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· Implementierung meist “von Hand” und ad hoc

· Einbeziehung der Endanwender zu spät

– Zu viele Fehler im Endprodukt

· Logischer Zusammenhang zwischen Aufgabe und Lösung selten erkennbar

· Programmierer geben keine Begründung für Korrektheit ihres Programms

• Logische Synthese von Programmen hilft

– Werkzeuge zur (Teil-)Automatisierung der Konstruktion von Algorithmen

– Logisches Fundament erhöht Zuverlässigkeit des erzeugten Programms

– Automatisierung verringert Entwicklungszeit und -kosten

und ermöglicht frühzeitige Validierung durch Endanwender
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Erzeuge korrekte ausführbare Programme aus Spezifikationen

• Formale Spezifikation als Ausgangspunkt

– Formale Beschreibung von Anwendungsbereich und Problemstellung

– Verlangt Fixierung einer formalen Sprache

• Methoden für automatische Algorithmensynthese

– Benötigen theoretische Resultate über Korrektheit erzeugter Algorithmen

– Syntheseparadigma: zulässige Manipulationen garantieren Korrektheit

– Synthesestrategie automatisiert Anwendung zulässiger Operationen

– Trace der Strategie dokumentiert getroffene Entscheidungen

• Optimierung und Datentypverfeinerung

– Verbesserung des erzeugten Basisalgorithmus

– Auswahl geeigneter Implementierungen der vorkommenden Datentypen

– Sprachabhängige Optimierung bei Übertragung in Programmiersprache
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Historische Entwicklung

• Anwendung generischer Inferenztechniken

– Beweise als Programme

· Automatischer Beweiser + Extraktion von Programmen aus Beweisen

– Transformation von Formeln

· Rewrite-Techniken + Extraktion von Programmen aus Formeln

– Gut zur Illustration der Prinzipien (“Synthese im Kleinen”)

– Konstruktion aufwendigerer Algorithmen verlangt Spezialstrategien

• Wissensbasierte Syntheseverfahren

– Wissen über algorithmische Grundstrukturen formalisiert

als “Algorithmentheorien” (Struktur + Korrektheitsaxiome)

– Strategien verwenden Wissen zur Erzeugung effizienter Algorithmen

– Unterstützung statt Ersetzung des Programmierers

– Aufwendigere Vorarbeiten aber erfolgreich in der “Praxis”



Automatisierte Logik und Programmierung

Lektion 15

Grundkonzepte der Programmsynthese

1. Formale Grundbegriffe

2. Formalisierung von Anwendungsbereichen

3. Programmsynthese am Beispiel
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Programmsynthese: grundsätzliches Vorgehen

1. Erstellen einer formalen Spezifikation

– Benötigt Formalisierung des Anwendungsbereichs als “Objekttheorie”

– Welche Begriffe werden benutzt und was bedeuten sie?

– Welche mathematischen Gesetze gelten für diese Begriffe?



Automatisierte Logik und Programmierung II §15 1 Grundkonzepte der Programmsynthese

Programmsynthese: grundsätzliches Vorgehen

1. Erstellen einer formalen Spezifikation

– Benötigt Formalisierung des Anwendungsbereichs als “Objekttheorie”

– Welche Begriffe werden benutzt und was bedeuten sie?

– Welche mathematischen Gesetze gelten für diese Begriffe?
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– Benötigt Formalisierung des Anwendungsbereichs als “Objekttheorie”

– Welche Begriffe werden benutzt und was bedeuten sie?

– Welche mathematischen Gesetze gelten für diese Begriffe?

2. Entwurf eines läuffähigen, korrekten Algorithmus

– Synthesestrategie generiert Basisversion und Korrektheitsgarantien

3. Erzeugung eines effizienten, korrekten Programms

– Benutzergesteuerte Optimierungstechniken verbessern Algorithmus

– Übertragung in Zielsprache ermöglicht weitere Optimierungen

– System garantiert Korrekheit der Optimierungen
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– Zu welchem Datentyp gehören die Ausgaben? Range R

– Gibt es Beschränkungen an zulässige Eingaben? Input-Bedingung I

– Was ist der Zusammenhang zwischen Ein- und Ausgaben?
Output-Bedingung O
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– Gibt es Beschränkungen an zulässige Eingaben? Input-Bedingung I

