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– Erobern: Löse Teilprobleme separat und setze Lösungen zusammen
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1. Direkte Lösung korrekt für primitive Eingaben
FUNCTION fp(x:D):R WHERE I [x] ∧ primitive[x] RETURNS y SUCH THAT O[x, y]

2. Ausgabebedingung O rekursiv zerlegbar in OD, O′ und OC

OD[x, y′, y] ∧ O′[y′, z′] ∧ O[y, z] ∧ OC[z′, z, t] ⇒ O[x, t]

(Strong Problem Reduction Principle)



Automatisierte Logik und Programmierung II §18 4 Divide & Conquer Algorithmen

Korrektheit des Divide & Conquer Schemas

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

ist korrekt, wenn 6 Axiome erfüllt sind
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Sechste Komponente in Algorithmentheorie, nötig für Terminierungsbeweis
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5. Konstruiere Directly-solve 7→ Axiome 1

– Heuristik: Suche nach vorgefertigten Lösungen, sonst neue Synthese
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– Wähle � und Decompose aus Wissensbank
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• Umgekehrte Strategie
– Wähle Compose aus Wissensbank
– Konstruiere g heuristisch
– Konstruiere Spezifikation und Lösung für Decompose und bestimme �

– Bestimme primitive und konstruiere Directly-solve
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• Standard-Zerlegungen für Typen (D) 7→ Decompose,OD,D’

– Endliche Listen / Folgen (Seq(α)): HdTl, ListSplit

· ListSplit(L) ≡ ( [ L
i
|i ∈[1..|L|÷2] ], [ L

i
|i ∈[1+|L|÷2..|L|] ] )

mit OD[L, L
1
, L

2
] ≡ L=L

1
◦L

2
, D’ ≡ Seq(α)

– Endliche Mengen (Set(α)): ArbRest

– Produkträume (+ Mengen, Folgen, . . . ): Zerlegung in Einzelkomponenten

– Natürlichen Zahlen (N): Vorgängerfunktion
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– Zahlen (N/Z): Zahlenordnung bzw. Absolutordnung
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– Zahlen (N/Z): Zahlenordnung bzw. Absolutordnung

• Standard-Kompositionen für Typen (R) 7→ Compose,OC,R’

– Endliche Folgen: cons (a.l), append (L1
◦L2)

– Endliche Mengen: insert (S+a), union (S1∪S2)

– Produkträume (+ Mengen, Folgen, . . . ): Komponentenweise Komposition

– Natürlichen Zahlen (N): Nachfolgerfunktion
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• Heuristische Fixierung von g
– Falls D’=D, wähle g:=f R’:=R, O’:=O und I ’:=I

– Falls D’ 6=D, wähle g:=id R’:=D’, O[y′z′]’:=z′ = y′ und I ′[y′]:=true

Analoge Entscheidungen, falls R’=R durch Wahl von Compose
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– Erzeugung von Alternativen über existierende Prädikate

– Partielle Auswertung der Einzelfälle

Liefert Programmstücke mit Fallunterscheidungen

• Inferenzmechanismus: Operator match
– Synthese von Programmstücken durch Anpassung an bekannte Lösungen
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RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)



Automatisierte Logik und Programmierung II §18 10 Divide & Conquer Algorithmen

Divide & Conquer Synthese von Sortieralgorithmen

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

1. Wähle L � L’ ≡ |L|>|L′|

Decompose ≡ ListSplit (OD[L, L
1
, L

2
]≡L=L

1
◦L

2
, D’≡ Seq(α))



Automatisierte Logik und Programmierung II §18 10 Divide & Conquer Algorithmen

Divide & Conquer Synthese von Sortieralgorithmen

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

1. Wähle L � L’ ≡ |L|>|L′|

Decompose ≡ ListSplit (OD[L, L
1
, L

2
]≡L=L

1
◦L

2
, D’≡ Seq(α))

2. Konstruiere Hilfsfunktion g ≡ sort 7→ O′ ≡ O, I ′[L′] ≡ true
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SUCH THAT L�L

