
Automatisierte Logik und Programmierung

Lektion 17

Synthese im Kleinen

Paradigmen & Strategien

1. Grundsätzliche Ansätze

2. Beweise als Programme

3. Synthese durch Transformationen

Automatisierte Logik und Programmierung II §17 1 Paradigmen & Strategien

Ansätze zur Programmsynthese

• Künstliche Intelligenz: Automatisches Programmieren

– Intelligenter Agent ersetzt menschlichen Programmierer

– Ziel ist Vollautomatische Erzeugung von Programmen aus Spezifikationen

– Strategien konzentrieren sich auf logisch-deduktive Verfahren

– Forschungen lieferten wichtige theoretische Grundlagen

– Verfahren erzeugen meist nur einfache Algorithmen 7→ “Synthese im Kleinen”

• Software-Engineering: Programmierunterstützung

– Synthesewerkzeug unterstützt den menschlichen Programmierer

– Benutzergesteuerte Erzeugung von Programmen mit Korrektheitsgarantie

– Strategien verwenden symbolisch-algebraische Techniken

– Infrastruktur benötigt theoretische Grundlagen aus der Deduktion

– Forschung liefert Formalisierung von Programmierwissen und -methoden

– Verfahren liefern praktisch wertvolle Algorithmen

– Noch zu wenig Unterstützung für modulare und verteilte Systeme

Automatisierte Logik und Programmierung II §17 2 Paradigmen & Strategien

Paradigmen der Programmsynthese

Wie kann man an das Syntheseproblem herangehen?

• Unterscheidungsmerkmale

– Repräsentation des Syntheseproblems als interne Aufgabenstellung

– Interne Lösungsmethode: Art der Inferenzen

– Konstruktion des Algorithmus aus interner Lösung

• Beweise als Programme

– Extraktion aus konstruktivem Beweis eines Theorems

• Synthese durch Transformationen

– Äquivalenzumformungen in ausführbare, meist rekursive Form

• Gegenseitige Simulation prinzipiell möglich

Automatisierte Logik und Programmierung II §17 3 Paradigmen & Strategien

Synthese–Strategien

• Konkrete Verfahren zur Programmsynthese

– Steuern Anwendung eines Formalismus (Beweis / Transformation)

– Strukturieren Lösungsweg durch interne Teilziele

– Lösen Teilziele durch heuristisch kontrollierte Suche

– Codieren Wissen über Programme und Programmstrukturen

– Verwenden ggf. Rückfragen an Benutzer

• Methoden nicht gebunden an Paradigma

– Semi-Formale Methoden: Mehr eine Arbeitsvorschrift

– Automatische Beweiser: Logik erster Stufe, Induktionsbeweisen, . . .

– Rewrite-Techniken: Für Transformationen oder Beweisführung
...

Automatisierte Logik und Programmierung II §17 4 Paradigmen & Strategien

Historisch relevante Verfahren

• Informale Methoden
– Polya, Dijkstra, Gries, . . . (Lehrbücher)

• Beweiser mit Skolemisierung und Resolution
– Green, 1969 (Stanford/Kestrel Institute)

– Manna/Waldinger, 1971,75 (SRI International)

Transformations- und Formationsregeln

– Manna/Waldinger, 1972–1980

Beweiskalkül gekoppelt mit Transformationen

– Manna/Waldinger, 1980–

• Fold/Unfold Techniken
– Burstall/Darlington (Edinburgh) 1975–81

• Modifizierte Knuth-Bendix Vervollständigung
– Dershowitz (Illinois) 1985–

• Synthese von Logikprogrammen
– Clark, Hogger (London) 1980 –

Automatisierte Logik und Programmierung II §17 5 Beweise als Programme

Paradigma: Beweise als Programme

• Beweise Erfüllbarkeit einer Spezifikation

– Konstruktiver Beweis zeigt wie Ausgabe aus Eingabe bestimmt wird

– Funktionales Programm implizit im Beweis enthalten

– Korrektheit des Programms kann garantiert werden

– Effizienz des Programms hängt von Art des Beweises ab

• Grundsätzliche Vorgehensweise

– Gegeben sei die Spezifikation

· FUNCTION f(x:D):R WHERE I[x] RETURNS y SUCH THAT O[x, y]

