Automatisierte Logik und Programmierung

Werg s
STy,

Lektion 18) i @ﬁs

Ly
° ° ° * q?
Wissensbasierte Programmentwicklung %

1. Algorithmenschemata
2. Globalsuche

3. Divide & Conquer

4. Lokalsuche

WISSENSVERARBEITUNG IN DER PROGRAMMSYNTHESE I

Zielgerichtete Entwicklung guter Algorithmen

e Synthese im Kleinen ist zu allgemein
— Fokus auf Logik statt auf Programmierung
— Steuerung durch “normale” Programmier kaum moglich

— Keine echte Unterstiitzung bei der Entwicklung von Programmen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 1 Wissensbasierte Programmentwicklung

WISSENSVERARBEITUNG IN DER PROGRAMMSYNTHESE I

Zielgerichtete Entwicklung guter Algorithmen

e Synthese im Kleinen ist zu allgemein
— Fokus auf Logik statt auf Programmierung
— Steuerung durch “normale” Programmier kaum moglich

— Keine echte Unterstiitzung bei der Entwicklung von Programmen

e Programmiermethodik verwendet Wissen
— Welche grundsatzlichen Algorithmenstrukturen gibt es?

— Welche Algorithmenstrukturen sind fir ein Problem geeignet?

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 1 Wissensbasierte Programmentwicklung

WISSENSVERARBEITUNG IN DER PROGRAMMSYNTHESE I

Zielgerichtete Entwicklung guter Algorithmen

e Synthese im Kleinen ist zu allgemein
— Fokus auf Logik statt auf Programmierung
— Steuerung durch “normale” Programmier kaum moglich

— Keine echte Unterstiitzung bei der Entwicklung von Programmen

e Programmiermethodik verwendet Wissen
— Welche grundsatzlichen Algorithmenstrukturen gibt es?

— Welche Algorithmenstrukturen sind fir ein Problem geeignet?

e Synthese sollte Programmierwissen verarbeiten
— Umsetzung von Programmiermethodik in Entwurfsstrategien
— Schematisierung von Algorithmenstrukturen

— Axiome fiir Korrektheit des schematischen Algorithmus

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 1 Wissensbasierte Programmentwicklung

WISSENSVERARBEITUNG IN DER PROGRAMMSYNTHESE I

Zielgerichtete Entwicklung guter Algorithmen

e Synthese im Kleinen ist zu allgemein
— Fokus auf Logik statt auf Programmierung
— Steuerung durch “normale” Programmier kaum moglich

— Keine echte Unterstiitzung bei der Entwicklung von Programmen

e Programmiermethodik verwendet Wissen
— Welche grundsatzlichen Algorithmenstrukturen gibt es?

— Welche Algorithmenstrukturen sind fir ein Problem geeignet?

e Synthese sollte Programmierwissen verarbeiten
— Umsetzung von Programmiermethodik in Entwurfsstrategien
— Schematisierung von Algorithmenstrukturen
— Axiome fiir Korrektheit des schematischen Algorithmus

Aufwendiges theoretisches Fundament entlastet Syntheseprozef}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 1 Wissensbasierte Programmentwicklung

WISSENSBASIERTE PROGRAMMENTWICKLUNG: (GRUNDIDEE I

e Erzeuge Algorithmen in einem Schritt
— Anpassung eines schematischen Algorithmus an eine Problemstellung

— Historisch: High-Level Transformation

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 2 Wissensbasierte Programmentwicklung

WISSENSBASIERTE PROGRAMMENTWICKLUNG: (GRUNDIDEE I

e Erzeuge Algorithmen in einem Schritt
— Anpassung eines schematischen Algorithmus an eine Problemstellung

— Historisch: High-Level Transformation

e Grundsatzliche Vorgehensweise

— Gegeben sei die Spezifikation
. FUNCTION f(x:D):R WHERE I[x] RETURNS y SUCH THAT Olz,y]

— Wahle algorithmische Grundstruktur
— Verfeinere Basisschema der Struktur durch Bestimmung von Parametern
— Priife, ob Parameter die Korrektheitsaxiome des Schemas erfiillen

— Instantiiere schematischen Algorithmus

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 2 Wissensbasierte Programmentwicklung

WISSENSBASIERTE PROGRAMMENTWICKLUNG: (GRUNDIDEE I

e Erzeuge Algorithmen in einem Schritt
— Anpassung eines schematischen Algorithmus an eine Problemstellung

— Historisch: High-Level Transformation

e Grundsatzliche Vorgehensweise

— Gegeben sei die Spezifikation
. FUNCTION f(x:D):R WHERE I[x] RETURNS y SUCH THAT Olz,y]

— Wahle algorithmische Grundstruktur
— Verfeinere Basisschema der Struktur durch Bestimmung von Parametern
— Priife, ob Parameter die Korrektheitsaxiome des Schemas erfiillen

— Instantiiere schematischen Algorithmus

e Forschungsschwerpunkte
— Analyse der allgemeinen Struktur einer Klasse von Algorithmen
— Schematisierung durch Komponenten und Korrektheitsaxiome

— Techniken zur Verfeinerung von Standardstrukturen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 2 Wissensbasierte Programmentwicklung

D1VvIDE & CONQUER SYNTHESE EINES SORTIERALGORITHMUS I

e Problemspezifikation
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S
SUCH THAT rearranges(L,S) A ordered(S)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 3 Wissensbasierte Programmentwicklung

