
Automatisierte Logik und Programmierung II §18 1 Divide & Conquer Algorithmen

Divide & Conquer Algorithmen

Allgemeine Problemstruktur
Generate & Test

Lokale Struktur
Lokalsuche

Reduktionsstruktur

Komplementierung
Siebe

∧ -Reduktion

statisch
Operator Match

rekursiv
Divide & Conquer

∨ -Reduktion

statisch
Fallanalyse

rekursiv
Globalsuche

∧ - ∨ -Reduktion
Dynamische Programmierung

Automatisierte Logik und Programmierung II §18 1 Divide & Conquer Algorithmen

Divide & Conquer Algorithmen

Allgemeine Problemstruktur
Generate & Test

Lokale Struktur
Lokalsuche

Reduktionsstruktur

Komplementierung
Siebe

∧ -Reduktion

statisch
Operator Match

rekursiv
Divide & Conquer

∨ -Reduktion

statisch
Fallanalyse

rekursiv
Globalsuche

∧ - ∨ -Reduktion
Dynamische Programmierung

• Effiziente Verarbeitung strukturierter Daten

– Sehr gebräuchliche und einfache Programmiertechnik

Automatisierte Logik und Programmierung II §18 1 Divide & Conquer Algorithmen

Divide & Conquer Algorithmen

Allgemeine Problemstruktur
Generate & Test

Lokale Struktur
Lokalsuche

Reduktionsstruktur

Komplementierung
Siebe

∧ -Reduktion

statisch
Operator Match

rekursiv
Divide & Conquer

∨ -Reduktion

statisch
Fallanalyse

rekursiv
Globalsuche

∧ - ∨ -Reduktion
Dynamische Programmierung

• Effiziente Verarbeitung strukturierter Daten

– Sehr gebräuchliche und einfache Programmiertechnik

– Aufteilen: Zerlege Problem in kleinere Teilprobleme

Automatisierte Logik und Programmierung II §18 1 Divide & Conquer Algorithmen

Divide & Conquer Algorithmen

Allgemeine Problemstruktur
Generate & Test

Lokale Struktur
Lokalsuche

Reduktionsstruktur

Komplementierung
Siebe

∧ -Reduktion

statisch
Operator Match

rekursiv
Divide & Conquer

∨ -Reduktion

statisch
Fallanalyse

rekursiv
Globalsuche

∧ - ∨ -Reduktion
Dynamische Programmierung

• Effiziente Verarbeitung strukturierter Daten

– Sehr gebräuchliche und einfache Programmiertechnik

– Aufteilen: Zerlege Problem in kleinere Teilprobleme

– Erobern: Löse Teilprobleme separat und setze Lösungen zusammen

Automatisierte Logik und Programmierung II §18 1 Divide & Conquer Algorithmen

Divide & Conquer Algorithmen

Allgemeine Problemstruktur
Generate & Test

Lokale Struktur
Lokalsuche

Reduktionsstruktur

Komplementierung
Siebe

∧ -Reduktion

statisch
Operator Match

rekursiv
Divide & Conquer

∨ -Reduktion

statisch
Fallanalyse

rekursiv
Globalsuche

∧ - ∨ -Reduktion
Dynamische Programmierung

• Effiziente Verarbeitung strukturierter Daten

– Sehr gebräuchliche und einfache Programmiertechnik

– Aufteilen: Zerlege Problem in kleinere Teilprobleme

– Erobern: Löse Teilprobleme separat und setze Lösungen zusammen

• ∧ -Reduktion des Problems

– Lösung benötigt alle Teillösungen gleichzeitig

– Teillösungen bauen aufeinander auf

Automatisierte Logik und Programmierung II §18 2 Divide & Conquer Algorithmen

Ein typischer Divide & Conquer Algorithmus

• Maximum einer nichtleeren Liste von Zahlen
FUNCTION maxL(L:Seq(Z)):Z WHERE L6=[]

RETURNS m SUCH THAT m ∈L ∧ ∀x ∈L. x≤m

≡ if |L|=1 then hd(L)

else let a,L’=L

in let m’=maxL(L’)

in if a<m’ then m’ else a

Automatisierte Logik und Programmierung II §18 2 Divide & Conquer Algorithmen

Ein typischer Divide & Conquer Algorithmus

• Maximum einer nichtleeren Liste von Zahlen
FUNCTION maxL(L:Seq(Z)):Z WHERE L6=[]

RETURNS m SUCH THAT m ∈L ∧ ∀x ∈L. x≤m

≡ if |L|=1 then hd(L)

else let a,L’=L

in let m’=maxL(L’)

in if a<m’ then m’ else a

Einfache (primitive) Eingaben (|L|=1) erhalten direkte Lösung hd(L)

Automatisierte Logik und Programmierung II §18 2 Divide & Conquer Algorithmen

Ein typischer Divide & Conquer Algorithmus

• Maximum einer nichtleeren Liste von Zahlen
FUNCTION maxL(L:Seq(Z)):Z WHERE L6=[]

RETURNS m SUCH THAT m ∈L ∧ ∀x ∈L. x≤m

≡ if |L|=1 then hd(L)

else let a,L’=L

in let m’=maxL(L’)

in if a<m’ then m’ else a

Einfache (primitive) Eingaben (|L|=1) erhalten direkte Lösung hd(L)

Andernfalls Dekomposition der Eingabe mit Funktion HdTl: L 7→ a,L’

Einfache Teillösung a=id(a) für a — rekursive Lösung m’=maxL(L’) für L’

Komposition der Teillösungen a und m’ mit der Funktion max:Z→Z

Automatisierte Logik und Programmierung II §18 2 Divide & Conquer Algorithmen

Ein typischer Divide & Conquer Algorithmus

• Maximum einer nichtleeren Liste von Zahlen
FUNCTION maxL(L:Seq(Z)):Z WHERE L6=[]

RETURNS m SUCH THAT m ∈L ∧ ∀x ∈L. x≤m

≡ if |L|=1 then hd(L)

else let a,L’=L

in let m’=maxL(L’)

in if a<m’ then m’ else a

Einfache (primitive) Eingaben (|L|=1) erhalten direkte Lösung hd(L)

Andernfalls Dekomposition der Eingabe mit Funktion HdTl: L 7→ a,L’

Einfache Teillösung a=id(a) für a — rekursive Lösung m’=maxL(L’) für L’

Komposition der Teillösungen a und m’ mit der Funktion max:Z→Z

• Vereinheitlichung durch separierte Beschreibung
FUNCTION maxL(L:Seq(Z)):Z WHERE L6=[]

RETURNS m SUCH THAT m ∈L ∧ ∀x ∈L. x≤m

≡ if |L|=1 then hd(L)

else (max ◦ (id×maxL) ◦ HdTl) (L)

Automatisierte Logik und Programmierung II §18 2 Divide & Conquer Algorithmen

Ein typischer Divide & Conquer Algorithmus

• Maximum einer nichtleeren Liste von Zahlen
FUNCTION maxL(L:Seq(Z)):Z WHERE L6=[]

