D1viDE & CONQUER ALGORITHMEN

ALLGEMEINE PROBLEMSTRUKTUR

Generate & Test

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

/I\ Lokalsuche

KOMPLEMENTIERUNG A-REDUKTION v-REDUKTION

Siebe///7 l\

STATISCH REKURSIV STATISCH REKURSIV
Operator Match ivide & Conquer Fallanalyse Globalsuche

A-v-REDUKTION
Dynamische Programmierung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 1 Divide & Conquer Algorithmen

D1viDE & CONQUER ALGORITHMEN

ALLGEMEINE PROBLEMSTRUKTUR

Generate & Test

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

/I\ Lokalsuche

KOMPLEMENTIERUNG A-REDUKTION v-REDUKTION

Siebe///7 l\

STATISCH REKURSIV STATISCH REKURSIV

Operator Match \%Conquer Fallanalyse Globalsuche

A-v-REDUKTION
Dynamische Programmierung

e Effiziente Verarbeitung strukturierter Daten

— Sehr gebrauchliche und einfache Programmiertechnik

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 1 Divide & Conquer Algorithmen

D1viDE & CONQUER ALGORITHMEN

ALLGEMEINE PROBLEMSTRUKTUR

Generate & Test

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

/I\ Lokalsuche

KOMPLEMENTIERUNG A-REDUKTION v-REDUKTION

Sie% l\

STATISCH REKURSIV STATISCH REKURSIV

Operator Match \%Conquer Fallanalyse Globalsuche

A-v-REDUKTION
Dynamische Programmierung

e Effiziente Verarbeitung strukturierter Daten
— Sehr gebrauchliche und einfache Programmiertechnik

— Aufteilen: Zerlege Problem in kleinere Teilprobleme

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 1 Divide & Conquer Algorithmen

D1viDE & CONQUER ALGORITHMEN

ALLGEMEINE PROBLEMSTRUKTUR

Generate & Test

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

/I\ Lokalsuche

KOMPLEMENTIERUNG A-REDUKTION v-REDUKTION

Sie% l\

STATISCH REKURSIV STATISCH REKURSIV

Operator Match \%Conquer Fallanalyse Globalsuche

A-v-REDUKTION
Dynamische Programmierung

e Effiziente Verarbeitung strukturierter Daten
— Sehr gebrauchliche und einfache Programmiertechnik
— Aufteilen: Zerlege Problem in kleinere Teilprobleme

— Erobern: Lose Teilprobleme separat und setze Losungen zusammen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 1 Divide & Conquer Algorithmen

D1viDE & CONQUER ALGORITHMEN I

ALLGEMEINE PROBLEMSTRUKTUR

Generate & Test

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

/I\ Lokalsuche

KOMPLEMENTIERUNG A-REDUKTION v-REDUKTION

Sie% l\

STATISCH REKURSIV STATISCH REKURSIV

Operator Match \%Conquer Fallanalyse Globalsuche

A-v-REDUKTION
Dynamische Programmierung

e Effiziente Verarbeitung strukturierter Daten
— Sehr gebrauchliche und einfache Programmiertechnik
— Aufteilen: Zerlege Problem in kleinere Teilprobleme

— Erobern: Lose Teilprobleme separat und setze Losungen zusammen

e AN-Reduktion des Problems
— Losung benotigt alle Teillosungen gleichzeitig

— Teillosungen bauen aufeinander aut

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 1 Divide & Conquer Algorithmen

EIN TYPISCHER DIVIDE & CONQUER ALGORITHMUS I

e Maximum einer nichtleeren Liste von Zahlen

FUNCTION maxL(L:Seq(Z)):Z WHERE L#[]
RETURNS m SUCH THAT meL A VxeL.x<m
= if |L|=1 then hd(L)
else let a,L’=L
in let m’=maxL(L’)

in if a<m’ then m’ else a

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 2 Divide & Conquer Algorithmen

EIN TYPISCHER DIVIDE & CONQUER ALGORITHMUS I

e Maximum einer nichtleeren Liste von Zahlen

FUNCTION maxL(L:Seq(Z)):Z WHERE L#[]
RETURNS m SUCH THAT meL A VxeL.x<m
= if |L|=1 then hd(L)
else let a,L’=L
in let m’=maxL(L’)

in if a<m’ then m’ else a

Einfache (primitive) Eingaben (|L|=1) erhalten direkte Losung hd (L)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 2 Divide & Conquer Algorithmen

EIN TYPISCHER DIVIDE & CONQUER ALGORITHMUS I

e Maximum eilner nichtleeren Liste von Zahlen

FUNCTION maxL(L:Seq(Z)):Z WHERE L#[]
RETURNS m SUCH THAT meL A VxeL.x<m
= if |L|=1 then hd(L)
else let a,L’=L
in let m’=maxL(L’)

in if a<m’ then m’ else a

Einfache (primitive) Eingaben (|L|=1) erhalten direkte Losung hd (L)
Andernfalls Dekomposition der Eingabe mit Funktion HdT1: L +~ a,L’
Einfache Teillosung a=id (a) fiir a — rekursive Losung m’=maxL (L’) fir L’

Komposition der Teillosungen a und m’ mit der Funktion max:Z—Z7Z

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 2 Divide & Conquer Algorithmen

EIN TYPISCHER DIVIDE & CONQUER ALGORITHMUS I

e Maximum eilner nichtleeren Liste von Zahlen

FUNCTION maxL(L:Seq(Z)):Z WHERE L#[]
RETURNS m SUCH THAT meL A VxeL.x<m
= if |L|=1 then hd(L)
else let a,L’=L
in let m’=maxL(L’)

in if a<m’ then m’ else a

Einfache (primitive) Eingaben (|L|=1) erhalten direkte Losung hd (L)
Andernfalls Dekomposition der Eingabe mit Funktion HdT1: L +~ a,L’
Einfache Teillosung a=id (a) fiir a — rekursive Losung m’=maxL (L’) fir L’

Komposition der Teillosungen a und m’ mit der Funktion max:Z—Z7Z

e Vereinheitlichung durch separierte Beschreibung

FUNCTION maxL(L:Seq(Z)):7Z WHERE L#[]
RETURNS m SUCH THAT meL A VxeL.x<m
= if |L|=1 then hd(L)
else (max © (idxmaxL) o HAT1l) (L)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 2 Divide & Conquer Algorithmen

EIN TYPISCHER DIVIDE & CONQUER ALGORITHMUS I

e Maximum eilner nichtleeren Liste von Zahlen

FUNCTION maxL(L:Seq(Z)):Z WHERE L#[]
RETURNS m SUCH THAT meL A VxeL.x<m
= if |L|=1 then hd(L)
else let a,L’=L
in let m’=maxL(L’)

in if a<m’ then m’ else a

Einfache (primitive) Eingaben (|L|=1) erhalten direkte Losung hd (L)
Andernfalls Dekomposition der Eingabe mit Funktion HdT1: L +~ a,L’
Einfache Teillosung a=id (a) fiir a — rekursive Losung m’=maxL (L’) fir L’

