Automatisierte Logik und Programmierung

WwWers,
\3{\ :‘(‘?;

Lektion 17 . @A!
.= [

o, =Bk

e
%m
-

Synthese im Kleinen

Paradigmen & Strategien

1. Grundsatzliche Ansatze
2. Beweise als Programme

3. Synthese durch Transformationen

ANSATZE ZUR PROGRAMMSYNTHESE I

e Kunstliche Intelligenz: Automatisches Programmieren
— Intelligenter Agent ersetzt menschlichen Programmierer
— Ziel ist Vollautomatische Erzeugung von Programmen aus Spezifikationen
— Strategien konzentrieren sich auf logisch-deduktive Verfahren
— Forschungen lieferten wichtige theoretische Grundlagen

— Verfahren erzeugen meist nur einfache Algorithmen — “Synthese im Kleinen”

e Software-Engineering: Programmierunterstutzung
— Synthesewerkzeug unterstitzt den menschlichen Programmierer
— Benutzergesteuerte Erzeugung von Programmen mit Korrektheitsgarantie
— Strategien verwenden symbolisch-algebraische Techniken
— Infrastruktur benotigt theoretische Grundlagen aus der Deduktion
— Forschung liefert Formalisierung von Programmierwissen und -methoden
— Verfahren liefern praktisch wertvolle Algorithmen

— Noch zu wenig Unterstiitzung fiir modulare und verteilte Systeme

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 1 Paradigmen & Strategien

PARADIGMEN DER PROGRAMMSYNTHESE I

Wie kann man an das Syntheseproblem herangehen?

e Unterscheidungsmerkmale
— Reprasentation des Syntheseproblems als interne Aufgabenstellung
— Interne Losungsmethode: Art der Inferenzen

— Konstruktion des Algorithmus aus interner Losung

e Beweise als Programme

— Extraktion aus konstruktivem Bewels eines Theorems

e Synthese durch Transformationen

— Aquivalenzumformungen in ausfilhrbare, meist rekursive Form

e (Gegenseitige Simulation prinzipiell moglich

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 2 Paradigmen & Strategien

SYNTHESE-STRATEGIEN I

e Konkrete Verfahren zur Programmsynthese
— Steuern Anwendung eines Formalismus (Beweis / Transformation)
— Strukturieren Losungsweg durch interne Teilziele
— Losen Teilziele durch heuristisch kontrollierte Suche
— Codieren Wissen tiber Programme und Programmstrukturen

— Verwenden ggf. Riickfragen an Benutzer

e Methoden nicht gebunden an Paradigma
— Semi-Formale Methoden: Mehr eine Arbeitsvorschrift
— Automatische Beweiser: Logik erster Stufe, Induktionsbeweisen, . ..

— Rewrite-Techniken: Fiur Transformationen oder Beweisfithrung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 3 Paradigmen & Strategien

HISTORISCH RELEVANTE VERFAHREN I

e Informale Methoden
— Polya, Dijkstra, Gries, ... (Lehrbiicher)

e Beweiser mit Skolemisierung und Resolution
— Green, 1969 (Stanford/Kestrel Institute)
— Manna/Waldinger, 1971,75 (SRI International)
Transformations- und Formationsregeln
— Manna/Waldinger, 1972-1980
Beweiskalkiil gekoppelt mit Transformationen
— Manna/Waldinger, 1980

e Fold /Unfold Techniken
— Burstall/Darlington (Edinburgh) 1975-81

e Modifizierte Knuth-Bendix Vervollstandigung
— Dershowitz (Illinois) 1985

e Synthese von Logikprogrammen
— Clark, Hogger (London) 1980 —

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 4 Paradigmen & Strategien

PARADIGMA: BEWEISE ALS PROGRAMME I

e Beweise Erfillbarkeit einer Spezifikation
— Konstruktiver Beweis zeigt wie Ausgabe aus Eingabe bestimmt wird
— Funktionales Programm implizit im Beweis enthalten
— Korrektheit des Programms kann garantiert werden

— Effizienz des Programms hangt von Art des Beweises ab

e Grundsatzliche Vorgehensweise

— Gegeben sei die Spezifikation
. FUNCTION f(x:D):R WHERE I[x] RETURNS y SUCH THAT Oz, y]

— Erzeuge Spezifikationstheorem: Vz:D.3Jy:R. I[x] = Oz, y]
— Suche formalen Beweis in konstruktivem logischen Kalkiil