RETURNS m SUCH THAT m ∈L ∧ ∀x ∈L. x≤m

≡ if |L|=1 then hd(L)

else let a,L’=L

in let m’=maxL(L’)

in if a<m’ then m’ else a

Einfache (primitive) Eingaben (|L|=1) erhalten direkte Lösung hd(L)

Andernfalls Dekomposition der Eingabe mit Funktion HdTl: L 7→ a,L’

Einfache Teillösung a=id(a) für a — rekursive Lösung m’=maxL(L’) für L’

Komposition der Teillösungen a und m’ mit der Funktion max:Z→Z

• Vereinheitlichung durch separierte Beschreibung
FUNCTION maxL(L:Seq(Z)):Z WHERE L6=[]

RETURNS m SUCH THAT m ∈L ∧ ∀x ∈L. x≤m

≡ if |L|=1 then hd(L)

else (max ◦ (id×maxL) ◦ HdTl) (L)

Algorithmus zur Verarbeitung der Liste folgt festem Schema

Automatisierte Logik und Programmierung II §18 3 Divide & Conquer Algorithmen

Allgemeines Divide & Conquer Schema

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x]

else (Compose ◦ g×f ◦ Decompose) (x)

Automatisierte Logik und Programmierung II §18 3 Divide & Conquer Algorithmen

Allgemeines Divide & Conquer Schema

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x]

else (Compose ◦ g×f ◦ Decompose) (x)

• 5 zentrale Komponenten der Algorithmentheorie

Automatisierte Logik und Programmierung II §18 3 Divide & Conquer Algorithmen

Allgemeines Divide & Conquer Schema

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x]

else (Compose ◦ g×f ◦ Decompose) (x)

• 5 zentrale Komponenten der Algorithmentheorie

– Decompose: D→D’×D Aufspalten der Eingabe in Teilprobleme

Automatisierte Logik und Programmierung II §18 3 Divide & Conquer Algorithmen

Allgemeines Divide & Conquer Schema

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x]

else (Compose ◦ g×f ◦ Decompose) (x)

• 5 zentrale Komponenten der Algorithmentheorie

– Decompose: D→D’×D Aufspalten der Eingabe in Teilprobleme

– Rekursiver Aufruf von f zusammen mit Hilfsfunktion g: D→R’

· Funktionsprodukt g×f (x, y) = (g(x), f(y))

Automatisierte Logik und Programmierung II §18 3 Divide & Conquer Algorithmen

Allgemeines Divide & Conquer Schema

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x]

else (Compose ◦ g×f ◦ Decompose) (x)

• 5 zentrale Komponenten der Algorithmentheorie

– Decompose: D→D’×D Aufspalten der Eingabe in Teilprobleme

– Rekursiver Aufruf von f zusammen mit Hilfsfunktion g: D→R’

· Funktionsprodukt g×f (x, y) = (g(x), f(y))

– Compose: R’×R→R Zusammensetzen der Teillösungen

Automatisierte Logik und Programmierung II §18 3 Divide & Conquer Algorithmen

Allgemeines Divide & Conquer Schema

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x]

else (Compose ◦ g×f ◦ Decompose) (x)

• 5 zentrale Komponenten der Algorithmentheorie

– Decompose: D→D’×D Aufspalten der Eingabe in Teilprobleme

– Rekursiver Aufruf von f zusammen mit Hilfsfunktion g: D→R’

· Funktionsprodukt g×f (x, y) = (g(x), f(y))

– Compose: R’×R→R Zusammensetzen der Teillösungen

– Directly-solve: D→R: Direkte Lösung für einfache Teilprobleme

Automatisierte Logik und Programmierung II §18 3 Divide & Conquer Algorithmen

Allgemeines Divide & Conquer Schema

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x]

else (Compose ◦ g×f ◦ Decompose) (x)

• 5 zentrale Komponenten der Algorithmentheorie

– Decompose: D→D’×D Aufspalten der Eingabe in Teilprobleme

– Rekursiver Aufruf von f zusammen mit Hilfsfunktion g: D→R’

· Funktionsprodukt g×f (x, y) = (g(x), f(y))

– Compose: R’×R→R Zusammensetzen der Teillösungen

– Directly-solve: D→R: Direkte Lösung für einfache Teilprobleme

– primitive: D→B: Test, ob Eingabe “einfach” ist

Automatisierte Logik und Programmierung II §18 3 Divide & Conquer Algorithmen

Allgemeines Divide & Conquer Schema

Grundstruktur aller Divide & Conquer Algorithmen

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x]

else (Compose ◦ g×f ◦ Decompose) (x)

• 5 zentrale Komponenten der Algorithmentheorie

– Decompose: D→D’×D Aufspalten der Eingabe in Teilprobleme

– Rekursiver Aufruf von f zusammen mit Hilfsfunktion g: D→R’

· Funktionsprodukt g×f (x, y) = (g(x), f(y))

– Compose: R’×R→R Zusammensetzen der Teillösungen

– Directly-solve: D→R: Direkte Lösung für einfache Teilprobleme

– primitive: D→B: Test, ob Eingabe “einfach” ist

Korrektheit folgt aus wenigen Voraussetzungen

Automatisierte Logik und Programmierung II §18 4 Divide & Conquer Algorithmen

Korrektheit des Divide & Conquer Schemas

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

ist korrekt, wenn 6 Axiome erfüllt sind

Automatisierte Logik und Programmierung II §18 4 Divide & Conquer Algorithmen

Korrektheit des Divide & Conquer Schemas

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

ist korrekt, wenn 6 Axiome erfüllt sind

1. Direkte Lösung korrekt für primitive Eingaben
FUNCTION fp(x:D):R WHERE I [x] ∧ primitive[x] RETURNS y SUCH THAT O[x, y]

Automatisierte Logik und Programmierung II §18 4 Divide & Conquer Algorithmen

Korrektheit des Divide & Conquer Schemas

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

ist korrekt, wenn 6 Axiome erfüllt sind

1. Direkte Lösung korrekt für primitive Eingaben
FUNCTION fp(x:D):R WHERE I [x] ∧ primitive[x] RETURNS y SUCH THAT O[x, y]

2. Ausgabebedingung O rekursiv zerlegbar in OD, O′ und OC

OD[x, y′, y] ∧ O′[y′, z′] ∧ O[y, z] ∧ OC[z′, z, t] ⇒ O[x, t]

(Strong Problem Reduction Principle)

Automatisierte Logik und Programmierung II §18 4 Divide & Conquer Algorithmen

Korrektheit des Divide & Conquer Schemas

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

ist korrekt, wenn 6 Axiome erfüllt sind

1. Direkte Lösung korrekt für primitive Eingaben
FUNCTION fp(x:D):R WHERE I [x] ∧ primitive[x] RETURNS y SUCH THAT O[x, y]

2. Ausgabebedingung O rekursiv zerlegbar in OD, O′ und OC

OD[x, y′, y] ∧ O′[y′, z′] ∧ O[y, z] ∧ OC[z′, z, t] ⇒ O[x, t]

