
Automatisierte Logik und Programmierung

Lektion 18

Wissensbasierte Programmentwicklung

1. Algorithmenschemata

2. Globalsuche

3. Divide & Conquer

4. Lokalsuche

Automatisierte Logik und Programmierung II §18 1 Wissensbasierte Programmentwicklung

Wissensverarbeitung in der Programmsynthese

Zielgerichtete Entwicklung guter Algorithmen

• Synthese im Kleinen ist zu allgemein

– Fokus auf Logik statt auf Programmierung

– Steuerung durch “normale” Programmier kaum möglich

– Keine echte Unterstützung bei der Entwicklung von Programmen

Automatisierte Logik und Programmierung II §18 1 Wissensbasierte Programmentwicklung

Wissensverarbeitung in der Programmsynthese

Zielgerichtete Entwicklung guter Algorithmen

• Synthese im Kleinen ist zu allgemein

– Fokus auf Logik statt auf Programmierung

– Steuerung durch “normale” Programmier kaum möglich

– Keine echte Unterstützung bei der Entwicklung von Programmen

• Programmiermethodik verwendet Wissen

– Welche grundsätzlichen Algorithmenstrukturen gibt es?

– Welche Algorithmenstrukturen sind für ein Problem geeignet?

Automatisierte Logik und Programmierung II §18 1 Wissensbasierte Programmentwicklung

Wissensverarbeitung in der Programmsynthese

Zielgerichtete Entwicklung guter Algorithmen

• Synthese im Kleinen ist zu allgemein

– Fokus auf Logik statt auf Programmierung

– Steuerung durch “normale” Programmier kaum möglich

– Keine echte Unterstützung bei der Entwicklung von Programmen

• Programmiermethodik verwendet Wissen

– Welche grundsätzlichen Algorithmenstrukturen gibt es?

– Welche Algorithmenstrukturen sind für ein Problem geeignet?

• Synthese sollte Programmierwissen verarbeiten

– Umsetzung von Programmiermethodik in Entwurfsstrategien

– Schematisierung von Algorithmenstrukturen

– Axiome für Korrektheit des schematischen Algorithmus

Automatisierte Logik und Programmierung II §18 1 Wissensbasierte Programmentwicklung

Wissensverarbeitung in der Programmsynthese

Zielgerichtete Entwicklung guter Algorithmen

• Synthese im Kleinen ist zu allgemein

– Fokus auf Logik statt auf Programmierung

– Steuerung durch “normale” Programmier kaum möglich

– Keine echte Unterstützung bei der Entwicklung von Programmen

• Programmiermethodik verwendet Wissen

– Welche grundsätzlichen Algorithmenstrukturen gibt es?

– Welche Algorithmenstrukturen sind für ein Problem geeignet?

• Synthese sollte Programmierwissen verarbeiten

– Umsetzung von Programmiermethodik in Entwurfsstrategien

– Schematisierung von Algorithmenstrukturen

– Axiome für Korrektheit des schematischen Algorithmus

Aufwendiges theoretisches Fundament entlastet Syntheseprozeß

Automatisierte Logik und Programmierung II §18 2 Wissensbasierte Programmentwicklung

Wissensbasierte Programmentwicklung: Grundidee

• Erzeuge Algorithmen in einem Schritt

– Anpassung eines schematischen Algorithmus an eine Problemstellung

– Historisch: High-Level Transformation

Automatisierte Logik und Programmierung II §18 2 Wissensbasierte Programmentwicklung

Wissensbasierte Programmentwicklung: Grundidee

• Erzeuge Algorithmen in einem Schritt

– Anpassung eines schematischen Algorithmus an eine Problemstellung

– Historisch: High-Level Transformation

• Grundsätzliche Vorgehensweise

– Gegeben sei die Spezifikation

· FUNCTION f(x:D):R WHERE I[x] RETURNS y SUCH THAT O[x, y]

– Wähle algorithmische Grundstruktur

– Verfeinere Basisschema der Struktur durch Bestimmung von Parametern

– Prüfe, ob Parameter die Korrektheitsaxiome des Schemas erfüllen

– Instantiiere schematischen Algorithmus

Automatisierte Logik und Programmierung II §18 2 Wissensbasierte Programmentwicklung

Wissensbasierte Programmentwicklung: Grundidee

• Erzeuge Algorithmen in einem Schritt

– Anpassung eines schematischen Algorithmus an eine Problemstellung

– Historisch: High-Level Transformation

• Grundsätzliche Vorgehensweise

– Gegeben sei die Spezifikation

· FUNCTION f(x:D):R WHERE I[x] RETURNS y SUCH THAT O[x, y]

– Wähle algorithmische Grundstruktur

– Verfeinere Basisschema der Struktur durch Bestimmung von Parametern

– Prüfe, ob Parameter die Korrektheitsaxiome des Schemas erfüllen

– Instantiiere schematischen Algorithmus

• Forschungsschwerpunkte

– Analyse der allgemeinen Struktur einer Klasse von Algorithmen

– Schematisierung durch Komponenten und Korrektheitsaxiome

– Techniken zur Verfeinerung von Standardstrukturen

Automatisierte Logik und Programmierung II §18 3 Wissensbasierte Programmentwicklung

Divide & Conquer Synthese eines Sortieralgorithmus

• Problemspezifikation
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S

SUCH THAT rearranges(L,S) ∧ ordered(S)

Automatisierte Logik und Programmierung II §18 3 Wissensbasierte Programmentwicklung

Divide & Conquer Synthese eines Sortieralgorithmus

• Problemspezifikation
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S

SUCH THAT rearranges(L,S) ∧ ordered(S)

• Grundstruktur von Divide & Conquer Algorithmen
FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

Automatisierte Logik und Programmierung II §18 3 Wissensbasierte Programmentwicklung

