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WISSENSVERARBEITUNG IN DER PROGRAMMSYNTHESE I

Zielgerichtete Entwicklung guter Algorithmen

e Synthese im Kleinen ist zu allgemein
— Fokus auf Logik statt auf Programmierung
— Steuerung durch “normale” Programmier kaum moglich

— Keine echte Unterstiitzung bei der Entwicklung von Programmen
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e Programmiermethodik verwendet Wissen
— Welche grundsatzlichen Algorithmenstrukturen gibt es?

— Welche Algorithmenstrukturen sind fir ein Problem geeignet?
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e Synthese sollte Programmierwissen verarbeiten
— Umsetzung von Programmiermethodik in Entwurfsstrategien
— Schematisierung von Algorithmenstrukturen

— Axiome fiir Korrektheit des schematischen Algorithmus

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 1 Wissensbasierte Programmentwicklung




WISSENSVERARBEITUNG IN DER PROGRAMMSYNTHESE I

Zielgerichtete Entwicklung guter Algorithmen

e Synthese im Kleinen ist zu allgemein
— Fokus auf Logik statt auf Programmierung
— Steuerung durch “normale” Programmier kaum moglich

— Keine echte Unterstiitzung bei der Entwicklung von Programmen

e Programmiermethodik verwendet Wissen
— Welche grundsatzlichen Algorithmenstrukturen gibt es?

— Welche Algorithmenstrukturen sind fir ein Problem geeignet?

e Synthese sollte Programmierwissen verarbeiten
— Umsetzung von Programmiermethodik in Entwurfsstrategien
— Schematisierung von Algorithmenstrukturen
— Axiome fiir Korrektheit des schematischen Algorithmus

Aufwendiges theoretisches Fundament entlastet Syntheseprozef}
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WISSENSBASIERTE PROGRAMMENTWICKLUNG: (GRUNDIDEE I

e Erzeuge Algorithmen in einem Schritt
— Anpassung eines schematischen Algorithmus an eine Problemstellung

— Historisch: High-Level Transformation
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e Erzeuge Algorithmen in einem Schritt
— Anpassung eines schematischen Algorithmus an eine Problemstellung

— Historisch: High-Level Transformation

e Grundsatzliche Vorgehensweise

— Gegeben sei die Spezifikation
. FUNCTION f(x:D):R WHERE I[x] RETURNS y SUCH THAT Olz,y]

— Wahle algorithmische Grundstruktur
— Verfeinere Basisschema der Struktur durch Bestimmung von Parametern
— Priife, ob Parameter die Korrektheitsaxiome des Schemas erfiillen

— Instantiiere schematischen Algorithmus

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 2 Wissensbasierte Programmentwicklung
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e Erzeuge Algorithmen in einem Schritt
— Anpassung eines schematischen Algorithmus an eine Problemstellung

— Historisch: High-Level Transformation

e Grundsatzliche Vorgehensweise

— Gegeben sei die Spezifikation
. FUNCTION f(x:D):R WHERE I[x] RETURNS y SUCH THAT Olz,y]

— Wahle algorithmische Grundstruktur
— Verfeinere Basisschema der Struktur durch Bestimmung von Parametern
— Priife, ob Parameter die Korrektheitsaxiome des Schemas erfiillen

— Instantiiere schematischen Algorithmus

e Forschungsschwerpunkte
— Analyse der allgemeinen Struktur einer Klasse von Algorithmen
— Schematisierung durch Komponenten und Korrektheitsaxiome

— Techniken zur Verfeinerung von Standardstrukturen
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D1VvIDE & CONQUER SYNTHESE EINES SORTIERALGORITHMUS I

e Problemspezifikation
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S
SUCH THAT rearranges(L,S) A ordered(S)
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D1VvIDE & CONQUER SYNTHESE EINES SORTIERALGORITHMUS I

e Problemspezifikation
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S
SUCH THAT rearranges(L,S) A ordered(S)

e Grundstruktur von Divide & Conquer Algorithmen
FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Olz,y]
= if primitive[z] then Directly-solvelx| else (Compose © gxf o Decompose) (x)
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D1VvIDE & CONQUER SYNTHESE EINES SORTIERALGORITHMUS I

e Problemspezifikation
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S
SUCH THAT rearranges(L,S) A ordered(S)

e Grundstruktur von Divide & Conquer Algorithmen
FUNCTION f(z:D):R WHERE [[x] RETURNS y SUCH THAT Oz, ]

= if primitive[z] then Directly-solvelx| else (Compose © gxf o Decompose) (x)

e Komponenten fir einen Sortieralgorithmus
primative AL. null? (L)

Directly-solve = AL. []

Decompose = AL.let a=L[|L|/2] in (L«g, L=a, L>g) (L<q = [xlxeLax<a])
g = sort X AS.S