— Extrahiere aus Beweis einen Algorithmus zur Berechnung von ¢ aus «

e Forschungsschwerpunkte
— Ausdrucksstarke Kalkiile

— Effiziente Beweisstrategien und Beweisplaner (Induktion)

— Effiziente Extraktionsmechanismen (gute Algorithmen ohne Beweisballast)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17) Beweise als Programme

FORMALER BEWEIS: INTEGERQUADRATWURZEL I

- Vn:N. dr:N. r’<n< (r+1)?
BY allR

n:N
- 3r:N. r’<n<(r+1)?
BY NatInd 1

..... basecase.....
- Jr:N. r’ <0< (r+1)?
\/ BY existsR (01 THEN Auto

..... upcase.....
i:Nt, r:N, r’<i-1<(r+1)?
- Jdr:N. r’<i<(r+1)?
BY Decide [(r+1)2< il THEN Auto

i:N*, r:N, r2<i- 1<(r+1)2 (r+1)?<i
I—EIrN r2<i< (r+1)?
\/ BY existsR lr+11 THEN Auto’

i:NT, r:N, r’<i-1<(r+1)?, —-((r+1)?<1i)
- 3r:N. r’<i<(r+1)?
\/ BY existsR [r1 THEN Auto

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 6 Beweise als Programme

ALGORITHMENKONSTRUKTION AUS BEWEISEN I

e Formale Grundlage der Methode
— Ist t ein Beweisterm fiir + Vz:D.3y:R. I[x] = Olx,y],
so ist das folgende Program korrekt
FUNCTION f(x:D):R WHERE I[x]
RETURNS y SUCH THAT Olz,y]
= fst(t(x))
— Algorithmus entsteht durch Unterdriickung des Korrektheitsbeweisanteils

— Theoretisches Fundament: Curry Howard Isomorphismus

e Konstruktionsmethode
— Extrahiere Beweisterm ¢ aus vollstandigem Beweis fur
Ve:D.3y:R. I[x] = Olx,y]
— Konstruiere den Programmkorper Ax. fst (#(x))

— Optimiere durch Reduktion und Elimination tiberfliissiger Information

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 7 Beweise als Programme

BEWEISTERM: INTEGERQUADRATWURZEL I

e Mit Korrektheitsbeweisinformation

let rec sqrt n
= if n=0 then <0,<Ax,Ax>>
else let <r,%1> = sqrt (n-1)
in if (r+1)?’<n then <r+1,<Ax,Ax>>
else <r,<Ax,Ax>>

e Nach Projektion und Optimierung

let rec sqrt n
= 1f n=0 then O
else let r = sqrt (n-1)
in if (r+1)?’<n then r+1

else r

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 8 Beweise als Programme

|v/n| — SYNTHESE EINES EFFEKTIVEREN ALGORITHMUS

F Vn:N. Jr:N. r’<n< (r+1)? let rec sqrt n
BY allR = 1f n=0 then O
n:N else let r = sqrt (n+4)
- Jr:N. r2<n< (r+1)? in if (2%r+1)’<n then 2*r+1
BY NatInd4 1 else 24r
..... basecase.....

F Jr:N. r’<0< (r+1)?
\/ BY existsR (01 THEN Auto

..... upcase.....
i:N, r:N, r’<i+4<(r+1)?
F Jr:N. r?2<i< (r+1)?
BY Decide [((2*r)+1)?<1il THEN Auto

i:N, r:N, r’<is4<(r+1)?, ((2*xr)+1)?<i
F 3r:N. r’<i< (r+1)?
v/ BY existsR [(2*xr)+11 THEN Auto’

i:N, r:N, r’<is4<(r+1)2, =(((2*xr)+1)?<1)
F 3r:N. r?<i<(r+1)?
\/ BY existsR [2*xrl THEN Auto

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 9 Beweise als Programme

MAXIMALE SEGMENTSUMME EINER LISTE VON ZAHLEN I

Gegeben eine Folge a1, as, ..., a, €Z bestimme die Summe Eg:pa,z- eines

Segmentes, die maximal beziiglich aller moglicher Segmentsummen ist

2| 3|-6| 4 5/-3| 8|-2|-1| 5/-9 2| 3| 16

e Direkte Losung leicht zu finden, aber ineffizient

— Aufsummieren aller Segmente und Vergleich

e Losungsansatz fiir eleganteren, effizienten Algorithmus
— Betrachte Eigenschaften von M,, = maw{Eg:pai | 1<p<qg<n}
— Induktive Analyse liefert
My =a,, M,y = maz(M,, maz{"a; | 1<p<n})
— Definiere L,, = maxz{X}_ja; | 1<p<n}