(Strong Problem Reduction Principle)

3. Dekomposition erfüllt OD und ‘verkleinert’ Problem
FUNCTION fd(x:D):D’×D WHERE I [x] ∧ ¬primitive[x]

RETURNS y′, y SUCH THAT I ′[y′] ∧I [y] ∧ x�y ∧OD[x, y′, y]

Automatisierte Logik und Programmierung II §18 4 Divide & Conquer Algorithmen

Korrektheit des Divide & Conquer Schemas

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

ist korrekt, wenn 6 Axiome erfüllt sind

1. Direkte Lösung korrekt für primitive Eingaben
FUNCTION fp(x:D):R WHERE I [x] ∧ primitive[x] RETURNS y SUCH THAT O[x, y]

2. Ausgabebedingung O rekursiv zerlegbar in OD, O′ und OC

OD[x, y′, y] ∧ O′[y′, z′] ∧ O[y, z] ∧ OC[z′, z, t] ⇒ O[x, t]

(Strong Problem Reduction Principle)

3. Dekomposition erfüllt OD und ‘verkleinert’ Problem
FUNCTION fd(x:D):D’×D WHERE I [x] ∧ ¬primitive[x]

RETURNS y′, y SUCH THAT I ′[y′] ∧I [y] ∧ x�y ∧OD[x, y′, y]

4. Hilfsfunktion g erfüllt O′

FUNCTION g(y′:D’):R’ WHERE I ′[y′] RETURNS z′ SUCH THAT O′[y′, z′]

Automatisierte Logik und Programmierung II §18 4 Divide & Conquer Algorithmen

Korrektheit des Divide & Conquer Schemas

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

ist korrekt, wenn 6 Axiome erfüllt sind

1. Direkte Lösung korrekt für primitive Eingaben
FUNCTION fp(x:D):R WHERE I [x] ∧ primitive[x] RETURNS y SUCH THAT O[x, y]

2. Ausgabebedingung O rekursiv zerlegbar in OD, O′ und OC

OD[x, y′, y] ∧ O′[y′, z′] ∧ O[y, z] ∧ OC[z′, z, t] ⇒ O[x, t]

(Strong Problem Reduction Principle)

3. Dekomposition erfüllt OD und ‘verkleinert’ Problem
FUNCTION fd(x:D):D’×D WHERE I [x] ∧ ¬primitive[x]

RETURNS y′, y SUCH THAT I ′[y′] ∧I [y] ∧ x�y ∧OD[x, y′, y]

4. Hilfsfunktion g erfüllt O′

FUNCTION g(y′:D’):R’ WHERE I ′[y′] RETURNS z′ SUCH THAT O′[y′, z′]

5. Komposition erfüllt OC

FUNCTION fc(z
′, z:R’×R):R WHERE true RETURNS y SUCH THAT OC [z′, z, t]

Automatisierte Logik und Programmierung II §18 4 Divide & Conquer Algorithmen

Korrektheit des Divide & Conquer Schemas

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

ist korrekt, wenn 6 Axiome erfüllt sind

1. Direkte Lösung korrekt für primitive Eingaben
FUNCTION fp(x:D):R WHERE I [x] ∧ primitive[x] RETURNS y SUCH THAT O[x, y]

2. Ausgabebedingung O rekursiv zerlegbar in OD, O′ und OC

OD[x, y′, y] ∧ O′[y′, z′] ∧ O[y, z] ∧ OC[z′, z, t] ⇒ O[x, t]

(Strong Problem Reduction Principle)

3. Dekomposition erfüllt OD und ‘verkleinert’ Problem
FUNCTION fd(x:D):D’×D WHERE I [x] ∧ ¬primitive[x]

RETURNS y′, y SUCH THAT I ′[y′] ∧I [y] ∧ x�y ∧OD[x, y′, y]

4. Hilfsfunktion g erfüllt O′

FUNCTION g(y′:D’):R’ WHERE I ′[y′] RETURNS z′ SUCH THAT O′[y′, z′]

5. Komposition erfüllt OC

FUNCTION fc(z
′, z:R’×R):R WHERE true RETURNS y SUCH THAT OC [z′, z, t]

6. Verkleinerungsrelation � ist wohlfundierte Ordnung auf D

Sechste Komponente in Algorithmentheorie, nötig für Terminierungsbeweis

Automatisierte Logik und Programmierung II §18 5 Divide & Conquer Algorithmen

Divide & Conquer Schema: Korrektheitsbeweis

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Partielle Korrektheit: strukturelle Induktion über (D,�)

Automatisierte Logik und Programmierung II §18 5 Divide & Conquer Algorithmen

Divide & Conquer Schema: Korrektheitsbeweis

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Partielle Korrektheit: strukturelle Induktion über (D,�)

– Primitive Eingaben: I [x] ∧ primitive[x]

– f(x) = Directly-solve[x] Korrektheit folgt direkt aus Axiom 1

FUNCTION fp(x:D):R WHERE I [x] ∧ primitive[x] RETURNS y SUCH THAT O[x, y]

Automatisierte Logik und Programmierung II §18 5 Divide & Conquer Algorithmen

Divide & Conquer Schema: Korrektheitsbeweis

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Partielle Korrektheit: strukturelle Induktion über (D,�)

– Primitive Eingaben: I [x] ∧ primitive[x]

– f(x) = Directly-solve[x] Korrektheit folgt direkt aus Axiom 1

– Nichtprimitive Eingaben: I [x] ∧ ¬primitive[x]

– f(x) = (Compose ◦ g×f ◦ Decompose) (x)

Automatisierte Logik und Programmierung II §18 5 Divide & Conquer Algorithmen

Divide & Conquer Schema: Korrektheitsbeweis

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Partielle Korrektheit: strukturelle Induktion über (D,�)

– Primitive Eingaben: I [x] ∧ primitive[x]

– f(x) = Directly-solve[x] Korrektheit folgt direkt aus Axiom 1

– Nichtprimitive Eingaben: I [x] ∧ ¬primitive[x]

– f(x) = (Compose ◦ g×f ◦ Decompose) (x)

– Decompose[x] liefert y′, y mit OD[x, y′, y] und x � y Axiom 3

FUNCTION fd(x:D):D’×D WHERE I [x] ∧ ¬primitive[x]

RETURNS y′, y SUCH THAT I ′[y′] ∧I [y] ∧ x�y ∧OD[x, y′, y]

Automatisierte Logik und Programmierung II §18 5 Divide & Conquer Algorithmen

Divide & Conquer Schema: Korrektheitsbeweis

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Partielle Korrektheit: strukturelle Induktion über (D,�)

– Primitive Eingaben: I [x] ∧ primitive[x]

– f(x) = Directly-solve[x] Korrektheit folgt direkt aus Axiom 1

– Nichtprimitive Eingaben: I [x] ∧ ¬primitive[x]

– f(x) = (Compose ◦ g×f ◦ Decompose) (x)