Komposition der Teillosungen a und m’ mit der Funktion max:Z—Z7Z

e Vereinheitlichung durch separierte Beschreibung

FUNCTION maxL(L:Seq(Z)):7Z WHERE L#[]
RETURNS m SUCH THAT meL A VxeL.x<m
= if |L|=1 then hd(L)
else (max © (idxmaxL) o HAT1l) (L)

Algorithmus zur Verarbeitung der Liste folgt festem Schema

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 2 Divide & Conquer Algorithmen

ALLGEMEINES DIVIDE & CONQUER SCHEMA I

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Olz,
= if primitivelx| then Directly-solve|x]

else (Compose © gxf o Decompose) (x)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 3 Divide & Conquer Algorithmen

ALLGEMEINES DIVIDE & CONQUER SCHEMA I

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Olz,
= if primitivelx| then Directly-solve|x]

else (Compose © gxf o Decompose) (x)

¢ 5 zentrale Komponenten der Algorithmentheorie

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 3 Divide & Conquer Algorithmen

ALLGEMEINES DIVIDE & CONQUER SCHEMA I

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Olz,
= if primitivelx| then Directly-solve|x]

else (Compose © gxf o Decompose) (x)

¢ 5 zentrale Komponenten der Algorithmentheorie
— Decompose: D — D’x D Aufspalten der Eingabe in Teilprobleme

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 3 Divide & Conquer Algorithmen

ALLGEMEINES DIVIDE & CONQUER SCHEMA I

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Olz,
= if primitivelx| then Directly-solve|x]

else (Compose © gxf o Decompose) (x)

¢ 5 zentrale Komponenten der Algorithmentheorie
— Decompose: D — D’x D Aufspalten der Eingabe in Teilprobleme

— Rekursiver Aufruf von f zusammen mit Hilfsfunktion g: D — R’
- Funktionsprodukt g X f(x,y) = (g(x), f(y))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 3 Divide & Conquer Algorithmen

ALLGEMEINES DIVIDE & CONQUER SCHEMA I

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Olz,
= if primitivelx| then Directly-solve|x]

else (Compose © gxf o Decompose) (x)

¢ 5 zentrale Komponenten der Algorithmentheorie
— Decompose: D — D’x D Aufspalten der Eingabe in Teilprobleme

— Rekursiver Aufruf von f zusammen mit Hilfsfunktion g: D — R’
- Funktionsprodukt g X f(x,y) = (g(x), f(y))

— Compose: R*xR— R Zusammensetzen der Teillosungen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 3 Divide & Conquer Algorithmen

ALLGEMEINES DIVIDE & CONQUER SCHEMA I

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Olz,
= if primitivelx| then Directly-solve|x]

else (Compose © gxf o Decompose) (x)

¢ 5 zentrale Komponenten der Algorithmentheorie
— Decompose: D — D’x D Aufspalten der Eingabe in Teilprobleme
— Rekursiver Aufruf von f zusammen mit Hilfsfunktion g: D — R’

- Funktionsprodukt g X f(z,vy) = (g(x), f(y))

— Compose: R*xR— R Zusammensetzen der Teillosungen

— Directly-solve: D — R: Direkte Losung fiir einfache Teilprobleme

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 3 Divide & Conquer Algorithmen

ALLGEMEINES DIVIDE & CONQUER SCHEMA I

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Olz,
= if primitivelx| then Directly-solve|x]

else (Compose © gxf o Decompose) (x)

¢ 5 zentrale Komponenten der Algorithmentheorie
— Decompose: D — D’x D Aufspalten der Eingabe in Teilprobleme

— Rekursiver Aufruf von f zusammen mit Hilfsfunktion g: D — R’
- Funktionsprodukt g X f(x,y) = (g(x), f(y))

— Compose: R*xR— R Zusammensetzen der Teillosungen
— Directly-solve: D — R: Direkte Losung fiir einfache Teilprobleme
— primitive: D — B: Test, ob Eingabe “einfach” ist

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 3 Divide & Conquer Algorithmen

ALLGEMEINES DIVIDE & CONQUER SCHEMA I

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Olz,
= if primitivelx| then Directly-solve|x]

else (Compose © gxf o Decompose) (x)

¢ 5 zentrale Komponenten der Algorithmentheorie
— Decompose: D — D’x D Aufspalten der Eingabe in Teilprobleme

— Rekursiver Aufruf von f zusammen mit Hilfsfunktion g: D — R’
- Funktionsprodukt g X f(x,y) = (g(x), f(y))

— Compose: R*xR— R Zusammensetzen der Teillosungen
— Directly-solve: D — R: Direkte Losung fiir einfache Teilprobleme
— primitive: D — B: Test, ob Eingabe “einfach” ist

Korrektheit folgt aus wenigen Voraussetzungen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 3 Divide & Conquer Algorithmen

KORREKTHEIT DES DIVIDE & CONQUER SCHEMAS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Olz,y]

= if primitive[x] then Directly-solve|xz] else (Compose © gxf o Decompose) (x)

ist korrekt, wenn 6 Axiome erfillt sind

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 4 Divide & Conquer Algorithmen

KORREKTHEIT DES DIVIDE & CONQUER SCHEMAS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Olz,y]

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

ist korrekt, wenn 6 Axiome erfillt sind

1. Direkte Losung korrekt fur primitive Eingaben
FUNCTION f,(x:D):R WHERE I[z] A primitiver| RETURNS y SUCH THAT O|z,y]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 4 Divide & Conquer Algorithmen

KORREKTHEIT DES DIVIDE & CONQUER SCHEMAS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Olz,y]

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

ist korrekt, wenn 6 Axiome erfillt sind

1. Direkte Losung korrekt fur primitive Eingaben
FUNCTION f,(x:D):R WHERE I[z] A primitiver| RETURNS y SUCH THAT O|z,y]

2. Ausgabebedingung O rekursiv zerlegbar in Op, O’ und O¢
Oplz,y',y] n O'lY',2']| AOly,z|] A O¢lz’,z,t] = Olx,t]
(Strong Problem Reduction Principle)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 4 Divide & Conquer Algorithmen

KORREKTHEIT DES DIVIDE & CONQUER SCHEMAS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT O[z,]

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

ist korrekt, wenn 6 Axiome erfillt sind

1. Direkte Losung korrekt fur primitive Eingaben
FUNCTION f,(x:D):R WHERE I[z] A primitiver| RETURNS y SUCH THAT O|z,y]

2. Ausgabebedingung O rekursiv zerlegbar in Op, O’ und O¢
Oplz,y',y] n O'lY',2']| AOly,z|] A O¢lz’,z,t] = Olx,t]
(Strong Problem Reduction Principle)

3. Dekomposition erfullt Op und ‘verkleinert’ Problem
FUNCTION fy(x:D):D’xD WHERE [[x]| A —primitive|x]

RETURNS ',y SUCH THAT I'[y/|nlly|an x>y ~rOplx,y v

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 4 Divide & Conquer Algorithmen