Compose = MAS,,S,,S,. SPS.S,

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 3 Wissensbasierte Programmentwicklung



D1VvIDE & CONQUER SYNTHESE EINES SORTIERALGORITHMUS I

e Problemspezifikation
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S
SUCH THAT rearranges(L,S) A ordered(S)

e Grundstruktur von Divide & Conquer Algorithmen
FUNCTION f(z:D):R WHERE [[x] RETURNS y SUCH THAT Oz, ]

= if primitive[z] then Directly-solvelx| else (Compose © gxf o Decompose) (x)

e Komponenten fir einen Sortieralgorithmus

primitive = AL.null?(L)

Directly-solve = AL. []

Decompose = AL.let a=L[|L|/2] in (L<g,L=3,L>z) (l<q= [xlxeclrx<a])
g = sort X AS.S

Compose = MAS,,S,,S,. SPS.S,

e Instantiierter Algorithmus
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S
SUCH THAT rearranges(L,S) A ordered(S)
= if null?(L) then [] else let a = L[I|L|/2]

in let L, = [x|xeLax<a]
and L, = [x|xelax=a]
and L, = [x|xelLax>al

in sort(Ll) oL, o sort(L3)
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ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

Spezifikation Programm

e Programmentwicklung auf zwei Ebenen
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ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

Tspec Tprog

Spezifikation Programm

e Programmentwicklung auf zwei Ebenen
— Allgemeine algorithmische Theorien
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ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

Tspec Tprog

| |

| !

| |

| !

| |
Tspec Tprog

Spezifikation Programm

e Programmentwicklung auf zwei Ebenen
— Allgemeine algorithmische Theorien
— Konkrete Probleme als Instanzen der allgemeinen Theorien
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ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

Tspec Tprog
| |
| !
| |
| !
| |

Tspec Tpmg

SYNTHESE
Spezifikation - - = = = = = = = = = = = = — Programm

e Programmentwicklung auf zwei Ebenen
— Allgemeine algorithmische Theorien
— Konkrete Probleme als Instanzen der allgemeinen Theorien

e Problemtheorie erweitert zu Programmtheorie
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ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

Theorie-Erweiterung: I
Komponenten+Axiome :
| Modell
I
Tspec | Trrog
I A I
| 7 |
I —~ I
I —  FErweiterung: I
I ~ I
L Komponentensuche I
Tspec Tpmg
. . SYNTHESE
Spezifikation - - = = = = = = = = = = = = — Programm

e Programmentwicklung auf zwei Ebenen
— Allgemeine algorithmische Theorien
— Konkrete Probleme als Instanzen der allgemeinen Theorien

e Problemtheorie erweitert zu Programmtheorie
— Algorithmentheorie A: erganze Komponenten und Axiome eines Schemas

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 5 Wissensbasierte Programmentwicklung



ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

A Kanonische Theorie-Erweiterung: BODY + Korrektheitsaxiom P

Theorie-Erweiterung: I I
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|
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. . SYNTHESE
Spezifikation - - = = = = = = = = = = = = — Programm

e Programmentwicklung auf zwei Ebenen
— Allgemeine algorithmische Theorien
— Konkrete Probleme als Instanzen der allgemeinen Theorien

e Problemtheorie erweitert zu Programmtheorie
— Algorithmentheorie A: erganze Komponenten und Axiome eines Schemas
— Programmtheorie P: kanonische Erweiterung um Programmkorper
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ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

A Kanonische Theorie-Erweiterung: BODY + Korrektheitsaxiom P

Theorie-Erweiterung: I I
I I
I I
| Modell I
I
I

Komponenten+Axiome

I

Tspec | TprOG
| A FHrweterung mit BODY(A) - 7 _ P
I el I ~
I ~ I ~
I —  FErweiterung: I " Programmkonstruktion:
:/ ~ Komponentensuche L// Extraktion

T T relevanter Komponenten
spec prog
) ) SYNTHESE

Spezifikation - - = = = = = = = = = = = = — Programm

e Programmentwicklung auf zwei Ebenen
— Allgemeine algorithmische Theorien
— Konkrete Probleme als Instanzen der allgemeinen Theorien

e Problemtheorie erweitert zu Programmtheorie
— Algorithmentheorie A: erganze Komponenten und Axiome eines Schemas
— Programmtheorie P: kanonische Erweiterung um Programmkorper
— Synthese: Programme werden aus Programmtheorie extrahiert
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TECHNISCHE (GRUNDBEGRIFFE: ALGEBRAISCHE THEORIEN I

e Formale Theorie: Tripel 7 = (S, 2, Ax)

— 5: Menge von Sortennamen (Namen fiir Datentypen)
— (): Familie von Operationsnamen (zusammen mit Typisierung)

— Ax: Menge von Axiomen fiir Datentypen und Operationen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 6 Wissensbasierte Programmentwicklung




