Automatisierte Logik und Programmierung II

Teil V
‘b‘{;\‘EI‘S s
° ° ° &
Automatisierte Programmierung . g
. f’:?!n

1. Grundkonzepte & Vorgehensweise

2. Synthese im Kleinen

— Paradigmen & Strategien
3. Wissensbasierte Programmentwicklung

4. Korrektheitserhaltende Optimierungen

Wo0zU AUTOMATISIERTE PROGRAMMIERUNG? I

e Softwareproduktion hat viele Probleme
— Zeitaufwendig und teuer

- Entwurf und Implementierung fokussiert auf Modellierungs- und

Programmiersprachen anstatt auf Eigenschaften des Problembereichs
- Implementierung meist “von Hand” und ad hoc

- Einbeziehung der Endanwender zu spat

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II, TEIL V 1 Automatisierte Programmierung

Wo0zU AUTOMATISIERTE PROGRAMMIERUNG? I

e Softwareproduktion hat viele Probleme
— Zeitaufwendig und teuer

- Entwurf und Implementierung fokussiert auf Modellierungs- und

Programmiersprachen anstatt auf Eigenschaften des Problembereichs
- Implementierung meist “von Hand” und ad hoc
- Einbeziehung der Endanwender zu spat
— Zu viele Fehler im Endprodukt
- Logischer Zusammenhang zwischen Aufgabe und Losung selten erkennbar

- Programmierer geben keine Begrundung fir Korrektheit ihres Programms

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II, TEIL V 1 Automatisierte Programmierung

Wo0zU AUTOMATISIERTE PROGRAMMIERUNG? I

e Softwareproduktion hat viele Probleme
— Zeitaufwendig und teuer

- Entwurf und Implementierung fokussiert auf Modellierungs- und

Programmiersprachen anstatt auf Eigenschaften des Problembereichs
- Implementierung meist “von Hand” und ad hoc
- Einbeziehung der Endanwender zu spat
— Zu viele Fehler im Endprodukt
- Logischer Zusammenhang zwischen Aufgabe und Losung selten erkennbar

- Programmierer geben keine Begrundung fir Korrektheit ihres Programms

e Logische Synthese von Programmen hilft
— Werkzeuge zur (Teil-)Automatisierung der Konstruktion von Algorithmen
— Logisches Fundament erhoht Zuverlassigkeit des erzeugten Programms
— Automatisierung verringert Entwicklungszeit und -kosten

und ermoglicht frithzeitige Validierung durch Endanwender

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II, TEIL V 1 Automatisierte Programmierung

KERNASPEKTE EINER PROGRAMMSYNTHESE I

Erzeuge korrekte ausfithrbare Programme aus Spezifikationen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11, TEIL V 2 Automatisierte Programmierung

KERNASPEKTE EINER PROGRAMMSYNTHESE I

Erzeuge korrekte ausfithrbare Programme aus Spezifikationen

e Formale Spezifikation als Ausgangspunkt
— Formale Beschreibung von Anwendungsbereich und Problemstellung

— Verlangt Fixierung einer formalen Sprache

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II, TEIL V 2 Automatisierte Programmierung

KERNASPEKTE EINER PROGRAMMSYNTHESE I

Erzeuge korrekte ausfithrbare Programme aus Spezifikationen

e Formale Spezifikation als Ausgangspunkt
— Formale Beschreibung von Anwendungsbereich und Problemstellung

— Verlangt Fixierung einer formalen Sprache

e Methoden fiir automatische Algorithmensynthese
— Benotigen theoretische Resultate tiber Korrektheit erzeugter Algorithmen
— Syntheseparadigma: zulassige Manipulationen garantieren Korrektheit
— Synthesestrategie automatisiert Anwendung zulassiger Operationen

— Trace der Strategie dokumentiert getroffene Entscheidungen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II, TEIL V 2 Automatisierte Programmierung

KERNASPEKTE EINER PROGRAMMSYNTHESE I

Erzeuge korrekte ausfithrbare Programme aus Spezifikationen

e Formale Spezifikation als Ausgangspunkt
— Formale Beschreibung von Anwendungsbereich und Problemstellung

— Verlangt Fixierung einer formalen Sprache

e Methoden fiir automatische Algorithmensynthese
— Benotigen theoretische Resultate tiber Korrektheit erzeugter Algorithmen
— Syntheseparadigma: zulassige Manipulationen garantieren Korrektheit
— Synthesestrategie automatisiert Anwendung zulassiger Operationen

— Trace der Strategie dokumentiert getroffene Entscheidungen

e Optimierung und Datentypverfeinerung
— Verbesserung des erzeugten Basisalgorithmus
— Auswahl geeigneter Implementierungen der vorkommenden Datentypen

— Sprachabhiingige Optimierung bei Ubertragung in Programmiersprache

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II, TEIL V 2 Automatisierte Programmierung

HISTORISCHE ENTWICKLUNG I

e Anwendung generischer Inferenztechniken

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II, TEIL V 3 Automatisierte Programmierung

HISTORISCHE ENTWICKLUNG I

e Anwendung generischer Inferenztechniken
— Beweise als Programme

- Automatischer Beweiser 4+ Extraktion von Programmen aus Beweisen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II, TEIL V 3 Automatisierte Programmierung