- Ly = aq, Ln+1 — max(Ln T A1, an+1)

e Umsetzung in formalen Beweis erforderlich

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 10 Beweise als Programme

MAXIMALE SEGMENTSUMME: OBJEKTTHEORIE I

e Formale Begriffe

max (7, 7) = if 1<j then j else 7
a; = ali]
Zgzpaz- = ind(¢-p;a,; i,sum.sum+a,; 1)

M =maxseg(a) J1<k<j<al. M=Z‘g:ka2- A V1<p<qg<lal. MZZ?ZPCLZ-
L=maxbeg(a) = I1<j<lal. L=X)_,a; »n Vi<q<lal. L>%7 q

e Mathematische Gesetze

M1: a =maxbeg([a]) = maxbeg(a,. [])

M2: a =maxseg([a]) = maxseg(a,. [])

M3: L=maxbeg(a) = max(L+a,a) = maxbeg(a, a)

M4: M=maxseg(a) n L=maxbeg(a,.a) = max(M,L) = maxseg(a,.a)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 11 Beweise als Programme

MAXIMALE SEGMENTSUMME: FORMALE SYNTHESE I

e Voraussetzung: Folge a ist nicht leer:
— Leichter darzustellen durch “a hat die Form a,.a fur ein a,e Z”

e Spezifikation der Berechnung von L und M
FUNCTION MAXSEG(a;:Z,a:8eq(Z)) :Zx7Z WHERE true
RETURNS L,M SUCH THAT L=maxbeg(a,.a) A M=maxseg(a,.a)

e Spezifikationstheorem
Va:8eq(Z) .Va;:Z.3L:Z.3M:Z. L=maxbeg(a,a) A M=maxseg(a,a)

e Struktur des Beweisterms
Aa.Aa,. seqind(a; (@,a,pfiuse); X,1,v.Aa.let L,M,v,v)=vx
in (max(L+a,,a,) ,max(M, max(L+a,a)) ,pfind)

e Algorithmus nach Optimierung
let rec MAXSEG(a,a) = if a=[] then (a,a)
else let x.1 = a
let <L,M>= MAXSEG(x,1)
let new-L =max(L+a,a)
in (new-L, max(M,new-L))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 12 Beweise als Programme

MAXIMALE SEGMENTSUMME: FORMALER BEWEIS I

- Va:Seq(Z).Va;:Z.3dL:7Z.3M:7Z. L=maxbeg(a,.a) n M=maxseg(a,.a)

1|3\\(all_i THEN seq.e 1 THEN all_i (Induktion auf a)
a:Seq(Z), agZ + dL:Z.9M:Z. L=maxbeg(a,.[]) A M=maxseg(a,.[])

BY ex_ i1 a, THEN ex_i a, THEN and_i

1\

| a:Seq(Z), a;:Z + a,=maxbeg(a,.[])
{ BY lemma Mf

a:8eq(Z), a;:Z + a,=maxseg(a,.[])
BY lemma Mé

\

... x:4, 1:8eq(Z), v:Va;:Z.dL:7Z.3M:7Z. L=maxbeg(a,.1l) n M=maxseg(a,.l)
- 3L:Z.9M:Z. L=maxbeg(a,.(x.1)) » M=maxseg(a, (x.1))
BY all e 4 x THEN thin 4

\

.. v:dL:Z.3M:Z. L=maxbeg(x.1l) A M=maxseg(x.1)

- JL:Z.9M:Z. L=maxbeg(a,.(x.1)) r»M=maxseg(a, (x.1))
BY ex.e b THEN ex e 6 THEN and. e 7

\
... L:Z, M:Z, v,: L=maxbeg(x.1l), v,: M=maxseg(x.l)
F dL:Z.3M:7Z. L=maxbeg(a,.(x.1)) n M=maxseg(a,. (x.1))
BY ex.i max(L+a,a) THEN ex_i max(M, max(L+a,a)) THEN and.i
\

