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– Steuerung durch “normale” Programmier kaum möglich

– Keine echte Unterstützung bei der Entwicklung von Programmen
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• Forschungsschwerpunkte

– Analyse der allgemeinen Struktur einer Klasse von Algorithmen

– Schematisierung durch Komponenten und Korrektheitsaxiome

– Techniken zur Verfeinerung von Standardstrukturen
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• Instantiierter Algorithmus
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S

SUCH THAT rearranges(L,S) ∧ ordered(S)

≡ if null?(L) then [] else let a = L[|L|/2]

in let L
1
= [ x|x ∈L ∧x<a ]

and L
2
= [ x|x ∈L ∧x=a ]

and L
3
= [ x|x ∈L ∧x>a ]

in sort(L
1
) ◦ L

2
◦ sort(L

3
)
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*
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• Programmentwicklung auf zwei Ebenen
– Allgemeine algorithmische Theorien

– Konkrete Probleme als Instanzen der allgemeinen Theorien

• Problemtheorie erweitert zu Programmtheorie
– Algorithmentheorie A: ergänze Komponenten und Axiome eines Schemas

– Programmtheorie P : kanonische Erweiterung um Programmkörper

– Synthese: Programme werden aus Programmtheorie extrahiert
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– S: Menge von Sortennamen (Namen für Datentypen)

– Ω: Familie von Operationsnamen (zusammen mit Typisierung)

– Ax: Menge von Axiomen für Datentypen und Operationen
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• T Struktur für T

– T ist Menge von Datentypen und Operationen, typisiert gemäß Ω

T Modell für T

– T ist Struktur für T , die alle Axiome aus T erfüllt

• Struktur T1 erweitert T2

– Alle Datentypen und Operationen von T2 existieren auch in T1

(gleiche Typisierung bezüglich T
2
!)
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P Programmtheorie:
– P erweitert TPROG (P enthält ein Programm)

• A Algorithmentheorie:
– A ist Problemtheorie mit kanonischer Erweiterung zu Programmtheorie

– Es gibt abstraktes Programmschema BODY mit der Eigenschaft

(specA, BODY(A)) ist korrekt für jedes Modell A von A
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⇓

Synthese =̂ Erweitere Programmtheorien zu Algorithmentheorien



Automatisierte Logik und Programmierung II §18 8 Wissensbasierte Programmentwicklung

Divide & Conquer Schema als Algorithmentheorie

SD&C : {D,R,D’,R’}

ΩD&C : {I :D→B, O:D×R→B, OD:D×D’×D→B, I ’:D’→B, O’:D’×R’→B,

OC :R’×R×R→B, �:D×D→B, Decompose :D→D’×D, g:D’→R’,

Compose :R’×R→R, Directly-solve :D→R, primitive :D→B

}

AxD&C : {FUNCTION fp(x:D):R WHERE I [x] ∧primitive[x] RETURNS y SUCH THAT O[x, y]

≡ Directly-solve[x] ist korrekt
...

� ist wohlfundierte Ordnung auf D

}
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...
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}

Für A = ({D,R,D’,R’}, {I ,O,OD, I ’,O’,OC ,�,

Decompose , g,Compose ,Directly-solve , primitive})

ist BODY(A) =̂

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]
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Automatisierte Logik und Programmierung II §18 9 Wissensbasierte Programmentwicklung

Synthese mit Algorithmenschemata präzisiert
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Programmkonstruktion:
Extraktion
relevanter Komponenten

�

Methode:

– Wähle Algorithmentheorie A,

– Erweitere Tspec zu Modell A von A

– Instantiiere BODY(A) und extrahiere Programmkomponenten
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– Beweis spec�specA liefert Substitutionen θ:D→DA und σ:DA×RA→R

– body(x) ≡ σ(x,bodyA(θ(x))) ist korrekter Algorithmus für spec

• Syntheseverfahren
– Wähle Algorithmentheorie A und ein Modell A von A

– Beweise spec�specA und extrahiere Substitutionen σ und θ

– Spezialisiere bodyA zu λx. σ(x,bodyA(θ(x)))
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– Standardkomponenten der Algorithmentheorie für wichtige Domänen

– Axiome von A sind für diese Modelle ein für alle Mal bewiesen

• Reduziere Spezifikation auf ein Modell A
– Auswahl passend zur Grunddomäne von spec (Liste, Menge, Bäume, . . . )

– Versuche, spec�specA automatisch zu beweisen
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Keine weiteren Inferenzen erforderlich!
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– Beweis spec�specA liefert Substitution θ:D→DA

