
von Kandidaten

Extraktion

ca

und Test

Wl

Eliminierte Kandidaten
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COSTAS-ARRAYS (3): ERZEUGUNG DES BASISALGORITHMUS

e Grundstruktur eines (Globalsuchalgorithmus

let rec f (x,8) = {z|zecext(s) n0(x,2)}

U J{(£4s(x,t) 1 tesplit(x,s) A d(x,t)}
in f,(x,s,(x)) l ente
— s: Deskriptor fiir Mengen von Losungskandidaten —7
— s,(x): Initialdeskriptor fiir Eingabe x
— split(x,s): Rekursive Aufteilung von Kandidatenmengen
— ®(x,s): Filter zur Elimination unnotiger Deskriptoren /.
— ext (s): direkte Extraktion von Losungskandidaten z aus Deskriptoren
— 0(x,2z): Ausgabebedingung, verwendet zur endgiiltigen Selektion

Extraktion

ca

und Test

Grundkonzepte der Programmsynthese
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COSTAS-ARRAYS (3): ERZEUGUNG DES BASISALGORITHMUS

e Grundstruktur eines (Globalsuchalgorithmus

let rec f (x,8) = {z|zecext(s) n0(x,2)}

U J{(£4s(x,t) 1 tesplit(x,s) A d(x,t)}
in f,(x,s,(x)) l ente
— s: Deskriptor fiir Mengen von Losungskandidaten —7
— s,(x): Initialdeskriptor fiir Eingabe x
— split(x,s): Rekursive Aufteilung von Kandidatenmengen
— ®(x,s): Filter zur Elimination unnotiger Deskriptoren /.
— ext (s): direkte Extraktion von Losungskandidaten z aus Deskriptoren
— 0(x,2z): Ausgabebedingung, verwendet zur endgiiltigen Selektion

e (Globalsuchalgorithmus fir Costas-Arrays Problem

let costas(n) =
let rec aux(n,s)
= {plpe{s} n perm(p,{1..n}) A Vj<n.nodups(dt-row(p,j)) }
U LJ{auXCxJﬂ |te{silie{l..n}}
n nodups(t) » Vj<lt|.nodups(dt-row(t,j))}

Extraktion

ca

und Test

in aux(n, [])

Grundkonzepte der Programmsynthese
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COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= {plpe{s} rperm(p,{1..n}) A Vj<n.nodups(dt-row(p,j)) }
U LJ{auX(X,t)Itma{sdlie{i..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])
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COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= {plpe{s} rnperm(p,{1..n}) A Vj<n.nodups(dt-row(p,j)) }
U LJ{auX(X,t)Itma{sdiie{i..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])

Doménenwissen: {p|pec{s} » P(p)} = if P(s) then {s} else ()
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COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =

let rec aux(n,s)

if perm(s,{1..n}) A Vj<n.nodups(dt-row(s,j)) then {s} else ()

U LJ{auX(X,t)Itma{sdlie{i..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])

Grundkonzepte der Programmsynthese
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COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =

let rec aux(n,s)
= if perm(s,{1..n}) A Vj<n.nodups(dt-row(s,j)) then {s} else ()

U LJ{auX(X,t)Itma{sdlie{j..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])

Domaéanenwissen: perm(s,{l..n}) = I[s|=n
Kontext der Formel: perm(s,{1..n})
Kontext der Loopinvariante: Vj<|s|.nodups(dt-row(s,j))

Grundkonzepte der Programmsynthese
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COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =

let rec aux(n,s)

if perm(s,{1..n}) then {s} else ()
U LJ{auX(X,t)Itma{sdiie{i..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])
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COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if perm(s,{1..n}) then {s} else (
U LJ{auX(X,t)Itma{sdlie{j..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])

Domanenwissen:
perm(s,{1..n}) = sc{l..n} A {1..n}Ss A nodups(s)
{1..n}cs = {1..n}\s=0

Kontext der Loopinvariante: nodups(s)

Rahmenbedingung fiir Deskriptoren J({1..n},s): sc{1..n}
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COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,t)Itma{sdiie{i..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])
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COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,t)Ite&{sd}ie{i..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])

Domanenwissen:

{f&x,8) Ite{g(s,)lieS}trh®)} = {f(x,9(s,1)) 1S A h(g(s,i))}

Grundkonzepte der Programmsynthese
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COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sdJ |ie{l..n} A nodups(s'i)
n Vj<ls'il.nodups(dt-row(s'i,j)) }

in aux(n, [])
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COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sdJ |ie{l..n} A nodups(s-i)
n Vj<ls'il.nodups(dt-row(s'i,j)) }

in aux(n, [])

Doméanenwissen: ic{l..n} Anodups(s'i) = ie{l..n}\s
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COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sd) |ie{1l..n}\s
n Vj<ls'il.nodups(dt-row(s'i,j)) }

in aux(n, [])
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COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sdJ |ie{1l..n}\s
A Vj<ls'il.nodups(dt-row(s'i,j)) }

in aux(n, [])