D1VvIDE & CONQUER SYNTHESE EINES SORTIERALGORITHMUS I

e Problemspezifikation
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S
SUCH THAT rearranges(L,S) A ordered(S)

e Grundstruktur von Divide & Conquer Algorithmen
FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Olz,y]
= if primitive[z] then Directly-solvelx| else (Compose © gxf o Decompose) (x)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 3 Wissensbasierte Programmentwicklung

D1VvIDE & CONQUER SYNTHESE EINES SORTIERALGORITHMUS I

e Problemspezifikation
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S
SUCH THAT rearranges(L,S) A ordered(S)

e Grundstruktur von Divide & Conquer Algorithmen
FUNCTION f(z:D):R WHERE [[x] RETURNS y SUCH THAT Oz,]

= if primitive[z] then Directly-solvelx| else (Compose © gxf o Decompose) (x)

e Komponenten fir einen Sortieralgorithmus
primative AL. null? (L)

Directly-solve = AL. []

Decompose = AL.let a=L[|L|/2] in (L«g, L=a, L>g) (L<q = [xlxeLax<a])
g = sort X AS.S

Compose = MAS,,S,,S,. SPS.S,

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 3 Wissensbasierte Programmentwicklung

D1VvIDE & CONQUER SYNTHESE EINES SORTIERALGORITHMUS I

e Problemspezifikation
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S
SUCH THAT rearranges(L,S) A ordered(S)

e Grundstruktur von Divide & Conquer Algorithmen
FUNCTION f(z:D):R WHERE [[x] RETURNS y SUCH THAT Oz,]

= if primitive[z] then Directly-solvelx| else (Compose © gxf o Decompose) (x)

e Komponenten fir einen Sortieralgorithmus

primitive = AL.null?(L)

Directly-solve = AL. []

Decompose = AL.let a=L[|L|/2] in (L<g,L=3,L>z) (l<q= [xlxeclrx<a])
g = sort X AS.S

Compose = MAS,,S,,S,. SPS.S,

e Instantiierter Algorithmus
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S
SUCH THAT rearranges(L,S) A ordered(S)
= if null?(L) then [] else let a = L[I|L|/2]

in let L, = [x|xeLax<a]
and L, = [x|xelax=a]
and L, = [x|xelLax>al

in sort(Ll) oL, o sort(L3)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 3 Wissensbasierte Programmentwicklung

WISSENSBASIERTE PROGRAMMENTWICKLUNG: LITERATUR I

Douglas R. Smith and Michael R. Lowry
Algorithm Theories and Design Tactics, Science of Computer Programming 14:305-321

Douglas R. Smith
KIDS — A Knowledge-Based Software Development system,

in: Michael R. Lowry and Robert D. McCartney, ed. Automating Software Design,
AAAT Press, 1991, p.483-514.

Douglas R. Smith
Top-Down Synthesis of Divide-and-Conquer Algorithms, AlJ 27:43-96, 1985

Douglas R. Smith
Structure and Design of Global Search Algorithms
Structure and Design of Problem Reduction Generators
Structure and Design of Dynamic Programming Algorithms
Technical Report, Kestrel Institute

Michael R. Lowry
Structure and Design of Local Search Algorithms
Proceedings, AAAI Workshop on Software Design, p.88-94

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 4 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

Spezifikation Programm

e Programmentwicklung auf zwei Ebenen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 5 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

Tspec Tprog

Spezifikation Programm

e Programmentwicklung auf zwei Ebenen
— Allgemeine algorithmische Theorien

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 5 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

Tspec Tprog

| |

| !

| |

| !

| |
Tspec Tprog

Spezifikation Programm

e Programmentwicklung auf zwei Ebenen
— Allgemeine algorithmische Theorien
— Konkrete Probleme als Instanzen der allgemeinen Theorien

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 5 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

Tspec Tprog
| |
| !
| |
| !
| |

Tspec Tpmg

SYNTHESE
Spezifikation - - = = = = = = = = = = = = — Programm

e Programmentwicklung auf zwei Ebenen
— Allgemeine algorithmische Theorien
— Konkrete Probleme als Instanzen der allgemeinen Theorien

e Problemtheorie erweitert zu Programmtheorie

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 5 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

Theorie-Erweiterung: I
Komponenten+Axiome :
| Modell
I
Tspec | Trrog
I A I
| 7 |
I —~ I
I — FErweiterung: I
I ~ I
L Komponentensuche I
Tspec Tpmg
. . SYNTHESE
Spezifikation - - = = = = = = = = = = = = — Programm

e Programmentwicklung auf zwei Ebenen
— Allgemeine algorithmische Theorien
— Konkrete Probleme als Instanzen der allgemeinen Theorien

e Problemtheorie erweitert zu Programmtheorie
— Algorithmentheorie A: erganze Komponenten und Axiome eines Schemas

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 5 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