– body(x) ≡ { y | y ∈bodyA(θ(x)) ∧ O(x,y) } ist korrekt für spec

• Syntheseverfahren
– Wähle Algorithmentheorie A und ein Modell A von A

– Beweise spec�specA und extrahiere σ

– Spezialisiere bodyA zu λx. { y | y ∈bodyA(θ(x)) ∧ O(x,y) }



Automatisierte Logik und Programmierung II §18 13 Wissensbasierte Programmentwicklung

Mengenwertige Synthese mit Algorithmenschemata

Integriere Generalisierung in allgemeines Verfahren

DA,IA

RA,OA

D,I R,O

6

θ
spec� specA

?

q

bodyA

-
body(x)={ y | y ∈bodyA(θ(x)) ∧O(x,y)}



Automatisierte Logik und Programmierung II §18 13 Wissensbasierte Programmentwicklung

Mengenwertige Synthese mit Algorithmenschemata

Integriere Generalisierung in allgemeines Verfahren

DA,IA

RA,OA

D,I R,O

6

θ
spec� specA

?

q

bodyA

-
body(x)={ y | y ∈bodyA(θ(x)) ∧O(x,y)}

• Speichere generische Modelle von A
– Standardkomponenten der Algorithmentheorie für wichtige Domänen



Automatisierte Logik und Programmierung II §18 13 Wissensbasierte Programmentwicklung

Mengenwertige Synthese mit Algorithmenschemata

Integriere Generalisierung in allgemeines Verfahren

DA,IA

RA,OA

D,I R,O

6

θ
spec� specA

?

q

bodyA

-
body(x)={ y | y ∈bodyA(θ(x)) ∧O(x,y)}

• Speichere generische Modelle von A
– Standardkomponenten der Algorithmentheorie für wichtige Domänen

• Reduziere Spezifikation auf ein Modell A
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Mengenwertige Synthese mit Algorithmenschemata

Integriere Generalisierung in allgemeines Verfahren

DA,IA

RA,OA

D,I R,O

6

θ
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?

q

bodyA

-
body(x)={ y | y ∈bodyA(θ(x)) ∧O(x,y)}

• Speichere generische Modelle von A
– Standardkomponenten der Algorithmentheorie für wichtige Domänen

• Reduziere Spezifikation auf ein Modell A
– Auswahl passend zur Grunddomäne von spec (Liste, Menge, Bäume, . . . )

– Versuche, spec�specA automatisch zu beweisen

– Spezialisierung von bodyA korrekt für extrahierte Substitution θ

Keine weiteren Inferenzen erforderlich!

Optimierte Version für spezielle Algorithmentheorien möglich
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– spec ist erfüllbar, wenn es Algorithmentheorien A1..An

Modelle Ai für Ai gibt, so daß spec = ∪ispecAi

– body(x) ≡ if I1[x] then bodyA1[x]...else bodyAn[x] ist korrekt für spec

• Syntheseverfahren “Derived Antecedants”
– Wähle Algorithmentheorie A1 und ein Modell A1

– Bestimme Eingabebedingung I1 für die A1 “korrekt arbeitet”

– Wiederhole Verfahren für spec′ = (D,R, I ∧¬I1, O) bis Zerlegung komplett

– Setze Lösungen durch Fallunterscheidung zusammen
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Siebe

∧ -Reduktion

statisch
Problemreduktion
(Operator Match)

rekursiv
Divide& Conquer

∨ -Reduktion

statisch
Bedingungen
Fallanalyse

rekursiv
Globalsuche
Binärsuche
Backtracking
Branch & Bound (A∗)

∧ - ∨ -Reduktion
Dynamische Programmierung
Branch & Bound (AO∗)
Spielbaum-Suche



Automatisierte Logik und Programmierung II §18 16 Wissensbasierte Programmentwicklung

Algorithmenschemata: Vorteile für Synthese

• Effizientes Syntheseverfahren

– Voruntersuchungen entlasten Syntheseprozeß zur Laufzeit

· Beweislast verlagert in Entwurf und Beweis der Algorithmentheorien

– Verfeinerung vorgefertigter Teillösungen (Modelle) möglich

· zielgerichtetes Vorgehen, Verifikation der Axiome entfällt

– Echte Kooperation zwischen Mensch und Computer

· Mensch: Entwurfsentscheidungen — Computer: formale Details
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– Echte Kooperation zwischen Mensch und Computer
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• Erzeugung effizienter Algorithmen

– Vorgabe einer effizienten Grundstruktur durch Theoreme

– Individuelle Optimierung nachträglich

• Wissensbasiertes Vorgehen

– Erkenntnisse über Algorithmen als Theoreme verwendbar

• Formales theoretisches Fundament

– Leicht in das Konzept beweisbasierter Systeme integrierbar