Domanenwissen:
dt-row(s'i,j) = dt-row(s,j)-(sllsil-jl-1) ST AT TT G5
nodups (t-k) = nodups(?) A k¢t 2] 3[-5] 172
Vi<lsil .P(§) = Yj<lIs|.P(G)a P(sl) }l Zf R
dt-row(s-i,|sl) = [slIsil-1sl]1-1i] ? !
nodups([s[ls'il-[sl]-i]) = true

Kontext der Loopinvariante: Vj<|s|.nodups(dt-row(s,j))
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COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sd) |ie{1l..n}\s
rn Vi<lsl. (slls'il-j]-1i) ¢dt-row(s,j)}

in aux(n, [])
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COSTAS-ARRAYS (4B): ENDLICHE DIFFERENZIERUNG

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sd) |ie{1l..n}\s
rn Vi<lsl. (slls'il-j]-1i) ¢dt-row(s,j)}

in aux(n, [])

Grundkonzepte der Programmsynthese
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COSTAS-ARRAYS (4B): ENDLICHE DIFFERENZIERUNG

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sdJ |ie{l..n}\s
n Vi<lsl. (slls'il-j]1-1) ¢dt-row(s,j)}

in aux(n, [])

Ersetze ineffiziente Neuberechnung durch neue Variablen:

{1..n}\s ~— pool
|s-il > ssize

Integriere Variablen in Definition von aux

Grundkonzepte der Programmsynthese
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COSTAS-ARRAYS (4B): ENDLICHE DIFFERENZIERUNG

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=() then {s} else ()
U LJ{auX(X,sdJ | i epool
n Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}

in aux(n, [])

Initiierung der Variablen im ersten Aufruf

Inkrementelle Veranderung im rekursiven Aufruf

Grundkonzepte der Programmsynthese
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COSTAS-ARRAYS (4B): ENDLICHE DIFFERENZIERUNG

let costas(n) =

let rec aux(n,s,pool,ssize)

if pool=( then {s} else 0
U LJ{aux(x,sd,pool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}

in aux(n, [1,{1..n},1)

Grundkonzepte der Programmsynthese
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COSTAS-ARRAYS (4C): FALLANALYSE

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=() then {s} else ()
U LJ{auX(X,sddpool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}

in aux(n, [1,{1..n},1)

Domanenwissen:
(if pool=() then {s} else ) US = if pool=() then {s}US else S

Grundkonzepte der Programmsynthese
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COSTAS-ARRAYS (4C): FALLANALYSE

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s} U LJ{auX(X,sdqpool\{i},ssize+1)I:iepool
n Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}
else LJ{auX(X,sdqpool\{i},ssize+1)I:iepool
n Vi<lsl|. (s[ssize-jl-1i) ¢dt-row(s,j)}

in aux(n, [1,{1..n},1)

Doménenwissen: U{f(i) |ie(} =0
Kontext der Formel: pool=()

Grundkonzepte der Programmsynthese
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COSTAS-ARRAYS (4C): FALLANALYSE

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s}
else LJ{auX(X,sdqpool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}

in aux(n, [1,{1..n},1)

Grundkonzepte der Programmsynthese
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COSTAS-ARRAYS (5): DATENTYPVERFEINERUNG

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s}
else LJ{aux(x,s&igpool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}
in aux(n, [1,{1..n},1)
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COSTAS-ARRAYS (5): DATENTYPVERFEINERUNG

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s}
else LJ{auX(X,sd,pool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}
in aux(n, [1,{1..n},1)

n: Z — Standardimplementierung positiver ganzen Zahlen
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COSTAS-ARRAYS (5): DATENTYPVERFEINERUNG

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s}
else LJ{auX(X,sd,pool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}
in aux(n, [1,{1..n},1)

n: Z — Standardimplementierung positiver ganzen Zahlen

s: Seq(Z), Elemente werden hinten angehangt — umgekehrt verkettere Liste
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COSTAS-ARRAYS (5): DATENTYPVERFEINERUNG

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s}
else LJ{aux(x,sd,pool\{i},ssize+1)I:iepool

rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}
in aux(n, [1,{1..n},1)

n: Z — Standardimplementierung positiver ganzen Zahlen
s: Seq(Z), Elemente werden hinten angehangt — umgekehrt verkettere Liste
pool: Set (Z): Elemente werden aus fester Menge entnommen — Bitvektor
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COSTAS-ARRAYS (5): DATENTYPVERFEINERUNG

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s}
else LJ{aux(x,sd,pool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}
in aux(n, [1,{1..n},1)

n: Z — Standardimplementierung positiver ganzen Zahlen
s: Seq(Z), Elemente werden hinten angehangt — umgekehrt verkettere Liste
pool: Set (Z): Elemente werden aus fester Menge entnommen — Bitvektor
ssize: 2. — Standardimplementierung positiver ganzen Zahlen
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