– Erzeuge Spezifikationstheorem: ∀x:D.∃y:R. I[x] ⇒ O[x, y]

– Suche formalen Beweis in konstruktivem logischen Kalkül

– Extrahiere aus Beweis einen Algorithmus zur Berechnung von y aus x

• Forschungsschwerpunkte

– Ausdrucksstarke Kalküle

– Effiziente Beweisstrategien und Beweisplaner (Induktion)

– Effiziente Extraktionsmechanismen (gute Algorithmen ohne Beweisballast)

Automatisierte Logik und Programmierung II §17 6 Beweise als Programme

Formaler Beweis: Integerquadratwurzel

` ∀n:N. ∃r:N. r2 ≤ n < (r+1)2

BY allR

n:N

` ∃r:N. r2 ≤ n < (r+1)2

BY NatInd 1

.....basecase.....
` ∃r:N. r2 ≤ 0 < (r+1)2

√
BY existsR d0e THEN Auto

.....upcase.....
i:N

+, r:N, r2 ≤ i-1 < (r+1)2

` ∃r:N. r2 ≤ i < (r+1)2

BY Decide d(r+1)2≤ ie THEN Auto

.....Case 1.....
i:N

+, r:N, r2 ≤ i-1 < (r+1)2, (r+1)2≤ i
` ∃r:N. r2 ≤ i < (r+1)2

√
BY existsR dr+1e THEN Auto’

.....Case 2.....
i:N

+, r:N, r2 ≤ i-1 < (r+1)2, ¬((r+1)2≤ i)
` ∃r:N. r2 ≤ i < (r+1)2

√
BY existsR dre THEN Auto

Automatisierte Logik und Programmierung II §17 7 Beweise als Programme

Algorithmenkonstruktion aus Beweisen

• Formale Grundlage der Methode

– Ist t ein Beweisterm für ` ∀x:D.∃y:R. I[x] ⇒ O[x, y],

so ist das folgende Program korrekt

FUNCTION f(x:D):R WHERE I[x]

RETURNS y SUCH THAT O[x, y]

≡ fst(t(x))

– Algorithmus entsteht durch Unterdrückung des Korrektheitsbeweisanteils

– Theoretisches Fundament: Curry Howard Isomorphismus

• Konstruktionsmethode

– Extrahiere Beweisterm t aus vollständigem Beweis für

∀x:D.∃y:R. I[x] ⇒ O[x, y]

– Konstruiere den Programmkörper λx. fst(t(x))

– Optimiere durch Reduktion und Elimination überflüssiger Information

Automatisierte Logik und Programmierung II §17 8 Beweise als Programme

Beweisterm: Integerquadratwurzel

• Mit Korrektheitsbeweisinformation

let rec sqrt n

= if n=0 then <0,<Ax,Ax>>

else let <r,%1> = sqrt (n-1)

in if (r+1)2≤n then <r+1,<Ax,Ax>
i
>

else <r,<Ax,Ax>>

• Nach Projektion und Optimierung

let rec sqrt n

= if n=0 then 0

else let r = sqrt (n-1)

in if (r+1)2≤n then r+1

else r

Automatisierte Logik und Programmierung II §17 9 Beweise als Programme

b√nc – Synthese eines effektiveren Algorithmus

let rec sqrt n

= if n=0 then 0

else let r = sqrt (n÷4)

in if (2*r+1)2≤n then 2*r+1

else 2*r

` ∀n:N. ∃r:N. r2 ≤ n < (r+1)2

BY allR

n:N

` ∃r:N. r2 ≤ n < (r+1)2

BY NatInd4 1

.....basecase.....