KORREKTHEIT DES DIVIDE & CONQUER SCHEMAS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT O[z,]

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

ist korrekt, wenn 6 Axiome erfillt sind

1. Direkte Losung korrekt fur primitive Eingaben

FUNCTION f,(x:D):R WHERE I[z] A primitiver| RETURNS y SUCH THAT O|z,y]
2. Ausgabebedingung O rekursiv zerlegbar in Op, O’ und O¢

Oplz,y',y] n O'lY',2']| AOly,z|] A O¢lz’,z,t] = Olx,t]

(Strong Problem Reduction Principle)

3. Dekomposition erfullt Op und ‘verkleinert’ Problem

FUNCTION fy(x:D):D’xD WHERE [[x]| A —primitive|x]

RETURNS #',y SUCH THAT I'ly/|anlly]n x>y ~rOplx, /',y

4. Hilfsfunktion g erfillt O’
FUNCTION g(y':D’):R’ WHERE I’ly/] RETURNS 2/ SUCH THAT O'ly/, 7

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 4 Divide & Conquer Algorithmen

KORREKTHEIT DES DIVIDE & CONQUER SCHEMAS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT O[z,]

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

ist korrekt, wenn 6 Axiome erfillt sind

1. Direkte Losung korrekt fur primitive Eingaben
FUNCTION f,(x:D):R WHERE I[z] A primitiver| RETURNS y SUCH THAT O|z,y]

2. Ausgabebedingung O rekursiv zerlegbar in Op, O’ und O¢
Oplz,y',y] n O'lY',2']| AOly,z|] A O¢lz’,z,t] = Olx,t]
(Strong Problem Reduction Principle)

3. Dekomposition erfullt Op und ‘verkleinert’ Problem
FUNCTION fy(x:D):D’xD WHERE [[x]| A —primitive|x]

RETURNS ',y SUCH THAT I'[y/|nlly|an x>y ~rOplx,y v

4. Hilfsfunktion g erfillt O’
FUNCTION g(y':D’):R’ WHERE I’ly/] RETURNS 2/ SUCH THAT O'ly/, 7

5. Komposition erfullt O¢
FUNCTION f.(z',z:R’xR):R WHERE true RETURNS y SUCH THAT Oc[?, z,1]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 4 Divide & Conquer Algorithmen

KORREKTHEIT DES DIVIDE & CONQUER SCHEMAS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT O[z,]

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

ist korrekt, wenn 6 Axiome erfillt sind

1. Direkte Losung korrekt fur primitive Eingaben

FUNCTION f,(x:D):R WHERE I[z] n primitivelx] RETURNS y SUCH THAT Olx,vy|
2. Ausgabebedingung O rekursiv zerlegbar in Op, O’ und O¢

Oplz,y',y] n O'lY',2']| AOly,z|] A O¢lz’,z,t] = Olx,t]

(Strong Problem Reduction Principle)

3. Dekomposition erfullt Op und ‘verkleinert’ Problem

FUNCTION fy(x:D):D’xD WHERE [[x]| A —primitive|x]

RETURNS #',y SUCH THAT I'ly/|anlly]n x>y ~rOplx, /',y

4. Hilfsfunktion g erfillt O’
FUNCTION g(y':D’):R’ WHERE I’ly/] RETURNS 2/ SUCH THAT O'ly/, 7

5. Komposition erfullt O¢
FUNCTION f.(z',z:R’xR):R WHERE true RETURNS y SUCH THAT Oc[?, z,1]

6. Verkleinerungsrelation > ist wohlfundierte Ordnung auf D
Sechste Komponente in Algorithmentheorie, notig fiir Terminierungsbeweis

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 4 Divide & Conquer Algorithmen

D1vIDE & CONQUER SCHEMA: KORREKTHEITSBEWEIS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

e Partielle Korrektheit: strukturelle Induktion iiber (D,>)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 5 Divide & Conquer Algorithmen

D1vIDE & CONQUER SCHEMA: KORREKTHEITSBEWEIS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

e Partielle Korrektheit: strukturelle Induktion iiber (D,>)

— Primitive Eingaben: [[z] r primitive|x]
— f(x) = Directly-solve|x] Korrektheit folgt direkt aus Axiom 1

FUNCTION f,(x:D):R WHERE I|x] A primitive[r| RETURNS y SUCH THAT O|x,y]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 5 Divide & Conquer Algorithmen

D1vIDE & CONQUER SCHEMA: KORREKTHEITSBEWEIS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

e Partielle Korrektheit: strukturelle Induktion iiber (D,>)

— Primitive Eingaben: [[z] r primitive|x]
— f(x) = Directly-solve|x] Korrektheit folgt direkt aus Axiom 1
— Nichtprimitive Eingaben: I[x] » —~primitive|x]

— f(x) = (Compose © gx f o Decompose) (x)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 5 Divide & Conquer Algorithmen

D1vIDE & CONQUER SCHEMA: KORREKTHEITSBEWEIS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

e Partielle Korrektheit: strukturelle Induktion iiber (D,>)

— Primitive Eingaben: [[z] r primitive|x]

— f(x) = Directly-solve|x] Korrektheit folgt direkt aus Axiom 1
— Nichtprimitive Eingaben: I[x] » —~primitive|x]

— f(x) = (Compose © gx f o Decompose) (x)

— Decompose|x| liefert y', y mit Oplz, 9/, y] und = = y Axiom 3

FUNCTION fy(x:D):D’>xD WHERE [[z| A —primitive|x]
RETURNS o',y SUCH THAT I'[/|al[y]n z=y AOplx,y, y]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 5 Divide & Conquer Algorithmen

D1vIDE & CONQUER SCHEMA: KORREKTHEITSBEWEIS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

e Partielle Korrektheit: strukturelle Induktion iiber (D,>)

— Primitive Eingaben: [[z] r primitive|x]
— f(x) = Directly-solve|x] Korrektheit folgt direkt aus Axiom 1
— Nichtprimitive Eingaben: I[x] » —~primitive|x]
— f(x) = (Compose © gx f o Decompose) (x)
— Decompose|x| liefert y', y mit Oplz, 9/, y] und = = y Axiom 3
— g(y) liefert 2" mit O'[y/, 2/] Axiom 4

FUNCTION g(y':D°’):R’ WHERE I’[y/] RETURNS 2’ SUCH THAT O'[y/, %]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 5 Divide & Conquer Algorithmen

D1vIDE & CONQUER SCHEMA: KORREKTHEITSBEWEIS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

e Partielle Korrektheit: strukturelle Induktion iiber (D,>)
— Primitive Eingaben: [[z] r primitive|x]
— f(x) = Directly-solve|x] Korrektheit folgt direkt aus Axiom 1
— Nichtprimitive Eingaben: I[x] » —~primitive|x]

— f(x) = (Compose © gx f o Decompose) (x)

— Decompose|x| liefert y', y mit Oplz, 9/, y] und = = y Axiom 3
— g(v) liefert 2" mit O'|y/, 2| Axiom 4
— f(y) liefert z mit Oly, | Induktionsannahme