1271
|
I ... Vv, L=maxbeg(x.1l), v, M=maxseg(x.1)
|

= max(L+a,,a,) =maxbeg(a,. (x.1))
BY lemma M3

\
R L=maxbeg(x.l) , V,s M=maxseg(x.1)
F max(M, max(L+a,a)) =maxseg(a,. (x.1))
BY ... lemma M3 ... lemma M4

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 13 Beweise als Programme

STRATEGIEN: OYSTER/CLAM BEWEISPLANER |

e Planer simuliert Kalkul — Beweiser fuhrt Plan aus

— Verzogerung von Entscheidungen durch Skolemvariablen und Unifikation

e Induktionsbeweise
— Induktionsschema < Analyse der Rekursionsstruktur + globales Schema

— Rippling: Verschiebe Unterschiede zwischen Induktionshypothese
und -schluf3 bis Funktion der Hypothese entsteht

LITERATUR:

— A. Bundy, A. Smaill, G. Wiggins. The synthesis of logic programs from inductive proofs.
Computer Logic Proceedings, Springer Verlag, 1990.

— A. Bundy, F. van Harmelen, J. Hesketh, A. Smaill. Experiments with proof plans for
induction. JAR 7:303-324, 1991.

— A. Bundy. The use of explicit plans to guide inductive proofs. CADE-9, Springer LNCS 310,
111-120, 1988.

— A. Bundy. Automatic guidance of program synthesis proofs. Workshop on Automating
Software Design, IJCAI-89, 57-59, 1989.

— A. Bundy, F. van Harmelen, A. Smaill, A. Ireland. Extensions to the rippling-out tactic for
gquiding 1nductive proofs. CADE-10, Springer LNCS 449, 132-146, 1990.

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 14 Beweise als Programme

BEWEISE ALS PROGRAMME: EIGENSCHAFTEN I

e Korrektheit des Programms ist garantiert

e Verschiedene Kalkile sind theoretisch aquivalent
— Grofle praktische Unterschiede

— Sequenzenkalkiile fiir Mensch und Maschine geeignet

® Verschiedene Extraktionsverfahren

— Beeinflussen Effizienz erzeugter Programme

e Beweisschritte zu atomar (Assemblerniveau)
— Beweise fiir komplexe Programme interaktiv kaum durchfithrbar
— Automatisierung schwierig:
- Analyse der Formel, Unifikation, Suche nach geeigneten Induktionen

— Nur praktikabel in Kombination mit Definitionen und Spezialtaktiken

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 15 Beweise als Programme

PARADIGMA: SYNTHESE DURCH TRANSFORMATION I

e Transformiere in effektiv ausfuhrbare Formel
— Spezifikation ist ineffektive Formel
— Transformationen verbessern algorithmisches Verhalten der Formel
— VorwartsschlieBen ohne konkret vorgegebenes Ziel

e Grundsatzliche Vorgehensweise

— Gegeben sei die Spezifikation
. FUNCTION f(x:D):R WHERE I[x] RETURNS y SUCH THAT Olz,y]

— Definiere neues Pradikat P iber Dx R durch:
-Ve:D Vy:R.I[x] = (P(xz,y) & Olx,y])
— Transformiere in aquivalente Formel der Gestalt:
-Vx:D.Vy:R.Ix] = (P(xz,y) & O¢lx,y, P))
O¢|z,y, P] darf nur aus erfiillbaren Préadikaten bestehen
— Extrahiere Programm aus Formel oder interpretiere als Logik-Programm

e Forschungsschwerpunkte
— Leistungsfahige Transformationsregeln
— Effiziente Rewrite Techniken und Heuristiken fiir Vorwartsinferenz

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 16 Synthese durch Transformationen

PROGRAMMTRANSFORMATION I

e Historisch: Optimierung von Programmen
— Erzeuge abstraktes, verifiziertes Prototyp-Programm

— Transformiere in aquivalentes effizienteres Programm

e Synthese: Optimierung nichtausfuhrbarer Programme
— Sperzifikation = nichtaustithrbares Programm
— Transformiere in aquivalente, ausfithrbare Formel

Individuelle Formalismen variieren sehr stark

LITERATUR:

— R. M. Burstall, J. Darlington: A Transformation System for Developing Recursive
Programs, JACM 24:44-67, 1977.

— C. J. Hogger: Derivation of Logic Programs, JACM 28:372-392, 1981.
— 7. Manna, R. Waldinger: Synthesis: Dreams = Programs, IEEE.SE SE-5 (4):294-328, 1979.