HISTORISCHE ENTWICKLUNG I

e Anwendung generischer Inferenztechniken
— Beweise als Programme

- Automatischer Beweiser 4+ Extraktion von Programmen aus Beweisen

— Transformation von Formeln

- Rewrite-Techniken 4 Extraktion von Programmen aus Formeln

— Gut zur [lustration der Prinzipien (“Synthese im Kleinen™)

— Konstruktion aufwendigerer Algorithmen verlangt Spezialstrategien

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II, TEIL V 3 Automatisierte Programmierung

HISTORISCHE ENTWICKLUNG I

e Anwendung generischer Inferenztechniken
— Beweise als Programme

- Automatischer Beweiser 4+ Extraktion von Programmen aus Beweisen

— Transformation von Formeln

- Rewrite-Techniken 4 Extraktion von Programmen aus Formeln

— Gut zur lllustration der Prinzipien (“Synthese im Kleinen”)

— Konstruktion aufwendigerer Algorithmen verlangt Spezialstrategien

e Wissensbasierte Syntheseverfahren
— Wissen uiber algorithmische Grundstrukturen formalisiert

als “Algorithmentheorien” (Struktur + Korrektheitsaxiome)
— Strategien verwenden Wissen zur Erzeugung effizienter Algorithmen

— Unterstutzung statt Ersetzung des Programmierers

— Aufwendigere Vorarbeiten aber erfolgreich in der “Praxis”

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II, TEIL V 3 Automatisierte Programmierung

Automatisierte Logik und Programmierung

Wers,
\3{\ :‘(‘?;

Lektion 15) i Eﬁ!

Grundkonzepte der Programmsynthese P

1. Formale Grundbegriffe
2. Formalisierung von Anwendungsbereichen

3. Programmsynthese am Beispiel

PROGRAMMSYNTHESE: GRUNDSATZLICHES VORGEHEN I

1. Erstellen einer formalen Spezifikation
— Benotigt Formalisierung des Anwendungsbereichs als “Ob jekttheorie”
— Welche Begriffe werden benutzt und was bedeuten sie?

— Welche mathematischen Gesetze gelten fir diese Begrifte?

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 1 Grundkonzepte der Programmsynthese

PROGRAMMSYNTHESE: GRUNDSATZLICHES VORGEHEN I

1. Erstellen einer formalen Spezifikation

— Benotigt Formalisierung des Anwendungsbereichs als “Objekttheorie’

)

— Welche Begriffe werden benutzt und was bedeuten sie?

— Welche mathematischen Gesetze gelten fir diese Begrifte?

2. Entwurf eines lauffahigen, korrekten Algorithmus

— Synthesestrategie generiert Basisversion und Korrektheitsgarantien

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 1 Grundkonzepte der Programmsynthese

PROGRAMMSYNTHESE: GRUNDSATZLICHES VORGEHEN I

1. Erstellen einer formalen Spezifikation
— Benotigt Formalisierung des Anwendungsbereichs als “Objekttheorie”

— Welche Begriffe werden benutzt und was bedeuten sie?

— Welche mathematischen Gesetze gelten fir diese Begrifte?

2. Entwurf eines lauffahigen, korrekten Algorithmus

— Synthesestrategie generiert Basisversion und Korrektheitsgarantien

3. Erzeugung eines effizienten, korrekten Programms
— Benutzergesteuerte Optimierungstechniken verbessern Algorithmus
— Ubertragung in Zielsprache ermdglicht weitere Optimierungen

— System garantiert Korrekheit der Optimierungen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 1 Grundkonzepte der Programmsynthese

SPEZIFIKATION VON PROGRAMMIERPROBLEMEN I

e Programme berechnen im Endeffekt Funktionen

— Aus welchem Datentyp stammen die Eingaben? Domain D
— Zu welchem Datentyp gehoren die Ausgaben? Range R
— Gibt es Beschrankungen an zulassige Eingaben? Input-Bedingung [

— Was ist der Zusammenhang zwischen Ein- und Ausgaben?
Output-Bedingung O

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 2 Grundkonzepte der Programmsynthese

SPEZIFIKATION VON PROGRAMMIERPROBLEMEN I

e Programme berechnen im Endeffekt Funktionen

— Aus welchem Datentyp stammen die Eingaben? Domain D
— Zu welchem Datentyp gehoren die Ausgaben? Range R
— Gibt es Beschrankungen an zulassige Eingaben? Input-Bedingung [

— Was ist der Zusammenhang zwischen Ein- und Ausgaben?
Output-Bedingung O
e Spezifikationen als formale Objekte
— Eine formale Spezifikation ist ein Quadrupel spec = (D, R,1,0)
wobei D und R Datentypen, I Pradikat uber D, O Pradikat iiber Dx R

-~ D,R,I,0 sind in einer Spezifikationssprache zu beschreiben

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 2 Grundkonzepte der Programmsynthese

SPEZIFIKATION VON PROGRAMMIERPROBLEMEN I

e Programme berechnen im Endeffekt Funktionen

— Aus welchem Datentyp stammen die Eingaben? Domain D
— 7Zu welchem Datentyp gehoren die Ausgaben? Range R
— Gibt es Beschrankungen an zulassige Eingaben? Input-Bedingung [