A Kanonische Theorie-Erweiterung: BODY + Korrektheitsaxiom P

Theorie-Erweiterung: I I
I I
I I
| Modell I
I
I

Komponenten+Axiome

|
%pgc | %R(’)g
| A _ _Prweiterung mit BODY(A) =~ ° 77 P
| el |
| s |
I — FErweiterung: I
| |
L Komponentensuche I
Tspec Tpmg
. . SYNTHESE
Spezifikation - - = = = = = = = = = = = = — Programm

e Programmentwicklung auf zwei Ebenen
— Allgemeine algorithmische Theorien
— Konkrete Probleme als Instanzen der allgemeinen Theorien

e Problemtheorie erweitert zu Programmtheorie
— Algorithmentheorie A: erganze Komponenten und Axiome eines Schemas
— Programmtheorie P: kanonische Erweiterung um Programmkorper

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 5 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

A Kanonische Theorie-Erweiterung: BODY + Korrektheitsaxiom P

Theorie-Erweiterung: I I
I I
I I
| Modell I
I
I

Komponenten+Axiome

I

Tspec | TprOG
| A FHrweterung mit BODY(A) - 7 _ P
I el I ~
I ~ I ~
I — FErweiterung: I " Programmkonstruktion:
:/ ~ Komponentensuche L// Extraktion

T T relevanter Komponenten
spec prog
)) SYNTHESE

Spezifikation - - = = = = = = = = = = = = — Programm

e Programmentwicklung auf zwei Ebenen
— Allgemeine algorithmische Theorien
— Konkrete Probleme als Instanzen der allgemeinen Theorien

e Problemtheorie erweitert zu Programmtheorie
— Algorithmentheorie A: erganze Komponenten und Axiome eines Schemas
— Programmtheorie P: kanonische Erweiterung um Programmkorper
— Synthese: Programme werden aus Programmtheorie extrahiert

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 5 Wissensbasierte Programmentwicklung

TECHNISCHE (GRUNDBEGRIFFE: ALGEBRAISCHE THEORIEN I

e Formale Theorie: Tripel 7 = (S, 2, Ax)

— 5: Menge von Sortennamen (Namen fiir Datentypen)
— (): Familie von Operationsnamen (zusammen mit Typisierung)

— Ax: Menge von Axiomen fiir Datentypen und Operationen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 6 Wissensbasierte Programmentwicklung

TECHNISCHE (GRUNDBEGRIFFE: ALGEBRAISCHE THEORIEN I

e Formale Theorie: Tripel 7 = (S, 2, Ax)

— 5: Menge von Sortennamen (Namen fiir Datentypen)
— (): Familie von Operationsnamen (zusammen mit Typisierung)

— Ax: Menge von Axiomen fiir Datentypen und Operationen

e Theorie 7, erweitert 7,

— Alle Sortennamen, Operationsnamen, Axiome von 7 5 existieren in 7 4

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 6 Wissensbasierte Programmentwicklung

TECHNISCHE (GRUNDBEGRIFFE: ALGEBRAISCHE THEORIEN I

e Formale Theorie: Tripel 7 = (S, 2, Ax)

— 5: Menge von Sortennamen (Namen fiir Datentypen)
— (): Familie von Operationsnamen (zusammen mit Typisierung)

— Ax: Menge von Axiomen fiir Datentypen und Operationen

e Theorie 7, erweitert 7,

— Alle Sortennamen, Operationsnamen, Axiome von 7 5 existieren in 7 4

o I' Struktur fur 7
— T"ist Menge von Datentypen und Operationen, typisiert gemaf €2

T Modell fur 7
— T ist Struktur fur 7, die alle Axiome aus 7 erfullt

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 6 Wissensbasierte Programmentwicklung

TECHNISCHE (GRUNDBEGRIFFE: ALGEBRAISCHE THEORIEN I

e Formale Theorie: Tripel 7 = (S, (2, Ax)

— 5: Menge von Sortennamen (Namen fiir Datentypen)
— (): Familie von Operationsnamen (zusammen mit Typisierung)

— Ax: Menge von Axiomen fiir Datentypen und Operationen

e Theorie 7, erweitert 7,

— Alle Sortennamen, Operationsnamen, Axiome von 7 5 existieren in 7 4

o I' Struktur fur 7
— T"ist Menge von Datentypen und Operationen, typisiert gemaf €2

T Modell fur 7
— T ist Struktur fur 7, die alle Axiome aus 7 erfillt

e Struktur 77 erweitert 75

— Alle Datentypen und Operationen von 15 existieren auch in T}
(gleiche Typisierung beztiglich 7))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 6 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

® Tspgec: algebraische Theorie der Spezifikationen
“({D,R}, {I:D—B, O:DxR—B},)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 7 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

® Tspgec: algebraische Theorie der Spezifikationen
“({D,R}, {I:D—B, O:DxR—B},)

P Problemtheorie:

— P erweitert Tgpgc (P enthélt eine Programmspezifikation)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 7 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

® Tspgec: algebraische Theorie der Spezifikationen
“({D,R}, {I:D—B, O:DxR—B},)

P Problemtheorie:

— P erweitert Tgpgc (P enthélt eine Programmspezifikation)

e Jprog: algebraische Theorie der Programme
- ({D,R}, {I:D—B, O:DxR—B, body: DAR }, {Ve:D.I(x)= O(z,body(z))})

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 7 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

® Tspgec: algebraische Theorie der Spezifikationen
“({D,R}, {I:D—B, O:DxR—B},)

P Problemtheorie:

— P erweitert Tgpgc (P enthélt eine Programmspezifikation)

e Jprog: algebraische Theorie der Programme
- ({D,R}, {I:D—B, O:DxR—B, body: DAR }, {Ve:D.I(x)= O(z,body(z))})