TECHNISCHE (GRUNDBEGRIFFE: ALGEBRAISCHE THEORIEN I

e Formale Theorie: Tripel 7 = (S, 2, Ax)

— 5: Menge von Sortennamen (Namen fiir Datentypen)
— (): Familie von Operationsnamen (zusammen mit Typisierung)

— Ax: Menge von Axiomen fiir Datentypen und Operationen

e Theorie 7, erweitert 7,

— Alle Sortennamen, Operationsnamen, Axiome von 7 5 existieren in 7 4
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e Formale Theorie: Tripel 7 = (S, 2, Ax)

— 5: Menge von Sortennamen (Namen fiir Datentypen)
— (): Familie von Operationsnamen (zusammen mit Typisierung)

— Ax: Menge von Axiomen fiir Datentypen und Operationen

e Theorie 7, erweitert 7,

— Alle Sortennamen, Operationsnamen, Axiome von 7 5 existieren in 7 4

o I' Struktur fur 7
— T"ist Menge von Datentypen und Operationen, typisiert gemaf €2

T Modell fur 7
— T ist Struktur fur 7, die alle Axiome aus 7 erfullt
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TECHNISCHE (GRUNDBEGRIFFE: ALGEBRAISCHE THEORIEN I

e Formale Theorie: Tripel 7 = (S, (2, Ax)

— 5: Menge von Sortennamen (Namen fiir Datentypen)
— (): Familie von Operationsnamen (zusammen mit Typisierung)

— Ax: Menge von Axiomen fiir Datentypen und Operationen

e Theorie 7, erweitert 7,

— Alle Sortennamen, Operationsnamen, Axiome von 7 5 existieren in 7 4

o I' Struktur fur 7
— T"ist Menge von Datentypen und Operationen, typisiert gemaf €2

T Modell fur 7
— T ist Struktur fur 7, die alle Axiome aus 7 erfillt

e Struktur 77 erweitert 75

— Alle Datentypen und Operationen von 15 existieren auch in T}
(gleiche Typisierung beztiglich 7))
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ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

® Tspgec: algebraische Theorie der Spezifikationen
“({D,R}, {I:D—B, O:DxR—B}, )
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ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

® Tspgec: algebraische Theorie der Spezifikationen
“({D,R}, {I:D—B, O:DxR—B}, )

P Problemtheorie:

— P erweitert Tgpgc (P enthélt eine Programmspezifikation)
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ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

® Tspgec: algebraische Theorie der Spezifikationen
“({D,R}, {I:D—B, O:DxR—B}, )

P Problemtheorie:

— P erweitert Tgpgc (P enthélt eine Programmspezifikation)

e Jprog: algebraische Theorie der Programme
- ({D,R}, {I:D—B, O:DxR—B, body: DAR }, {Ve:D.I(x)= O(z,body(z))})
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® Tspgec: algebraische Theorie der Spezifikationen
“({D,R}, {I:D—B, O:DxR—B}, )

P Problemtheorie:

— P erweitert Tgpgc (P enthélt eine Programmspezifikation)

e Jprog: algebraische Theorie der Programme
- ({D,R}, {I:D—B, O:DxR—B, body: DAR }, {Ve:D.I(x)= O(z,body(z))})

P Programmtheorie:
— P erweitert Tprog (P enthélt ein Programm)
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ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

® Tspgec: algebraische Theorie der Spezifikationen
“({D,R}, {I:D—B, O:DxR—B}, )

P Problemtheorie:

— P erweitert Tgpgc (P enthélt eine Programmspezifikation)

e Jprog: algebraische Theorie der Programme
- ({D,R}, {I:D—B, O:DxR—B, body: DAR }, {Ve:D.I(x)= O(z,body(z))})

P Programmtheorie:
— P erweitert Tprog (P enthélt ein Programm)

e A Algorithmentheorie:

— A ist Problemtheorie mit kanonischer Erweiterung zu Programmtheorie

— Es gibt abstraktes Programmschema BODY mit der Eigenschaft
(speca, BODY(A)) ist korrekt fir jedes Modell A von A

(Fiir jedes Modell A existiert eine Standardlosung der Spezifikation speca)
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ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

® Tspgec: algebraische Theorie der Spezifikationen
“({D,R}, {I:D—B, O:DxR—B}, )

P Problemtheorie:

— P erweitert Tgpgc (P enthélt eine Programmspezifikation)

e Jprog: algebraische Theorie der Programme
- ({D,R}, {I:D—B, O:DxR—B, body: DAR }, {Ve:D.I(x)= O(z,body(z))})

P Programmtheorie:
— P erweitert Tprog (P enthélt ein Programm)

e A Algorithmentheorie:
— A ist Problemtheorie mit kanonischer Erweiterung zu Programmtheorie