` ∃r:N. r2 ≤ 0 < (r+1)2

√
BY existsR d0e THEN Auto

.....upcase.....

i:N, r:N, r2 ≤ i÷4 < (r+1)2

` ∃r:N. r2 ≤ i < (r+1)2

BY Decide d((2*r)+1)2 ≤ ie THEN Auto

.....Case 1.....

i:N, r:N, r2 ≤ i÷4 < (r+1)2, ((2*r)+1)2 ≤ i

` ∃r:N. r2 ≤ i < (r+1)2

√
BY existsR d(2*r)+1e THEN Auto’

.....Case 2.....

i:N, r:N, r2 ≤ i÷4 < (r+1)2, ¬(((2*r)+1)2 ≤ i)

` ∃r:N. r2 ≤ i < (r+1)2

√
BY existsR d2*re THEN Auto

Automatisierte Logik und Programmierung II §17 10 Beweise als Programme

Maximale Segmentsumme einer Liste von Zahlen

Gegeben eine Folge a1, a2, . . . , an ∈ Z bestimme die Summe Σq
i=pai eines

Segmentes, die maximal bezüglich aller möglicher Segmentsummen ist

2 3 -6 4 5 -3 8 -2 -1 5 -9 2 3 16

• Direkte Lösung leicht zu finden, aber ineffizient

– Aufsummieren aller Segmente und Vergleich

• Lösungsansatz für eleganteren, effizienten Algorithmus

– Betrachte Eigenschaften von Mn ≡ max{Σq
i=pai | 1≤p≤q≤n}

– Induktive Analyse liefert

· M1 = a
1
, Mn+1 = max (Mn,max{Σn+1

i=p ai | 1≤p≤n})
– Definiere Ln ≡ max{Σn

i=pai | 1≤p≤n}

· L1 = a1, Ln+1 = max (Ln + an+1, an+1)

• Umsetzung in formalen Beweis erforderlich

Automatisierte Logik und Programmierung II §17 11 Beweise als Programme

Maximale Segmentsumme: Objekttheorie

• Formale Begriffe

max(i,j) ≡ if i<j then j else i

ai ≡ a[i]

Σq
i=pai ≡ ind(q-p;ap; i,sum. sum+ap+i+1)

M = maxseg(a) ≡ ∃1≤k≤j≤|a|.M=Σj
i=kai ∧ ∀1≤p≤q≤|a|.M≥Σq

i=pai

L = maxbeg(a) ≡ ∃1≤j≤|a|. L=Σj
i=1

ai ∧ ∀1≤q≤|a|. L≥Σq
i=1

ai

• Mathematische Gesetze

M1: a
1
= maxbeg([a

1
]) = maxbeg(a

1
.[])

M2: a
1
= maxseg([a

1
]) = maxseg(a

1
.[])

M3: L = maxbeg(a) ⇒ max(L+a
1
,a

1
) = maxbeg(a

1
.a)

M4: M = maxseg(a) ∧ L = maxbeg(a
1
.a) ⇒ max(M,L) = maxseg(a

1
.a)

Automatisierte Logik und Programmierung II §17 12 Beweise als Programme

Maximale Segmentsumme: formale Synthese

• Voraussetzung: Folge a ist nicht leer:
– Leichter darzustellen durch “a hat die Form a

1
.a für ein a

1
∈Z”

• Spezifikation der Berechnung von L und M
FUNCTION MAXSEG(a

1
:Z,a:Seq(Z)):Z×Z WHERE true

RETURNS L,M SUCH THAT L=maxbeg(a
1
.a) ∧ M=maxseg(a

1
.a)

• Spezifikationstheorem
∀a:Seq(Z).∀a

1
:Z.∃L:Z.∃M:Z. L=maxbeg(a

1
.a) ∧ M=maxseg(a

1
.a)

• Struktur des Beweisterms
λa.λa

1
. seqind(a; 〈a

1
,a

1
,pfbase〉; x,l,v.λa

1
.let 〈L,〈M,v

2
,v

3
〉〉= v x

in 〈max(L+a
1
,a

1
),max(M,max(L+a

1
,a

1
)),pfind〉)