Divide & Conquer Synthese eines Sortieralgorithmus

• Problemspezifikation
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S

SUCH THAT rearranges(L,S) ∧ ordered(S)

• Grundstruktur von Divide & Conquer Algorithmen
FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Komponenten für einen Sortieralgorithmus
primitive ≡ λL. null?(L)

Directly-solve ≡ λL. []

Decompose ≡ λL. let a=L[|L|/2] in (L<a, L=a, L>a) (L<a ≡ [x|x ∈L ∧x<a])

g ≡ sort×λS.S

Compose ≡ λS
1
,S

2
,S

3
. S

1
◦S

2
◦S

3

Automatisierte Logik und Programmierung II §18 3 Wissensbasierte Programmentwicklung

Divide & Conquer Synthese eines Sortieralgorithmus

• Problemspezifikation
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S

SUCH THAT rearranges(L,S) ∧ ordered(S)

• Grundstruktur von Divide & Conquer Algorithmen
FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Komponenten für einen Sortieralgorithmus
primitive ≡ λL. null?(L)

Directly-solve ≡ λL. []

Decompose ≡ λL. let a=L[|L|/2] in (L<a, L=a, L>a) (L<a ≡ [x|x ∈L ∧x<a])

g ≡ sort×λS.S

Compose ≡ λS
1
,S

2
,S

3
. S

1
◦S

2
◦S

3

• Instantiierter Algorithmus
FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S

SUCH THAT rearranges(L,S) ∧ ordered(S)

≡ if null?(L) then [] else let a = L[|L|/2]

in let L
1
= [x|x ∈L ∧x<a]

and L
2
= [x|x ∈L ∧x=a]

and L
3
= [x|x ∈L ∧x>a]

in sort(L
1
) ◦ L

2
◦ sort(L

3
)

Automatisierte Logik und Programmierung II §18 4 Wissensbasierte Programmentwicklung

Wissensbasierte Programmentwicklung: Literatur

Douglas R. Smith and Michael R. Lowry

Algorithm Theories and Design Tactics, Science of Computer Programming 14:305–321

Douglas R. Smith

KIDS — A Knowledge-Based Software Development system,

in: Michael R. Lowry and Robert D. McCartney, ed. Automating Software Design,
AAAI Press, 1991, p.483–514.

Douglas R. Smith

Top-Down Synthesis of Divide-and-Conquer Algorithms, AIJ 27:43–96, 1985

Douglas R. Smith

Structure and Design of Global Search Algorithms

Structure and Design of Problem Reduction Generators

Structure and Design of Dynamic Programming Algorithms

Technical Report, Kestrel Institute

Michael R. Lowry

Structure and Design of Local Search Algorithms

Proceedings, AAAI Workshop on Software Design, p.88–94

Automatisierte Logik und Programmierung II §18 5 Wissensbasierte Programmentwicklung

Algorithmenschemata als Algebraische Theorien

Spezifikation Programm

• Programmentwicklung auf zwei Ebenen

Automatisierte Logik und Programmierung II §18 5 Wissensbasierte Programmentwicklung

Algorithmenschemata als Algebraische Theorien

Spezifikation Programm

TPROGTSPEC

• Programmentwicklung auf zwei Ebenen
– Allgemeine algorithmische Theorien

Automatisierte Logik und Programmierung II §18 5 Wissensbasierte Programmentwicklung

Algorithmenschemata als Algebraische Theorien

Spezifikation Programm

TPROGTSPEC

Tspec Tprog

• Programmentwicklung auf zwei Ebenen
– Allgemeine algorithmische Theorien

– Konkrete Probleme als Instanzen der allgemeinen Theorien

Automatisierte Logik und Programmierung II §18 5 Wissensbasierte Programmentwicklung

Algorithmenschemata als Algebraische Theorien

Spezifikation Programm
Synthese

--

TPROGTSPEC

Tspec Tprog

• Programmentwicklung auf zwei Ebenen
– Allgemeine algorithmische Theorien

– Konkrete Probleme als Instanzen der allgemeinen Theorien

• Problemtheorie erweitert zu Programmtheorie

Automatisierte Logik und Programmierung II §18 5 Wissensbasierte Programmentwicklung

Algorithmenschemata als Algebraische Theorien

Spezifikation Programm
Synthese

--

TPROGTSPEC

Tspec Tprog

A
*

Theorie-Erweiterung:

Komponenten+Axiome

A

Erweiterung:
Komponentensuche

*

Modell

• Programmentwicklung auf zwei Ebenen
– Allgemeine algorithmische Theorien

– Konkrete Probleme als Instanzen der allgemeinen Theorien

• Problemtheorie erweitert zu Programmtheorie
– Algorithmentheorie A: ergänze Komponenten und Axiome eines Schemas

Automatisierte Logik und Programmierung II §18 5 Wissensbasierte Programmentwicklung

Algorithmenschemata als Algebraische Theorien

Spezifikation Programm
Synthese

--

TPROGTSPEC

Tspec Tprog

A
*

Theorie-Erweiterung:

Komponenten+Axiome

A

Erweiterung:
Komponentensuche

*

Modell

P-
*

Kanonische Theorie-Erweiterung: BODY + Korrektheitsaxiom

-
Erweiterung mit BODY(A) P

• Programmentwicklung auf zwei Ebenen
– Allgemeine algorithmische Theorien

– Konkrete Probleme als Instanzen der allgemeinen Theorien

• Problemtheorie erweitert zu Programmtheorie
– Algorithmentheorie A: ergänze Komponenten und Axiome eines Schemas

– Programmtheorie P : kanonische Erweiterung um Programmkörper

Automatisierte Logik und Programmierung II §18 5 Wissensbasierte Programmentwicklung