– Was ist der Zusammenhang zwischen Ein- und Ausgaben?
Output-Bedingung O

• Spezifikationen als formale Objekte

– Eine formale Spezifikation ist ein Quadrupel spec = (D,R,I,O)

wobei D und R Datentypen, I Prädikat über D, O Prädikat über D×R

– D,R,I,O sind in einer Spezifikationssprache zu beschreiben

• Zwei mögliche Aufgabenstellungen

– Programm soll eine mögliche Lösung bestimmen,

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

– Programm soll alle möglichen Lösungen bestimmen

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}
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· FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y] ≡ body[f, x]

· FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]} ≡ body[f, x]

• Korrektheit von Programmen

– prog ist korrekt, falls ∀x:D. I [x] ⇒ O[x, body(x)]

• Syntheseziel: Erfüllbarkeit von Spezifikationen

– spec ist erfüllbar (synthetisierbar), falls es eine Funktion

body:D 6→R gibt, so daß prog=(spec,body) korrekt ist
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Spezifikations- und Programmiersprache

• Einheitlicher Formalismus für Synthese

– Mathematische Sprache mit Programmiernotation

– Beinhaltet formale Notation für die wichtigsten Datentypen

– Aufgesetzt auf logischen Basiskalkül (z.B. Typentheorie)

• Formales Wissen über Standard-Datentypen

– Definition der Begriffe im Basiskalkül

– Verifizierte Lemmata über Eigenschaften der Begriffe

– Quelle: Inhalt von Lehrmaterial, -büchern und Forschungsergebnissen

• Objekttheorien: zusätzliches Domänenwissen

– Definition neuer Konzepte in einer Spezifikation

– Lemmata über Grundeigenschaften dieser Konzepte
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· Formale Notation für Datentyp, kanonische & nichtkanonische Elemente

· Inferenzregeln für Elemente und Datentyp
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– Formale Definitionen erklären neue Begriffe durch bestehende Terme

– Taktiken beschreiben neue Inferenzregeln durch existierende Regeln



Automatisierte Logik und Programmierung II §15 5 Grundkonzepte der Programmsynthese

Aufbau formaler mathematischer (Objekt-)Theorien

Notwendig für Formalisierung von Programmierproblemen

• Formalisiere Grundkonzepte der Theorie

– Systematischer Entwurf analog zum Aufbau der Typentheorie

· Formale Notation für Datentyp, kanonische & nichtkanonische Elemente

· Inferenzregeln für Elemente und Datentyp

• Implementiere Grundkonzepte der Theorie

– Formale Definitionen erklären neue Begriffe durch bestehende Terme

– Taktiken beschreiben neue Inferenzregeln durch existierende Regeln

• Erstelle erweiterte Objekttheorie

– Formalisiere wichtige Begriffe durch Grundkonzepte der Theorie

– Beweise mathematische Gesetze zu Eigenschaften “abgeleiteter” Konzepte

Insbesondere Rewrite-Lemmata zu Kombinationen von Operationen
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Beispiel: Theorie endlicher Mengen

• Grundkonzepte
Datentyp: Set(α)

Operationen: ∅: Set(α)

+: Set(α)×α → Set(α)

∈: α×Set(α) → Bool

Gesetze: a 6∈∅

x ∈(S+a) ⇔ (x=a ∨ x ∈S)

(S+a)+x = (S+x)+a

(S+a)+a = S+a

(P(∅) ∧ (∀S:Set(α).P(S) ⇒ ∀a:α.P(S+a))) ⇒ ∀S:Set(α).P(S)
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• Grundkonzepte
Datentyp: Set(α)

Operationen: ∅: Set(α)

+: Set(α)×α → Set(α)

∈: α×Set(α) → Bool

Gesetze: a 6∈∅

x ∈(S+a) ⇔ (x=a ∨ x ∈S)
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(S+a)+a = S+a
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• Implementierung

∅ ≡ nil

+ ≡ λa,S. a.S

∈ ≡ λa,S. ∃x ∈S.x=ba

=Set ≡ λS,T. (∀a ∈S. a ∈T) ∧ (∀a’ ∈T. a’ ∈S)

Set(α) ≡ (S,T):α list // S=SetT



Automatisierte Logik und Programmierung II §15 7 Grundkonzepte der Programmsynthese

Theorie endlicher Mengen – Abgeleitete Konzepte

empty? ≡ λS. if S=∅ then tt else ff

⊆ ≡ λS,S’. ∀x ∈S.x ∈S’

{list-exp} ≡ list-exp.nil

{i..j} ≡ ind(j-i; , .∅; {j}; diff,j-set.j-set+(j-diff))

{fx|x ∈S ∧px} ≡ list ind(S; ∅; a, ,GSF. if px[a/x] then GSF+fx[a/x] else GSF

|S| ≡ list ind(S; 0; a,S’,card. if a ∈S’ then card else card+1)