• Algorithmus nach Optimierung
let rec MAXSEG(a

1
,a) = if a=[] then (a

1
,a

1
)

else let x.l = a

let <L,M>= MAXSEG(x,l)

let new-L =max(L+a
1
,a

1
)

in (new-L,max(M,new-L))

Automatisierte Logik und Programmierung II §17 13 Beweise als Programme

Maximale Segmentsumme: formaler Beweis

` ∀a:Seq(Z).∀a
1
:Z.∃L:Z.∃M:Z. L = maxbeg(a

1
.a) ∧ M = maxseg(a

1
.a)

BY all i THEN seq e 1 THEN all i (Induktion auf a)
|\
| a:Seq(Z), a

1
:Z ` ∃L:Z.∃M:Z. L = maxbeg(a

1
.[]) ∧ M = maxseg(a

1
.[])

| BY ex i a
1
THEN ex i a

1
THEN and i

| |\
| | a:Seq(Z), a

1
:Z ` a

1
= maxbeg(a

1
.[])

| | BY lemma M1
| \
| a:Seq(Z), a

1
:Z ` a

1
= maxseg(a

1
.[])

| BY lemma M2
\
... x:Z, l:Seq(Z), v: ∀a

1
:Z.∃L:Z.∃M:Z. L = maxbeg(a

1
.l) ∧ M = maxseg(a

1
.l)

` ∃L:Z.∃M:Z. L = maxbeg(a
1
.(x.l)) ∧ M = maxseg(a

1
.(x.l))

BY all e 4 x THEN thin 4
\
... v

1
: ∃L:Z.∃M:Z. L = maxbeg(x.l) ∧ M = maxseg(x.l)

` ∃L:Z.∃M:Z. L = maxbeg(a
1
.(x.l)) ∧ M = maxseg(a

1
.(x.l))

BY ex e 5 THEN ex e 6 THEN and e 7
\
... L:Z, M:Z, v

2
: L = maxbeg(x.l), v

3
: M = maxseg(x.l)

` ∃L:Z.∃M:Z. L = maxbeg(a
1
.(x.l)) ∧ M = maxseg(a

1
.(x.l))

BY ex i max(L+a
1
,a

1
) THEN ex i max(M, max(L+a

1
,a

1
)) THEN and i

|\
| ... v

2
: L = maxbeg(x.l), v

3
: M = maxseg(x.l)

| ` max(L+a
1
,a

1
) = maxbeg(a

1
.(x.l))

| BY lemma M3
\
... v

2
: L = maxbeg(x.l), v

3
: M = maxseg(x.l)

` max(M, max(L+a
1
,a

1
)) = maxseg(a

1
.(x.l))

BY ... lemma M3 ... lemma M4

Automatisierte Logik und Programmierung II §17 14 Beweise als Programme

Strategien: OYSTER/CLAM Beweisplaner

• Planer simuliert Kalkül — Beweiser führt Plan aus

– Verzögerung von Entscheidungen durch Skolemvariablen und Unifikation

• Induktionsbeweise

– Induktionsschema ⇐ Analyse der Rekursionsstruktur + globales Schema

– Rippling: Verschiebe Unterschiede zwischen Induktionshypothese

und -schluß bis Funktion der Hypothese entsteht

Literatur:
– A. Bundy, A. Smaill, G. Wiggins. The synthesis of logic programs from inductive proofs.

Computer Logic Proceedings, Springer Verlag, 1990.

– A. Bundy, F. van Harmelen, J. Hesketh, A. Smaill. Experiments with proof plans for

induction. JAR 7:303–324, 1991.

– A. Bundy. The use of explicit plans to guide inductive proofs. CADE-9, Springer LNCS 310,

111–120, 1988.

– A. Bundy. Automatic guidance of program synthesis proofs. Workshop on Automating

Software Design, IJCAI-89, 57–59, 1989.

– A. Bundy, F. van Harmelen, A. Smaill, A. Ireland. Extensions to the rippling-out tactic for

guiding inductive proofs. CADE-10, Springer LNCS 449, 132–146, 1990.