Algorithmenschemata als Algebraische Theorien

Spezifikation Programm
Synthese

--

TPROGTSPEC

Tspec Tprog

A
*

Theorie-Erweiterung:

Komponenten+Axiome

A

Erweiterung:
Komponentensuche

*

Modell

P-
*

Kanonische Theorie-Erweiterung: BODY + Korrektheitsaxiom

-
Erweiterung mit BODY(A) P

Programmkonstruktion:
Extraktion
relevanter Komponenten

�

• Programmentwicklung auf zwei Ebenen
– Allgemeine algorithmische Theorien

– Konkrete Probleme als Instanzen der allgemeinen Theorien

• Problemtheorie erweitert zu Programmtheorie
– Algorithmentheorie A: ergänze Komponenten und Axiome eines Schemas

– Programmtheorie P : kanonische Erweiterung um Programmkörper

– Synthese: Programme werden aus Programmtheorie extrahiert

Automatisierte Logik und Programmierung II §18 6 Wissensbasierte Programmentwicklung

Technische Grundbegriffe: Algebraische Theorien

• Formale Theorie: Tripel T = (S, Ω, Ax)

– S: Menge von Sortennamen (Namen für Datentypen)

– Ω: Familie von Operationsnamen (zusammen mit Typisierung)

– Ax: Menge von Axiomen für Datentypen und Operationen

Automatisierte Logik und Programmierung II §18 6 Wissensbasierte Programmentwicklung

Technische Grundbegriffe: Algebraische Theorien

• Formale Theorie: Tripel T = (S, Ω, Ax)

– S: Menge von Sortennamen (Namen für Datentypen)

– Ω: Familie von Operationsnamen (zusammen mit Typisierung)

– Ax: Menge von Axiomen für Datentypen und Operationen

• Theorie T 1 erweitert T 2

– Alle Sortennamen, Operationsnamen, Axiome von T 2 existieren in T 1

Automatisierte Logik und Programmierung II §18 6 Wissensbasierte Programmentwicklung

Technische Grundbegriffe: Algebraische Theorien

• Formale Theorie: Tripel T = (S, Ω, Ax)

– S: Menge von Sortennamen (Namen für Datentypen)

– Ω: Familie von Operationsnamen (zusammen mit Typisierung)

– Ax: Menge von Axiomen für Datentypen und Operationen

• Theorie T 1 erweitert T 2

– Alle Sortennamen, Operationsnamen, Axiome von T 2 existieren in T 1

• T Struktur für T

– T ist Menge von Datentypen und Operationen, typisiert gemäß Ω

T Modell für T

– T ist Struktur für T , die alle Axiome aus T erfüllt

Automatisierte Logik und Programmierung II §18 6 Wissensbasierte Programmentwicklung

Technische Grundbegriffe: Algebraische Theorien

• Formale Theorie: Tripel T = (S, Ω, Ax)

– S: Menge von Sortennamen (Namen für Datentypen)

– Ω: Familie von Operationsnamen (zusammen mit Typisierung)

– Ax: Menge von Axiomen für Datentypen und Operationen

• Theorie T 1 erweitert T 2

– Alle Sortennamen, Operationsnamen, Axiome von T 2 existieren in T 1

• T Struktur für T

– T ist Menge von Datentypen und Operationen, typisiert gemäß Ω

T Modell für T

– T ist Struktur für T , die alle Axiome aus T erfüllt

• Struktur T1 erweitert T2

– Alle Datentypen und Operationen von T2 existieren auch in T1

(gleiche Typisierung bezüglich T
2
!)

Automatisierte Logik und Programmierung II §18 7 Wissensbasierte Programmentwicklung

Algorithmenschemata als algebraische Theorien

• TSPEC: algebraische Theorie der Spezifikationen
– ({D,R}, {I:D→B, O:D×R→B}, ∅)

Automatisierte Logik und Programmierung II §18 7 Wissensbasierte Programmentwicklung

Algorithmenschemata als algebraische Theorien

• TSPEC: algebraische Theorie der Spezifikationen
– ({D,R}, {I:D→B, O:D×R→B}, ∅)

P Problemtheorie:
– P erweitert TSPEC (P enthält eine Programmspezifikation)

Automatisierte Logik und Programmierung II §18 7 Wissensbasierte Programmentwicklung

Algorithmenschemata als algebraische Theorien

• TSPEC: algebraische Theorie der Spezifikationen
– ({D,R}, {I:D→B, O:D×R→B}, ∅)

P Problemtheorie:
– P erweitert TSPEC (P enthält eine Programmspezifikation)

• TPROG: algebraische Theorie der Programme
– ({D,R}, {I:D→B, O:D×R→B, body:D 6→R }, {∀x:D. I(x)⇒O(x,body(x))})

Automatisierte Logik und Programmierung II §18 7 Wissensbasierte Programmentwicklung

Algorithmenschemata als algebraische Theorien

• TSPEC: algebraische Theorie der Spezifikationen
– ({D,R}, {I:D→B, O:D×R→B}, ∅)

P Problemtheorie:
– P erweitert TSPEC (P enthält eine Programmspezifikation)

• TPROG: algebraische Theorie der Programme
– ({D,R}, {I:D→B, O:D×R→B, body:D 6→R }, {∀x:D. I(x)⇒O(x,body(x))})

P Programmtheorie:
– P erweitert TPROG (P enthält ein Programm)

Automatisierte Logik und Programmierung II §18 7 Wissensbasierte Programmentwicklung

Algorithmenschemata als algebraische Theorien

• TSPEC: algebraische Theorie der Spezifikationen
– ({D,R}, {I:D→B, O:D×R→B}, ∅)

P Problemtheorie:
– P erweitert TSPEC (P enthält eine Programmspezifikation)