– Decompose[x] liefert y′, y mit OD[x, y′, y] und x � y Axiom 3

– g(y′) liefert z′ mit O′[y′, z′] Axiom 4

FUNCTION g(y′:D’):R’ WHERE I ′[y′] RETURNS z′ SUCH THAT O′[y′, z′]

Automatisierte Logik und Programmierung II §18 5 Divide & Conquer Algorithmen

Divide & Conquer Schema: Korrektheitsbeweis

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Partielle Korrektheit: strukturelle Induktion über (D,�)

– Primitive Eingaben: I [x] ∧ primitive[x]

– f(x) = Directly-solve[x] Korrektheit folgt direkt aus Axiom 1

– Nichtprimitive Eingaben: I [x] ∧ ¬primitive[x]

– f(x) = (Compose ◦ g×f ◦ Decompose) (x)

– Decompose[x] liefert y′, y mit OD[x, y′, y] und x � y Axiom 3

– g(y′) liefert z′ mit O′[y′, z′] Axiom 4

– f(y) liefert z mit O[y, z] Induktionsannahme

Automatisierte Logik und Programmierung II §18 5 Divide & Conquer Algorithmen

Divide & Conquer Schema: Korrektheitsbeweis

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Partielle Korrektheit: strukturelle Induktion über (D,�)

– Primitive Eingaben: I [x] ∧ primitive[x]

– f(x) = Directly-solve[x] Korrektheit folgt direkt aus Axiom 1

– Nichtprimitive Eingaben: I [x] ∧ ¬primitive[x]

– f(x) = (Compose ◦ g×f ◦ Decompose) (x)

– Decompose[x] liefert y′, y mit OD[x, y′, y] und x � y Axiom 3

– g(y′) liefert z′ mit O′[y′, z′] Axiom 4

– f(y) liefert z mit O[y, z] Induktionsannahme

– Decompose[z′, z] liefert t mit OC[z′, z, t] Axiom 5

FUNCTION fc(z
′, z:R’×R):R WHERE true RETURNS y SUCH THAT OC [z′, z, t]

Automatisierte Logik und Programmierung II §18 5 Divide & Conquer Algorithmen

Divide & Conquer Schema: Korrektheitsbeweis

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Partielle Korrektheit: strukturelle Induktion über (D,�)

– Primitive Eingaben: I [x] ∧ primitive[x]

– f(x) = Directly-solve[x] Korrektheit folgt direkt aus Axiom 1

– Nichtprimitive Eingaben: I [x] ∧ ¬primitive[x]

– f(x) = (Compose ◦ g×f ◦ Decompose) (x)

– Decompose[x] liefert y′, y mit OD[x, y′, y] und x � y Axiom 3

– g(y′) liefert z′ mit O′[y′, z′] Axiom 4

– f(y) liefert z mit O[y, z] Induktionsannahme

– Decompose[z′, z] liefert t mit OC[z′, z, t] Axiom 5

– t ist das Ergebnis (f(x) = t) und es gilt O[x, t] Axiom 2

OD[x, y′, y] ∧ O′[y′, z′] ∧ O[y, z] ∧ OC[z′, z, t] ⇒ O[x, t]

Automatisierte Logik und Programmierung II §18 5 Divide & Conquer Algorithmen

Divide & Conquer Schema: Korrektheitsbeweis

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Partielle Korrektheit: strukturelle Induktion über (D,�)

– Primitive Eingaben: I [x] ∧ primitive[x]

– f(x) = Directly-solve[x] Korrektheit folgt direkt aus Axiom 1

– Nichtprimitive Eingaben: I [x] ∧ ¬primitive[x]

– f(x) = (Compose ◦ g×f ◦ Decompose) (x)

– Decompose[x] liefert y′, y mit OD[x, y′, y] und x � y Axiom 3

– g(y′) liefert z′ mit O′[y′, z′] Axiom 4

– f(y) liefert z mit O[y, z] Induktionsannahme

– Decompose[z′, z] liefert t mit OC[z′, z, t] Axiom 5

– t ist das Ergebnis (f(x) = t) und es gilt O[x, t] Axiom 2

• Terminierung: Wohlfundiertheit von � Axiom 6

Automatisierte Logik und Programmierung II §18 6 Divide & Conquer Algorithmen

Synthesestrategie für Divide & Conquer Algorithmen

Zerlege Problem in Spezifikationen für Teilprobleme

Start: FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

Automatisierte Logik und Programmierung II §18 6 Divide & Conquer Algorithmen

Synthesestrategie für Divide & Conquer Algorithmen

Zerlege Problem in Spezifikationen für Teilprobleme

Start: FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

1. Wähle � und Decompose aus Wissensbank 7→ OD,D’, Axiom 6

Automatisierte Logik und Programmierung II §18 6 Divide & Conquer Algorithmen

Synthesestrategie für Divide & Conquer Algorithmen

Zerlege Problem in Spezifikationen für Teilprobleme

Start: FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

1. Wähle � und Decompose aus Wissensbank 7→ OD,D’, Axiom 6

2. Konstruiere Hilfsfunktion g: 7→ O′, I ′, Axiom 4

– Heuristik: g:=f , falls D’=D, sonst g:=id

Automatisierte Logik und Programmierung II §18 6 Divide & Conquer Algorithmen

Synthesestrategie für Divide & Conquer Algorithmen

Zerlege Problem in Spezifikationen für Teilprobleme

Start: FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

1. Wähle � und Decompose aus Wissensbank 7→ OD,D’, Axiom 6

2. Konstruiere Hilfsfunktion g: 7→ O′, I ′, Axiom 4

– Heuristik: g:=f , falls D’=D, sonst g:=id

3. Verifiziere Decompose, generiere Vorbedingung 7→ primitive, Axiom 3

– Heuristik: abgeleitete zusätzliche Vorbedingung für OD ist ¬primitive[x]

Automatisierte Logik und Programmierung II §18 6 Divide & Conquer Algorithmen

Synthesestrategie für Divide & Conquer Algorithmen

Zerlege Problem in Spezifikationen für Teilprobleme

Start: FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

1. Wähle � und Decompose aus Wissensbank 7→ OD,D’, Axiom 6

2. Konstruiere Hilfsfunktion g: 7→ O′, I ′, Axiom 4

– Heuristik: g:=f , falls D’=D, sonst g:=id

3. Verifiziere Decompose, generiere Vorbedingung 7→ primitive, Axiom 3

– Heuristik: abgeleitete zusätzliche Vorbedingung für OD ist ¬primitive[x]

4. Konstruiere Compose 7→ OC , Axiome 5 & 2

– Heuristik: Erzeuge OC mit Axiom 2;

Synthetisiere Compose gemäß Axiom 5

Automatisierte Logik und Programmierung II §18 6 Divide & Conquer Algorithmen

Synthesestrategie für Divide & Conquer Algorithmen

Zerlege Problem in Spezifikationen für Teilprobleme

Start: FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

1. Wähle � und Decompose aus Wissensbank 7→ OD,D’, Axiom 6

2. Konstruiere Hilfsfunktion g: 7→ O′, I ′, Axiom 4

– Heuristik: g:=f , falls D’=D, sonst g:=id

3. Verifiziere Decompose, generiere Vorbedingung 7→ primitive, Axiom 3

– Heuristik: abgeleitete zusätzliche Vorbedingung für OD ist ¬primitive[x]