Automatisierte Logik und Programmierung II §17 15 Beweise als Programme

Beweise als Programme: Eigenschaften

• Korrektheit des Programms ist garantiert

• Verschiedene Kalküle sind theoretisch äquivalent

– Große praktische Unterschiede

– Sequenzenkalküle für Mensch und Maschine geeignet

• Verschiedene Extraktionsverfahren

– Beeinflussen Effizienz erzeugter Programme

• Beweisschritte zu atomar (Assemblerniveau)

– Beweise für komplexe Programme interaktiv kaum durchführbar

– Automatisierung schwierig:

· Analyse der Formel, Unifikation, Suche nach geeigneten Induktionen

– Nur praktikabel in Kombination mit Definitionen und Spezialtaktiken

Automatisierte Logik und Programmierung II §17 16 Synthese durch Transformationen

Paradigma: Synthese durch Transformation

• Transformiere in effektiv ausführbare Formel
– Spezifikation ist ineffektive Formel

– Transformationen verbessern algorithmisches Verhalten der Formel

– Vorwärtsschließen ohne konkret vorgegebenes Ziel

• Grundsätzliche Vorgehensweise
– Gegeben sei die Spezifikation
· FUNCTION f(x:D):R WHERE I[x] RETURNS y SUCH THAT O[x, y]

– Definiere neues Prädikat P über D×R durch:

· ∀x:D.∀y:R. I[x] ⇒ (P (x,y) ⇔ O[x, y])

– Transformiere in äquivalente Formel der Gestalt:

· ∀x:D.∀y:R. I[x] ⇒ (P (x,y) ⇔ Of [x, y, P])
Of [x, y, P] darf nur aus erfüllbaren Prädikaten bestehen

– Extrahiere Programm aus Formel oder interpretiere als Logik-Programm

• Forschungsschwerpunkte
– Leistungsfähige Transformationsregeln

– Effiziente Rewrite Techniken und Heuristiken für Vorwärtsinferenz

Automatisierte Logik und Programmierung II §17 17 Synthese durch Transformationen

Programmtransformation

• Historisch: Optimierung von Programmen

– Erzeuge abstraktes, verifiziertes Prototyp-Programm

– Transformiere in äquivalentes effizienteres Programm

• Synthese: Optimierung nichtausführbarer Programme

– Spezifikation ≡ nichtausführbares Programm

– Transformiere in äquivalente, ausführbare Formel

Individuelle Formalismen variieren sehr stark

Literatur:
– R. M. Burstall, J. Darlington: A Transformation System for Developing Recursive

Programs, JACM 24:44-67, 1977.

– C. J. Hogger: Derivation of Logic Programs, JACM 28:372–392, 1981.

– Z. Manna, R. Waldinger: Synthesis: Dreams ⇒ Programs, IEEE.SE SE-5 (4):294–328, 1979.

Automatisierte Logik und Programmierung II §17 18 Synthese durch Transformationen

Transformationen, präzisiert

• Anwendung bedingter Ersetzungsregeln der Form

∀z:T. B[z] ⇒ (Q[z] ⇔ Q′[z])

(Ersetze Vorkommen von Q[z] durch Q′[z], falls Bedingung B[z] erfüllt)

– Regeln sind Äquivalenzen oder Verfeinerungen (Implikationen)

• Regeln ergeben sich aus

– Lemmata der Wissensbasis

– Dynamisch erzeugte Definitionen

– Elementare Tautologien und Abstraktionen

– Dynamisch erzeugte Kombinationen

• Mechanismus basiert auf Vorwärtsinferenz

– Ziel ist bestimmte Struktur der Formel zu erreichen

– Starke heuristische Steuerung notwendig

Automatisierte Logik und Programmierung II §17 19 Synthese durch Transformationen