• TPROG: algebraische Theorie der Programme
– ({D,R}, {I:D→B, O:D×R→B, body:D 6→R }, {∀x:D. I(x)⇒O(x,body(x))})

P Programmtheorie:
– P erweitert TPROG (P enthält ein Programm)

• A Algorithmentheorie:
– A ist Problemtheorie mit kanonischer Erweiterung zu Programmtheorie

– Es gibt abstraktes Programmschema BODY mit der Eigenschaft

(specA, BODY(A)) ist korrekt für jedes Modell A von A

(Für jedes Modell A existiert eine Standardlösung der Spezifikation specA)

Automatisierte Logik und Programmierung II §18 7 Wissensbasierte Programmentwicklung

Algorithmenschemata als algebraische Theorien

• TSPEC: algebraische Theorie der Spezifikationen
– ({D,R}, {I:D→B, O:D×R→B}, ∅)

P Problemtheorie:
– P erweitert TSPEC (P enthält eine Programmspezifikation)

• TPROG: algebraische Theorie der Programme
– ({D,R}, {I:D→B, O:D×R→B, body:D 6→R }, {∀x:D. I(x)⇒O(x,body(x))})

P Programmtheorie:
– P erweitert TPROG (P enthält ein Programm)

• A Algorithmentheorie:
– A ist Problemtheorie mit kanonischer Erweiterung zu Programmtheorie

– Es gibt abstraktes Programmschema BODY mit der Eigenschaft

(specA, BODY(A)) ist korrekt für jedes Modell A von A

(Für jedes Modell A existiert eine Standardlösung der Spezifikation specA)

⇓

Synthese =̂ Erweitere Programmtheorien zu Algorithmentheorien

Automatisierte Logik und Programmierung II §18 8 Wissensbasierte Programmentwicklung

Divide & Conquer Schema als Algorithmentheorie

SD&C : {D,R,D’,R’}

ΩD&C : {I :D→B, O:D×R→B, OD:D×D’×D→B, I ’:D’→B, O’:D’×R’→B,

OC :R’×R×R→B, �:D×D→B, Decompose :D→D’×D, g:D’→R’,

Compose :R’×R→R, Directly-solve :D→R, primitive :D→B

}

AxD&C : {FUNCTION fp(x:D):R WHERE I [x] ∧primitive[x] RETURNS y SUCH THAT O[x, y]

≡ Directly-solve[x] ist korrekt
...

� ist wohlfundierte Ordnung auf D

}

Automatisierte Logik und Programmierung II §18 8 Wissensbasierte Programmentwicklung

Divide & Conquer Schema als Algorithmentheorie

SD&C : {D,R,D’,R’}

ΩD&C : {I :D→B, O:D×R→B, OD:D×D’×D→B, I ’:D’→B, O’:D’×R’→B,

OC :R’×R×R→B, �:D×D→B, Decompose :D→D’×D, g:D’→R’,

Compose :R’×R→R, Directly-solve :D→R, primitive :D→B

}

AxD&C : {FUNCTION fp(x:D):R WHERE I [x] ∧primitive[x] RETURNS y SUCH THAT O[x, y]

≡ Directly-solve[x] ist korrekt
...

� ist wohlfundierte Ordnung auf D

}

Für A = ({D,R,D’,R’}, {I ,O,OD, I ’,O’,OC ,�,

Decompose , g,Compose ,Directly-solve , primitive})

ist BODY(A) =̂

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x]

else (Compose ◦ g×f ◦ Decompose) (x)

Automatisierte Logik und Programmierung II §18 8 Wissensbasierte Programmentwicklung

Divide & Conquer Schema als Algorithmentheorie

SD&C : {D,R,D’,R’}

ΩD&C : {I :D→B, O:D×R→B, OD:D×D’×D→B, I ’:D’→B, O’:D’×R’→B,

OC :R’×R×R→B, �:D×D→B, Decompose :D→D’×D, g:D’→R’,

Compose :R’×R→R, Directly-solve :D→R, primitive :D→B

}

AxD&C : {FUNCTION fp(x:D):R WHERE I [x] ∧primitive[x] RETURNS y SUCH THAT O[x, y]

≡ Directly-solve[x] ist korrekt
...

� ist wohlfundierte Ordnung auf D

}

Für A = ({D,R,D’,R’}, {I ,O,OD, I ’,O’,OC ,�,

Decompose , g,Compose ,Directly-solve , primitive})

ist BODY(A) =̂

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x]

else (Compose ◦ g×f ◦ Decompose) (x)

BODY(A) ist korrekt, wenn A alle Axiome in AxD&C erfüllt

Automatisierte Logik und Programmierung II §18 9 Wissensbasierte Programmentwicklung

Synthese mit Algorithmenschemata präzisiert

spec= (D,R,I,O) ist erfüllbar, wenn es eine Algorithmentheorie A und ein

Modell A für A gibt, welches die Struktur Tspec =({D,R}, {I,O}) erweitert

Automatisierte Logik und Programmierung II §18 9 Wissensbasierte Programmentwicklung

Synthese mit Algorithmenschemata präzisiert

spec= (D,R,I,O) ist erfüllbar, wenn es eine Algorithmentheorie A und ein

Modell A für A gibt, welches die Struktur Tspec =({D,R}, {I,O}) erweitert

Spezifikation Programm
Synthese

--

TPROGTSPEC

Tspec Tprog

Methode:

Automatisierte Logik und Programmierung II §18 9 Wissensbasierte Programmentwicklung

Synthese mit Algorithmenschemata präzisiert

spec= (D,R,I,O) ist erfüllbar, wenn es eine Algorithmentheorie A und ein

Modell A für A gibt, welches die Struktur Tspec =({D,R}, {I,O}) erweitert

Spezifikation Programm
Synthese

--

TPROGTSPEC

Tspec Tprog

A
*

Theorie-Erweiterung:
Komponenten+Axiome

Methode:

– Wähle Algorithmentheorie A,

Automatisierte Logik und Programmierung II §18 9 Wissensbasierte Programmentwicklung

Synthese mit Algorithmenschemata präzisiert

spec= (D,R,I,O) ist erfüllbar, wenn es eine Algorithmentheorie A und ein

Modell A für A gibt, welches die Struktur Tspec =({D,R}, {I,O}) erweitert

Spezifikation Programm
Synthese

--

TPROGTSPEC

Tspec Tprog

A
*

Theorie-Erweiterung:
Komponenten+Axiome

A

Erweiterung:
Komponentensuche

*

Modell

Methode:

– Wähle Algorithmentheorie A,

– Erweitere Tspec zu Modell A von A

Automatisierte Logik und Programmierung II §18 9 Wissensbasierte Programmentwicklung

Synthese mit Algorithmenschemata präzisiert

spec= (D,R,I,O) ist erfüllbar, wenn es eine Algorithmentheorie A und ein

Modell A für A gibt, welches die Struktur Tspec =({D,R}, {I,O}) erweitert

Spezifikation Programm
Synthese

--

TPROGTSPEC

Tspec Tprog

A
*

Theorie-Erweiterung:
Komponenten+Axiome

A

Erweiterung:
Komponentensuche

*

Modell

P-
*

Kanonische Theorie-Erweiterung: BODY + Korrektheitsaxiom

-
Erweiterung mit BODY(A) P

Methode:

– Wähle Algorithmentheorie A,

– Erweitere Tspec zu Modell A von A

– Instantiiere BODY(A)

Automatisierte Logik und Programmierung II §18 9 Wissensbasierte Programmentwicklung

Synthese mit Algorithmenschemata präzisiert

spec= (D,R,I,O) ist erfüllbar, wenn es eine Algorithmentheorie A und ein

Modell A für A gibt, welches die Struktur Tspec =({D,R}, {I,O}) erweitert

Spezifikation Programm
Synthese

--

TPROGTSPEC

Tspec Tprog

A
*

Theorie-Erweiterung:
Komponenten+Axiome

A

Erweiterung:
Komponentensuche

*

Modell

P-
*

Kanonische Theorie-Erweiterung: BODY + Korrektheitsaxiom

-
Erweiterung mit BODY(A) P

Programmkonstruktion:
Extraktion
relevanter Komponenten

�

Methode:

– Wähle Algorithmentheorie A,

– Erweitere Tspec zu Modell A von A

– Instantiiere BODY(A) und extrahiere Programmkomponenten

Automatisierte Logik und Programmierung II §18 10 Wissensbasierte Programmentwicklung

Algorithmenschema: Operator Match

Problemreduktion auf bekannte Algorithmentheorie

• spec reduzierbar auf spec′ (spec � spec′)
∀x:D.I [x] ⇒ ∃x′:D’. (I ′[x] ∧ ∀y′:R’.O′[x′, y′] ⇒ ∃y:R.O[x, y])

– Eingabebedingung von spec (nach Transformation) stärker als spec′

– Ausgabebedingung von spec schwächer

– Nichtrekursive ∧ -Reduktion eines Problems

Automatisierte Logik und Programmierung II §18 10 Wissensbasierte Programmentwicklung

Algorithmenschema: Operator Match

Problemreduktion auf bekannte Algorithmentheorie

• spec reduzierbar auf spec′ (spec � spec′)
∀x:D.I [x] ⇒ ∃x′:D’. (I ′[x] ∧ ∀y′:R’.O′[x′, y′] ⇒ ∃y:R.O[x, y])

– Eingabebedingung von spec (nach Transformation) stärker als spec′

– Ausgabebedingung von spec schwächer

– Nichtrekursive ∧ -Reduktion eines Problems

• Reduzierbarkeit liefert Problemtransformation
– spec =(D, R, I, O) ist erfüllbar, wenn es eine Algorithmen-

theorie A und ein Modell A für A gibt, mit spec � specA

– Beweis spec�specA liefert Substitutionen θ:D→DA und σ:DA×RA→R

– body(x) ≡ σ(x,bodyA(θ(x))) ist korrekter Algorithmus für spec

Automatisierte Logik und Programmierung II §18 10 Wissensbasierte Programmentwicklung

Algorithmenschema: Operator Match

Problemreduktion auf bekannte Algorithmentheorie

• spec reduzierbar auf spec′ (spec � spec′)
∀x:D.I [x] ⇒ ∃x′:D’. (I ′[x] ∧ ∀y′:R’.O′[x′, y′] ⇒ ∃y:R.O[x, y])

– Eingabebedingung von spec (nach Transformation) stärker als spec′

– Ausgabebedingung von spec schwächer

– Nichtrekursive ∧ -Reduktion eines Problems

• Reduzierbarkeit liefert Problemtransformation
– spec =(D, R, I, O) ist erfüllbar, wenn es eine Algorithmen-

theorie A und ein Modell A für A gibt, mit spec � specA

– Beweis spec�specA liefert Substitutionen θ:D→DA und σ:DA×RA→R

– body(x) ≡ σ(x,bodyA(θ(x))) ist korrekter Algorithmus für spec

• Syntheseverfahren
– Wähle Algorithmentheorie A und ein Modell A von A

– Beweise spec�specA und extrahiere Substitutionen σ und θ

– Spezialisiere bodyA zu λx. σ(x,bodyA(θ(x)))

Automatisierte Logik und Programmierung II §18 11 Wissensbasierte Programmentwicklung

Synthese mit Algorithmenschemata verfeinert

Integriere Operator Match in allgemeines Verfahren

Automatisierte Logik und Programmierung II §18 11 Wissensbasierte Programmentwicklung

Synthese mit Algorithmenschemata verfeinert

Integriere Operator Match in allgemeines Verfahren

DA,IA RA,OA

D,I R,O

6

?