— Was ist der Zusammenhang zwischen Ein- und Ausgaben?
Output-Bedingung O
e Spezifikationen als formale Objekte

— Eine formale Spezifikation ist ein Quadrupel spec = (D, R,1,0)
wobei D und R Datentypen, I Pradikat uber D, O Pradikat iiber Dx R

-~ D,R,I,0 sind in einer Spezifikationssprache zu beschreiben

e Zwel mogliche Aufgabenstellungen

— Programm soll eine mogliche Losung bestimmen,
FUNCTION f(z:D):R WHERE [[z] RETURNS y SUCH THAT Olz,y|

— Programm soll alle moglichen Losungen bestimmen
FUNCTION f(x:D) WHERE I[z] RETURNS {y:R | Oz, y]}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 2 Grundkonzepte der Programmsynthese

PROGRAMME UND KORREKTHEIT I

e Programm = Spezifikation 4+ Algorithmus
— Algorithmen (Programmkorper) sind berechenbare (partielle) Funktionen

auf D4 R, die auf allen zulassigen Eingaben definiert sind

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 3 Grundkonzepte der Programmsynthese

PROGRAMME UND KORREKTHEIT I

e Programm = Spezifikation 4+ Algorithmus
— Algorithmen (Programmkorper) sind berechenbare (partielle) Funktionen

auf D4 R, die auf allen zulassigen Eingaben definiert sind

e Programme als formale Objekte
— Eine formales Programm ist ein 5-Tupel prog = (D,R,1,0, body)
wobei (D, R,I,0) formale Spezifikation, body:D- R berechenbar

— body darf f rekursiv aufrufen und ist in Programmiersprache zu beschreiben
- FUNCTION f(xz:D):R WHERE I[z] RETURNS y SUCH THAT Olz,y] = body|f, x|
- FUNCTION f(z:D) WHERE [[z] RETURNS {y:R | O[z,y|} = body[f,z]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 3 Grundkonzepte der Programmsynthese

PROGRAMME UND KORREKTHEIT I

e Programm = Spezifikation 4+ Algorithmus
— Algorithmen (Programmkorper) sind berechenbare (partielle) Funktionen

auf D4 R, die auf allen zulassigen Eingaben definiert sind

e Programme als formale Objekte
— Eine formales Programm ist ein 5-Tupel prog = (D,R,1,0, body)
wobei (D, R,I,0) formale Spezifikation, body:D- R berechenbar

— body darf f rekursiv aufrufen und ist in Programmiersprache zu beschreiben
- FUNCTION f(xz:D):R WHERE I[z] RETURNS y SUCH THAT Olz,y] = body|f, x|
- FUNCTION f(z:D) WHERE [[z] RETURNS {y:R | O[z,y|} = body[f,z]

e Korrektheit von Programmen
— prog ist korrekt, falls Vo:D. Ix] = Olz,body(x)]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 3 Grundkonzepte der Programmsynthese

PROGRAMME UND KORREKTHEIT I

e Programm = Spezifikation 4+ Algorithmus
— Algorithmen (Programmkorper) sind berechenbare (partielle) Funktionen

auf D4 R, die auf allen zulassigen Eingaben definiert sind

e Programme als formale Objekte
— Eine formales Programm ist ein 5-Tupel prog = (D,R,1,0, body)
wobei (D, R,I,0) formale Spezifikation, body:D- R berechenbar

— body darf f rekursiv aufrufen und ist in Programmiersprache zu beschreiben
- FUNCTION f(x:D):R WHERE [[z] RETURNS y SUCH THAT Olz,y] = bodylf,x]
- FUNCTION f(x:D) WHERE [[x] RETURNS {y:R | Olx,y|} = body[f, x]

e Korrektheit von Programmen
— prog ist korrekt, falls Vo:D. Ix] = Olz,body(x)]

e Syntheseziel: Erfullbarkeit von Spezifikationen

— spec ist erfiillbar (synthetisierbar), falls es eine Funktion
body: D/ R gibt, so dafl prog=(spec,body) korrekt ist

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 3 Grundkonzepte der Programmsynthese

SPEZIFIKATIONS- UND PROGRAMMIERSPRACHE I

e Einheitlicher Formalismus fur Synthese
— Mathematische Sprache mit Programmiernotation
— Beinhaltet formale Notation fir die wichtigsten Datentypen

— Aufgesetzt auf logischen Basiskalkiil (z.B. Typentheorie)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 4 Grundkonzepte der Programmsynthese

SPEZIFIKATIONS- UND PROGRAMMIERSPRACHE I

e Einheitlicher Formalismus fur Synthese
— Mathematische Sprache mit Programmiernotation
— Beinhaltet formale Notation fir die wichtigsten Datentypen

— Aufgesetzt auf logischen Basiskalkiil (z.B. Typentheorie)

e Formales Wissen uber Standard-Datentypen
— Definition der Begriffe im Basiskalkiil
— Verifizierte Lemmata tiber Eigenschaften der Begriffe

— Quelle: Inhalt von Lehrmaterial, -biichern und Forschungsergebnissen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 4 Grundkonzepte der Programmsynthese