4. Konstruiere Compose 7→ OC , Axiome 5 & 2

– Heuristik: Erzeuge OC mit Axiom 2;

Synthetisiere Compose gemäß Axiom 5

5. Konstruiere Directly-solve 7→ Axiome 1

– Heuristik: Suche nach vorgefertigten Lösungen, sonst neue Synthese

– Falls dies nicht möglich ist, konstruiere eingeschränkte Vorbedingung Î

Automatisierte Logik und Programmierung II §18 6 Divide & Conquer Algorithmen

Synthesestrategie für Divide & Conquer Algorithmen

Zerlege Problem in Spezifikationen für Teilprobleme

Start: FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

1. Wähle � und Decompose aus Wissensbank 7→ OD,D’, Axiom 6

2. Konstruiere Hilfsfunktion g: 7→ O′, I ′, Axiom 4

– Heuristik: g:=f , falls D’=D, sonst g:=id

3. Verifiziere Decompose, generiere Vorbedingung 7→ primitive, Axiom 3

– Heuristik: abgeleitete zusätzliche Vorbedingung für OD ist ¬primitive[x]

4. Konstruiere Compose 7→ OC , Axiome 5 & 2

– Heuristik: Erzeuge OC mit Axiom 2;

Synthetisiere Compose gemäß Axiom 5

5. Konstruiere Directly-solve 7→ Axiome 1

– Heuristik: Suche nach vorgefertigten Lösungen, sonst neue Synthese

– Falls dies nicht möglich ist, konstruiere eingeschränkte Vorbedingung Î

6. Instantiiere das Divide & Conquer Schema

Automatisierte Logik und Programmierung II §18 7 Divide & Conquer Algorithmen

Alternative Reihenfolgen der Synthesestrategie

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

Automatisierte Logik und Programmierung II §18 7 Divide & Conquer Algorithmen

Alternative Reihenfolgen der Synthesestrategie

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Grundstrategie
– Wähle � und Decompose aus Wissensbank
– Konstruiere g heuristisch
– Bestimme primitive durch Verifikation von Decompose
– Konstruiere Spezifikation und Lösung für Compose
– Konstruiere Directly-solve

Automatisierte Logik und Programmierung II §18 7 Divide & Conquer Algorithmen

Alternative Reihenfolgen der Synthesestrategie

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Grundstrategie
– Wähle � und Decompose aus Wissensbank
– Konstruiere g heuristisch
– Bestimme primitive durch Verifikation von Decompose
– Konstruiere Spezifikation und Lösung für Compose
– Konstruiere Directly-solve

• Variante
– Wähle � und Decompose aus Wissensbank
– Konstruiere Compose heuristisch
– Konstruiere Spezifikation und Lösung für g

– Bestimme primitiveund konstruiere Directly-solve

Automatisierte Logik und Programmierung II §18 7 Divide & Conquer Algorithmen

Alternative Reihenfolgen der Synthesestrategie

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

≡ if primitive[x] then Directly-solve[x] else (Compose ◦ g×f ◦ Decompose) (x)

• Grundstrategie
– Wähle � und Decompose aus Wissensbank
– Konstruiere g heuristisch
– Bestimme primitive durch Verifikation von Decompose
– Konstruiere Spezifikation und Lösung für Compose
– Konstruiere Directly-solve

• Variante
– Wähle � und Decompose aus Wissensbank
– Konstruiere Compose heuristisch
– Konstruiere Spezifikation und Lösung für g

– Bestimme primitiveund konstruiere Directly-solve

• Umgekehrte Strategie
– Wähle Compose aus Wissensbank
– Konstruiere g heuristisch
– Konstruiere Spezifikation und Lösung für Decompose und bestimme �

– Bestimme primitive und konstruiere Directly-solve

Automatisierte Logik und Programmierung II §18 8 Divide & Conquer Algorithmen

Programmierwissen für Divide & Conquer

• Standard-Zerlegungen für Typen (D) 7→ Decompose,OD,D’

– Endliche Listen / Folgen (Seq(α)): HdTl, ListSplit

· ListSplit(L) ≡ ([L
i
|i ∈[1..|L|÷2]], [L

i
|i ∈[1+|L|÷2..|L|]])

mit OD[L, L
1
, L

2
] ≡ L=L

1
◦L

2
, D’ ≡ Seq(α)

– Endliche Mengen (Set(α)): ArbRest

– Produkträume (+ Mengen, Folgen, . . .): Zerlegung in Einzelkomponenten

– Natürlichen Zahlen (N): Vorgängerfunktion

Automatisierte Logik und Programmierung II §18 8 Divide & Conquer Algorithmen

Programmierwissen für Divide & Conquer

• Standard-Zerlegungen für Typen (D) 7→ Decompose,OD,D’

– Endliche Listen / Folgen (Seq(α)): HdTl, ListSplit

· ListSplit(L) ≡ ([L
i
|i ∈[1..|L|÷2]], [L

i
|i ∈[1+|L|÷2..|L|]])

mit OD[L, L
1
, L

2
] ≡ L=L

1
◦L

2
, D’ ≡ Seq(α)

– Endliche Mengen (Set(α)): ArbRest

– Produkträume (+ Mengen, Folgen, . . .): Zerlegung in Einzelkomponenten

– Natürlichen Zahlen (N): Vorgängerfunktion

• Standard-Wohlordnungen auf Typen (D) 7→ �

– Folgen und Mengen: Längen/Größenordnung L � L′ ≡ |L|>|L′|

– Produkträume (+ Mengen, Folgen, . . .): Lexikographische Ordnung
· (a

1
, b

1
) � (a

2
, b

2
) ≡ a

1
> a

2
∨ (a

1
= a

2
∧b

1
> b

2
)

– Zahlen (N/Z): Zahlenordnung bzw. Absolutordnung

Automatisierte Logik und Programmierung II §18 8 Divide & Conquer Algorithmen

Programmierwissen für Divide & Conquer

• Standard-Zerlegungen für Typen (D) 7→ Decompose,OD,D’

– Endliche Listen / Folgen (Seq(α)): HdTl, ListSplit

· ListSplit(L) ≡ ([L
i
|i ∈[1..|L|÷2]], [L

i
|i ∈[1+|L|÷2..|L|]])

mit OD[L, L
1
, L

2
] ≡ L=L

1
◦L

2
, D’ ≡ Seq(α)

– Endliche Mengen (Set(α)): ArbRest

– Produkträume (+ Mengen, Folgen, . . .): Zerlegung in Einzelkomponenten

– Natürlichen Zahlen (N): Vorgängerfunktion

• Standard-Wohlordnungen auf Typen (D) 7→ �

– Folgen und Mengen: Längen/Größenordnung L � L′ ≡ |L|>|L′|

– Produkträume (+ Mengen, Folgen, . . .): Lexikographische Ordnung
· (a

1
, b

1
) � (a

2
, b

2
) ≡ a

1
> a

2
∨ (a

1
= a

2
∧b

1
> b

2
)