θ σspec�specA

-
bodyA

-
body(x) = σ(θ(x), bodyA(θ(x)))

Automatisierte Logik und Programmierung II §18 11 Wissensbasierte Programmentwicklung

Synthese mit Algorithmenschemata verfeinert

Integriere Operator Match in allgemeines Verfahren

DA,IA RA,OA

D,I R,O

6

?

θ σspec�specA

-
bodyA

-
body(x) = σ(θ(x), bodyA(θ(x)))

• Speichere generische Modelle von A
– Standardkomponenten der Algorithmentheorie für wichtige Domänen

– Axiome von A sind für diese Modelle ein für alle Mal bewiesen

Automatisierte Logik und Programmierung II §18 11 Wissensbasierte Programmentwicklung

Synthese mit Algorithmenschemata verfeinert

Integriere Operator Match in allgemeines Verfahren

DA,IA RA,OA

D,I R,O

6

?

θ σspec�specA

-
bodyA

-
body(x) = σ(θ(x), bodyA(θ(x)))

• Speichere generische Modelle von A
– Standardkomponenten der Algorithmentheorie für wichtige Domänen

– Axiome von A sind für diese Modelle ein für alle Mal bewiesen

• Reduziere Spezifikation auf ein Modell A
– Auswahl passend zur Grunddomäne von spec (Liste, Menge, Bäume, . . .)

Automatisierte Logik und Programmierung II §18 11 Wissensbasierte Programmentwicklung

Synthese mit Algorithmenschemata verfeinert

Integriere Operator Match in allgemeines Verfahren

DA,IA RA,OA

D,I R,O

6

?

θ σspec�specA

-
bodyA

-
body(x) = σ(θ(x), bodyA(θ(x)))

• Speichere generische Modelle von A
– Standardkomponenten der Algorithmentheorie für wichtige Domänen

– Axiome von A sind für diese Modelle ein für alle Mal bewiesen

• Reduziere Spezifikation auf ein Modell A
– Auswahl passend zur Grunddomäne von spec (Liste, Menge, Bäume, . . .)

– Versuche, spec�specA automatisch zu beweisen

– Spezialisierung von bodyA korrekt für extrahierte Substitutionen σ und θ

Automatisierte Logik und Programmierung II §18 11 Wissensbasierte Programmentwicklung

Synthese mit Algorithmenschemata verfeinert

Integriere Operator Match in allgemeines Verfahren

DA,IA RA,OA

D,I R,O

6

?

θ σspec�specA

-
bodyA

-
body(x) = σ(θ(x), bodyA(θ(x)))

• Speichere generische Modelle von A
– Standardkomponenten der Algorithmentheorie für wichtige Domänen

– Axiome von A sind für diese Modelle ein für alle Mal bewiesen

• Reduziere Spezifikation auf ein Modell A
– Auswahl passend zur Grunddomäne von spec (Liste, Menge, Bäume, . . .)

– Versuche, spec�specA automatisch zu beweisen

– Spezialisierung von bodyA korrekt für extrahierte Substitutionen σ und θ

Keine weiteren Inferenzen erforderlich!

Automatisierte Logik und Programmierung II §18 12 Wissensbasierte Programmentwicklung

Algorithmenschema: Generalisierung

Problemreduktion für mengenwertige Spezifikationen

• spec spezialisiert spec′ (spec � spec′)
R⊆R’ ∧ ∀x:D.I [x] ⇒ ∃x′:D’. (I ′[x] ∧ ∀y:R.O[x, y] ⇒ O′[x′, y′])

– Ein- und Ausgabebedingungen von spec stärker als spec′

spec′ generalisiert spec

Automatisierte Logik und Programmierung II §18 12 Wissensbasierte Programmentwicklung

Algorithmenschema: Generalisierung

Problemreduktion für mengenwertige Spezifikationen

• spec spezialisiert spec′ (spec � spec′)
R⊆R’ ∧ ∀x:D.I [x] ⇒ ∃x′:D’. (I ′[x] ∧ ∀y:R.O[x, y] ⇒ O′[x′, y′])

– Ein- und Ausgabebedingungen von spec stärker als spec′

spec′ generalisiert spec

• Spezialisierung liefert Problemtransformation
– spec = FUNCTION f(x:D) WHERE I[x] RETURNS {y:R |O[x, y]}

ist erfüllbar, wenn es eine Algorithmentheorie A und

ein Modell A für A gibt, mit spec � specA

– Beweis spec�specA liefert Substitution θ:D→DA

– body(x) ≡ { y | y ∈bodyA(θ(x)) ∧ O(x,y) } ist korrekt für spec

Automatisierte Logik und Programmierung II §18 12 Wissensbasierte Programmentwicklung

Algorithmenschema: Generalisierung

Problemreduktion für mengenwertige Spezifikationen

• spec spezialisiert spec′ (spec � spec′)
R⊆R’ ∧ ∀x:D.I [x] ⇒ ∃x′:D’. (I ′[x] ∧ ∀y:R.O[x, y] ⇒ O′[x′, y′])

– Ein- und Ausgabebedingungen von spec stärker als spec′

spec′ generalisiert spec

• Spezialisierung liefert Problemtransformation
– spec = FUNCTION f(x:D) WHERE I[x] RETURNS {y:R |O[x, y]}

ist erfüllbar, wenn es eine Algorithmentheorie A und

ein Modell A für A gibt, mit spec � specA

– Beweis spec�specA liefert Substitution θ:D→DA

– body(x) ≡ { y | y ∈bodyA(θ(x)) ∧ O(x,y) } ist korrekt für spec

• Syntheseverfahren
– Wähle Algorithmentheorie A und ein Modell A von A

– Beweise spec�specA und extrahiere σ

– Spezialisiere bodyA zu λx. { y | y ∈bodyA(θ(x)) ∧ O(x,y) }

Automatisierte Logik und Programmierung II §18 13 Wissensbasierte Programmentwicklung