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 5 Divide & Conquer Algorithmen

D1vIDE & CONQUER SCHEMA: KORREKTHEITSBEWEIS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

e Partielle Korrektheit: strukturelle Induktion iiber (D,>)

— Primitive Eingaben: [[z] r primitive|x]
— f(x) = Directly-solve|x] Korrektheit folgt direkt aus Axiom 1
— Nichtprimitive Eingaben: I[x] » —~primitive|x]

— f(x) = (Compose © gx f o Decompose) (x)

— Decompose|x| liefert y', y mit Oplz, 9/, y] und = = y Axiom 3
— g(v) liefert 2" mit O'|y/, 2| Axiom 4
— f(y) liefert z mit Oly, | Induktionsannahme
— Decompose|?’, 2] liefert t mit O¢|Z/, 2, t] Axiom 5

FUNCTION f.(Z,z:R’xR):R WHERE true RETURNS y SUCH THAT O¢l|?, z, 1]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 5 Divide & Conquer Algorithmen

D1vIDE & CONQUER SCHEMA: KORREKTHEITSBEWEIS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

e Partielle Korrektheit: strukturelle Induktion iiber (D,>)

— Primitive Eingaben: [[z] r primitive|x]
— f(x) = Directly-solve|x] Korrektheit folgt direkt aus Axiom 1
— Nichtprimitive Eingaben: I[x] » —~primitive|x]

— f(x) = (Compose © gx f o Decompose) (x)

— Decompose|x| liefert y', y mit Oplz, 9/, y] und = = y Axiom 3
— g(v) liefert 2" mit O'|y/, 2| Axiom 4
— f(y) liefert z mit Oly, 2] Induktionsannahme
— Decompose|?’, 2] liefert t mit O¢|Z/, 2, t] Axiom 5
— t ist das Ergebnis (f(x) = t) und es gilt O[z, t] Axiom 2

Oplx,y',yl n O'lY',2'] AOly,z] A O¢clz’,z,t] = Olx,t]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 5 Divide & Conquer Algorithmen

D1vIDE & CONQUER SCHEMA: KORREKTHEITSBEWEIS I

FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

e Partielle Korrektheit: strukturelle Induktion iiber (D,>)

— Primitive Eingaben: [[z] r primitive|x]
— f(x) = Directly-solve|x] Korrektheit folgt direkt aus Axiom 1
— Nichtprimitive Eingaben: I[x] » —~primitive|x]

— f(x) = (Compose © gx f o Decompose) (x)

— Decompose|x] liefert ',y mit Oplz, 9/, y] und © = y Axiom 3
— g(y) liefert 2" mit O'[y/, 2] Axiom 4
— f(y) liefert z mit Oly, 2] Induktionsannahme
— Decompose|?’, 2] liefert t mit O¢|Z/, 2, t] Axiom 5
— t ist das Ergebnis (f(x) = t) und es gilt Olz,] Axiom 2
e Terminierung: Wohlfundiertheit von > Axiom 6

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 5 Divide & Conquer Algorithmen

SYNTHESESTRATEGIE FUR DIVIDE & CONQUER ALGORITHMENI

Zerlege Problem in Spezifikationen fur Teilprobleme

Start: FUNCTION f(z:D):R WHERE [|x] RETURNS y SUCH THAT O|z,y]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 6 Divide & Conquer Algorithmen

SYNTHESESTRATEGIE FUR DIVIDE & CONQUER ALGORITHMENI

Zerlege Problem in Spezifikationen fur Teilprobleme

Start: FUNCTION f(z:D):R WHERE [|x] RETURNS y SUCH THAT O|z,y]

1. Wahle > und Decompose aus Wissensbank — Op.,D’. Axiom 6

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 6 Divide & Conquer Algorithmen

SYNTHESESTRATEGIE FUR DIVIDE & CONQUER ALGORITHMENI

Zerlege Problem in Spezifikationen fur Teilprobleme

Start: FUNCTION f(z:D):R WHERE [|x] RETURNS y SUCH THAT O|z,y]

1. Wahle > und Decompose aus Wissensbank — Op.,D’. Axiom 6

2. Konstruiere Hilfsfunktion g: — O', I', Axiom 4
— Heuristik: g:=Ff, falls D’=D, sonst g:=2d

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 6 Divide & Conquer Algorithmen

SYNTHESESTRATEGIE FUR DIVIDE & CONQUER ALGORITHMENI

Zerlege Problem in Spezifikationen fur Teilprobleme

Start: FUNCTION f(z:D):R WHERE [|x] RETURNS y SUCH THAT O|z,y]

1. Wahle > und Decompose aus Wissensbank — Op.,D’. Axiom 6

2. Konstruiere Hilfsfunktion g: — O', I', Axiom 4
— Heuristik: g:=Ff, falls D’=D, sonst g:=2d

3. Verifiziere Decompose, generiere Vorbedingung +— primitive, Axiom 3
— Heuristik: abgeleitete zusétzliche Vorbedingung fir Op ist —primitive|x]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 6 Divide & Conquer Algorithmen

SYNTHESESTRATEGIE FUR DIVIDE & CONQUER ALGORITHMENI

Zerlege Problem in Spezifikationen fur Teilprobleme

Start: FUNCTION f(z:D):R WHERE [|x] RETURNS y SUCH THAT O|z,y]

1. Wahle > und Decompose aus Wissensbank — Op.,D’. Axiom 6

2. Konstruiere Hilfsfunktion g: — O', I', Axiom 4
— Heuristik: g:=Ff, falls D’=D, sonst g:=2d

3. Verifiziere Decompose, generiere Vorbedingung +— primitive, Axiom 3

— Heuristik: abgeleitete zusétzliche Vorbedingung fir Op ist —primitive|x]

4. Konstruiere Compose — O¢, Axiome 5 & 2
— Heuristik: Erzeuge O¢ mit Axiom 2;
Synthetisiere C'ompose gemafl Axiom 5

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 6 Divide & Conquer Algorithmen

SYNTHESESTRATEGIE FUR DIVIDE & CONQUER ALGORITHMENI

Zerlege Problem in Spezifikationen fur Teilprobleme

Start: FUNCTION f(z:D):R WHERE [|x] RETURNS y SUCH THAT O|z,y]

1. Wahle > und Decompose aus Wissensbank — Op.,D’. Axiom 6

2. Konstruiere Hilfsfunktion g: — O', I', Axiom 4
— Heuristik: g:=Ff, falls D’=D, sonst g:=2d

3. Verifiziere Decompose, generiere Vorbedingung +— primitive, Axiom 3
— Heuristik: abgeleitete zusétzliche Vorbedingung fir Op ist —primitive|x]

4. Konstruiere Compose — O¢, Axiome 5 & 2
— Heuristik: Erzeuge O¢ mit Axiom 2;
Synthetisiere C'ompose gemafl Axiom 5

5. Konstruiere Directly-solve — Axiome 1
— Heuristik: Suche nach vorgefertigten Losungen, sonst neue Synthese
— Falls dies nicht moglich ist, konstruiere eingeschrankte Vorbedingung [