Maximale Segmentsumme im Transformationsansatz

Bestimme max{Σq
i=pai | 1≤p≤q≤n} für Zahlen a1, . . . , an ∈Z

1. Spezifikation der Berechnung von max{Σq
i=pai | 1≤p≤q≤n}

FUNCTION MAXSEG(a:Seq(Z)):Z WHERE a6=[]
RETURNS m SUCH THAT m = maxseg(a)

2. Definiere neues Prädikat MAXSEG

∀a:Seq(Z).∀m:Z. a6=[] ⇒ (MAXSEG(a,m) ⇔ m = maxseg(a))

3. Generalisiere: Einführung eines Prädikats MAX AUX:
∀a:Seq(Z).∀m:Z. a6=[] ⇒ (MAXSEG(a,m) ⇔ ∃l:Z. MAX AUX(a,m,l))

∀a:Seq(Z).∀m:Z. a6=[] ⇒ (MAX AUX(a,m,l) ⇔ m = maxseg(a) ∧ l = maxbeg(a))

4. Transformation durch Anwendung von Lemmata
∀a:Seq(Z).∀m:Z. a6=[] ⇒ (MAXSEG(a,m) ⇔ ∃l:Z. MAX AUX(a,m,l))

∀a:Seq(Z).∀m:Z. a6=[] ⇒ MAX AUX(a,m,l)

⇔ |a|=1 ∧ m=a
1

∧ l=a
1

∨ |a|>1 ∧ ∃m’,l’:Z. l’ = maxbeg(tl(a)) ∧ l=max(a
1
,l’+a

1
)

∧ m’ = maxseg(tl(a)) ∧ m=max(l,m’)

Automatisierte Logik und Programmierung II §17 20 Synthese durch Transformationen

Maximale Segmentsumme: Transformationssynthese (2)

∀a:Seq(Z).∀m:Z. a6=[] ⇒ (MAXSEG(a,m) ⇔ ∃l:Z. MAX AUX(a,m,l))

∀a:Seq(Z).∀m:Z. a6=[] ⇒ MAX AUX(a,m,l)

⇔ |a|=1 ∧ m=a
1

∧ l=a
1

∨ |a|>1 ∧ ∃m’,l’:Z. l’ = maxbeg(tl(a)) ∧ l=max(a
1
,l’+a

1
)

∧ m’ = maxseg(tl(a)) ∧ m=max(l,m’)

5. Einsetzen der Definition von MAX AUX:
∀a:Seq(Z).∀m:Z. a6=[] ⇒ (MAXSEG(a,m) ⇔ ∃l:Z. MAX AUX(a,m,l))

∀a:Seq(Z).∀m:Z. a6=[] ⇒ MAX AUX(a,m,l)

⇔ |a|=1 ∧ m=a
1

∧ l=a
1

∨ tl(a) 6=[] ∧ ∃m’,l’:Z. MAX AUX(tl(a),m’,l’)

∧ l=max(a
1
,l’+a

1
) ∧ m=max(l,m’)

6a. Umwandlung in Logik-Programm
MAXSEG(a,m) :- MAX AUX(a,l,m).

MAX AUX([x],x,x).

MAX AUX(x.a’,l,m):- MAX AUX(a’,m’,l’), max(x,l’+a,l), max(l,m’,m).

6b. Umwandlung in Funktionales Programm
let MAXSEG(a) =

let rec MAX AUX(a) = if |a|=1 then (a
1
,a

1
)

else let (m’,l’) = MAX AUX(tl(a)) in

let l=max(a
1
,l’+a

1
) in (max(l,m’), l)

in snd(MAX AUX(a))

Automatisierte Logik und Programmierung II §17 21 Synthese durch Transformationen

Transformationen: Programmerzeugung

• Anwendung von Programmformierungsregeln
– Sprachspezifische Umwandlung einer Formelmenge in Programm

• Erzeugung von Logikprogrammen
– Deklaratives Auslesen der Formeln mit impliziten Quantoren

– Allquantoren und Eingabebedingung entfallen

– Existenzquantoren rechts entfallen (freie Variablen werden instantiiert)

– Disjunktionen rechts ergeben zwei Klauseln (nach Normalisierung)