- ≡ λS,a. {x|x ∈S ∧x6=a}

∪ ≡ λS,S’. list ind(S’; S; a, ,union.union+a)

∩ ≡ λS,S’. {x|x ∈S ∧x ∈S’}
\ ≡ λS,S’. {x|x ∈S ∧x 6∈S’}⋃

≡ λFAMILY. list ind(FAMILY; ∅; S,FAM,Union.Union∪S)⋂
≡ λFAMILY. list ind(FAMILY; fail;

S,FAM,inter. if empty?(FAM) then S else inter∩ S)

map ≡ λf,S. {f(x)|x ∈S}

reduce ≡ λop,S. list ind(S; fail;

a,S’,redS’. if empty?(S’) then a

else if a ∈S’ then redS’ else op(redS’,a))

T =Set S ] S ′ ≡ T =Set S∪S ′
∧ empty?(S∩S ′)
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Wichtigste Bestandteile der Formalisierungssprache

B, true, false Data type of boolean expressions, explicit truth values

¬, ∧, ∨, ⇒ , ⇐ , ⇔ Boolean connectives

∀x ∈S.p, ∃x ∈S.p Limited boolean quantifiers (on finite sets and sequences)

if p then a else b Conditional

Seq(α) Data type of finite sequences over members of α

null?, ∈, v Decision procedures: emptiness, membership, prefix

[], [a], [i..j], [a
1
...a

n
] Empty/ singleton sequence, subrange, literal sequence former

a.L, L·a prepend a, append a to L

[f(x)|x ∈L ∧p(x)], |L|, L[i] General sequence former, length of L, i-th element,

domain(L), range(L) The sets {1..|L|} and {L[i]|i ∈domain(L)}

nodups(L) Decision procedure: all the L[i] are distinct (no duplicates)

Set(α) Data type of finite sets over members of α

empty?, ∈, ⊆ Decision procedures: emptiness, membership, subset

∅, {a}, {i..j}, {a
1
...a

n
} Empty set, singleton set, integer subset, literal set former

S+a, S-a element addition, element deletion

{f(x)|x ∈S ∧p(x)}, |S| General set former, cardinality

S∪T, S∩T, S\T Union, intersection, set difference⋃
FAMILY,

⋂
FAMILY Union, intersection of a family of sets
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Formale Entwicklung von Algorithmen am Beispiel

Costas-Arrays Problem

Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

– Hilfreich für Erzeugung leicht decodierbarer Radar- und Sonarsignale

2 4 1 6 5 3

Costas Array der Ordnung 6 und seine Differenzentafel
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1 -2 -4 3
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Costas Array der Ordnung 6 und seine Differenzentafel
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Formale Entwicklung von Algorithmen am Beispiel

Costas-Arrays Problem

Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

– Hilfreich für Erzeugung leicht decodierbarer Radar- und Sonarsignale

2 4 1 6 5 3

-2 3 -5 1 2

1 -2 -4 3

-4 -1 -2

-3 1

-1

Costas Array der Ordnung 6 und seine Differenzentafel

Ziel: Berechnung aller Costas Arrays der Größe n
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• Aufzählung und Testen ist exponentiell

– Wie analysiert man Lösungskandidaten ohne sie aufzuzählen?

• Lösung benutzt Globalsuche

Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten

– Codierung von Kandidatenmengen

– Wiederholtes Aufteilen und und Filtern

auf Basis von Repräsentanten

– Extraktion konkreter Lösungen aus Repräsentanten

Globalsuchalgorithmen sind systematisch erzeugbar
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Phasen einer formale Algorithmenentwicklung

1. Erstellen der nötigen Objekttheorie

– Formalisierung vorkommender neuer Begriffe

– Aufstellen mathematischer Gesetze für diese Begriffe

2. Erstellen der formalen Spezifikation

3. Entwurf eines korrekten Basisalgorithmus

4. Verifizierte algorithmische Optimierung

5. Implementierung

– Auswahl geeigneter Implementierungen für abstrakte Datentypen

– Ggf. Compilierung und sprachabhängige Optimierung

Unterstützung durch Synthesesystem

Steuerung durch erfahrenen Benutzer
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Costas-Arrays (1): Objekttheorie

Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel
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perm(L,S) ≡ nodups(L) ∧ range(L)=S
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Costas-Arrays (1): Objekttheorie

Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

• Formalisierung vorkommender Begriffe:

dtrow(L,j) ≡ [L[i]-L[i+j]| i ∈[1..|L|-j]]

perm(L,S) ≡ nodups(L) ∧ range(L)=S

• Aufstellen mathematischer Gesetze:

∀L,L’:Seq(Z).∀i:Z.∀j:N.