– Zahlen (N/Z): Zahlenordnung bzw. Absolutordnung

• Standard-Kompositionen für Typen (R) 7→ Compose,OC,R’

– Endliche Folgen: cons (a.l), append (L1
◦L2)

– Endliche Mengen: insert (S+a), union (S1∪S2)

– Produkträume (+ Mengen, Folgen, . . .): Komponentenweise Komposition

– Natürlichen Zahlen (N): Nachfolgerfunktion

Automatisierte Logik und Programmierung II §18 9 Divide & Conquer Algorithmen

Unterstützungstechniken der Entwurfsstrategie

• Heuristische Fixierung von g
– Falls D’=D, wähle g:=f R’:=R, O’:=O und I ’:=I

– Falls D’ 6=D, wähle g:=id R’:=D’, O[y′z′]’:=z′ = y′ und I ′[y′]:=true

Analoge Entscheidungen, falls R’=R durch Wahl von Compose

Automatisierte Logik und Programmierung II §18 9 Divide & Conquer Algorithmen

Unterstützungstechniken der Entwurfsstrategie

• Heuristische Fixierung von g
– Falls D’=D, wähle g:=f R’:=R, O’:=O und I ’:=I

– Falls D’ 6=D, wähle g:=id R’:=D’, O[y′z′]’:=z′ = y′ und I ′[y′]:=true

Analoge Entscheidungen, falls R’=R durch Wahl von Compose

• Inferenzmechanismus: Abgeleitete Vorbedingungen
– Bestimme Voraussetzungen für Gültigkeit einer Formel durch zielge-

richteten Einsatz von Lemmas entsprechend vorkommender Begriffe

– Voraussetzungen sind verbleibende Vorbedingungen beim Beweisversuch

Automatisierte Logik und Programmierung II §18 9 Divide & Conquer Algorithmen

Unterstützungstechniken der Entwurfsstrategie

• Heuristische Fixierung von g
– Falls D’=D, wähle g:=f R’:=R, O’:=O und I ’:=I

– Falls D’ 6=D, wähle g:=id R’:=D’, O[y′z′]’:=z′ = y′ und I ′[y′]:=true

Analoge Entscheidungen, falls R’=R durch Wahl von Compose

• Inferenzmechanismus: Abgeleitete Vorbedingungen
– Bestimme Voraussetzungen für Gültigkeit einer Formel durch zielge-

richteten Einsatz von Lemmas entsprechend vorkommender Begriffe

– Voraussetzungen sind verbleibende Vorbedingungen beim Beweisversuch

• Inferenzmechanismus: Fallanalyse
– Erzeugung von Alternativen über existierende Prädikate

– Partielle Auswertung der Einzelfälle

Liefert Programmstücke mit Fallunterscheidungen

Automatisierte Logik und Programmierung II §18 9 Divide & Conquer Algorithmen

Unterstützungstechniken der Entwurfsstrategie

• Heuristische Fixierung von g
– Falls D’=D, wähle g:=f R’:=R, O’:=O und I ’:=I

– Falls D’ 6=D, wähle g:=id R’:=D’, O[y′z′]’:=z′ = y′ und I ′[y′]:=true

Analoge Entscheidungen, falls R’=R durch Wahl von Compose

• Inferenzmechanismus: Abgeleitete Vorbedingungen
– Bestimme Voraussetzungen für Gültigkeit einer Formel durch zielge-

richteten Einsatz von Lemmas entsprechend vorkommender Begriffe

– Voraussetzungen sind verbleibende Vorbedingungen beim Beweisversuch

• Inferenzmechanismus: Fallanalyse
– Erzeugung von Alternativen über existierende Prädikate

– Partielle Auswertung der Einzelfälle

Liefert Programmstücke mit Fallunterscheidungen

• Inferenzmechanismus: Operator match
– Synthese von Programmstücken durch Anpassung an bekannte Lösungen

Automatisierte Logik und Programmierung II §18 10 Divide & Conquer Algorithmen

Divide & Conquer Synthese von Sortieralgorithmen

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

Automatisierte Logik und Programmierung II §18 10 Divide & Conquer Algorithmen

Divide & Conquer Synthese von Sortieralgorithmen

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

1. Wähle L � L’ ≡ |L|>|L′|

Decompose ≡ ListSplit (OD[L, L
1
, L

2
]≡L=L

1
◦L

2
, D’≡ Seq(α))

Automatisierte Logik und Programmierung II §18 10 Divide & Conquer Algorithmen

Divide & Conquer Synthese von Sortieralgorithmen

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

1. Wähle L � L’ ≡ |L|>|L′|

Decompose ≡ ListSplit (OD[L, L
1
, L

2
]≡L=L

1
◦L

2
, D’≡ Seq(α))

2. Konstruiere Hilfsfunktion g ≡ sort 7→ O′ ≡ O, I ′[L′] ≡ true

Automatisierte Logik und Programmierung II §18 10 Divide & Conquer Algorithmen

Divide & Conquer Synthese von Sortieralgorithmen

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

1. Wähle L � L’ ≡ |L|>|L′|

Decompose ≡ ListSplit (OD[L, L
1
, L

2
]≡L=L

1
◦L

2
, D’≡ Seq(α))

2. Konstruiere Hilfsfunktion g ≡ sort 7→ O′ ≡ O, I ′[L′] ≡ true

3. Verifiziere Decompose
FUNCTION fd(L:Seq(Z)):Seq(Z)×Seq(Z) WHERE ¬primitive[L]

RETURNS L
1
,L

2
SUCH THAT L�L

1
∧ L�L

2
∧ L

1
◦L

2
=L

Vorbedingung für Korrektheit primitive[L] ≡ L=[]

Automatisierte Logik und Programmierung II §18 10 Divide & Conquer Algorithmen

Divide & Conquer Synthese von Sortieralgorithmen

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

1. Wähle L � L’ ≡ |L|>|L′|

Decompose ≡ ListSplit (OD[L, L
1
, L

2
]≡L=L

1
◦L

2
, D’≡ Seq(α))

2. Konstruiere Hilfsfunktion g ≡ sort 7→ O′ ≡ O, I ′[L′] ≡ true

3. Verifiziere Decompose
FUNCTION fd(L:Seq(Z)):Seq(Z)×Seq(Z) WHERE ¬primitive[L]

RETURNS L
1
,L

2
SUCH THAT L�L

1
∧ L�L

2
∧ L

1
◦L

2
=L

Vorbedingung für Korrektheit primitive[L] ≡ L=[]