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 17 Synthese durch Transformationen

TRANSFORMATIONEN, PRAZISIERT |

e Anwendung bedingter Ersetzungsregeln der Form
Vz:T. Blz] = (Qlz] & Q7])
(Ersetze Vorkommen von Q|z] durch Q’[z], falls Bedingung B|z| erfiillt)

~ Regeln sind Aquivalenzen oder Verfeinerungen (Implikationen)

e Regeln ergeben sich aus
— Lemmata der Wissensbasis
— Dynamisch erzeugte Definitionen
— Elementare Tautologien und Abstraktionen

— Dynamisch erzeugte Kombinationen

® Mechanismus basiert auf Vorwartsinferenz
— Ziel 1st bestimmte Struktur der Formel zu erreichen

— Starke heuristische Steuerung notwendig

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 18 Synthese durch Transformationen

MAXIMALE SEGMENTSUMME IM TRANSFORMATIONSANSAT?Z I

Bestimme mam{Eg:pai | 1<p<q<n} fir Zahlen ay,...,a,<cZ

1. Spezifikation der Berechnung von maw{Zg:pai | 1<p<qg<n}
FUNCTION MAXSEG(a:Seq(Z)):7Z WHERE a#[]
RETURNS m SUCH THAT m=maxseg(a)

2. Definiere neues Pradikat MAXSEG
Va:Seq(Z) .Vm:Z. a#[] = (MAXSEG(a,m) < m=maxseg(a))

3. Generalisiere: Einfuhrung eines Pradikats MAX_AUX:
Va:Seq(Z) .Vm:Z. a#[] = (MAXSEG(a,m) < d1:7Z. MAX_AUX(a,m,1))

Va:Seq(Z) .Vm:Z. a#[] = (MAX AUX(a,m,l) < m=maxseg(a) A 1l=maxbeg(a))

4. Transformation durch Anwendung von Lemmata
Va:Seq(Z) .Vm:Z. a#[] = (MAXSEG(a,m) < d1:7Z. MAX_AUX(a,m,1))
Va:Seq(Z) .Vm:Z. a#[] = MAX_ AUX(a,m,1)

& lal=1 A m=a, A 1l=a,
v lal>1 A dm’,1’:Z. 1’ =maxbeg(tl(a)) A l=max(a,,l’+a)

A m’ =maxseg(tl(a)) A m=max(l,m’)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 19 Synthese durch Transformationen

MAXIMALE SEGMENTSUMME: TRANSFORMATIONSSYNTHESE (2)

Va:Seq(Z) .Vm:Z. a#[] = (MAXSEG(a,m) < dl1:Z. MAX AUX(a,m,1))
Va:Seq(Z) .Vm:Z. a#[] = MAX_AUX(a,m,1)
& lal=1 A m=a, A l=a
v lal>1 A dm’,1’:Z. 1’ =maxbeg(tl(a)) A l=max(a,,1l’+a)
A m’ =maxseg(tl(a)) A m=max(l,m’)
5. Einsetzen der Definition von MAX_AUX:
Va:Seq(Z) .Vm:Z. a#[] = (MAXSEG(a,m) < d1:7Z. MAX_AUX(a,m,1))
Va:Seq(Z) .Vm:Z. a#[] = MAX_AUX(a,m,1)
& lal=1 A m=a, A 1l=a
v tl(a)#[] A dm’,1’:7Z. MAX_AUX(tl(a),m’,1’)
A l=max(a,l’+a) A m=max(l,m’)

6a. Umwandlung in Logik-Programm
MAXSEG(a,m) :- MAX AUX(a,l,m).
MAX_AUX([x],x,x).
MAX_AUX(x.a’,1,m):- MAX AUX(a’,m’,1’), max(x,1’+a,l), max(l,m’,m).