P Programmtheorie:
— P erweitert Tprog (P enthélt ein Programm)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 7 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

® Tspgec: algebraische Theorie der Spezifikationen
“({D,R}, {I:D—B, O:DxR—B},)

P Problemtheorie:

— P erweitert Tgpgc (P enthélt eine Programmspezifikation)

e Jprog: algebraische Theorie der Programme
- ({D,R}, {I:D—B, O:DxR—B, body: DAR }, {Ve:D.I(x)= O(z,body(z))})

P Programmtheorie:
— P erweitert Tprog (P enthélt ein Programm)

e A Algorithmentheorie:

— A ist Problemtheorie mit kanonischer Erweiterung zu Programmtheorie

— Es gibt abstraktes Programmschema BODY mit der Eigenschaft
(speca, BODY(A)) ist korrekt fir jedes Modell A von A

(Fiir jedes Modell A existiert eine Standardlosung der Spezifikation speca)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 7 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA ALS ALGEBRAISCHE THEORIEN I

® Tspgec: algebraische Theorie der Spezifikationen
“({D,R}, {I:D—B, O:DxR—B},)

P Problemtheorie:

— P erweitert Tgpgc (P enthélt eine Programmspezifikation)

e Jprog: algebraische Theorie der Programme
- ({D,R}, {I:D—B, O:DxR—B, body: DAR }, {Ve:D.I(x)= O(z,body(z))})

P Programmtheorie:
— P erweitert Tprog (P enthélt ein Programm)

e A Algorithmentheorie:
— A ist Problemtheorie mit kanonischer Erweiterung zu Programmtheorie

— Es gibt abstraktes Programmschema BODY mit der Eigenschaft
(speca, BODY(A)) ist korrekt fir jedes Modell A von A

(Fiir jedes Modell A existiert eine Standardlosung der Spezifikation speca)

U

Synthese = Erweitere Programmtheorien zu Algorithmentheorien

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 7 Wissensbasierte Programmentwicklung

D1vIDE & CONQUER SCHEMA ALS ALGORITHMENTHEORIE I

Spee {D,R,D’ R’}
OQpee @ {I:D—B, O:DXxR—B, Op:DxD’xD—B, I':D'—=B, O: D'XR — B,
Oc: RXRXR—B, = DxD —B, Decompose: D — D'xD, g-D'—R’,
Compose: R’ X R— R, Directly-solve:D— R, primitive:D—B
}
Axpgc {FUNCTION f,(x:D):R WHERE I[z|Aprimitivelx] RETURNS y SUCH THAT O|x,]
= Directly-solve|x] ist korrekt

>~ ist wohlfundierte Ordnung auf D

}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 8 Wissensbasierte Programmentwicklung

D1vIDE & CONQUER SCHEMA ALS ALGORITHMENTHEORIE I

Spee {D,R,D’ R’}
OQpee @ {I:D—B, O:DXxR—B, Op:DxD’xD—B, I':D'—=B, O: D'XR — B,
Oc: RXRXR—B, = DxD —B, Decompose: D — D'xD, g-D'—R’,
Compose: R’ X R— R, Directly-solve:D— R, primitive:D—B
}
Axpgc {FUNCTION f,(x:D):R WHERE I[z|Aprimitivelx] RETURNS y SUCH THAT O|x,]
= Directly-solve|x] ist korrekt

>~ ist wohlfundierte Ordnung auf D

}

Fir A= ({D,R D R}, {I,0,0p,1' 0" O¢,+,
Decompose, g, Compose, Directly-solve, primitive })
ist BODY(A) =
FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Oz, y]
= if primitive|x| then Directly-solve|x]
else (Compose © gxf o Decompose) (x)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 8 Wissensbasierte Programmentwicklung

D1vIDE & CONQUER SCHEMA ALS ALGORITHMENTHEORIE I

Spee {D,R,D’ R’}
OQpee @ {I:D—B, O:DXxR—B, Op:DxD’xD—B, I':D'—=B, O: D'XR — B,
Oc: RXRXR—B, = DxD —B, Decompose: D — D'xD, g-D'—R’,
Compose: R’ X R— R, Directly-solve:D— R, primitive:D—B
}
Axpgc {FUNCTION f,(x:D):R WHERE I[z|Aprimitivelx] RETURNS y SUCH THAT O|x,]
= Directly-solve|x] ist korrekt

>~ ist wohlfundierte Ordnung auf D

}

Fir A= ({D,R D R}, {I,0,0p,1' 0" O¢,+,
Decompose, g, Compose, Directly-solve, primitive })
ist BODY(A) =
FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Oz, y]
= if primitive|x| then Directly-solve|x]
else (Compose © gxf o Decompose) (x)

BODY/(A) ist korrekt, wenn A alle Axiome in Axpgc erfiillt

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 8 Wissensbasierte Programmentwicklung

SYNTHESE MIT ALGORITHMENSCHEMATA PRAZISIERT I

spec = (D, R,1,0) ist erfiillbar, wenn es eine Algorithmentheorie .4 und ein
Modell A fiir A gibt, welches die Struktur Tspec = ({ D, R}, {1,0}) erweitert

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 9 Wissensbasierte Programmentwicklung

SYNTHESE MIT ALGORITHMENSCHEMATA PRAZISIERT I

spec = (D, R,1,0) ist erfiillbar, wenn es eine Algorithmentheorie .4 und ein
Modell A fiir A gibt, welches die Struktur Tspec = ({ D, R}, {1,0}) erweitert