— Es gibt abstraktes Programmschema BODY mit der Eigenschaft
(speca, BODY(A)) ist korrekt fir jedes Modell A von A

(Fiir jedes Modell A existiert eine Standardlosung der Spezifikation speca)

U

Synthese = Erweitere Programmtheorien zu Algorithmentheorien
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D1vIDE & CONQUER SCHEMA ALS ALGORITHMENTHEORIE I

Spee  {D,R,D’ R’}
OQpee @ {I:D—B, O:DXxR—B, Op:DxD’xD—B, I':D'—=B, O: D'XR — B,
Oc: RXRXR—B, = DxD —B, Decompose: D — D'xD, g-D'—R’,
Compose: R’ X R— R, Directly-solve:D— R, primitive:D—B
}
Axpgc  {FUNCTION f,(x:D):R WHERE I[z|Aprimitivelx] RETURNS y SUCH THAT O|x, ]
= Directly-solve|x] ist korrekt

>~ ist wohlfundierte Ordnung auf D

}
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D1vIDE & CONQUER SCHEMA ALS ALGORITHMENTHEORIE I

Spee  {D,R,D’ R’}
OQpee @ {I:D—B, O:DXxR—B, Op:DxD’xD—B, I':D'—=B, O: D'XR — B,
Oc: RXRXR—B, = DxD —B, Decompose: D — D'xD, g-D'—R’,
Compose: R’ X R— R, Directly-solve:D— R, primitive:D—B
}
Axpgc  {FUNCTION f,(x:D):R WHERE I[z|Aprimitivelx] RETURNS y SUCH THAT O|x, ]
= Directly-solve|x] ist korrekt

>~ ist wohlfundierte Ordnung auf D

}

Fir A= ({D,R D R}, {I,0,0p,1' 0" O¢,+,
Decompose, g, Compose, Directly-solve, primitive })
ist BODY(A) =
FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Oz, y]
= if primitive|x| then Directly-solve|x]
else (Compose © gxf o Decompose) (x)
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D1vIDE & CONQUER SCHEMA ALS ALGORITHMENTHEORIE I

Spee  {D,R,D’ R’}
OQpee @ {I:D—B, O:DXxR—B, Op:DxD’xD—B, I':D'—=B, O: D'XR — B,
Oc: RXRXR—B, = DxD —B, Decompose: D — D'xD, g-D'—R’,
Compose: R’ X R— R, Directly-solve:D— R, primitive:D—B
}
Axpgc  {FUNCTION f,(x:D):R WHERE I[z|Aprimitivelx] RETURNS y SUCH THAT O|x, ]
= Directly-solve|x] ist korrekt

>~ ist wohlfundierte Ordnung auf D

}

Fir A= ({D,R D R}, {I,0,0p,1' 0" O¢,+,
Decompose, g, Compose, Directly-solve, primitive })
ist BODY(A) =
FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Oz, y]
= if primitive|x| then Directly-solve|x]
else (Compose © gxf o Decompose) (x)

BODY/(A) ist korrekt, wenn A alle Axiome in Axpgc erfiillt
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SYNTHESE MIT ALGORITHMENSCHEMATA PRAZISIERT I

spec = (D, R,1,0) ist erfiillbar, wenn es eine Algorithmentheorie .4 und ein
Modell A fiir A gibt, welches die Struktur Tspec = ({ D, R}, {1,0}) erweitert
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SYNTHESE MIT ALGORITHMENSCHEMATA PRAZISIERT I

spec = (D, R,1,0) ist erfiillbar, wenn es eine Algorithmentheorie .4 und ein
Modell A fiir A gibt, welches die Struktur Tspec = ({ D, R}, {1,0}) erweitert

Tspec Tprog
| |
| |
| |
: :
Tspec Tpmg
Spezifikation - - - - =S£NEHESE - = = = = — Programm
Methode:
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SYNTHESE MIT ALGORITHMENSCHEMATA PRAZISIERT I

spec = (D, R,1,0) ist erfiillbar, wenn es eine Algorithmentheorie .4 und ein
Modell A fiir A gibt, welches die Struktur Tspec = ({ D, R}, {1,0}) erweitert

A
Theorie-Erweiterung;:
Komponenten+Axiome
Tspec Trrog
| |
| |
| |
| |
| |
| |
Tspec Tpmg
. . SYNTHESE
Spezifikation - - - - - - - = - - - - - -= — Programm

Methode:
— Wahle Algorithmentheorie A,
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SYNTHESE MIT ALGORITHMENSCHEMATA PRAZISIERT I

spec = (D, R,1,0) ist erfiillbar, wenn es eine Algorithmentheorie .4 und ein
Modell A fiir A gibt, welches die Struktur Tspec = ({ D, R}, {1,0}) erweitert