4. Konstruiere Compose

L�L
1
∧ L�L

2
∧ L

1
◦L

2
=L ∧ SORT(L

1
,S

1
) ∧ SORT(L

2
,S

2
) ∧ OC [S

1
,S

2
,S] ⇒ SORT(L,S)

liefert als Spezifikation für Compose 7→ Synthese folgt später

FUNCTION fc(S1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

Automatisierte Logik und Programmierung II §18 10 Divide & Conquer Algorithmen

Divide & Conquer Synthese von Sortieralgorithmen

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

1. Wähle L � L’ ≡ |L|>|L′|

Decompose ≡ ListSplit (OD[L, L
1
, L

2
]≡L=L

1
◦L

2
, D’≡ Seq(α))

2. Konstruiere Hilfsfunktion g ≡ sort 7→ O′ ≡ O, I ′[L′] ≡ true

3. Verifiziere Decompose
FUNCTION fd(L:Seq(Z)):Seq(Z)×Seq(Z) WHERE ¬primitive[L]

RETURNS L
1
,L

2
SUCH THAT L�L

1
∧ L�L

2
∧ L

1
◦L

2
=L

Vorbedingung für Korrektheit primitive[L] ≡ L=[]

4. Konstruiere Compose

L�L
1
∧ L�L

2
∧ L

1
◦L

2
=L ∧ SORT(L

1
,S

1
) ∧ SORT(L

2
,S

2
) ∧ OC [S

1
,S

2
,S] ⇒ SORT(L,S)

liefert als Spezifikation für Compose 7→ Synthese folgt später

FUNCTION fc(S1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

5. Konstruiere Directly-solve
FUNCTION fp(L:Seq(Z)):Seq(Z) WHERE L=[]

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

Liefert Directly-solve[L] ≡ []

Automatisierte Logik und Programmierung II §18 11 Divide & Conquer Algorithmen

Divide & Conquer Synthese von Sortieralgorithmen

Ermittelte Komponenten
Decompose[L] ≡ ListSplit[L]

≡ ([L
i
|i ∈[1..|L|÷2]], [L

i
|i ∈[1+|L|÷2..|L|]])

g ≡ sort

Compose[S1, S2] ≡ merge(S1,S2) 7→ nächste Folie

Directly-solve[L] ≡ []

primitive[L] ≡ L=[]

Automatisierte Logik und Programmierung II §18 11 Divide & Conquer Algorithmen

Divide & Conquer Synthese von Sortieralgorithmen

Ermittelte Komponenten
Decompose[L] ≡ ListSplit[L]

≡ ([L
i
|i ∈[1..|L|÷2]], [L

i
|i ∈[1+|L|÷2..|L|]])

g ≡ sort

Compose[S1, S2] ≡ merge(S1,S2) 7→ nächste Folie

Directly-solve[L] ≡ []

primitive[L] ≡ L=[]

6. Instantiiere das Divide & Conquer Schema

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

≡ if L=[] then []

else let L1.L2 = ([L
i
|i ∈[1..|L|÷2]],

[L
i
|i ∈[1+|L|÷2..|L|]])

in merge(sort(L1),sort(L2))

Automatisierte Logik und Programmierung II §18 11 Divide & Conquer Algorithmen

Divide & Conquer Synthese von Sortieralgorithmen

Ermittelte Komponenten
Decompose[L] ≡ ListSplit[L]

≡ ([L
i
|i ∈[1..|L|÷2]], [L

i
|i ∈[1+|L|÷2..|L|]])

g ≡ sort

Compose[S1, S2] ≡ merge(S1,S2) 7→ nächste Folie

Directly-solve[L] ≡ []

primitive[L] ≡ L=[]

6. Instantiiere das Divide & Conquer Schema

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true

RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

≡ if L=[] then []

else let L1.L2 = ([L
i
|i ∈[1..|L|÷2]],

[L
i
|i ∈[1+|L|÷2..|L|]])

in merge(sort(L1),sort(L2))

Algorithmus ist korrekt durch Konstruktion

Automatisierte Logik und Programmierung II §18 12 Divide & Conquer Algorithmen

Divide & Conquer Synthese der merge-Funktion

FUNCTION merge(S
1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

Automatisierte Logik und Programmierung II §18 12 Divide & Conquer Algorithmen

Divide & Conquer Synthese der merge-Funktion

FUNCTION merge(S
1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

1. Wähle Compose ≡ cons (OC [a, S ′, S]≡S=a.S ′, R’≡Z)

Automatisierte Logik und Programmierung II §18 12 Divide & Conquer Algorithmen

Divide & Conquer Synthese der merge-Funktion

FUNCTION merge(S
1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

1. Wähle Compose ≡ cons (OC [a, S ′, S]≡S=a.S ′, R’≡Z)

2. g kann nicht merge sein Wähle g ≡ id (O′[a, a′]≡ a=a′)

Automatisierte Logik und Programmierung II §18 12 Divide & Conquer Algorithmen

Divide & Conquer Synthese der merge-Funktion

FUNCTION merge(S
1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

1. Wähle Compose ≡ cons (OC [a, S ′, S]≡S=a.S ′, R’≡Z)

2. g kann nicht merge sein Wähle g ≡ id (O′[a, a′]≡ a=a′)

3. Konstruiere � auf Seq(Z)×Seq(Z):

– (S1, S2)�(S1, S2) ≡ |S1|>|S1
′| ∨ (|S1|=|S1

′| ∧ |S2|>|S2’|)

– Kombination Längenordnung für Listen + lexikographische Ordnung für Produkte

Automatisierte Logik und Programmierung II §18 12 Divide & Conquer Algorithmen

Divide & Conquer Synthese der merge-Funktion

FUNCTION merge(S
1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

1. Wähle Compose ≡ cons (OC [a, S ′, S]≡S=a.S ′, R’≡Z)

2. g kann nicht merge sein Wähle g ≡ id (O′[a, a′]≡ a=a′)

3. Konstruiere � auf Seq(Z)×Seq(Z):

– (S1, S2)�(S1, S2) ≡ |S1|>|S1
′| ∨ (|S1|=|S1

′| ∧ |S2|>|S2’|)

– Kombination Längenordnung für Listen + lexikographische Ordnung für Produkte

4. Konstruiere Decompose mit Axiom 2 und 3
OD(S1

,S
2
,a’,S

1
’,S

2
) ∧ a=a’ ∧ MERGE(S

1
’,S

2
’,S’) ∧ S=a.S’ ⇒ MERGE(S

1
,S

2
,S)

liefert als Spezifikation und Lösung für Decompose

FUNCTION fd(S1
,S

2
:Seq(Z)×Seq(Z)):Z×Seq(Z)×Seq(Z)

WHERE ordered(S
1
) ∧ ordered(S

2
) ∧ S

1
6=[] ∧ S

2
6=[]

RETURNS a’,S
1
’,S

2
’

SUCH THAT rearranges(a.(S
1
’◦S

2
’), S

1
◦S

2
) (1)

∧ ∀x ∈S
1
’◦S

2
’. a≤x ∧ (S

1
,S

2
)�(S

1
’,S

2
’) (2)

(1) folgt aus rearranges(S
1
’◦S

2
’,S’), S=a.S’ und rearranges(S

1
◦S

2
,S)