1. dtrow([],j) = []

2. j≤|L| ⇒ dtrow(i.L,j) = (i-L[j]).dtrow(L,j)

3. j6=0 ⇒ dtrow([i],j) = []

4. LvL’ ⇒ dtrow(L,j) v dtrow(L’,j)

5. j≥|L| ⇒ dtrow(L,j) = []

6. j≤|L| ⇒ dtrow(L·i,j) = dtrow(L,j)·(L[ |L|+1-j ]-i)

...
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Costas-Arrays (2): formale Spezifikation

Für n≥1 berechne alle Permutationen von {1..n}

ohne Duplikate in Zeilen der Differenzentafel

D 7→ Z

R 7→ Seq(Z)

I 7→ λn. n≥1

O 7→ λn,p. perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j))

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}
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Costas-Arrays (3): Erzeugung des Basisalgorithmus

• Grundstruktur eines Globalsuchalgorithmus

let rec fgs(x,s) = { z | z ∈ext(s) ∧ O(x,z) }

∪
⋃

{ fgs(x,t) | t ∈split(x,s) ∧ Φ(x,t)}
in fgs(x,s0

(x))
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– O(x,z): Ausgabebedingung, verwendet zur endgültigen Selektion
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Costas-Arrays (3): Erzeugung des Basisalgorithmus

• Grundstruktur eines Globalsuchalgorithmus

let rec fgs(x,s) = { z | z ∈ext(s) ∧ O(x,z) }

∪
⋃

{ fgs(x,t) | t ∈split(x,s) ∧ Φ(x,t)}
in fgs(x,s0

(x))

Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten

– s: Deskriptor für Mengen von Lösungskandidaten

– s
0
(x): Initialdeskriptor für Eingabe x

– split(x,s): Rekursive Aufteilung von Kandidatenmengen

– Φ(x,s): Filter zur Elimination unnötiger Deskriptoren

– ext(s): direkte Extraktion von Lösungskandidaten z aus Deskriptoren

– O(x,z): Ausgabebedingung, verwendet zur endgültigen Selektion

• Globalsuchalgorithmus für Costas-Arrays Problem
let costas(n) =

let rec aux(n,s)

= { p | p ∈{s} ∧ perm(p,{1..n}) ∧ ∀j<n. nodups(dt-row(p,j))}

∪
⋃

{ aux(x,t)| t ∈{ s·i|i ∈{1..n} }

∧ nodups(t) ∧ ∀j<|t|. nodups(dt-row(t,j))}
in aux(n,[])
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Domänenwissen: {p | p ∈{s} ∧ P(p)} ≡ if P(s) then {s} else ∅



Automatisierte Logik und Programmierung II §15 15 Grundkonzepte der Programmsynthese

COSTAS-ARRAYS (4a): Simplifikationen
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COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if perm(s,{1..n}) ∧ ∀j<n. nodups(dt-row(s,j)) then {s} else ∅

∪
⋃

{ aux(x,t)| t ∈{ s·i|i ∈{1..n} } ∧ nodups(t)

∧ ∀j<|t|. nodups(dt-row(t,j)) }

in aux(n,[])

Domänenwissen: perm(s,{1..n}) ⇒ |s|=n

Kontext der Formel: perm(s,{1..n})

Kontext der Loopinvariante: ∀j<|s|. nodups(dt-row(s,j))
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COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if perm(s,{1..n}) then {s} else ∅

∪
⋃

{ aux(x,t)| t ∈{ s·i|i ∈{1..n} } ∧ nodups(t)

∧ ∀j<|t|. nodups(dt-row(t,j)) }

in aux(n,[])

Domänenwissen:

perm(s,{1..n}) ≡ s⊆{1..n} ∧ {1..n}⊆s ∧ nodups(s)

{1..n}⊆s ≡ {1..n}\s=∅

Kontext der Loopinvariante: nodups(s)

Rahmenbedingung für Deskriptoren J({1..n},s): s⊆{1..n}
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COSTAS-ARRAYS (4a): Simplifikationen
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COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,t)| t ∈{ s·i|i ∈{1..n} } ∧ nodups(t)

∧ ∀j<|t|. nodups(dt-row(t,j)) }

in aux(n,[])

Domänenwissen:

{ f(x,t) | t ∈{g(s,i)|i ∈S } ∧ h(t)} = { f(x,g(s,i)) | i ∈S ∧ h(g(s,i))}
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COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈{1..n} ∧ nodups(s·i)