SPEZIFIKATIONS- UND PROGRAMMIERSPRACHE I

e Einheitlicher Formalismus fur Synthese
— Mathematische Sprache mit Programmiernotation
— Beinhaltet formale Notation fir die wichtigsten Datentypen

— Aufgesetzt auf logischen Basiskalkiil (z.B. Typentheorie)

e Formales Wissen uber Standard-Datentypen
— Definition der Begriffe im Basiskalkiil
— Verifizierte Lemmata tiber Eigenschaften der Begriffe

— Quelle: Inhalt von Lehrmaterial, -biichern und Forschungsergebnissen

e Objekttheorien: zusatzliches Domanenwissen
— Definition neuer Konzepte in einer Spezifikation

— Lemmata uiber Grundeigenschaften dieser Konzepte

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 4 Grundkonzepte der Programmsynthese

AUFBAU FORMALER MATHEMATISCHER (OBJEKT-)THEORIEN

Notwendig fur Formalisierung von Programmierproblemen

e Formalisiere Grundkonzepte der Theorie
— Systematischer Entwurf analog zum Aufbau der Typentheorie
- Formale Notation fiir Datentyp, kanonische & nichtkanonische Elemente

- Inferenzregeln fiir Elemente und Datentyp

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 5 Grundkonzepte der Programmsynthese

AUFBAU FORMALER MATHEMATISCHER (OBJEKT-)THEORIEN

Notwendig fur Formalisierung von Programmierproblemen

e Formalisiere Grundkonzepte der Theorie
— Systematischer Entwurf analog zum Aufbau der Typentheorie
- Formale Notation fiir Datentyp, kanonische & nichtkanonische Elemente

- Inferenzregeln fiir Elemente und Datentyp

e Implementiere Grundkonzepte der Theorie
— Formale Definitionen erklaren neue Begriffe durch bestehende Terme

— Taktiken beschreiben neue Inferenzregeln durch existierende Regeln

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 5 Grundkonzepte der Programmsynthese

AUFBAU FORMALER MATHEMATISCHER (OBJEKT-)THEORIEN

Notwendig fur Formalisierung von Programmierproblemen

e Formalisiere Grundkonzepte der Theorie
— Systematischer Entwurf analog zum Aufbau der Typentheorie
- Formale Notation fiir Datentyp, kanonische & nichtkanonische Elemente

- Inferenzregeln fiir Elemente und Datentyp

e Implementiere Grundkonzepte der Theorie
— Formale Definitionen erklaren neue Begriffe durch bestehende Terme

— Taktiken beschreiben neue Inferenzregeln durch existierende Regeln

e Erstelle erweiterte Objekttheorie
— Formalisiere wichtige Begriffe durch Grundkonzepte der Theorie
— Beweise mathematische Gesetze zu Eigenschaften “abgeleiteter” Konzepte

Insbesondere Rewrite-Lemmata zu Kombinationen von Operationen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 5 Grundkonzepte der Programmsynthese

BEISPIEL: THEORIE ENDLICHER MENGEN I

e Grundkonzepte

Datentyp: Set (o)

Operationen: (: Set(a)
+: Set(a) Xa — Set(w)
€: axSet(aw) — Bool

Gesetze: agl)
xe(S+a) & (x=a v x€8)
(S+a)+x = (S+x)+a
(S+a)+a = S+a
(P(@) A (VS:Set(a).P(S) = Va:a.P(S+a))) = VS:Set(a).P(S)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 6 Grundkonzepte der Programmsynthese

BEISPIEL: THEORIE ENDLICHER MENGEN I

e Grundkonzepte

Datentyp: Set (o)

Operationen: (: Set(a)
+: Set(a) Xa — Set(w)
€: axSet(aw) — Bool

Gesetze: a¢l)
xe(S+a) & (x=a v x€8)
(S+a)+x = (S+x)+a
(S+a)+a = S+a
(P(D) A (VS:Set(a).P(S) = Va:a.P(S+a))) = VS:Set(w).P(S)

e Implementierung

0 = nil

+ =)a,S. a.S

€ = J)a,S. dxeS.x=a

=Set = AS,T. (VaeS. acT) A (Va’eT. a’e8)
Set(aw) = (S,T):alist//S=g4T

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 6 Grundkonzepte der Programmsynthese

THEORIE ENDLICHER MENGEN — ABGELEITETE KONZEPTE I

empty? = AS. if S=() then tt else ff

C = AS,S’. VxeS.x¢e8’
{list-exp} = list-exp.nil
{i..j5} = ind(j-i; _,_.0; {j}; diff,j-set. j-set+(j-diff))
{filweSrp,} = list_ind(S; 0; a,_,GSF. if p,[a/x] then GSF+f,[a/x] else GSF
| .S = 1list_ind(S; 0; a,S’,card. if a<S’ then card else card+1)
- = AS,a. {xl|xeSrx#a}
U =)AS,S’. 1list_ind(S’; S; a,_,union.union+a)
N = AS,S8’. {xlxeSrxeS’}
\ =)AS,S’. {xl|xeSrx¢S’}
U = MFAMILY. list_ind(FAMILY; (); S,FAM,Union.UnionUS)
ﬂ = MFAMILY. list_ind(FAMILY; fail;