A
Theorie-Erweiterung;: I
Komponenten+Axiome :
| Modell
I
Tspec | Tprog
| A |
| 7 |
| ~ |
I —  FErweiterung: |
L Komponentensuche '
T T,
spec Prog
. . SYNTHESE
Spezifikation - - - - - - - = - - - - - -= — Programm
Methode:

— Wahle Algorithmentheorie A,
— Erweitere Tspec zu Modell A von A
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SYNTHESE MIT ALGORITHMENSCHEMATA PRAZISIERT I

spec = (D, R,1,0) ist erfiillbar, wenn es eine Algorithmentheorie .4 und ein
Modell A fiir A gibt, welches die Struktur Tspec = ({ D, R}, {1,0}) erweitert

A Kanonische Theorie-Erweiterung: BODY + Korrektheitsaxiom P

Theorie-Erweiterung;: I I

Komponenten+Axiome : :
| Modell |
| |
I

7. T, |
oTee A_ _Eroitering mit BoDY(A) “PEO9 p
| el |
| ~ |
I —  FErweiterung: |
L Komponentensuche |
L |
Tspec Tpmg
. . SYNTHESE
Spezifikation - - - - - - - = - - - - - -= — Programm
Methode:

— Wahle Algorithmentheorie A,
— Erweitere Tspec zu Modell A von A
— Instantiiere BODY(A)
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SYNTHESE MIT ALGORITHMENSCHEMATA PRAZISIERT I

spec = (D, R,1,0) ist erfiillbar, wenn es eine Algorithmentheorie .4 und ein
Modell A fiir A gibt, welches die Struktur Tspec = ({ D, R}, {1,0}) erweitert

Kanonische Theorie-Erweiterung: BODY + Korrektheitsaxiom P

Theorie-Erweiterung;: I I
Komponenten+Axiome :

| Modell

I

I

7. 75
T A_ _Prociterung mit BODY(4)  “TFO9 p
I el | —~
I — | —
I —  FErweiterung: I —~ Programmkonstruktion:
:/ - Komponentensuche L// Extraktion
T T relevanter Komponenten
spec prog
. . SYNTHESE
Spezifikation - - - - - - - = - - - - - -= — Programm
Methode:

— Wahle Algorithmentheorie A,
— Erweitere Tspec zu Modell A von A

— Instantiiere BODY(A) und extrahiere Programmkomponenten
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ALGORITHMENSCHEMA: OPERATOR MATCH I

Problemreduktion auf bekannte Algorithmentheorie

e spec reduzierbar auf spec’ (spec<spec’)
Ve:D. Iz = 32D . (U'lx] ~ Vy:R’.0O'2,y] = Jy:R. Olz,y])
— Eingabebedingung von spec (nach Transformation) stéirker als spec’

— Ausgabebedingung von spec schwacher
— Nichtrekursive A-Reduktion eines Problems
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ALGORITHMENSCHEMA: OPERATOR MATCH I

Problemreduktion auf bekannte Algorithmentheorie

e spec reduzierbar auf spec’ (spec<spec’)
Ve:D. Ix] = 32":D°. (I'lx] A Yy :R.O'2,y] = Fy:R. Olz,y])
— Eingabebedingung von spec (nach Transformation) starker als spec’

— Ausgabebedingung von spec schwacher
— Nichtrekursive A-Reduktion eines Problems

e Reduzierbarkeit liefert Problemtransformation
- spec= (D, R, 1,0) ist erfiillbar, wenn es eine Algorithmen-
theorie A und ein Modell A fur A gibt, mit spec<specy
— Beweis spec<specy liefert Substitutionen 6:D—D 4 und 0:D X Rp— R
— body(x) = o(x,bodya(0(x))) ist korrekter Algorithmus fiir spec

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 10 Wissensbasierte Programmentwicklung




ALGORITHMENSCHEMA: OPERATOR MATCH I

Problemreduktion auf bekannte Algorithmentheorie

e spec reduzierbar auf spec’ (spec<spec’)
Ve:D. Ix] = 32":D°. (I'lx] A Yy :R.O'2,y] = Fy:R. Olz,y])
— Eingabebedingung von spec (nach Transformation) starker als spec’

— Ausgabebedingung von spec schwacher
— Nichtrekursive A-Reduktion eines Problems

e Reduzierbarkeit liefert Problemtransformation
—spec= (D, R, I,0) ist erfiillbar, wenn es eine Algorithmen-
theorie A und ein Modell A fur A gibt, mit spec<specy
— Beweis spec<specy liefert Substitutionen 6:D—D 4 und 0:D X Rp— R
— body(x) = o(x,bodya(0(x))) ist korrekter Algorithmus fiir spec

e Syntheseverfahren
— Wahle Algorithmentheorie A und ein Modell A von A
— Beweise spec<specy und extrahiere Substitutionen o und 6