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 6 Divide & Conquer Algorithmen

SYNTHESESTRATEGIE FUR DIVIDE & CONQUER ALGORITHMENI

Zerlege Problem in Spezifikationen fur Teilprobleme

Start: FUNCTION f(z:D):R WHERE [|x] RETURNS y SUCH THAT O|z,y]

1. Wahle > und Decompose aus Wissensbank — Op.,D’. Axiom 6

2. Konstruiere Hilfsfunktion g: — O', I', Axiom 4
— Heuristik: g:=Ff, falls D’=D, sonst g:=2d
3. Verifiziere Decompose, generiere Vorbedingung +— primitive, Axiom 3

— Heuristik: abgeleitete zusétzliche Vorbedingung fir Op ist —primitive|x]

4. Konstruiere Compose — O¢, Axiome 5 & 2
— Heuristik: Erzeuge O¢ mit Axiom 2;
Synthetisiere C'ompose gemafl Axiom 5

5. Konstruiere Directly-solve — Axiome 1
— Heuristik: Suche nach vorgefertigten Losungen, sonst neue Synthese
— Falls dies nicht moglich ist, konstruiere eingeschrankte Vorbedingung [

6. Instantiiere das Divide & Conquer Schema

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 6 Divide & Conquer Algorithmen

ALTERNATIVE REIHENFOLGEN DER SYNTHESESTRATEGIE I

FUNCTION f(x:D):R WHERE [[x] RETURNS y SUCH THAT O|zx,y]

= 1if primitive[x] then Directly-solve|xz] else (Compose © gxf o Decompose) (x)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 7 Divide & Conquer Algorithmen

ALTERNATIVE REIHENFOLGEN DER SYNTHESESTRATEGIE I

FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

e Grundstrategie
— Wabhle > und Decompose aus Wissensbank
— Konstruiere g heuristisch
— Bestimme primitive durch Verifikation von Decompose
— Konstruiere Spezifikation und Losung fiir Compose
— Konstruiere Directly-solve

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 7 Divide & Conquer Algorithmen

ALTERNATIVE REIHENFOLGEN DER SYNTHESESTRATEGIE I

FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

e Grundstrategie
— Wabhle > und Decompose aus Wissensbank
— Konstruiere g heuristisch
— Bestimme primitive durch Verifikation von Decompose
— Konstruiere Spezifikation und Losung fiir Compose
— Konstruiere Directly-solve

e Variante
— Wahle > und Decompose aus Wissensbank
— Konstruiere C'ompose heuristisch
— Konstruiere Spezifikation und Losung fir g
— Bestimme primitiveund konstruiere Directly-solve

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 7 Divide & Conquer Algorithmen

ALTERNATIVE REIHENFOLGEN DER SYNTHESESTRATEGIE I

FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

= if primitive[x] then Directly-solve|x] else (Compose © gxf o Decompose) (x)

e Grundstrategie
— Wahle > und Decompose aus Wissensbank
— Konstruiere g heuristisch
— Bestimme primitive durch Verifikation von Decompose
— Konstruiere Spezifikation und Losung fiir Compose
— Konstruiere Directly-solve

e Variante
— Wahle > und Decompose aus Wissensbank
— Konstruiere C'ompose heuristisch
— Konstruiere Spezifikation und Losung fir g
— Bestimme primitiveund konstruiere Directly-solve

e Umgekehrte Strategie
— Wahle Compose aus Wissensbank
— Konstruiere g heuristisch
— Konstruiere Spezifikation und Losung fir Decompose und bestimme >
— Bestimme primitive und konstruiere Directly-solve

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 7 Divide & Conquer Algorithmen

PROGRAMMIERWISSEN FUR DIVIDE & CONQUER I

e Standard-Zerlegungen fiir Typen (D) — Decompose,Op,D
— Endliche Listen / Folgen (Seq(a)): HAT1, ListSplit
- ListSplit(L) = ([Lliel1..IL1+2]1], [Llie[1+IL]<2..ILI1])
mit Op|L, L, L) = L=LoL, D’ = Seq(«)
— Endliche Mengen (Set ()): ArbRest
— Produktraume (+ Mengen, Folgen, . ..): Zerlegung in Finzelkomponenten
— Nattirlichen Zahlen (N): Vorgiangerfunktion

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 8 Divide & Conquer Algorithmen

PROGRAMMIERWISSEN FUR DIVIDE & CONQUER I

e Standard-Zerlegungen fiir Typen (D) — Decompose,Op,D
— Endliche Listen / Folgen (Seq(a)): HAT1, ListSplit
- ListSplit(L) = ([Lliell..IL1+2]17, [Llie[1+|LI+2..1LI1])
mit Op|L, L, L) = L=LoL, D’ = Seq(«)
— Endliche Mengen (Set ()): ArbRest
— Produktrdume (+ Mengen, Folgen, . ..): Zerlegung in Einzelkomponenten
— Nattirlichen Zahlen (N): Vorgiangerfunktion

e Standard-Wohlordnungen auf Typen (D) — -
— Folgen und Mengen: Lingen/Groflenordnung L = L' = [LI>| L]
— Produktraume (+ Mengen, Folgen, . ..): Lexikographische Ordnung
- (a,b) > (ayb) = a,>a,v(a,=a,nb,>D,)
— Zahlen (N/Z): Zahlenordnung bzw. Absolutordnung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 8 Divide & Conquer Algorithmen

PROGRAMMIERWISSEN FUR DIVIDE & CONQUER I

e Standard-Zerlegungen fiir Typen (D) — Decompose,Op,D
— Endliche Listen / Folgen (Seq(a)): HAT1, ListSplit
- ListSplit(L) = ([Lliel1..IL1+2]1], [Llie[1+IL]<2..ILI1])
mit Op|L, L, L) = L=LoL, D’ = Seq(«)
— Endliche Mengen (Set(a)): ArbRest
— Produktrdume (+ Mengen, Folgen, . ..): Zerlegung in Einzelkomponenten
— Nattirlichen Zahlen (N): Vorgiangerfunktion

e Standard-Wohlordnungen auf Typen (D) — -
— Folgen und Mengen: Lingen/Groflenordnung L = L' = [LI>| L]
— Produktraume (+ Mengen, Folgen, . ..): Lexikographische Ordnung
- (a,b) > (ayb) = a,>a,v(a,=a,nb,>D,)
— Zahlen (N/Z): Zahlenordnung bzw. Absolutordnung

e Standard-Kompositionen fiir Typen (R) — Compose,Oc.R
— Endliche Folgen: cons (a.l), append (LoL,)
— Endliche Mengen: insert (S+a), union (SUS)
— Produktraume (+ Mengen, Folgen, . ..): Komponentenweise Komposition

— Natiirlichen Zahlen (N): Nachfolgerfunktion

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 8 Divide & Conquer Algorithmen