6b. Umwandlung in Funktionales Programm
let MAXSEG(a) =

let rec MAX_AUX(a) = if |al=1 then (a,a)
else let (m’,1’) = MAX AUX(tl(a)) in
let l=max(a,l’+a) in (max(l,m’), 1)
in snd (MAX_AUX(a))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 20 Synthese durch Transformationen

TRANSFORMATIONEN: PROGRAMMERZEUGUNG I

e Anwendung von Programmformierungsregeln
— Sprachspezifische Umwandlung einer Formelmenge in Programm

e Erzeugung von Logikprogrammen
— Deklaratives Auslesen der Formeln mit impliziten Quantoren
— Allquantoren und Eingabebedingung entfallen
— Existenzquantoren rechts entfallen (freie Variablen werden instantiiert)
— Disjunktionen rechts ergeben zwei Klauseln (nach Normalisierung)
— Funktionsaufrufe y=g (x) werden zu Pradikaten G(x,y)
— Destruktoren (hd(a), t1(a)) werden zu Konstruktoren x.a im Kopf
— Gleichheiten (m=a,) werden direkt im Kopf eingesetzt

e Erzeugung funktionaler Programme
— Disjunktion werden zu Fallunterscheidungen
— Konjunktionen werden zu zusatzlichen Eingabebedingungen
— Existenzquantoren werden zu Generalisierung + kaskadischer Aufruf
— Rekursionen erfordern Terminierungsbeweis

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 21 Synthese durch Transformationen

RECHTFERTIGUNG VON PROGRAMMFORMIERUNGSREGELN I

e Disjunktion —— Fallunterscheidung
Sind (D,R,I,0,body) und (D,R,I’,0’,body’) korrekt, dann auch
FUNCTION f(x:D):R WHERE I(x)vI’(x) RETURNS y SUCH THAT 0(x,y) v0’(x,y)
= if I(x) then body(x) else body’ (x)

e Existenzquantor +—— Generalisierung
Sind (D,R,I,0,body) und (R,R’,J,0’,body’) korrekt, dann auch
FUNCTION f(x:D):R’ WHERE I(x) rJ(body(x))
RETURNS z SUCH THAT Jy:R.0(x,y) A0’ (y,z)
= body’ (body(x))

e Rekursive Formel +— Rekursion

f ;: DD wohlfundierte ‘Reduktionsfunktion’ und

1. Vx:D. I(x) = I(f;(x))

2. Vx:D.Vy:R.I(x) = 0(x,y) & dy,.:R. 0(£;,(x),y,) A 0c(x,f;(x),y,,y)

3. FUNCTION fc(x,x,,y,:DxDxR):R WHERE I(x) RETURNS y SUCH THAT O¢(x,%,,yr,y)
= body(x,%,,y,) ist korrekt

dann ist das folgende rekursive Programm korrekt

FUNCTION f(x:D):R WHERE I(x) RETURNS y SUCH THAT 0(x,y)

= body(x, f;(x), f(£f,(x)))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 22 Synthese durch Transformationen

STRATEGIEN: LOPS — LOGISCHE PROGRAMMSYNTHESE I

e KI-Orientierter Ansatz:
— Syntaktische Transformationen logischer Formeln kontrolliert durch
semantische Informationen

e Kombination einer kleinen Menge von Teilstrategien
—~ GUESS/DOMAIN: Raten einer Teillosung
~ GET-REC: Rekursionseinfihrung
— Vereinfachung
— Erzeugung von Unterproblemen
— Test aut Auswertbarkeit von Teilformeln

e Algorithmenkonstruktion:
— Umformung rekursiver Formeln in logische /funktionale Programme

LITERATUR:

— Wolfgang Bibel: Syntaz—directed, Semantics—supported Program Synthesis
Al Journal 14:243-261, 1980

Ansatz hat sich nicht bewahrt, da aufler in Spezialfallen nicht formalisierbar

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 23 Synthese durch Transformationen

SYNTHESE IM KLEINEN — RUCKBLICK I

e Pradigmen sind i.w. gleichwertig
— Transformationen sind durch Beweise mit Gleichheitslemmata simulierbar

— Beweisregeln konnen als Rewrite-Regeln beschrieben werden

e Unterschiede liegen in Methodik

— Proofs-as-Programs: Analytischer Beweis eines Spezifikationstheorems
- Korrektheitsgarantien stehen im Vordergrund

— Transformationen: Vorwartsinferenzen mit meist unverifiziertem Wissen

- Efhizienz steht im Vordergrund

e Inferenzniveau zu niedrig
— Elementare Beweisregeln oder Transformationen
— Ignoriert bekanntes Programmierwissen

— Nicht skalierend: Suchraum explodiert bei nichttrivialen Problemen

U

Wissenbasierter Ansatz erforderlich

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 24 Synthese durch Transformationen