— Spezialisiere bodys zu Ax. o (x,body4(0(z)))
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SYNTHESE MIT ALGORITHMENSCHEMATA VERFEINERT I

Integriere Operator Match in allgemeines Verfahren
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SYNTHESE MIT ALGORITHMENSCHEMATA VERFEINERT I

Integriere Operator Match in allgemeines Verfahren

body 4
Dyl R 4,04

0 specspecy o

DI~~~ =~~~ R.O
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SYNTHESE MIT ALGORITHMENSCHEMATA VERFEINERT I

Integriere Operator Match in allgemeines Verfahren

body 4
Dyl R 4,04

0 specspecy o

DI———————————— RO

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Doméanen
— Axiome von A sind fiir diese Modelle ein fiir alle Mal bewiesen
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SYNTHESE MIT ALGORITHMENSCHEMATA VERFEINERT I

Integriere Operator Match in allgemeines Verfahren

body 4
Dyl R 4,04

0 specspecy o

DI———————————— RO

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Doméanen
— Axiome von A sind fiir diese Modelle ein fiir alle Mal bewiesen

e Reduziere Spezifikation auf ein Modell A

— Auswahl passend zur Grunddomane von spec (Liste, Menge, Béume, . ..)
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SYNTHESE MIT ALGORITHMENSCHEMATA VERFEINERT I

Integriere Operator Match in allgemeines Verfahren

body 4
Dyl R 4,04

0 specspecy o

DI———————————— RO

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Doméanen
— Axiome von A sind fiir diese Modelle ein fiir alle Mal bewiesen

e Reduziere Spezifikation auf ein Modell A
— Auswahl passend zur Grunddomane von spec (Liste, Menge, Béume, . ..)
— Versuche, spec <specy automatisch zu beweisen
— Spezialisierung von body 4 korrekt fiir extrahierte Substitutionen o und 6
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SYNTHESE MIT ALGORITHMENSCHEMATA VERFEINERT I

Integriere Operator Match in allgemeines Verfahren

body 4
Dyl R 4,04

0 specspecy o

DI———————————— RO

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Doméanen
— Axiome von A sind fiir diese Modelle ein fiir alle Mal bewiesen

e Reduziere Spezifikation auf ein Modell A
— Auswahl passend zur Grunddomane von spec (Liste, Menge, Béume, . ..)
— Versuche, spec <specy automatisch zu beweisen
— Spezialisierung von body 4 korrekt fiir extrahierte Substitutionen o und 6

Keine weiteren Inferenzen erforderlich!
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ALGORITHMENSCHEMA: (GENERALISIERUNG I

Problemreduktion fir mengenwertige Spezifikationen

e spec spezialisiert spec’ (spec< spec’)
RCR’> A Vx:D.llz| = 3z":D’. (I'[z] ~ Yy:R.Olx,y| = O'[2',y])
— Ein- und Ausgabebedingungen von spec starker als spec’
spec’ generalisiert spec
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ALGORITHMENSCHEMA: (GENERALISIERUNG I

Problemreduktion fir mengenwertige Spezifikationen

e spec spezialisiert spec’ (spec< spec’)
RCR’> A Vx:D.llz| = 3z":D’. (I'[z] ~ Yy:R.Olx,y| = O'[2',y])
— Ein- und Ausgabebedingungen von spec starker als spec’
spec’ generalisiert spec

e Spezialisierung liefert Problemtransformation
— spec = FUNCTION f(x:D) WHERE I[x| RETURNS {y:R | Olx,y|}
ist erfillbar, wenn es eine Algorithmentheorie A und
ein Modell A fiir A gibt, mit spec< specy
— Beweis spec < specy liefert Substitution 60:D—D 4

— body(z) = {y|yebodysa(0(z)) n O(x,y)} ist korrekt fiir spec
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ALGORITHMENSCHEMA: (GENERALISIERUNG I

Problemreduktion fir mengenwertige Spezifikationen

e spec spezialisiert spec’ (spec< spec’)
RCR’> A Vx:D.llz| = 3z":D’. (I'[z] ~ Yy:R.Olx,y| = O'[2',y])
— Ein- und Ausgabebedingungen von spec starker als spec’
spec’ generalisiert spec

e Spezialisierung liefert Problemtransformation
— spec = FUNCTION f(x:D) WHERE I[x| RETURNS {y:R | Olx,y|}
ist erfillbar, wenn es eine Algorithmentheorie A und
ein Modell A fiir A gibt, mit spec< specy
— Beweis spec < specy liefert Substitution 60:D—D 4

— body(z) = {y|yebodysa(0(x)) n O(x,y)} ist korrekt fiir spec

e Syntheseverfahren

— Wahle Algorithmentheorie A und ein Modell A von A
— Beweise spec< specy und extrahiere o

— Spezialisiere bodya zu Ax.{ y|yebodys(@(x)) n O(x,y)}
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MENGENWERTIGE SYNTHESE MIT ALGORITHMENSCHEMATA I