Tspec Tprog
| |
| |
| |
: :
Tspec Tpmg
Spezifikation - - - - =S£NEHESE - = = = = — Programm
Methode:

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 9 Wissensbasierte Programmentwicklung

SYNTHESE MIT ALGORITHMENSCHEMATA PRAZISIERT I

spec = (D, R,1,0) ist erfiillbar, wenn es eine Algorithmentheorie .4 und ein
Modell A fiir A gibt, welches die Struktur Tspec = ({ D, R}, {1,0}) erweitert

A
Theorie-Erweiterung;:
Komponenten+Axiome
Tspec Trrog
| |
| |
| |
| |
| |
| |
Tspec Tpmg
. . SYNTHESE
Spezifikation - - - - - - - = - - - - - -= — Programm

Methode:
— Wahle Algorithmentheorie A,

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 9 Wissensbasierte Programmentwicklung

SYNTHESE MIT ALGORITHMENSCHEMATA PRAZISIERT I

spec = (D, R,1,0) ist erfiillbar, wenn es eine Algorithmentheorie .4 und ein
Modell A fiir A gibt, welches die Struktur Tspec = ({ D, R}, {1,0}) erweitert

A
Theorie-Erweiterung;: I
Komponenten+Axiome :
| Modell
I
Tspec | Tprog
| A |
| 7 |
| ~ |
I — FErweiterung: |
L Komponentensuche '
T T,
spec Prog
. . SYNTHESE
Spezifikation - - - - - - - = - - - - - -= — Programm
Methode:

— Wahle Algorithmentheorie A,
— Erweitere Tspec zu Modell A von A

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 9 Wissensbasierte Programmentwicklung

SYNTHESE MIT ALGORITHMENSCHEMATA PRAZISIERT I

spec = (D, R,1,0) ist erfiillbar, wenn es eine Algorithmentheorie .4 und ein
Modell A fiir A gibt, welches die Struktur Tspec = ({ D, R}, {1,0}) erweitert

A Kanonische Theorie-Erweiterung: BODY + Korrektheitsaxiom P

Theorie-Erweiterung;: I I

Komponenten+Axiome : :
| Modell |
| |
I

7. T, |
oTee A_ _Eroitering mit BoDY(A) “PEO9 p
| el |
| ~ |
I — FErweiterung: |
L Komponentensuche |
L |
Tspec Tpmg
. . SYNTHESE
Spezifikation - - - - - - - = - - - - - -= — Programm
Methode:

— Wahle Algorithmentheorie A,
— Erweitere Tspec zu Modell A von A
— Instantiiere BODY(A)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 9 Wissensbasierte Programmentwicklung

SYNTHESE MIT ALGORITHMENSCHEMATA PRAZISIERT I

spec = (D, R,1,0) ist erfiillbar, wenn es eine Algorithmentheorie .4 und ein
Modell A fiir A gibt, welches die Struktur Tspec = ({ D, R}, {1,0}) erweitert

Kanonische Theorie-Erweiterung: BODY + Korrektheitsaxiom P

Theorie-Erweiterung;: I I
Komponenten+Axiome :

| Modell

I

I

7. 75
T A_ _Prociterung mit BODY(4) “TFO9 p
I el | —~
I — | —
I — FErweiterung: I —~ Programmkonstruktion:
:/ - Komponentensuche L// Extraktion
T T relevanter Komponenten
spec prog
. . SYNTHESE
Spezifikation - - - - - - - = - - - - - -= — Programm
Methode:

— Wahle Algorithmentheorie A,
— Erweitere Tspec zu Modell A von A

— Instantiiere BODY(A) und extrahiere Programmkomponenten

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 9 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMA: OPERATOR MATCH I

Problemreduktion auf bekannte Algorithmentheorie

e spec reduzierbar auf spec’ (spec<spec’)
Ve:D. Iz = 32D . (U'lx] ~ Vy:R’.0O'2,y] = Jy:R. Olz,y])
— Eingabebedingung von spec (nach Transformation) stéirker als spec’

— Ausgabebedingung von spec schwacher
— Nichtrekursive A-Reduktion eines Problems

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 10 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMA: OPERATOR MATCH I

Problemreduktion auf bekannte Algorithmentheorie

e spec reduzierbar auf spec’ (spec<spec’)
Ve:D. Ix] = 32":D°. (I'lx] A Yy :R.O'2,y] = Fy:R. Olz,y])
— Eingabebedingung von spec (nach Transformation) starker als spec’

— Ausgabebedingung von spec schwacher
— Nichtrekursive A-Reduktion eines Problems

e Reduzierbarkeit liefert Problemtransformation
- spec= (D, R, 1,0) ist erfiillbar, wenn es eine Algorithmen-
theorie A und ein Modell A fur A gibt, mit spec<specy
— Beweis spec<specy liefert Substitutionen 6:D—D 4 und 0:D X Rp— R
— body(x) = o(x,bodya(0(x))) ist korrekter Algorithmus fiir spec

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 10 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMA: OPERATOR MATCH I

Problemreduktion auf bekannte Algorithmentheorie

e spec reduzierbar auf spec’ (spec<spec’)
Ve:D. Ix] = 32":D°. (I'lx] A Yy :R.O'2,y] = Fy:R. Olz,y])
— Eingabebedingung von spec (nach Transformation) starker als spec’