UNTERSTUTZUNGSTECHNIKEN DER ENTWURFSSTRATEGIE I

e Heuristische Fixierung von g
— Falls D'=D, wahle g.=f R':=R, O":=0 und [':=1
— Falls D’#£D, wihle g:=itd R":=D’, Oly'Z'|":=2" =y und I'|y/|:=true
Analoge Entscheidungen, falls ’'=R durch Wahl von Compose

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 9 Divide & Conquer Algorithmen

UNTERSTUTZUNGSTECHNIKEN DER ENTWURFSSTRATEGIE I

e Heuristische Fixierung von g
— Falls D'=D, wahle g.=f R':=R, O":=0 und [':=1
— Falls D’#£D, wihle g:=td R":=D’, Oly'Z']":=2" = ¢/ und I'|y/|:=true
Analoge Entscheidungen, falls ’'=R durch Wahl von Compose

e Inferenzmechanismus: Abgeleitete Vorbedingungen
— Bestimme Voraussetzungen fir Giiltigkeit einer Formel durch zielge-
richteten Einsatz von Lemmas entsprechend vorkommender Begriffe
— Voraussetzungen sind verbleibende Vorbedingungen beim Beweisversuch

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 9 Divide & Conquer Algorithmen

UNTERSTUTZUNGSTECHNIKEN DER ENTWURFSSTRATEGIE I

e Heuristische Fixierung von g
— Falls D'=D, wahle g.=f R':=R, O":=0 und [':=1
— Falls D’#£D, wihle g:=td R":=D’, Oly'Z']":=2" = ¢/ und I'|y/|:=true
Analoge Entscheidungen, falls ’'=R durch Wahl von Compose

e Inferenzmechanismus: Abgeleitete Vorbedingungen
— Bestimme Voraussetzungen fir Giiltigkeit einer Formel durch zielge-
richteten Einsatz von Lemmas entsprechend vorkommender Begriffe
— Voraussetzungen sind verbleibende Vorbedingungen beim Beweisversuch

e Inferenzmechanismus: Fallanalyse
— Erzeugung von Alternativen tiiber existierende Pradikate
— Partielle Auswertung der Einzelfalle
Liefert Programmstiicke mit Fallunterscheidungen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 9 Divide & Conquer Algorithmen

UNTERSTUTZUNGSTECHNIKEN DER ENTWURFSSTRATEGIE I

e Heuristische Fixierung von g
— Falls D'=D, wahle g.=f R':=R, O":=0 und [':=1
— Falls D’#£D, wihle g:=td R":=D’, Oly'Z']":=2" = ¢/ und I'|y/|:=true
Analoge Entscheidungen, falls ’'=R durch Wahl von Compose

e Inferenzmechanismus: Abgeleitete Vorbedingungen
— Bestimme Voraussetzungen fir Giiltigkeit einer Formel durch zielge-
richteten Einsatz von Lemmas entsprechend vorkommender Begriffe
— Voraussetzungen sind verbleibende Vorbedingungen beim Beweisversuch

e Inferenzmechanismus: Fallanalyse
— Erzeugung von Alternativen tiiber existierende Pradikate
— Partielle Auswertung der Einzelfalle
Liefert Programmstiicke mit Fallunterscheidungen

e Inferenzmechanismus: Operator match
— Synthese von Programmstiicken durch Anpassung an bekannte Losungen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18 9 Divide & Conquer Algorithmen

D1viDE & CONQUER SYNTHESE VON SORTIERALGORITHMEN I

FUNCTION sort(L:Seq(Z)) :Seq(Z) WHERE true
RETURNS S SUCH THAT rearranges(L,S) A ordered(S)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 10 Divide & Conquer Algorithmen

D1viDE & CONQUER SYNTHESE VON SORTIERALGORITHMEN I

FUNCTION sort(L:Seq(Z)) :Seq(Z) WHERE true
RETURNS S SUCH THAT rearranges(L,S) A ordered(S)

1. Wahle L -~ L’ = |L|>|L'|
Decompose = ListSplit (Op|L,L,L)=L=LpeL, D’=Seq(a))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 10 Divide & Conquer Algorithmen

D1viDE & CONQUER SYNTHESE VON SORTIERALGORITHMEN I

FUNCTION sort(L:Seq(Z)) :Seq(Z) WHERE true
RETURNS S SUCH THAT rearranges(L,S) A ordered(S)

1. Wahle L -~ L’ = |L|>|L'|
Decompose = ListSplit (Op|L,L,L)=L=LpeL, D’=Seq(a))

2. Konstruiere Hilfsfunktion ¢ = sort — O = O, I'll'] = true

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 10 Divide & Conquer Algorithmen

D1viDE & CONQUER SYNTHESE VON SORTIERALGORITHMEN I

FUNCTION sort(L:Seq(Z)) :Seq(Z) WHERE true
RETURNS S SUCH THAT rearranges(L,S) A ordered(S)

1. Wahle L -~ L’ = |L|>|L'|
Decompose = ListSplit (Op|L,L,L)=L=LpeL, D’=Seq(a))

2. Konstruiere Hilfsfunktion ¢ = sort — O = O, I'll'] = true

3. Verifiziere Decompose

FUNCTION f4(L:Seq(Z)) :Seq(Z) xSeq(Z) WHERE —primitive[L]
RETURNS L,L, SUCH THAT L>-L, A L>L, o LoL=L

1272

Vorbedingung fiir Korrektheit primitive]lL] = L=[]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 10 Divide & Conquer Algorithmen

D1viDE & CONQUER SYNTHESE VON SORTIERALGORITHMEN I

FUNCTION sort(L:Seq(Z)) :Seq(Z) WHERE true
RETURNS S SUCH THAT rearranges(L,S) A ordered(S)

1. Wahle L -~ L’ = |L|>|L'|
Decompose = ListSplit (Op|L,L,L)=L=LpeL, D’=Seq(a))

2. Konstruiere Hilfsfunktion ¢ = sort — O = O, I'll'] = true

3. Verifiziere Decompose

FUNCTION f4(L:Seq(Z)) :Seq(Z) xSeq(Z) WHERE —primitive[L]
RETURNS L,L, SUCH THAT L>-L, A L>L, o LoL=L

1272

Vorbedingung fiir Korrektheit primitive[ll] = L=[]
4. Konstruiere Compose
L-L nL-L, n LoL=L A SORT(L,S) A SORT(L,S) ~ O¢[S,,S,,S] = SORT(L,S)

liefert als Spezifikation fiir Compose — Synthese folgt spdter

FUNCTION f.(S,,S,:Seq(Z) xSeq(Z)) :Seq(Z) WHERE ordered(S) nordered(S,
RETURNS S SUCH THAT ordered(S) A rearranges(S, S.°S)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 10 Divide & Conquer Algorithmen

D1viDE & CONQUER SYNTHESE VON SORTIERALGORITHMEN I

FUNCTION sort(L:Seq(Z)) :Seq(Z) WHERE true
RETURNS S SUCH THAT rearranges(L,S) A ordered(S)