1
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1
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Vorbedingung für Korrektheit primitive[L] ≡ L=[]
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4. Konstruiere Compose

L�L
1
∧ L�L

2
∧ L

1
◦L

2
=L ∧ SORT(L

1
,S

1
) ∧ SORT(L

2
,S

2
) ∧ OC [S

1
,S

2
,S] ⇒ SORT(L,S)

liefert als Spezifikation für Compose 7→ Synthese folgt später

FUNCTION fc(S1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)
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5. Konstruiere Directly-solve
FUNCTION fp(L:Seq(Z)):Seq(Z) WHERE L=[]

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

Liefert Directly-solve[L] ≡ []
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Ermittelte Komponenten
Decompose[L] ≡ ListSplit[L]

≡ ( [ L
i
|i ∈[1..|L|÷2] ], [ L

i
|i ∈[1+|L|÷2..|L|] ] )

g ≡ sort

Compose[S1, S2] ≡ merge(S1,S2) 7→ nächste Folie

Directly-solve[L] ≡ []

primitive[L] ≡ L=[]
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i
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g ≡ sort

Compose[S1, S2] ≡ merge(S1,S2) 7→ nächste Folie

Directly-solve[L] ≡ []

primitive[L] ≡ L=[]

6. Instantiiere das Divide & Conquer Schema

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

≡ if L=[] then []

else let L1.L2 = ( [ L
i
|i ∈[1..|L|÷2] ],

[ L
i
|i ∈[1+|L|÷2..|L|] ] )

in merge(sort(L1),sort(L2))
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Divide & Conquer Synthese von Sortieralgorithmen

Ermittelte Komponenten
Decompose[L] ≡ ListSplit[L]

≡ ( [ L
i
|i ∈[1..|L|÷2] ], [ L

i
|i ∈[1+|L|÷2..|L|] ] )

g ≡ sort

Compose[S1, S2] ≡ merge(S1,S2) 7→ nächste Folie

Directly-solve[L] ≡ []

primitive[L] ≡ L=[]

6. Instantiiere das Divide & Conquer Schema

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

≡ if L=[] then []

else let L1.L2 = ( [ L
i
|i ∈[1..|L|÷2] ],

[ L
i
|i ∈[1+|L|÷2..|L|] ] )

in merge(sort(L1),sort(L2))

Algorithmus ist korrekt durch Konstruktion
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FUNCTION merge(S
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1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)
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3. Konstruiere � auf Seq(Z)×Seq(Z):

– (S1, S2)�(S1, S2) ≡ |S1|>|S1
′| ∨ (|S1|=|S1

′| ∧ |S2|>|S2’|)

– Kombination Längenordnung für Listen + lexikographische Ordnung für Produkte
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Divide & Conquer Synthese der merge-Funktion

FUNCTION merge(S
1
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2. g kann nicht merge sein Wähle g ≡ id (O′[a, a′]≡ a=a′)

3. Konstruiere � auf Seq(Z)×Seq(Z):

– (S1, S2)�(S1, S2) ≡ |S1|>|S1
′| ∨ (|S1|=|S1

′| ∧ |S2|>|S2’|)

– Kombination Längenordnung für Listen + lexikographische Ordnung für Produkte

4. Konstruiere Decompose mit Axiom 2 und 3
OD(S1

,S
2
,a’,S

1
’,S

2
) ∧ a=a’ ∧ MERGE(S

1
’,S

2
’,S’) ∧ S=a.S’ ⇒ MERGE(S

1
,S

2
,S)

liefert als Spezifikation und Lösung für Decompose

FUNCTION fd(S1
,S

2
:Seq(Z)×Seq(Z)):Z×Seq(Z)×Seq(Z)

WHERE ordered(S
1
) ∧ ordered(S

2
) ∧ S

1
6=[] ∧ S

2
6=[]

RETURNS a’,S
1
’,S

2
’

SUCH THAT rearranges(a.(S
1
’◦S

2
’), S

1
◦S

2
) (1)

∧ ∀x ∈S
1
’◦S

2
’. a≤x ∧ (S

1
,S

2
)�(S

1
’,S

2
’) (2)