— Ausgabebedingung von spec schwacher
— Nichtrekursive A-Reduktion eines Problems

e Reduzierbarkeit liefert Problemtransformation
—spec= (D, R, I,0) ist erfiillbar, wenn es eine Algorithmen-
theorie A und ein Modell A fur A gibt, mit spec<specy
— Beweis spec<specy liefert Substitutionen 6:D—D 4 und 0:D X Rp— R
— body(x) = o(x,bodya(0(x))) ist korrekter Algorithmus fiir spec

e Syntheseverfahren
— Wahle Algorithmentheorie A und ein Modell A von A
— Beweise spec<specy und extrahiere Substitutionen o und 6

— Spezialisiere bodys zu Ax. o (x,body4(0(z)))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 10 Wissensbasierte Programmentwicklung

SYNTHESE MIT ALGORITHMENSCHEMATA VERFEINERT I

Integriere Operator Match in allgemeines Verfahren

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 11 Wissensbasierte Programmentwicklung

SYNTHESE MIT ALGORITHMENSCHEMATA VERFEINERT I

Integriere Operator Match in allgemeines Verfahren

body 4
Dyl R 4,04

0 specspecy o

DI~~~ =~~~ R.O

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 11 Wissensbasierte Programmentwicklung

SYNTHESE MIT ALGORITHMENSCHEMATA VERFEINERT I

Integriere Operator Match in allgemeines Verfahren

body 4
Dyl R 4,04

0 specspecy o

DI———————————— RO

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Doméanen
— Axiome von A sind fiir diese Modelle ein fiir alle Mal bewiesen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 11 Wissensbasierte Programmentwicklung

SYNTHESE MIT ALGORITHMENSCHEMATA VERFEINERT I

Integriere Operator Match in allgemeines Verfahren

body 4
Dyl R 4,04

0 specspecy o

DI———————————— RO

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Doméanen
— Axiome von A sind fiir diese Modelle ein fiir alle Mal bewiesen

e Reduziere Spezifikation auf ein Modell A

— Auswahl passend zur Grunddomane von spec (Liste, Menge, Béume, . ..)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 11 Wissensbasierte Programmentwicklung

SYNTHESE MIT ALGORITHMENSCHEMATA VERFEINERT I

Integriere Operator Match in allgemeines Verfahren

body 4
Dyl R 4,04

0 specspecy o

DI———————————— RO

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Doméanen
— Axiome von A sind fiir diese Modelle ein fiir alle Mal bewiesen

e Reduziere Spezifikation auf ein Modell A
— Auswahl passend zur Grunddomane von spec (Liste, Menge, Béume, . ..)
— Versuche, spec <specy automatisch zu beweisen
— Spezialisierung von body 4 korrekt fiir extrahierte Substitutionen o und 6

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 11 Wissensbasierte Programmentwicklung

SYNTHESE MIT ALGORITHMENSCHEMATA VERFEINERT I

Integriere Operator Match in allgemeines Verfahren

body 4
Dyl R 4,04

0 specspecy o

DI———————————— RO

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Doméanen
— Axiome von A sind fiir diese Modelle ein fiir alle Mal bewiesen

e Reduziere Spezifikation auf ein Modell A
— Auswahl passend zur Grunddomane von spec (Liste, Menge, Béume, . ..)
— Versuche, spec <specy automatisch zu beweisen
— Spezialisierung von body 4 korrekt fiir extrahierte Substitutionen o und 6

Keine weiteren Inferenzen erforderlich!

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 11 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMA: (GENERALISIERUNG I

Problemreduktion fir mengenwertige Spezifikationen

e spec spezialisiert spec’ (spec< spec’)
RCR’> A Vx:D.llz| = 3z":D’. (I'[z] ~ Yy:R.Olx,y| = O'[2',y])
— Ein- und Ausgabebedingungen von spec starker als spec’
spec’ generalisiert spec

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 12 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMA: (GENERALISIERUNG I

Problemreduktion fir mengenwertige Spezifikationen

e spec spezialisiert spec’ (spec< spec’)
RCR’> A Vx:D.llz| = 3z":D’. (I'[z] ~ Yy:R.Olx,y| = O'[2',y])
— Ein- und Ausgabebedingungen von spec starker als spec’
spec’ generalisiert spec

e Spezialisierung liefert Problemtransformation
— spec = FUNCTION f(x:D) WHERE I[x| RETURNS {y:R | Olx,y|}
ist erfillbar, wenn es eine Algorithmentheorie A und
ein Modell A fiir A gibt, mit spec< specy
— Beweis spec < specy liefert Substitution 60:D—D 4

— body(z) = {y|yebodysa(0(z)) n O(x,y)} ist korrekt fiir spec

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 12 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMA: (GENERALISIERUNG I

Problemreduktion fir mengenwertige Spezifikationen

e spec spezialisiert spec’ (spec< spec’)
RCR’> A Vx:D.llz| = 3z":D’. (I'[z] ~ Yy:R.Olx,y| = O'[2',y])
— Ein- und Ausgabebedingungen von spec starker als spec’
spec’ generalisiert spec

e Spezialisierung liefert Problemtransformation
— spec = FUNCTION f(x:D) WHERE I[x| RETURNS {y:R | Olx,y|}
ist erfillbar, wenn es eine Algorithmentheorie A und
ein Modell A fiir A gibt, mit spec< specy
— Beweis spec < specy liefert Substitution 60:D—D 4