1. Wahle L -~ L’ = |L|>|L'|
Decompose = ListSplit (Op|L,L,L)=L=LpeL, D’=Seq(a))

2. Konstruiere Hilfsfunktion ¢ = sort — O = O, I'll'] = true

3. Verifiziere Decompose

FUNCTION f4(L:Seq(Z)) :Seq(Z) xSeq(Z) WHERE —primitive[L]
RETURNS L,L, SUCH THAT L>-L, A L>L, o LoL=L

1272

Vorbedingung fiir Korrektheit primitivell] = L=[]

4. Konstruiere Compose
L~L AL~L, A LOL=L A SORT(L,S) A SORT(L,,S) » O¢[S,,8,,S] = SORT(L,S)

1222
liefert als Spezifikation fiir Compose — Synthese folgt spdter
FUNCTION f.(S,,S,:Seq(Z) xSeq(Z)) :Seq(Z) WHERE ordered(S) nordered(S,
RETURNS S SUCH THAT ordered(S) A rearranges(S, S.°S)
5. Konstruiere Directly-solve
FUNCTION f,(L:Seq(Z)):Seq(Z) WHERE L=[]
RETURNS S SUCH THAT rearranges(L,S) A ordered(S)
Liefert Directly-solvelL] = []

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 10 Divide & Conquer Algorithmen

D1viDE & CONQUER SYNTHESE VON SORTIERALGORITHMEN I

Ermittelte Komponenten

Decompose[l.] = ListSplit|L]

= ([Lliel1..ILI+2]], [L lieli+|Ll=2..ILIT])
g = sort
Compose|S,S) = merge(S,,S) — ndchste Folie
Directly-solve| L] = []
primitive| L] = L=[]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 11 Divide & Conquer Algorithmen

D1viDE & CONQUER SYNTHESE VON SORTIERALGORITHMEN I

Ermittelte Komponenten

Decompose[l.] = ListSplit|L]

= ([Lliel1..ILI+2]], [L lieli+|Ll=2..ILIT])
g = sort
Compose|S,S) = merge(S,,S) — ndchste Folie
Directly-solve| L] = []
primitive| L] = L=[]

6. Instantiiere das Divide & Conquer Schema

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true
RETURNS S SUCH THAT rearranges(L,S) A ordered(S)
= if L=[] then []
else let L.L,= ([L |ie[1..[L|+2]],
[Llie[1+|L]=2..IL[]1])
in merge(sort(L) ,sort(L))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 11 Divide & Conquer Algorithmen

D1viDE & CONQUER SYNTHESE VON SORTIERALGORITHMEN I

Ermittelte Komponenten

Decompose[l.] = ListSplit|L]

= ([Lliel1..ILI+2]], [L lieli+|Ll=2..ILIT])
g = sort
Compose|S,S) = merge(S,,S) — ndchste Folie
Directly-solve| L] = []
primitive| L] = L=[]

6. Instantiiere das Divide & Conquer Schema

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true
RETURNS S SUCH THAT rearranges(L,S) A ordered(S)
= if L=[] then []
else let L.L,= ([L |ie[1..[L|+2]],
[Llie[1+|L]=2..IL[]1])
in merge(sort(L) ,sort(L))

Algorithmus ist korrekt durch Konstruktion

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 11 Divide & Conquer Algorithmen

DIVIDE & CONQUER SYNTHESE DER merge-FUNKTION |

FUNCTION merge(S,,S,:Seq(Z) xSeq(Z)) :Seq(Z) WHERE ordered (S, anordered(S,)
RETURNS S SUCH THAT ordered(S) A rearranges(S, S0©S,)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 12 Divide & Conquer Algorithmen

DIVIDE & CONQUER SYNTHESE DER merge-FUNKTION |

FUNCTION merge(S,,S,:Seq(Z) xSeq(Z)) :Seq(Z) WHERE ordered (S, anordered(S,)
RETURNS S SUCH THAT ordered(S) A rearranges(S, S0©S,)

1. Wahle Compose = cons (Ocla, S, S]=S=a.5', R=7)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 12 Divide & Conquer Algorithmen

DIVIDE & CONQUER SYNTHESE DER merge-FUNKTION |

FUNCTION merge(S,,S,:Seq(Z) xSeq(Z)) :Seq(Z) WHERE ordered (S, anordered(S,)
RETURNS S SUCH THAT ordered(S) A rearranges(S, S0©S,)

1. Wahle Compose = cons (Ocla, S, S]=S=a.5', R=7)

2. g kann nicht merge sein Wahle ¢ = id (O'la, a'| = a=d")

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 12 Divide & Conquer Algorithmen

DIVIDE & CONQUER SYNTHESE DER merge-FUNKTION |

FUNCTION merge(S,,S,:Seq(Z) xSeq(Z)) :Seq(Z) WHERE ordered (S, anordered(S,)
RETURNS S SUCH THAT ordered(S) A rearranges(S, S0©S,)

1. Wahle Compose = cons (Ocla, S, S]=S=a.5', R=7)
2. g kann nicht merge sein Wahle ¢ = id (O'la, a'| = a=d")

3. Konstruiere > auf Seq(Z) xSeq(Z):
—(8,59)>=(5,5,) = 1SI>15/1 v (USI=1S]1 A [S,I>15,1)

— Kombination Langenordnung fiir Listen + lexikographische Ordnung fiir Produkte

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 12 Divide & Conquer Algorithmen

DIVIDE & CONQUER SYNTHESE DER merge-FUNKTION |

FUNCTION merge(S,,S,:Seq(Z) xSeq(Z)) :Seq(Z) WHERE ordered (S, anordered(S,)
RETURNS S SUCH THAT ordered(S) A rearranges(S, S0©S,)

1. Wahle Compose = cons (Ocla, S, S]=S=a.5', R=7)
2. g kann nicht merge sein Wahle ¢ = id (O'la, a'| = a=d")

3. Konstruiere > auf Seq(Z) xSeq(Z):
—(S,8)=(S,8) = ISI>1S/l v (1S,1=15/1 » 1S,>1S,1)
— Kombination Langenordnung fiir Listen + lexikographische Ordnung fiir Produkte

4. Konstruiere Decompose mit Axiom 2 und 3
Op(S,,S,,a’,S,S) A a=a’ » MERGE(S’,S,’,S’) A S=a.S’ = MERGE(S,S,,S)
liefert als Spezifikation und Losung fiir Decompose
FUNCTION [;(S,,S,:Seq(Z) xSeq(Z)) :ZxSeq(Z) xSeq(Z)
WHERE ordered(S) » ordered(S) A SF#[l A S#I[]
RETURNS a’,S,’,S,’

SUCH THAT rearranges(a.(S,’0S,’), S°S,) @D)
A VxeS’0S) . a<x A (S,8)~(S’,S,)) (2)

(1) folgt aus rearranges(S,’0S,”,8’), S=a.S’ und rearranges(S.S,,S)
(2) folgt aus (1) und aus ordered(S,) a ordered(S)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 12 Divide & Conquer Algorithmen