Mengenwertige Synthese mit Algorithmenschemata

Integriere Generalisierung in allgemeines Verfahren

DA,IA

RA,OA

D,I R,O

6

θ
spec� specA

?

q

bodyA

-
body(x)={ y | y ∈bodyA(θ(x)) ∧O(x,y)}

Automatisierte Logik und Programmierung II §18 13 Wissensbasierte Programmentwicklung

Mengenwertige Synthese mit Algorithmenschemata

Integriere Generalisierung in allgemeines Verfahren

DA,IA

RA,OA

D,I R,O

6

θ
spec� specA

?

q

bodyA

-
body(x)={ y | y ∈bodyA(θ(x)) ∧O(x,y)}

• Speichere generische Modelle von A
– Standardkomponenten der Algorithmentheorie für wichtige Domänen

Automatisierte Logik und Programmierung II §18 13 Wissensbasierte Programmentwicklung

Mengenwertige Synthese mit Algorithmenschemata

Integriere Generalisierung in allgemeines Verfahren

DA,IA

RA,OA

D,I R,O

6

θ
spec� specA

?

q

bodyA

-
body(x)={ y | y ∈bodyA(θ(x)) ∧O(x,y)}

• Speichere generische Modelle von A
– Standardkomponenten der Algorithmentheorie für wichtige Domänen

• Reduziere Spezifikation auf ein Modell A
– Auswahl passend zur Grunddomäne von spec (Liste, Menge, Bäume, . . .)

– Versuche, spec�specA automatisch zu beweisen

– Spezialisierung von bodyA korrekt für extrahierte Substitution θ

Automatisierte Logik und Programmierung II §18 13 Wissensbasierte Programmentwicklung

Mengenwertige Synthese mit Algorithmenschemata

Integriere Generalisierung in allgemeines Verfahren

DA,IA

RA,OA

D,I R,O

6

θ
spec� specA

?

q

bodyA

-
body(x)={ y | y ∈bodyA(θ(x)) ∧O(x,y)}

• Speichere generische Modelle von A
– Standardkomponenten der Algorithmentheorie für wichtige Domänen

• Reduziere Spezifikation auf ein Modell A
– Auswahl passend zur Grunddomäne von spec (Liste, Menge, Bäume, . . .)

– Versuche, spec�specA automatisch zu beweisen

– Spezialisierung von bodyA korrekt für extrahierte Substitution θ

Keine weiteren Inferenzen erforderlich!

Optimierte Version für spezielle Algorithmentheorien möglich

Automatisierte Logik und Programmierung II §18 14 Wissensbasierte Programmentwicklung

Algorithmenschema: Fallunterscheidung

Zerlegung in bekannte Lösungen

• spec zerlegbar in spec1..specn (spec = ∪ispeci)
∀x:D.I [x] ⇒ I1[x] ∨ .. ∨In[x] ∧ ∀i≤n.∀y:R.Oi[x, y] ⇒ O[x, y])

– Eingabebedingung zerlegbar in Eingabebedingungen der speci

– Ausgabebedingung der speci stärker

– Nichtrekursive ∨ -Reduktion eines Problems

Automatisierte Logik und Programmierung II §18 14 Wissensbasierte Programmentwicklung

Algorithmenschema: Fallunterscheidung

Zerlegung in bekannte Lösungen

• spec zerlegbar in spec1..specn (spec = ∪ispeci)
∀x:D.I [x] ⇒ I1[x] ∨ .. ∨In[x] ∧ ∀i≤n.∀y:R.Oi[x, y] ⇒ O[x, y])

– Eingabebedingung zerlegbar in Eingabebedingungen der speci

– Ausgabebedingung der speci stärker

– Nichtrekursive ∨ -Reduktion eines Problems

• Zerlegbarkeit liefert Fallunterscheidung
– spec ist erfüllbar, wenn es Algorithmentheorien A1..An

Modelle Ai für Ai gibt, so daß spec = ∪ispecAi

– body(x) ≡ if I1[x] then bodyA1[x]...else bodyAn[x] ist korrekt für spec

Automatisierte Logik und Programmierung II §18 14 Wissensbasierte Programmentwicklung

Algorithmenschema: Fallunterscheidung

Zerlegung in bekannte Lösungen

• spec zerlegbar in spec1..specn (spec = ∪ispeci)
∀x:D.I [x] ⇒ I1[x] ∨ .. ∨In[x] ∧ ∀i≤n.∀y:R.Oi[x, y] ⇒ O[x, y])

– Eingabebedingung zerlegbar in Eingabebedingungen der speci

– Ausgabebedingung der speci stärker

– Nichtrekursive ∨ -Reduktion eines Problems

• Zerlegbarkeit liefert Fallunterscheidung
– spec ist erfüllbar, wenn es Algorithmentheorien A1..An

Modelle Ai für Ai gibt, so daß spec = ∪ispecAi

– body(x) ≡ if I1[x] then bodyA1[x]...else bodyAn[x] ist korrekt für spec

• Syntheseverfahren “Derived Antecedants”
– Wähle Algorithmentheorie A1 und ein Modell A1

– Bestimme Eingabebedingung I1 für die A1 “korrekt arbeitet”

– Wiederhole Verfahren für spec′ = (D,R, I ∧¬I1, O) bis Zerlegung komplett

– Setze Lösungen durch Fallunterscheidung zusammen

Automatisierte Logik und Programmierung II §18 15 Wissensbasierte Programmentwicklung