— body(z) = {y|yebodysa(0(x)) n O(x,y)} ist korrekt fiir spec

e Syntheseverfahren

— Wahle Algorithmentheorie A und ein Modell A von A
— Beweise spec< specy und extrahiere o

— Spezialisiere bodya zu Ax.{ y|yebodys(@(x)) n O(x,y)}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 12 Wissensbasierte Programmentwicklung

MENGENWERTIGE SYNTHESE MIT ALGORITHMENSCHEMATA I

Integriere Generalisierung in allgemeines Verfahren

Dy, 4

Spec < spec

body(z)={y | y<bodya(0(x))r O(x,y)} l
DI ————————— = —— — RO

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 13 Wissensbasierte Programmentwicklung

MENGENWERTIGE SYNTHESE MIT ALGORITHMENSCHEMATA I

Integriere Generalisierung in allgemeines Verfahren

Dy, 4

Spec < spec

body(z)={y | yebodya(@(z))rO(x,y)}
i === — R.O

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Domanen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 13 Wissensbasierte Programmentwicklung

MENGENWERTIGE SYNTHESE MIT ALGORITHMENSCHEMATA I

Integriere Generalisierung in allgemeines Verfahren

Dy, 4

sSpec< specy

body(z)={y | yebodya(@(z))rO(x,y)}
i === — R.O

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Domanen

e Reduziere Spezifikation auf ein Modell A
— Auswahl passend zur Grunddomane von spec (Liste, Menge, Baume, ...)
— Versuche, spec< specy automatisch zu beweisen
— Spezialisierung von body 4 korrekt fir extrahierte Substitution 6

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 13 Wissensbasierte Programmentwicklung

MENGENWERTIGE SYNTHESE MIT ALGORITHMENSCHEMATA I

Integriere Generalisierung in allgemeines Verfahren

Dy, 4

Spec < spec

body(z)={y | yebodya(@(z))rO(x,y)}
i === — R.O

e Speichere generische Modelle von A
— Standardkomponenten der Algorithmentheorie fiir wichtige Domanen

e Reduziere Spezifikation auf ein Modell A
— Auswahl passend zur Grunddoméne von spec (Liste, Menge, Baume, .. .)
— Versuche, spec< specy automatisch zu beweisen
— Spezialisierung von body 4 korrekt fir extrahierte Substitution 6
Keine weiteren Inferenzen erforderlich!

Optimierte Version fur spezielle Algorithmentheorien moglich

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 13

Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMA: FALLUNTERSCHEIDUNG I

Zerlegung in bekannte Losungen

® spec zerlegbar in specy..spec,, (spec = U;spec;)
Vo:D. I[z] = Lx]v..vI,[z] A Vi<n.Vy:R. Oz, y] = Olx,y])
— Eingabebedingung zerlegbar in Eingabebedingungen der spec;

— Ausgabebedingung der spec; starker
— Nichtrekursive v-Reduktion eines Problems

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 14 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMA: FALLUNTERSCHEIDUNG I

Zerlegung in bekannte Losungen

® spec zerlegbar in specy..spec,, (spec = U;spec;)
Vo:D. I[z] = Lx]v..vI,[z] A Vi<n.Vy:R. Oz, y] = Olx,y])
— Eingabebedingung zerlegbar in Eingabebedingungen der spec;

— Ausgabebedingung der spec; starker
— Nichtrekursive v-Reduktion eines Problems

e Zerlegbarkeit liefert Fallunterscheidung
— spec ist erfiillbar, wenn es Algorithmentheorien A;..A,
Modelle A; fiir A; gibt, so dafl spec = U;specy,
—body(x) = if I |z] then bodya,|z|...else bodya,|x] ist korrekt fir spec

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 14 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMA: FALLUNTERSCHEIDUNG I

Zerlegung in bekannte Losungen

® spec zerlegbar in speci..spec, (spec = U;spec;)
Ve:D.Ix] = Llz]v..v,[z] A Vi<n.Vy:R. Oz, y] = Olz,y])
— Eingabebedingung zerleghar in Eingabebedingungen der spec;

— Ausgabebedingung der spec; starker
— Nichtrekursive v-Reduktion eines Problems

e Zerlegbarkeit liefert Fallunterscheidung
— spec ist erfiillbar, wenn es Algorithmentheorien A;..A,
Modelle A; fiir A; gibt, so dafl spec = U;specy,
—body(x) = if I |z] then bodya,|z|...else bodya,|x] ist korrekt fir spec

e Syntheseverfahren “Derived Antecedants”
— Wahle Algorithmentheorie A; und ein Modell A;
— Bestimme Eingabebedingung I; fir die A; “korrekt arbeitet”
— Wiederhole Verfahren fiir spec’ = (D, R, I n—11, O) bis Zerlegung komplett
— Setze Losungen durch Fallunterscheidung zusammen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 14 Wissensbasierte Programmentwicklung

HIERARCHIE ALGORITHMISCHER STRUKTUREN I

ALLGEMEINE PROBLEMSTRUKTUR
Generate & Test

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 15 Wissensbasierte Programmentwicklung