S,FAM,inter. if empty?(FAM) then S else interNS)
map = M,S. {f(x)|xeS}
reduce = Mop,S. list_ind(S; fail;

a,S’,redS’. if empty?(S’) then a

else if acS’ then redS’ else op(redS’,a))

T =54 SWS = T=g,4 SUS A empty?(SNS’)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 7 Grundkonzepte der Programmsynthese

WICHTIGSTE BESTANDTEILE DER FORMALISIERUNGSSPRACHE I

B, true, false Data type of boolean expressions, explicit truth values

=, A, V, =>, &, & Boolean connectives

VxeS.p, dxeS.p Limited boolean quantifiers (on finite sets and sequences)
if p then a else b Conditional

Seq(a) Data type of finite sequences over members of «

null?, €, C Decision procedures: emptiness, membership, prefix

(1, [al, [i..j], [a,...a] Empty/ singleton sequence, subrange, literal sequence former
a.L, L-a prepend a, append a to L

[f(x) lxeLap(x)], IL|, L[i] General sequence former, length of L, i-th element,
domain(L), range(L) The sets {1..|L|} and {L[i] |1 edomain(L)}

nodups (L) Decision procedure: all the L[1] are distinct (no duplicates)
Set (a) Data type of finite sets over members of «

empty?, €, C Decision procedures: emptiness, membership, subset

0, {a}, {i..3}, {a,--.a,} Empty set, singleton set, integer subset, literal set former

S+a, S-a element addition, element deletion
{f(x) |xeSapx)}, IS] General set former, cardinality

SUT, SNT, S\T Union, intersection, set difference

| JraMiLy, NFaMILY Union, intersection of a family of sets

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 8 Grundkonzepte der Programmsynthese

FORMALE ENTWICKLUNG VON ALGORITHMEN AM BEISPIEL I

Costas-Arrays Problem

Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

2416|533

Costas Array der Ordnung 6 und seine Differenzentafel

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 9 Grundkonzepte der Programmsynthese

FORMALE ENTWICKLUNG VON ALGORITHMEN AM BEISPIEL I

Costas-Arrays Problem

Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

2] 4] 1] 6] 5] 3
-2

Costas Array der Ordnung 6 und seine Differenzentafel

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 9 Grundkonzepte der Programmsynthese

FORMALE ENTWICKLUNG VON ALGORITHMEN AM BEISPIEL I

Costas-Arrays Problem

Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

241 6| 5|3
-2 3

Costas Array der Ordnung 6 und seine Differenzentafel

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 9 Grundkonzepte der Programmsynthese

FORMALE ENTWICKLUNG VON ALGORITHMEN AM BEISPIEL I

Costas-Arrays Problem

Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

214 1,65 3
-2 3|-5

Costas Array der Ordnung 6 und seine Differenzentafel

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 9 Grundkonzepte der Programmsynthese

FORMALE ENTWICKLUNG VON ALGORITHMEN AM BEISPIEL I

Costas-Arrays Problem

Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

214 1,65 3
-2 31-5| 1

Costas Array der Ordnung 6 und seine Differenzentafel

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 9 Grundkonzepte der Programmsynthese

FORMALE ENTWICKLUNG VON ALGORITHMEN AM BEISPIEL I

Costas-Arrays Problem

Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

214 1,65 3
-2 3|-5| 1] 2

Costas Array der Ordnung 6 und seine Differenzentafel

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 9 Grundkonzepte der Programmsynthese

FORMALE ENTWICKLUNG VON ALGORITHMEN AM BEISPIEL I

Costas-Arrays Problem

Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

24,1653
-2 3/-9] 1| 2
1/-2|-4| 3
-41-1|-2

-3 1

-1

Costas Array der Ordnung 6 und seine Differenzentafel

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 9 Grundkonzepte der Programmsynthese

FORMALE ENTWICKLUNG VON ALGORITHMEN AM BEISPIEL I

Costas-Arrays Problem

Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

— Hilfreich fiir Erzeugung leicht decodierbarer Radar- und Sonarsignale

24,1653
-2 3/-9] 1| 2
1/-2|-4| 3
-41-1|-2

-3 1

-1

Costas Array der Ordnung 6 und seine Differenzentafel

Ziel: Berechnung aller Costas Arrays der Grofle n

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 9 Grundkonzepte der Programmsynthese

BERECHNUNG ALLER COSTAS ARRAYS I

Bis 1988 keine effiziente Losungsalgorithmen bekannt

e Aufzahlung und Testen ist exponentiell

— Wie analysiert man Losungskandidaten ohne sie aufzuzahlen?