– Funktionsaufrufe y=g(x) werden zu Prädikaten G(x,y)

– Destruktoren (hd(a), tl(a)) werden zu Konstruktoren x.a im Kopf

– Gleichheiten (m=a
1
) werden direkt im Kopf eingesetzt

• Erzeugung funktionaler Programme
– Disjunktion werden zu Fallunterscheidungen

– Konjunktionen werden zu zusätzlichen Eingabebedingungen

– Existenzquantoren werden zu Generalisierung + kaskadischer Aufruf

– Rekursionen erfordern Terminierungsbeweis

Automatisierte Logik und Programmierung II §17 22 Synthese durch Transformationen

Rechtfertigung von Programmformierungsregeln

• Disjunktion 7−→ Fallunterscheidung
Sind (D,R,I,O,body) und (D,R,I’,O’,body’) korrekt, dann auch

FUNCTION f(x:D):R WHERE I(x) ∨I’(x) RETURNS y SUCH THAT O(x,y) ∨O’(x,y)

≡ if I(x) then body(x) else body’(x)

• Existenzquantor 7−→ Generalisierung
Sind (D,R,I,O,body) und (R,R’,J,O’,body’) korrekt, dann auch

FUNCTION f(x:D):R’ WHERE I(x) ∧J(body(x))

RETURNS z SUCH THAT ∃y:R. O(x,y) ∧O’(y,z)

≡ body’(body(x))

• Rekursive Formel 7−→ Rekursion
fd:D6→D wohlfundierte ‘Reduktionsfunktion’ und

1. ∀x:D. I(x) ⇒ I(fd(x))

2. ∀x:D.∀y:R. I(x) ⇒ O(x,y) ⇔ ∃yr:R. O(fd(x),yr) ∧ OC(x,fd(x),yr,y)

3. FUNCTION fC(x,xr,yr:D×D×R):R WHERE I(x) RETURNS y SUCH THAT OC(x,xr,yr,y)

≡ body(x,xr,yr) ist korrekt

dann ist das folgende rekursive Programm korrekt

FUNCTION f(x:D):R WHERE I(x) RETURNS y SUCH THAT O(x,y)

≡ body(x, fd(x), f(fd(x)))

Automatisierte Logik und Programmierung II §17 23 Synthese durch Transformationen

Strategien: LOPS – LOgische ProgrammSynthese

• KI-Orientierter Ansatz:
– Syntaktische Transformationen logischer Formeln kontrolliert durch

semantische Informationen

• Kombination einer kleinen Menge von Teilstrategien
– GUESS/DOMAIN: Raten einer Teillösung

– GET-REC: Rekursionseinführung

– Vereinfachung

– Erzeugung von Unterproblemen

– Test auf Auswertbarkeit von Teilformeln
...

• Algorithmenkonstruktion:
– Umformung rekursiver Formeln in logische/funktionale Programme

Literatur:
– Wolfgang Bibel: Syntax–directed, Semantics–supported Program Synthesis

AI Journal 14:243–261, 1980

Ansatz hat sich nicht bewährt, da außer in Spezialfällen nicht formalisierbar

Automatisierte Logik und Programmierung II §17 24 Synthese durch Transformationen

Synthese im Kleinen – Rückblick

• Pradigmen sind i.w. gleichwertig

– Transformationen sind durch Beweise mit Gleichheitslemmata simulierbar

– Beweisregeln können als Rewrite-Regeln beschrieben werden

• Unterschiede liegen in Methodik

– Proofs-as-Programs: Analytischer Beweis eines Spezifikationstheorems

· Korrektheitsgarantien stehen im Vordergrund

– Transformationen: Vorwärtsinferenzen mit meist unverifiziertem Wissen

· Effizienz steht im Vordergrund

• Inferenzniveau zu niedrig

– Elementare Beweisregeln oder Transformationen

– Ignoriert bekanntes Programmierwissen

– Nicht skalierend: Suchraum explodiert bei nichttrivialen Problemen

⇓

Wissenbasierter Ansatz erforderlich