Integriere Generalisierung in allgemeines Verfahren

Dy, 4

Spec < spec

body(z)={y | y<bodya(0(x))r O(x,y)} l
DI ————————— = —— — RO
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MENGENWERTIGE SYNTHESE MIT ALGORITHMENSCHEMATA I

Integriere Generalisierung in allgemeines Verfahren

Dy, 4

Spec < spec

body(z)={y | yebodya(@(z))rO(x,y)}
i === — R.O

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Domanen
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MENGENWERTIGE SYNTHESE MIT ALGORITHMENSCHEMATA I

Integriere Generalisierung in allgemeines Verfahren

Dy, 4

sSpec< specy

body(z)={y | yebodya(@(z))rO(x,y)}
i === — R.O

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Domanen

e Reduziere Spezifikation auf ein Modell A
— Auswahl passend zur Grunddomane von spec (Liste, Menge, Baume, ... )
— Versuche, spec< specy automatisch zu beweisen
— Spezialisierung von body 4 korrekt fir extrahierte Substitution 6

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 13 Wissensbasierte Programmentwicklung




MENGENWERTIGE SYNTHESE MIT ALGORITHMENSCHEMATA I

Integriere Generalisierung in allgemeines Verfahren

Dy, 4

Spec < spec

body(z)={y | yebodya(@(z))rO(x,y)}
i === — R.O

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Domanen

e Reduziere Spezifikation auf ein Modell A
— Auswahl passend zur Grunddoméne von spec (Liste, Menge, Baume, .. .)
— Versuche, spec< specy automatisch zu beweisen
— Spezialisierung von body 4 korrekt fir extrahierte Substitution 6
Keine weiteren Inferenzen erforderlich!

Optimierte Version fur spezielle Algorithmentheorien moglich
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ALGORITHMENSCHEMA: FALLUNTERSCHEIDUNG I

Zerlegung in bekannte Losungen

® spec zerlegbar in specy..spec,, (spec = U;spec;)
Vo:D. I[z] = Lx]v..vI,[z] A Vi<n.Vy:R. Oz, y] = Olx,y])
— Eingabebedingung zerlegbar in Eingabebedingungen der spec;

— Ausgabebedingung der spec; starker
— Nichtrekursive v-Reduktion eines Problems
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ALGORITHMENSCHEMA: FALLUNTERSCHEIDUNG I

Zerlegung in bekannte Losungen

® spec zerlegbar in specy..spec,, (spec = U;spec;)
Vo:D. I[z] = Lx]v..vI,[z] A Vi<n.Vy:R. Oz, y] = Olx,y])
— Eingabebedingung zerlegbar in Eingabebedingungen der spec;

— Ausgabebedingung der spec; starker
— Nichtrekursive v-Reduktion eines Problems

e Zerlegbarkeit liefert Fallunterscheidung
— spec ist erfiillbar, wenn es Algorithmentheorien A;..A,
Modelle A; fiir A; gibt, so dafl spec = U;specy,
—body(x) = if I |z] then bodya,|z|...else bodya,|x] ist korrekt fir spec
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ALGORITHMENSCHEMA: FALLUNTERSCHEIDUNG I

Zerlegung in bekannte Losungen

® spec zerlegbar in speci..spec, (spec = U;spec;)
Ve:D.Ix] = Llz]v..v,[z] A Vi<n.Vy:R. Oz, y] = Olz,y])
— Eingabebedingung zerleghar in Eingabebedingungen der spec;

— Ausgabebedingung der spec; starker
— Nichtrekursive v-Reduktion eines Problems

e Zerlegbarkeit liefert Fallunterscheidung
— spec ist erfiillbar, wenn es Algorithmentheorien A;..A,
Modelle A; fiir A; gibt, so dafl spec = U;specy,
—body(x) = if I |z] then bodya,|z|...else bodya,|x] ist korrekt fir spec

e Syntheseverfahren “Derived Antecedants”
— Wahle Algorithmentheorie A; und ein Modell A;
— Bestimme Eingabebedingung I; fir die A; “korrekt arbeitet”
— Wiederhole Verfahren fiir spec’ = (D, R, I n—11, O) bis Zerlegung komplett
— Setze Losungen durch Fallunterscheidung zusammen
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HIERARCHIE ALGORITHMISCHER STRUKTUREN I

ALLGEMEINE PROBLEMSTRUKTUR
Generate & Test
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HIERARCHIE ALGORITHMISCHER STRUKTUREN I

ALLGEMEINE PROBLEMSTRUKTUR

/W

REDUKTIONSSTRUKTUR LOKALE STRUKTUR
Lokalsuche

Simulated Annealing
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HIERARCHIE ALGORITHMISCHER STRUKTUREN I