(2) folgt aus (1) und aus ordered(S
1
) ∧ ordered(S

2
)

Automatisierte Logik und Programmierung II §18 12 Divide & Conquer Algorithmen

Divide & Conquer Synthese der merge-Funktion

FUNCTION merge(S
1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

1. Wähle Compose ≡ cons (OC [a, S ′, S]≡S=a.S ′, R’≡Z)

2. g kann nicht merge sein Wähle g ≡ id (O′[a, a′]≡ a=a′)

3. Konstruiere � auf Seq(Z)×Seq(Z):

– (S1, S2)�(S1, S2) ≡ |S1|>|S1
′| ∨ (|S1|=|S1

′| ∧ |S2|>|S2’|)

– Kombination Längenordnung für Listen + lexikographische Ordnung für Produkte

4. Konstruiere Decompose mit Axiom 2 und 3
OD(S1

,S
2
,a’,S

1
’,S

2
) ∧ a=a’ ∧ MERGE(S

1
’,S

2
’,S’) ∧ S=a.S’ ⇒ MERGE(S

1
,S

2
,S)

liefert als Spezifikation und Lösung für Decompose

FUNCTION fd(S1
,S

2
:Seq(Z)×Seq(Z)):Z×Seq(Z)×Seq(Z)

WHERE ordered(S
1
) ∧ ordered(S

2
) ∧ S

1
6=[] ∧ S

2
6=[]

RETURNS a’,S
1
’,S

2
’

SUCH THAT rearranges(a.(S
1
’◦S

2
’), S

1
◦S

2
)

∧ ∀x ∈S
1
’◦S

2
’. a≤x ∧ (S

1
,S

2
)�(S

1
’,S

2
’)

= let x
1
.S

1
’=S

1
and x

2
.S

2
’=S

2
in if x

1
≤x

2
then (x

1
,S

1
’,S

2
) else (x

2
,S

1
,S

2
’)

(Lösung durch Fallanalyse: a’ muß Minimum von hd(S
1
) und hd(S

2
) sein)

Automatisierte Logik und Programmierung II §18 13 Divide & Conquer Algorithmen

Divide & Conquer Synthese der merge-Funktion

FUNCTION merge(S
1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

Automatisierte Logik und Programmierung II §18 13 Divide & Conquer Algorithmen

Divide & Conquer Synthese der merge-Funktion

FUNCTION merge(S
1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

5. Vorbedingung für Korrektheit von Decompose ist S16=[] ∧ S26=[]

– Liefert primitive und Spezifikation für Directly-solve

FUNCTION fp(S1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z)

WHERE ordered(S
1
) ∧ordered(S

2
) ∧ (S

1
=[] ∨ S

2
=[])

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

= if S
1
=[] then S

2
else S

1

Automatisierte Logik und Programmierung II §18 13 Divide & Conquer Algorithmen

Divide & Conquer Synthese der merge-Funktion

FUNCTION merge(S
1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z) WHERE ordered(S

1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

5. Vorbedingung für Korrektheit von Decompose ist S16=[] ∧ S26=[]

– Liefert primitive und Spezifikation für Directly-solve

FUNCTION fp(S1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z)

WHERE ordered(S
1
) ∧ordered(S

2
) ∧ (S

1
=[] ∨ S

2
=[])

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

= if S
1
=[] then S

2
else S

1

6. Instantiierter Divide & Conquer Algorithmus

FUNCTION merge(S
1
,S

2
:Seq(Z)×Seq(Z)):Seq(Z)

WHERE ordered(S
1
) ∧ordered(S

2
)

RETURNS S SUCH THAT ordered(S) ∧ rearranges(S,S
1
◦S

2
)

= if S
1
=[] then S

2

elseif S
2
=[] then S

1

else let x
1
.S

1
’=S

1
and x

2
.S

2
’=S

2

in if x
1
≤x

2
then x

1
.merge(S’

1
,S

2
) else x

2
.merge(S

1
,S

2
’)

Automatisierte Logik und Programmierung II §18 14 Divide & Conquer Algorithmen

Erzeugung Alternativer Sortieralgorithmen

• Wähle einfachere Dekomposition
– Decompose ≡ HdTl, g ≡ id

– primitive[L] ≡ L=[], Directly-solve[L] ≡ []

– Compose[a, S] ≡ ordered insert(a,S)

Sortieren durch Einfügen

Automatisierte Logik und Programmierung II §18 14 Divide & Conquer Algorithmen

Erzeugung Alternativer Sortieralgorithmen

• Wähle einfachere Dekomposition
– Decompose ≡ HdTl, g ≡ id

– primitive[L] ≡ L=[], Directly-solve[L] ≡ []

– Compose[a, S] ≡ ordered insert(a,S)

Sortieren durch Einfügen

• Wähle einfache Komposition
– Compose[a, S] ≡ a.S, g ≡ id

– primitive[L] ≡ L=[], Directly-solve[L] ≡ []

– Decompose[L] ≡ let m=min(L) in (m, L-m)

Sortieren durch Auswahl

Automatisierte Logik und Programmierung II §18 14 Divide & Conquer Algorithmen

Erzeugung Alternativer Sortieralgorithmen

• Wähle einfachere Dekomposition
– Decompose ≡ HdTl, g ≡ id

– primitive[L] ≡ L=[], Directly-solve[L] ≡ []

– Compose[a, S] ≡ ordered insert(a,S)

Sortieren durch Einfügen

• Wähle einfache Komposition
– Compose[a, S] ≡ a.S, g ≡ id

– primitive[L] ≡ L=[], Directly-solve[L] ≡ []

– Decompose[L] ≡ let m=min(L) in (m, L-m)

Sortieren durch Auswahl

• Wähle binare Komposition
– Compose[S1, S2] ≡ S1

◦S2, g ≡ sort

– primitive[L] ≡ L=[], Directly-solve[L] ≡ []

– Decompose[L] ≡ let let a=L[|L|/2] in (L<a, L≥a])

Naives Quicksort

Automatisierte Logik und Programmierung II §18 14 Divide & Conquer Algorithmen

Erzeugung Alternativer Sortieralgorithmen

• Wähle einfachere Dekomposition
– Decompose ≡ HdTl, g ≡ id

– primitive[L] ≡ L=[], Directly-solve[L] ≡ []

– Compose[a, S] ≡ ordered insert(a,S)

Sortieren durch Einfügen

• Wähle einfache Komposition
– Compose[a, S] ≡ a.S, g ≡ id

– primitive[L] ≡ L=[], Directly-solve[L] ≡ []

– Decompose[L] ≡ let m=min(L) in (m, L-m)

Sortieren durch Auswahl

• Wähle binare Komposition
– Compose[S1, S2] ≡ S1

◦S2, g ≡ sort

– primitive[L] ≡ L=[], Directly-solve[L] ≡ []

– Decompose[L] ≡ let let a=L[|L|/2] in (L<a, L≥a])

Naives Quicksort
⇓

Flexible Strategie mit vielfältigen Anwendungen