Hierarchie algorithmischer Strukturen

Allgemeine Problemstruktur
Generate & Test

Automatisierte Logik und Programmierung II §18 15 Wissensbasierte Programmentwicklung

Hierarchie algorithmischer Strukturen

Allgemeine Problemstruktur
Generate & Test

Lokale Struktur
Lokalsuche
Simulated Annealing

Reduktionsstruktur

Automatisierte Logik und Programmierung II §18 15 Wissensbasierte Programmentwicklung

Hierarchie algorithmischer Strukturen

Allgemeine Problemstruktur
Generate & Test

Lokale Struktur
Lokalsuche
Simulated Annealing

Reduktionsstruktur

Komplementierung
Siebe

Automatisierte Logik und Programmierung II §18 15 Wissensbasierte Programmentwicklung

Hierarchie algorithmischer Strukturen

Allgemeine Problemstruktur
Generate & Test

Lokale Struktur
Lokalsuche
Simulated Annealing

Reduktionsstruktur

Komplementierung
Siebe

∧ -Reduktion

statisch
Problemreduktion
(Operator Match)

rekursiv
Divide& Conquer

Automatisierte Logik und Programmierung II §18 15 Wissensbasierte Programmentwicklung

Hierarchie algorithmischer Strukturen

Allgemeine Problemstruktur
Generate & Test

Lokale Struktur
Lokalsuche
Simulated Annealing

Reduktionsstruktur

Komplementierung
Siebe

∧ -Reduktion

statisch
Problemreduktion
(Operator Match)

rekursiv
Divide& Conquer

∨ -Reduktion

statisch
Bedingungen
Fallanalyse

rekursiv
Globalsuche
Binärsuche
Backtracking
Branch & Bound (A∗)

Automatisierte Logik und Programmierung II §18 15 Wissensbasierte Programmentwicklung

Hierarchie algorithmischer Strukturen

Allgemeine Problemstruktur
Generate & Test

Lokale Struktur
Lokalsuche
Simulated Annealing

Reduktionsstruktur

Komplementierung
Siebe

∧ -Reduktion

statisch
Problemreduktion
(Operator Match)

rekursiv
Divide& Conquer

∨ -Reduktion

statisch
Bedingungen
Fallanalyse

rekursiv
Globalsuche
Binärsuche
Backtracking
Branch & Bound (A∗)

∧ - ∨ -Reduktion
Dynamische Programmierung
Branch & Bound (AO∗)
Spielbaum-Suche

Automatisierte Logik und Programmierung II §18 16 Wissensbasierte Programmentwicklung

Algorithmenschemata: Vorteile für Synthese

• Effizientes Syntheseverfahren

– Voruntersuchungen entlasten Syntheseprozeß zur Laufzeit

· Beweislast verlagert in Entwurf und Beweis der Algorithmentheorien

– Verfeinerung vorgefertigter Teillösungen (Modelle) möglich

· zielgerichtetes Vorgehen, Verifikation der Axiome entfällt

– Echte Kooperation zwischen Mensch und Computer

· Mensch: Entwurfsentscheidungen — Computer: formale Details

Automatisierte Logik und Programmierung II §18 16 Wissensbasierte Programmentwicklung

Algorithmenschemata: Vorteile für Synthese

• Effizientes Syntheseverfahren

– Voruntersuchungen entlasten Syntheseprozeß zur Laufzeit

· Beweislast verlagert in Entwurf und Beweis der Algorithmentheorien

– Verfeinerung vorgefertigter Teillösungen (Modelle) möglich

· zielgerichtetes Vorgehen, Verifikation der Axiome entfällt

– Echte Kooperation zwischen Mensch und Computer

· Mensch: Entwurfsentscheidungen — Computer: formale Details

• Erzeugung effizienter Algorithmen

– Vorgabe einer effizienten Grundstruktur durch Theoreme

– Individuelle Optimierung nachträglich

Automatisierte Logik und Programmierung II §18 16 Wissensbasierte Programmentwicklung

Algorithmenschemata: Vorteile für Synthese

• Effizientes Syntheseverfahren

– Voruntersuchungen entlasten Syntheseprozeß zur Laufzeit

· Beweislast verlagert in Entwurf und Beweis der Algorithmentheorien

– Verfeinerung vorgefertigter Teillösungen (Modelle) möglich

· zielgerichtetes Vorgehen, Verifikation der Axiome entfällt

– Echte Kooperation zwischen Mensch und Computer

· Mensch: Entwurfsentscheidungen — Computer: formale Details

• Erzeugung effizienter Algorithmen

– Vorgabe einer effizienten Grundstruktur durch Theoreme

– Individuelle Optimierung nachträglich

• Wissensbasiertes Vorgehen

– Erkenntnisse über Algorithmen als Theoreme verwendbar

Automatisierte Logik und Programmierung II §18 16 Wissensbasierte Programmentwicklung

Algorithmenschemata: Vorteile für Synthese

• Effizientes Syntheseverfahren

– Voruntersuchungen entlasten Syntheseprozeß zur Laufzeit

· Beweislast verlagert in Entwurf und Beweis der Algorithmentheorien

– Verfeinerung vorgefertigter Teillösungen (Modelle) möglich

· zielgerichtetes Vorgehen, Verifikation der Axiome entfällt

– Echte Kooperation zwischen Mensch und Computer

· Mensch: Entwurfsentscheidungen — Computer: formale Details

• Erzeugung effizienter Algorithmen

– Vorgabe einer effizienten Grundstruktur durch Theoreme

– Individuelle Optimierung nachträglich

• Wissensbasiertes Vorgehen

– Erkenntnisse über Algorithmen als Theoreme verwendbar

• Formales theoretisches Fundament

– Leicht in das Konzept beweisbasierter Systeme integrierbar