ALLGEMEINE PROBLEMSTRUKTUR

/W

REDUKTIONSSTRUKTUR LOKALE STRUKTUR
Lokalsuche
Simulated Annealing
KOMPLEMENTIERUNG

Siebe
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HIERARCHIE ALGORITHMISCHER STRUKTUREN I

ALLGEMEINE PROBLEMSTRUKTUR

/M

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

Lokalsuche
Simulated Annealing

KOMPLEMENTIERUNG A-REDUKTION

Siebe/////7

STATISCH REKURSIV

Problemreduktion Divide & Conquer
(Operator Match)
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HIERARCHIE ALGORITHMISCHER STRUKTUREN I

ALLGEMEINE PROBLEMSTRUKTUR

/M

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

Lokalsuche
Simulated Annealing

KOMPLEMENTIERUNG A-REDUKTION v-REDUKTION

Siebe/////7 N

STATISCH REKURSIV STATISCH REKURSIV
Problemreduktion Divide & Conquer Bedingungen Globalsuche
(Operator Match) Fallanalyse Binarsuche

Backtracking

Branch & Bound (A*)
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HIERARCHIE ALGORITHMISCHER STRUKTUREN

ALLGEMEINE PROBLEMSTRUKTUR

/W

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

Lokalsuche
Simulated Annealing

KOMPLEMENTIERUNG A-REDUKTION v-REDUKTION

Siebe/////7 N

STATISCH REKURSIV STATISCH REKURSIV
Problemreduktion Divide & Conquer Bedingungen Globalsuche
(Operator Match) Fallanalys Binarsuche

Backtracking
Branch & Bound (A*)

A-Vv-REDUKTION
Dynamische Programmierung
Branch & Bound (AO*)
Spielbaum-Suche
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ALGORITHMENSCHEMATA: VORTEILE FUR SYNTHESE I

e Effizientes Syntheseverfahren
— Voruntersuchungen entlasten Syntheseprozef3 zur Laufzeit
- Beweislast verlagert in Entwurf und Beweis der Algorithmentheorien

— Verfeinerung vorgefertigter Teillosungen (Modelle) moglich
- zielgerichtetes Vorgehen, Verifikation der Axiome entfallt

— Echte Kooperation zwischen Mensch und Computer
- Mensch: Entwurfsentscheidungen — Computer: formale Details
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ALGORITHMENSCHEMATA: VORTEILE FUR SYNTHESE I

e Effizientes Syntheseverfahren
— Voruntersuchungen entlasten Syntheseprozef3 zur Laufzeit
- Beweislast verlagert in Entwurf und Beweis der Algorithmentheorien

— Verfeinerung vorgefertigter Teillosungen (Modelle) moglich
- zielgerichtetes Vorgehen, Verifikation der Axiome entfallt

— Echte Kooperation zwischen Mensch und Computer
- Mensch: Entwurfsentscheidungen — Computer: formale Details

e Erzeugung effizienter Algorithmen
— Vorgabe einer effizienten Grundstruktur durch Theoreme

— Individuelle Optimierung nachtraglich
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e Effizientes Syntheseverfahren
— Voruntersuchungen entlasten Syntheseprozef zur Laufzeit
- Beweislast verlagert in Entwurf und Beweis der Algorithmentheorien

— Verfeinerung vorgefertigter Teillosungen (Modelle) moglich
- zielgerichtetes Vorgehen, Verifikation der Axiome entfallt

— Echte Kooperation zwischen Mensch und Computer
- Mensch: Entwurtsentscheidungen — Computer: formale Details

e Erzeugung effizienter Algorithmen
— Vorgabe einer effizienten Grundstruktur durch Theoreme

— Individuelle Optimierung nachtraglich

e Wissensbasiertes Vorgehen

— Erkenntnisse iiber Algorithmen als Theoreme verwendbar
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ALGORITHMENSCHEMATA: VORTEILE FUR SYNTHESE I

e Effizientes Syntheseverfahren
— Voruntersuchungen entlasten Syntheseprozef zur Laufzeit
- Beweislast verlagert in Entwurf und Beweis der Algorithmentheorien

— Verfeinerung vorgefertigter Teillosungen (Modelle) moglich
- zielgerichtetes Vorgehen, Verifikation der Axiome entfallt

— Echte Kooperation zwischen Mensch und Computer
- Mensch: Entwurtsentscheidungen — Computer: formale Details

e Erzeugung effizienter Algorithmen
— Vorgabe einer effizienten Grundstruktur durch Theoreme

— Individuelle Optimierung nachtraglich

e Wissensbasiertes Vorgehen

— Erkenntnisse iiber Algorithmen als Theoreme verwendbar

e Formales theoretisches Fundament

— Leicht in das Konzept beweisbasierter Systeme integrierbar

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 16 Wissensbasierte Programmentwicklung