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 10 Grundkonzepte der Programmsynthese

BERECHNUNG ALLER COSTAS ARRAYS

Bis 1988 keine effiziente Losungsalgorithmen bekannt

e Aufzahlung und Testen ist exponentiell

. Kandidat
— Wie analysiert man Losungskandidaten ohne sie aufzuzahlen? e

e Losung benutzt (GGlobalsuche

Zerteilen
von Kandidaten

— Codierung von Kandidatenmengen
— Wiederholtes Aufteilen und und Filtern

auf Basis von Reprasentanten

Extraktio

—————

und Test

— Extraktion konkreter Losungen aus Reprasentanten

I

Eliminierte Kandidaten

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 10 Grundkonzepte der Programmsynthese

BERECHNUNG ALLER COSTAS ARRAYS

Bis 1988 keine effiziente Losungsalgorithmen bekannt

e Aufzahlung und Testen ist exponentiell

. Kandidat
— Wie analysiert man Losungskandidaten ohne sie aufzuzahlen? e

e Losung benutzt (GGlobalsuche

Zerteilen
von Kandidaten

— Codierung von Kandidatenmengen
— Wiederholtes Aufteilen und und Filtern

auf Basis von Reprasentanten

Extraktio

—————

und Test

— Extraktion konkreter Losungen aus Reprasentanten

I

Eliminierte Kandidaten

Globalsuchalgorithmen sind systematisch erzeugbar

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 10 Grundkonzepte der Programmsynthese

PHASEN EINER FORMALE ALGORITHMENENTWICKLUNG

1. Erstellen der notigen Objekttheorie
— Formalisierung vorkommender neuer Begriffe

— Aufstellen mathematischer Gesetze fiir diese Begrifte

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 11 Grundkonzepte der Programmsynthese

PHASEN EINER FORMALE ALGORITHMENENTWICKLUNG

1. Erstellen der notigen Objekttheorie

— Formalisierung vorkommender neuer Begriffe

— Aufstellen mathematischer Gesetze fiir diese Begrifte

2. Erstellen der formalen Spezifikation

11 Grundkonzepte der Programmsynthese

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15

PHASEN EINER FORMALE ALGORITHMENENTWICKLUNG

1. Erstellen der notigen Objekttheorie

— Formalisierung vorkommender neuer Begriffe

— Aufstellen mathematischer Gesetze fiir diese Begrifte
2. Erstellen der formalen Spezifikation

3. Entwurf eines korrekten Basisalgorithmus

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 11 Grundkonzepte der Programmsynthese

PHASEN EINER FORMALE ALGORITHMENENTWICKLUNG

1. Erstellen der notigen Objekttheorie
— Formalisierung vorkommender neuer Begriffe

— Aufstellen mathematischer Gesetze fiir diese Begrifte
2. Erstellen der formalen Spezifikation
3. Entwurf eines korrekten Basisalgorithmus

4. Verifizierte algorithmische Optimierung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 11 Grundkonzepte der Programmsynthese

PHASEN EINER FORMALE ALGORITHMENENTWICKLUNG

1. Erstellen der notigen Objekttheorie

— Formalisierung vorkommender neuer Begriffe

— Aufstellen mathematischer Gesetze fiir diese Begrifte
2. Erstellen der formalen Spezifikation
3. Entwurf eines korrekten Basisalgorithmus

4. Verifizierte algorithmische Optimierung

5. Implementierung
— Auswahl geeigneter Implementierungen fiir abstrakte Datentypen

— Ggtf. Compilierung und sprachabhangige Optimierung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 11 Grundkonzepte der Programmsynthese

PHASEN EINER FORMALE ALGORITHMENENTWICKLUNG

1. Erstellen der notigen Objekttheorie

— Formalisierung vorkommender neuer Begriffe

— Aufstellen mathematischer Gesetze fiir diese Begrifte
2. Erstellen der formalen Spezifikation
3. Entwurf eines korrekten Basisalgorithmus

4. Verifizierte algorithmische Optimierung

5. Implementierung
— Auswahl geeigneter Implementierungen fiir abstrakte Datentypen

— Ggtf. Compilierung und sprachabhangige Optimierung

Unterstutzung durch Synthesesystem

Steuerung durch erfahrenen Benutzer

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 11 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (1): OBJEKTTHEORIE

Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 12 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (1): OBJEKTTHEORIE

Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

e Formalisierung vorkommender Begriffe:

dtrow(L,j) = [L[i]l-Lli+j] liel1..1L1-4]11]
perm(L,S) = nodups(L) A range(L)=S

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 12 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (1): OBJEKTTHEORIE

Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

e Formalisierung vorkommender Begriffe:

dtrow(L,j) = [L[i]l-Lli+j] liel1..1L1-4]11]
perm(L,S) = nodups(L) A range(L)=S

e Aufstellen mathematischer Gesetze:
VL,L’:Seq(Z) .Vi:Z.Vj:N.

1. dtrow([],j) = []

2. j<IL| = dtrow(i.L,j) = (i-L[j]) .dtrow(L,j)

3. j#20 = dtrow([i],j) = []

4. LCL’ = dtrow(L,j) . dtrow(L’,j)

5. j>ILI = dtrow(L,j) = [J

6. j<IL| = dtrow(L-i,j) = dtrow(L,j) (LLILI+1-j]1-1)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 12 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (2): FORMALE SPEZIFIKATION

Fiir n>1 berechne alle Permutationen von {1..n}

ohne Duplikate in Zeilen der Differenzentafel

D — 7

R +— Seq(Z)

I — dn.n>1

O — An,p.perm(p,{1..n}) A Vjedomain(p).nodups(dtrow(p,j))

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n})
A Vjedomain(p) .nodups(dtrow(p,j))}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §15 13 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (3): ERZEUGUNG DES BASISALGORITHMUS

e Grundstruktur eines (Globalsuchalgorithmus
let rec f (x,8) = {z|zecext(s) n0(x,2)}