∧ ∀j<|s·i|. nodups(dt-row(s·i,j)) }

in aux(n,[])
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COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈{1..n} ∧ nodups(s·i)

∧ ∀j<|s·i|. nodups(dt-row(s·i,j)) }

in aux(n,[])

Domänenwissen: i ∈{1..n} ∧ nodups(s·i) ≡ i ∈{1..n}\s
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COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =
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COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈{1..n}\s

∧ ∀j<|s·i|. nodups(dt-row(s·i,j)) }

in aux(n,[])

Domänenwissen:

dt-row(s·i,j) = dt-row(s,j)·(s[|s·i|-j]-i)

nodups(t·k) ≡ nodups(t) ∧ k 6∈ t

∀j<|s·i|.P(j) ≡ ∀j<|s|.P(j) ∧ P(|s|)

dt-row(s·i,|s|) = [ s[|s·i|-|s|]-i]

nodups([ s[|s·i|-|s|]-i]) ≡ true

2 4 1 6 5 3
-2 3 -5 1 2
1 -2 -4 3

-4 -1 -2
-3 1
-1

Kontext der Loopinvariante: ∀j<|s|. nodups(dt-row(s,j))
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COSTAS-ARRAYS (4a): Simplifikationen

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈{1..n}\s

∧ ∀j<|s|. (s[|s·i|-j]-i) 6∈dt-row(s,j)}

in aux(n,[])
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COSTAS-ARRAYS (4b): Endliche Differenzierung

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈{1..n}\s

∧ ∀j<|s|. (s[|s·i|-j]-i) 6∈dt-row(s,j)}

in aux(n,[])
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COSTAS-ARRAYS (4b): Endliche Differenzierung

let costas(n) =

let rec aux(n,s)

= if {1..n}\s=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈{1..n}\s

∧ ∀j<|s|. (s[|s·i|-j]-i) 6∈dt-row(s,j)}

in aux(n,[])

Ersetze ineffiziente Neuberechnung durch neue Variablen:

{1..n}\s 7→ pool

|s·i| 7→ ssize

Integriere Variablen in Definition von aux
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COSTAS-ARRAYS (4b): Endliche Differenzierung

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i) | i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[])

Initiierung der Variablen im ersten Aufruf

Inkrementelle Veränderung im rekursiven Aufruf
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COSTAS-ARRAYS (4b): Endliche Differenzierung

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)
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Costas-Arrays (4c): Fallanalyse

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅ then {s} else ∅

∪
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)

Domänenwissen:

(if pool=∅ then {s} else ∅)∪S = if pool=∅ then {s}∪S else S
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Costas-Arrays (4c): Fallanalyse

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅

then {s} ∪
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

else
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)

Domänenwissen:
⋃

{ f(i) | i ∈∅} = ∅

Kontext der Formel: pool=∅
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Costas-Arrays (5): Datentypverfeinerung

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅

then {s}

else
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)



Automatisierte Logik und Programmierung II §15 18 Grundkonzepte der Programmsynthese

Costas-Arrays (5): Datentypverfeinerung

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅

then {s}

else
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)

n: Z 7→ Standardimplementierung positiver ganzen Zahlen
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Costas-Arrays (5): Datentypverfeinerung

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅

then {s}

else
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)

n: Z 7→ Standardimplementierung positiver ganzen Zahlen

s: Seq(Z), Elemente werden hinten angehängt 7→ umgekehrt verkettere Liste
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Costas-Arrays (5): Datentypverfeinerung

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅

then {s}

else
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)

n: Z 7→ Standardimplementierung positiver ganzen Zahlen

s: Seq(Z), Elemente werden hinten angehängt 7→ umgekehrt verkettere Liste

pool: Set(Z): Elemente werden aus fester Menge entnommen 7→ Bitvektor



Automatisierte Logik und Programmierung II §15 18 Grundkonzepte der Programmsynthese

Costas-Arrays (5): Datentypverfeinerung

Ersetze abstrakte Definitionen von Datentypen

durch effiziente konkrete Implementierungen

let costas(n) =

let rec aux(n,s,pool,ssize)

= if pool=∅

then {s}

else
⋃

{ aux(x,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<|s|. (s[ssize-j]-i) 6∈dt-row(s,j)}

in aux(n,[],{1..n},1)

n: Z 7→ Standardimplementierung positiver ganzen Zahlen

s: Seq(Z), Elemente werden hinten angehängt 7→ umgekehrt verkettere Liste

pool: Set(Z): Elemente werden aus fester Menge entnommen 7→ Bitvektor

ssize: Z 7→ Standardimplementierung positiver ganzen Zahlen