HIERARCHIE ALGORITHMISCHER STRUKTUREN I

ALLGEMEINE PROBLEMSTRUKTUR

/W

REDUKTIONSSTRUKTUR LOKALE STRUKTUR
Lokalsuche

Simulated Annealing

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 15 Wissensbasierte Programmentwicklung

HIERARCHIE ALGORITHMISCHER STRUKTUREN I

ALLGEMEINE PROBLEMSTRUKTUR

/W

REDUKTIONSSTRUKTUR LOKALE STRUKTUR
Lokalsuche
Simulated Annealing
KOMPLEMENTIERUNG

Siebe

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 15 Wissensbasierte Programmentwicklung

HIERARCHIE ALGORITHMISCHER STRUKTUREN I

ALLGEMEINE PROBLEMSTRUKTUR

/M

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

Lokalsuche
Simulated Annealing

KOMPLEMENTIERUNG A-REDUKTION

Siebe/////7

STATISCH REKURSIV

Problemreduktion Divide & Conquer
(Operator Match)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 15 Wissensbasierte Programmentwicklung

HIERARCHIE ALGORITHMISCHER STRUKTUREN I

ALLGEMEINE PROBLEMSTRUKTUR

/M

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

Lokalsuche
Simulated Annealing

KOMPLEMENTIERUNG A-REDUKTION v-REDUKTION

Siebe/////7 N

STATISCH REKURSIV STATISCH REKURSIV
Problemreduktion Divide & Conquer Bedingungen Globalsuche
(Operator Match) Fallanalyse Binarsuche

Backtracking

Branch & Bound (A*)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 15 Wissensbasierte Programmentwicklung

HIERARCHIE ALGORITHMISCHER STRUKTUREN

ALLGEMEINE PROBLEMSTRUKTUR

/W

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

Lokalsuche
Simulated Annealing

KOMPLEMENTIERUNG A-REDUKTION v-REDUKTION

Siebe/////7 N

STATISCH REKURSIV STATISCH REKURSIV
Problemreduktion Divide & Conquer Bedingungen Globalsuche
(Operator Match) Fallanalys Binarsuche

Backtracking
Branch & Bound (A*)

A-Vv-REDUKTION
Dynamische Programmierung
Branch & Bound (AO*)
Spielbaum-Suche

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 15 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA: VORTEILE FUR SYNTHESE I

e Effizientes Syntheseverfahren
— Voruntersuchungen entlasten Syntheseprozef3 zur Laufzeit
- Beweislast verlagert in Entwurf und Beweis der Algorithmentheorien

— Verfeinerung vorgefertigter Teillosungen (Modelle) moglich
- zielgerichtetes Vorgehen, Verifikation der Axiome entfallt

— Echte Kooperation zwischen Mensch und Computer
- Mensch: Entwurfsentscheidungen — Computer: formale Details

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 16 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA: VORTEILE FUR SYNTHESE I

e Effizientes Syntheseverfahren
— Voruntersuchungen entlasten Syntheseprozef3 zur Laufzeit
- Beweislast verlagert in Entwurf und Beweis der Algorithmentheorien

— Verfeinerung vorgefertigter Teillosungen (Modelle) moglich
- zielgerichtetes Vorgehen, Verifikation der Axiome entfallt

— Echte Kooperation zwischen Mensch und Computer
- Mensch: Entwurfsentscheidungen — Computer: formale Details

e Erzeugung effizienter Algorithmen
— Vorgabe einer effizienten Grundstruktur durch Theoreme

— Individuelle Optimierung nachtraglich

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 16 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA: VORTEILE FUR SYNTHESE I

e Effizientes Syntheseverfahren
— Voruntersuchungen entlasten Syntheseprozef zur Laufzeit
- Beweislast verlagert in Entwurf und Beweis der Algorithmentheorien

— Verfeinerung vorgefertigter Teillosungen (Modelle) moglich
- zielgerichtetes Vorgehen, Verifikation der Axiome entfallt

— Echte Kooperation zwischen Mensch und Computer
- Mensch: Entwurtsentscheidungen — Computer: formale Details

e Erzeugung effizienter Algorithmen
— Vorgabe einer effizienten Grundstruktur durch Theoreme

— Individuelle Optimierung nachtraglich

e Wissensbasiertes Vorgehen

— Erkenntnisse iiber Algorithmen als Theoreme verwendbar

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 16 Wissensbasierte Programmentwicklung

ALGORITHMENSCHEMATA: VORTEILE FUR SYNTHESE I

e Effizientes Syntheseverfahren
— Voruntersuchungen entlasten Syntheseprozef zur Laufzeit
- Beweislast verlagert in Entwurf und Beweis der Algorithmentheorien

— Verfeinerung vorgefertigter Teillosungen (Modelle) moglich
- zielgerichtetes Vorgehen, Verifikation der Axiome entfallt

— Echte Kooperation zwischen Mensch und Computer
- Mensch: Entwurtsentscheidungen — Computer: formale Details

e Erzeugung effizienter Algorithmen
— Vorgabe einer effizienten Grundstruktur durch Theoreme

— Individuelle Optimierung nachtraglich

e Wissensbasiertes Vorgehen

— Erkenntnisse iiber Algorithmen als Theoreme verwendbar

e Formales theoretisches Fundament

— Leicht in das Konzept beweisbasierter Systeme integrierbar

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 16 Wissensbasierte Programmentwicklung