U J{(£4s(x,t) 1 tesplit(x,s) A d(x,t)}
in f,(x,s,(x)) l

Zerteilen
von Kandidaten

Extraktion

ca

und Test

Wl

Eliminierte Kandidaten

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 14 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (3): ERZEUGUNG DES BASISALGORITHMUS

e Grundstruktur eines (Globalsuchalgorithmus

let rec f (x,8) = {z|zecext(s) n0(x,2)}

U J{(£4s(x,t) 1 tesplit(x,s) A d(x,t)}
in f,(x,s,(x)) l ente
— s: Deskriptor fiir Mengen von Losungskandidaten —7
— s,(x): Initialdeskriptor fiir Eingabe x
— split(x,s): Rekursive Aufteilung von Kandidatenmengen
— ®(x,s): Filter zur Elimination unnotiger Deskriptoren /.
— ext (s): direkte Extraktion von Losungskandidaten z aus Deskriptoren
— 0(x,2z): Ausgabebedingung, verwendet zur endgiiltigen Selektion

Extraktion

ca

und Test

Grundkonzepte der Programmsynthese

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 14

COSTAS-ARRAYS (3): ERZEUGUNG DES BASISALGORITHMUS

e Grundstruktur eines (Globalsuchalgorithmus

let rec f (x,8) = {z|zecext(s) n0(x,2)}

U J{(£4s(x,t) 1 tesplit(x,s) A d(x,t)}
in f,(x,s,(x)) l ente
— s: Deskriptor fiir Mengen von Losungskandidaten —7
— s,(x): Initialdeskriptor fiir Eingabe x
— split(x,s): Rekursive Aufteilung von Kandidatenmengen
— ®(x,s): Filter zur Elimination unnotiger Deskriptoren /.
— ext (s): direkte Extraktion von Losungskandidaten z aus Deskriptoren
— 0(x,2z): Ausgabebedingung, verwendet zur endgiiltigen Selektion

e (Globalsuchalgorithmus fir Costas-Arrays Problem

let costas(n) =
let rec aux(n,s)
= {plpe{s} n perm(p,{1..n}) A Vj<n.nodups(dt-row(p,j)) }
U LJ{auXCxJﬂ |te{silie{l..n}}
n nodups(t) » Vj<lt|.nodups(dt-row(t,j))}

Extraktion

ca

und Test

in aux(n, [])

Grundkonzepte der Programmsynthese

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 14

COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= {plpe{s} rperm(p,{1..n}) A Vj<n.nodups(dt-row(p,j)) }
U LJ{auX(X,t)Itma{sdlie{i..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= {plpe{s} rnperm(p,{1..n}) A Vj<n.nodups(dt-row(p,j)) }
U LJ{auX(X,t)Itma{sdiie{i..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])

Doménenwissen: {p|pec{s} » P(p)} = if P(s) then {s} else ()

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =

let rec aux(n,s)

if perm(s,{1..n}) A Vj<n.nodups(dt-row(s,j)) then {s} else ()

U LJ{auX(X,t)Itma{sdlie{i..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])

Grundkonzepte der Programmsynthese

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 15

COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =

let rec aux(n,s)
= if perm(s,{1..n}) A Vj<n.nodups(dt-row(s,j)) then {s} else ()

U LJ{auX(X,t)Itma{sdlie{j..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])

Domaéanenwissen: perm(s,{l..n}) = I[s|=n
Kontext der Formel: perm(s,{1..n})
Kontext der Loopinvariante: Vj<|s|.nodups(dt-row(s,j))

Grundkonzepte der Programmsynthese

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 15

COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =

let rec aux(n,s)

if perm(s,{1..n}) then {s} else ()
U LJ{auX(X,t)Itma{sdiie{i..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if perm(s,{1..n}) then {s} else (
U LJ{auX(X,t)Itma{sdlie{j..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])

Domanenwissen:
perm(s,{1..n}) = sc{l..n} A {1..n}Ss A nodups(s)
{1..n}cs = {1..n}\s=0

Kontext der Loopinvariante: nodups(s)

Rahmenbedingung fiir Deskriptoren J({1..n},s): sc{1..n}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,t)Itma{sdiie{i..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,t)Ite&{sd}ie{i..n}} A nodups (t)
n Vi<lt|.nodups(dt-row(t,j)) }

in aux(n, [])

Domanenwissen:

{f&x,8) Ite{g(s,)lieS}trh®)} = {f(x,9(s,1)) 1S A h(g(s,i))}

Grundkonzepte der Programmsynthese

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 15

COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sdJ |ie{l..n} A nodups(s'i)
n Vj<ls'il.nodups(dt-row(s'i,j)) }

in aux(n, [])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sdJ |ie{l..n} A nodups(s-i)
n Vj<ls'il.nodups(dt-row(s'i,j)) }

in aux(n, [])

Doméanenwissen: ic{l..n} Anodups(s'i) = ie{l..n}\s

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sd) |ie{1l..n}\s
n Vj<ls'il.nodups(dt-row(s'i,j)) }

in aux(n, [])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sdJ |ie{1l..n}\s
A Vj<ls'il.nodups(dt-row(s'i,j)) }

in aux(n, [])