(1) folgt aus rearranges(S
1
’◦S

2
’,S’), S=a.S’ und rearranges(S

1
◦S

2
,S)

(2) folgt aus (1) und aus ordered(S
1
) ∧ ordered(S

2
)
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2. g kann nicht merge sein Wähle g ≡ id (O′[a, a′]≡ a=a′)
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– (S1, S2)�(S1, S2) ≡ |S1|>|S1
′| ∨ (|S1|=|S1

′| ∧ |S2|>|S2’|)

– Kombination Längenordnung für Listen + lexikographische Ordnung für Produkte

4. Konstruiere Decompose mit Axiom 2 und 3
OD(S1

,S
2
,a’,S

1
’,S

2
) ∧ a=a’ ∧ MERGE(S

1
’,S

2
’,S’) ∧ S=a.S’ ⇒ MERGE(S

1
,S

2
,S)

liefert als Spezifikation und Lösung für Decompose

FUNCTION fd(S1
,S

2
:Seq(Z)×Seq(Z)):Z×Seq(Z)×Seq(Z)

WHERE ordered(S
1
) ∧ ordered(S

2
) ∧ S

1
6=[] ∧ S

2
6=[]

RETURNS a’,S
1
’,S

2
’

SUCH THAT rearranges(a.(S
1
’◦S

2
’), S

1
◦S

2
)

∧ ∀x ∈S
1
’◦S

2
’. a≤x ∧ (S

1
,S

2
)�(S

1
’,S

2
’)

= let x
1
.S

1
’=S

1
and x

2
.S

2
’=S

2
in if x

1
≤x

2
then (x

1
,S

1
’,S

2
) else (x

2
,S

1
,S

2
’)

(Lösung durch Fallanalyse: a’ muß Minimum von hd(S
1
) und hd(S

2
) sein)
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Divide & Conquer Synthese der merge-Funktion

FUNCTION merge(S
1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

5. Vorbedingung für Korrektheit von Decompose ist S16=[] ∧ S26=[]

– Liefert primitive und Spezifikation für Directly-solve

FUNCTION fp(S1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z)

WHERE ordered(S
1
) ∧ordered(S

2
) ∧ (S

1
=[] ∨ S

2
=[])

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

= if S
1
=[] then S

2
else S

1
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Divide & Conquer Synthese der merge-Funktion

FUNCTION merge(S
1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

5. Vorbedingung für Korrektheit von Decompose ist S16=[] ∧ S26=[]

– Liefert primitive und Spezifikation für Directly-solve

FUNCTION fp(S1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z)

WHERE ordered(S
1
) ∧ordered(S

2
) ∧ (S

1
=[] ∨ S

2
=[])

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

= if S
1
=[] then S

2
else S

1

6. Instantiierter Divide & Conquer Algorithmus

FUNCTION merge(S
1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z)

WHERE ordered(S
1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

= if S
1
=[] then S

2

elseif S
2
=[] then S

1

else let x
1
.S

1
’=S

1
and x

2
.S

2
’=S

2

in if x
1
≤x

2
then x

1
.merge(S’

1
,S

2
) else x

2
.merge(S

1
,S

2
’)
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Erzeugung Alternativer Sortieralgorithmen

• Wähle einfachere Dekomposition
– Decompose ≡ HdTl, g ≡ id

– primitive[L] ≡ L=[], Directly-solve[L] ≡ []

– Compose[a, S] ≡ ordered insert(a,S)

Sortieren durch Einfügen
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• Wähle einfache Komposition
– Compose[a, S] ≡ a.S, g ≡ id

– primitive[L] ≡ L=[], Directly-solve[L] ≡ []

– Decompose[L] ≡ let m=min(L) in (m, L-m)

Sortieren durch Auswahl

• Wähle binare Komposition
– Compose[S1, S2] ≡ S1

◦S2, g ≡ sort

– primitive[L] ≡ L=[], Directly-solve[L] ≡ []

– Decompose[L] ≡ let let a=L[|L|/2] in (L<a, L≥a])

Naives Quicksort
⇓

Flexible Strategie mit vielfältigen Anwendungen