DIVIDE & CONQUER SYNTHESE DER merge-FUNKTION |

FUNCTION merge(S,,S,:Seq(Z) xSeq(Z)) :Seq(Z) WHERE ordered (S, anordered(S,)
RETURNS S SUCH THAT ordered(S) A rearranges(S, S0©S,)

1. Wahle Compose = cons (Ocla, S, S]=S=a.5', R=7)
2. g kann nicht merge sein Wahle ¢ = id (O'la, a'| = a=d")

3. Konstruiere > auf Seq(Z) xSeq(Z):
—(8,5)=(5,5) = ISI>1S]1 v (IS|I=15]1 A 1S1>15,1)

— Kombination Langenordnung fiir Listen + lexikographische Ordnung fiir Produkte

4. Konstruiere Decompose mit Axiom 2 und 3
Op(s,,8,,a’,8,”,S) A a=a’ A MERGE(S,’,S,’,S’) A S=a.S’ = MERGE(S,S,,S)

1 272 2 1222
liefert als Spezifikation und Losung fiir Decompose
FUNCTION [;(S,,S,:Seq(Z) xSeq(Z)) :ZxSeq(Z) xSeq(Z)
WHERE ordered(S) » ordered(S) A SF#[l A S#I[]
RETURNS a’,S,”,S.)

1 272
SUCH THAT rearranges(a.(S,’0S,’), S°S,)
A VxeS’0S) . a<x A (S,8)~(S’,S,))
= let x,.S’°=S, and x,.5,=S, in if x<x, then (x,,S,,S) else (x,,S,,8,)

1°=1 2 22710772

(Losung durch Fallanalyse: a’ mufl Minimum von hd (S)) und hd(S,) sein)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 12 Divide & Conquer Algorithmen

DIVIDE & CONQUER SYNTHESE DER merge-FUNKTION |

FUNCTION merge(S,,S,:Seq(Z) xSeq(Z)) :Seq(Z) WHERE ordered (S, anordered(S,)
RETURNS S SUCH THAT ordered(S) A rearranges(S, S.°S,)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 13 Divide & Conquer Algorithmen

DIVIDE & CONQUER SYNTHESE DER merge-FUNKTION |

FUNCTION merge(S,,S,:Seq(Z) xSeq(Z)) :Seq(Z) WHERE ordered (S, anordered(S,)
RETURNS S SUCH THAT ordered(S) A rearranges(S, S.°S,)

5. Vorbedingung fiir Korrektheit von Decompose ist SF#[] rn S#[]
— Liefert primitive und Spezifikation fur Directly-solve
FUNCTION [,(S,,S,:Seq(Z) xSeq(Z)) :Seq(Z)

WHERE ordered(S) nordered(S) n (S=[] v Sz[1)
RETURNS S SUCH THAT ordered(S) A rearranges(S, S.°S,)

= if S=[] then S, else §,

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 13 Divide & Conquer Algorithmen

DIVIDE & CONQUER SYNTHESE DER merge-FUNKTION |

FUNCTION merge(S,,S,:Seq(Z) xSeq(Z)) :Seq(Z) WHERE ordered (S, anordered(S,)
RETURNS S SUCH THAT ordered(S) A rearranges(S, S.°S,)

5. Vorbedingung fiir Korrektheit von Decompose ist SF#[] rn S#[]
— Liefert primitive und Spezifikation fur Directly-solve

FUNCTION [,(S,,S,:Seq(Z) xSeq(Z)) :Seq(Z)
WHERE ordered(S) nordered(S) n (S=[] v Sz[1)
RETURNS S SUCH THAT ordered(S) A rearranges(S, S.°S,)

= if S=[] then S, else §,

6. Instantiierter Divide & Conquer Algorithmus
FUNCTION merge(S,,S,:Seq(Z) xSeq(Z)) :8eq(Z)
WHERE ordered(S) nordered(S,)
RETURNS S SUCH THAT ordered(S) A rearranges(S, S.°S)
= if S=[] then S,
elseif S=[] then S,
else let x,.5/=5, and x,.5,”=5,

S,”)

in if x<x, then x .merge(S’,S) else x,merge(S,S,

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18 13 Divide & Conquer Algorithmen

ERZEUGUNG ALTERNATIVER SORTIERALGORITHMEN I

e Wahle einfachere Dekomposition

— Decompose = HAT1, ¢ = id
— primitivell] = L=[1, Directly-solve|lL] = []

= ordered insert(a,S)

— Composela, S| =
Sortieren durch Einfiigen

14 Divide & Conquer Algorithmen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18

ERZEUGUNG ALTERNATIVER SORTIERALGORITHMEN I

e Wahle einfachere Dekomposition
— Decompose = HAT1, ¢ = id
— primitive]lL] = L=[1, Directly-solvelL] = []

= ordered insert(a,S)

— Composela, S| =
Sortieren durch Einfiigen

e Wahle einfache Komposition

— Composela, 8] = a.S, g¢g = id
— primitive]lL] = L=[1, Directly-solvelL] = []
— Decompose|lL] = let m=min(L) in (m, L-m)
Sortieren durch Auswahl

14 Divide & Conquer Algorithmen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §18

ERZEUGUNG ALTERNATIVER SORTIERALGORITHMEN I

e Wahle einfachere Dekomposition
— Decompose = HAT1, ¢ = id
— primitive]lL] = L=[1, Directly-solvelL] = []

— Composela, S| = ordered_insert(a,S)

Sortieren durch Einfiigen

e Wahle einfache Komposition
— Composela, 8] = a.S, g = id
— primitive]lL] = L=[1, Directly-solvelL] = []
| =

— Decompose|L let m=min(L) in (m, L-m)
Sortieren durch Auswahl

e Wahle binare Komposition
— Compose[S,S) = S0S, g = sort
— primitive]ll] = L= [] Directly-solve|L] = []

— Decompose|L] = let let a=Ljy in (L<a, L>g1)
Naives Quicksort

14 Divide & Conquer Algorithmen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18

ERZEUGUNG ALTERNATIVER SORTIERALGORITHMEN I

e Wahle einfachere Dekomposition
— Decompose = HAT1, ¢g = id
— primitive]lL] = L=[1, Directly-solvelL] = []

— Composela, S| = ordered_insert(a,S)

Sortieren durch Einfiigen

e Wahle einfache Komposition

— Composela, 8] = a.S, ¢ = id
— primitive]lL] = L=[1, Directly-solvelL] = []
| =

— Decompose|L let m=min(L) in (m, L-m)
Sortieren durch Auswahl

e Wahle binare Komposition
— Composel3,8) = SeS, ¢ = sort
— primitivelL] = L=[1, Directly-solvelL] = []

— Decompose|L] = let let a=Ljy in (L<a, L>g1)
Naives Quicksort

U

Flexible Strategie mit vielfaltigen Anwendungen

14 Divide & Conquer Algorithmen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §18