Domanenwissen:
dt-row(s'i,j) = dt-row(s,j)-(sllsil-jl-1) ST AT TT G5
nodups (t-k) = nodups(?) A k¢t 2] 3[-5] 172
Vi<lsil .P(§) = Yj<lIs|.P(G)a P(sl) }l Zf R
dt-row(s-i,|sl) = [slIsil-1sl]1-1i] ? !
nodups([s[ls'il-[sl]-i]) = true

Kontext der Loopinvariante: Vj<|s|.nodups(dt-row(s,j))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4A): SIMPLIFIKATIONEN

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sd) |ie{1l..n}\s
rn Vi<lsl. (slls'il-j]-1i) ¢dt-row(s,j)}

in aux(n, [])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4B): ENDLICHE DIFFERENZIERUNG

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sd) |ie{1l..n}\s
rn Vi<lsl. (slls'il-j]-1i) ¢dt-row(s,j)}

in aux(n, [])

Grundkonzepte der Programmsynthese

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 16

COSTAS-ARRAYS (4B): ENDLICHE DIFFERENZIERUNG

let costas(n) =
let rec aux(n,s)
= if {1..n}\s=0 then {s} else ()
U LJ{auX(X,sdJ |ie{l..n}\s
n Vi<lsl. (slls'il-j]1-1) ¢dt-row(s,j)}

in aux(n, [])

Ersetze ineffiziente Neuberechnung durch neue Variablen:

{1..n}\s ~— pool
|s-il > ssize

Integriere Variablen in Definition von aux

Grundkonzepte der Programmsynthese

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 16

COSTAS-ARRAYS (4B): ENDLICHE DIFFERENZIERUNG

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=() then {s} else ()
U LJ{auX(X,sdJ | i epool
n Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}

in aux(n, [])

Initiierung der Variablen im ersten Aufruf

Inkrementelle Veranderung im rekursiven Aufruf

Grundkonzepte der Programmsynthese

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 16

COSTAS-ARRAYS (4B): ENDLICHE DIFFERENZIERUNG

let costas(n) =

let rec aux(n,s,pool,ssize)

if pool=(then {s} else 0
U LJ{aux(x,sd,pool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}

in aux(n, [1,{1..n},1)

Grundkonzepte der Programmsynthese

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 16

COSTAS-ARRAYS (4C): FALLANALYSE

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=() then {s} else ()
U LJ{auX(X,sddpool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}

in aux(n, [1,{1..n},1)

Domanenwissen:
(if pool=() then {s} else) US = if pool=() then {s}US else S

Grundkonzepte der Programmsynthese

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 17

COSTAS-ARRAYS (4C): FALLANALYSE

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s} U LJ{auX(X,sdqpool\{i},ssize+1)I:iepool
n Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}
else LJ{auX(X,sdqpool\{i},ssize+1)I:iepool
n Vi<lsl|. (s[ssize-jl-1i) ¢dt-row(s,j)}

in aux(n, [1,{1..n},1)

Doménenwissen: U{f(i) |ie(} =0
Kontext der Formel: pool=()

Grundkonzepte der Programmsynthese

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 17

COSTAS-ARRAYS (4C): FALLANALYSE

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s}
else LJ{auX(X,sdqpool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}

in aux(n, [1,{1..n},1)

Grundkonzepte der Programmsynthese

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 17

COSTAS-ARRAYS (5): DATENTYPVERFEINERUNG

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s}
else LJ{aux(x,s&igpool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}
in aux(n, [1,{1..n},1)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 18 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (5): DATENTYPVERFEINERUNG

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s}
else LJ{auX(X,sd,pool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}
in aux(n, [1,{1..n},1)

n: Z — Standardimplementierung positiver ganzen Zahlen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 18 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (5): DATENTYPVERFEINERUNG

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s}
else LJ{auX(X,sd,pool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}
in aux(n, [1,{1..n},1)

n: Z — Standardimplementierung positiver ganzen Zahlen

s: Seq(Z), Elemente werden hinten angehangt — umgekehrt verkettere Liste

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 18 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (5): DATENTYPVERFEINERUNG

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s}
else LJ{aux(x,sd,pool\{i},ssize+1)I:iepool

rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}
in aux(n, [1,{1..n},1)

n: Z — Standardimplementierung positiver ganzen Zahlen
s: Seq(Z), Elemente werden hinten angehangt — umgekehrt verkettere Liste
pool: Set (Z): Elemente werden aus fester Menge entnommen — Bitvektor

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 18 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (5): DATENTYPVERFEINERUNG

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =
let rec aux(n,s,pool,ssize)
= if pool=()
then {s}
else LJ{aux(x,sd,pool\{i},ssize+1)I:iepool
rn Vi<ls|. (slssize-jl-1i) ¢dt-row(s,j)}
in aux(n, [1,{1..n},1)

n: Z — Standardimplementierung positiver ganzen Zahlen
s: Seq(Z), Elemente werden hinten angehangt — umgekehrt verkettere Liste
pool: Set (Z): Elemente werden aus fester Menge entnommen — Bitvektor
ssize: 2. — Standardimplementierung positiver ganzen Zahlen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §15 18 Grundkonzepte der Programmsynthese

